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GLOBAL DYNAMICS OF THE CHEMOSTAT WITH DIFFERENT
REMOVAL RATES AND VARIABLE YIELDS

TEWFIK SARI∗ AND FREDERIC MAZENC†

Abstract. In this paper, we consider a competition model between n species in a chemostat
including both monotone and non-monotone response functions, distinct removal rates and variable
yields. We show that only the species with the lowest break-even concentration survives, provided
that additional technical conditions on the growth functions and yields are satisfied. LaSalle’s exten-
sion theorem of the Lyapunov stability theory is the main tool. We construct a Lyapunov function
which reduces to the Lyapunov function which where considered by S. B. Hsu [SIAM J. Appl. Math.,
34 (1978), pp. 760-763] in the Monod case where the response functions are of Michaelis-Menten type
and the yields are constant. Various applications are given including constant, linear and quadratic
yields.

Key words. chemostat, competitive exclusion principle, Lyapunov function, global asymptotic
stability, variable yield model

AMS subject classifications. 92A15, 92A17, 34C15, 34C35

1. Introduction. In this paper we study the global dynamics of the following
model of the chemostat in which n populations of microorganisms compete for a single
growth-limiting substrate:

S′(t) = D[S0 − S(t)] −
∑n

i=1
pi(S(t))
yi(S(t))xi(t)

x′

i(t) = [pi(S(t)) − Di]xi(t), i = 1 · · ·n,
(1.1)

where S(0) ≥ 0 and xi(0) > 0, i = 1 · · ·n and S0, D and Di are positive constants.
Let

fi(S) =
pi(S)

yi(S)
.

In these equations, S(t) denotes the concentration of the substrate at time t; xi(t)
denotes the concentration of the ith population of microorganisms at time t; fi(S)
represents the uptake rate of substrate of the ith population; pi(S) represents the
per-capita growth rate of the ith population and so yi(S) is the growth yield; S0 and
D denote, respectively, the concentration of substrate in the feed bottle and the flow
rate of the chemostat; each Di represents the removal rate of the ith population. We
make the following assumptions on the functions pi and yi:

• pi, yi : R+ → R+ are continuous,
• pi(0) = 0 and for all S > 0, pi(S) > 0,
• for all S ≥ 0, yi(S) > 0.

For general background on model (1.1), in the constant yield case yi(S) = Yi, the
reader is referred to the monograph of Smith and Waltman [13]. Following Butler
and Wolkowicz [3] (see also [13], Section 2.5), we make the following assumptions on

∗Laboratoire de Mathématiques, Informatique et Applications, Université de Haute Alsace, 4 rue
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the form of the response functions pi: there exist positive extended real numbers λi

and µi with λi ≤ µi ≤ +∞ such that

pi(S) < Di if S /∈ [λi, µi]
pi(S) > Di if S ∈]λi, µi[.

Hence there are at most two values of S, S = λi and S = µi, called the break-even
concentrations, satisfying the equation pi(S) = Di. We adopt the convention µi = ∞
if this equation has only one solution and λi = ∞ if it has no solution.

The global analysis of this model was considered by Hsu, Hubbell and Waltman
[5], in the Monod case [10] when the response functions are of Michaelis-Menten form,

pi(S) =
aiS

bi + S
,(1.2)

and the yields are constant yi(S) = Yi, and Di = D for i = 1 · · ·n. The authors
showed that only the species with the lowest break-even concentration survives. Thus
the competitive exclusion principle (CEP) holds: only one species survives, namely
the species which makes optimal use of the resources. Hsu [4] applied a Lyapunov-
LaSalle argument to give a simple and elegant proof of the result in [5] for the case
of different removal rates Di. The Lyapunov function VH discovered by Hsu is

VH =

∫ S

λ1

σ − λ1

σ
dσ + c1

∫ x1

x∗

1

ξ − x∗

1

ξ
dξ +

n
∑

i=2

cixi,(1.3)

where

ci =
1

Yi

ai

ai − Di

, i = 1 · · ·n, and x∗

1 = DY1
S0 − λ1

D1
.

Armstrong and McGehee [2] proved that the CEP is true for arbitrary monotone
response functions when, for i = 1 to n, D = Di and the yields are constant. Butler
and Wolkowicz [3] extended the result in [2] for non-monotone response functions.
Wolkowicz and Lu [14] extended the results of [3] by allowing different removal rates
Di. They considered the functions

gi(S) =
pi(S)

D1

p1(S) − D1

pi(S) − Di

S0 − λ1

S0 − S
, i = 2 · · ·n

and proved that if λ1 < S0 < µ1 and it is possible to find positive constants αi such
that

max
0<S<λ1

gi(S) ≤ αi ≤ min
λi<S<ρi

gi(S), where ρi = min{S0, µi},(1.4)

for all i ≥ 2 for which S0 > λi, then the CEP holds: only the species x1 survives.
These authors identified a large class of response functions, including many prototypes
of response functions often found in the literature, where such αi in (1.4) can always
be found. Despite the fact that criterion (1.4) is not satisfied by all response functions,
the work of Wolkowicz and Lu [14] represents a major step in the extension of the
result of Hsu [4] to general growth functions.

Wolkowicz and Xia [15] extended the result of [4] to general monotone response
functions and constant yields, provided the differences between the removal rates Di
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are sufficiently small. Li [8] extended the result of [14] by allowing a more general
condition which includes (1.4) as a special case and extended [15] by providing less
restrictive bounds on the differences on the removal rates Di and by allowing non-
monotone response functions.

The variable yield case was considered, for n = 1 and n = 2 by Pilyugin and
Waltman [11], with a particular interest to linear and quadratic yields, and by Huang,
Zhu and Chang [6]. In [6, 11], the authors were more interested in the existence of limit
cycles than in the global asymptotic stability of the equilibrium. The model (1.1),
with variable yields, was considered by Arino, Pilyugin and Wolkowicz [1]. In the case
n = 1, these authors gave sufficient conditions for the global asymptotic stability of
the positive equilibrium (see Example 2 below). For biological motivations concerning
the dependance of the yields on the substrat, the reader is refeered to [1, 11] and the
references therein.

The Lyapunov function VWL discovered by Wolkowicz and Lu [14] and further
adapted by Li [8] is

VWL =

∫ S

λ1

(p1(σ) − D1)(S
0 − λ1)

D1(S0 − σ)
dσ +

1

Y1

∫ x1

x∗

1

ξ − x∗

1

ξ
dξ +

n
∑

i=2

αi

Yi

xi.(1.5)

Notice that, in the case where the response functions are of Michaelis-Menten
form (1.2), the Wolkowicz and Lu Lyapunov function (1.5) does not reduce to the
Hsu Lyapunov function (1.3). Indeed, the second and last terms of these functions
are the same, but the first terms are not the same. Actually, it is believed (see, for
instance, the introduction of [14]) that the Lyapunov function of Hsu works only for
Michaelis-Menten or Lotka-Volterra response functions.

Our aim in this paper is to extend the Lyapunov function (1.3) of Hsu [4] to the
chemostat with a more general class of response functions and variable yields. Our
Lyapunov function is given by

V =

∫ S

λ1

p1(σ) − D1

f1(σ)
dσ +

∫ x1

x∗

1

ξ − x∗

1

ξ
dξ +

n
∑

i=2

αixi(1.6)

where αi, i = 2 · · ·n are positive constants to be determined. We identify a class
of response functions, including Lotka-Volterra and Michaelis-Menten growth func-
tions, where our Lyapunov function works. The criterion (1.4) is also needed in our
approach, but the functions gi are not defined as in [14].

2. Analysis of the model. It is known (see Theorem 4.1 [1]) that the non-
negative cone is invariant under the flow of (1.1) and all solutions are defined and
remain bounded for all t ≥ 0. System (1.1) can have many equilibria: the washout
equilibrium E0 = (S0, 0, · · · , 0), which is locally exponentially stable if and only if for
all i = 1 · · ·n, S0 /∈ [λi, µi] and the equilibria E∗

i and E∗∗

i where all component of E∗

i

and E∗∗

i vanish except for the first and the (i + 1)th, which are

S = λi, xi = x∗

i := Fi(λi), for E∗

i

and

S = µi, xi = x∗∗

i := Fi(µi), for E∗∗

i

respectively, where

Fi(S) = D
S0 − S

fi(S)
.(2.1)
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The equilibrium E∗

i lies in the non-negative cone if and only if λi ≤ S0. If λi < λj

for all i 6= j and F ′

i (λi) < 0 then it is locally exponentially stable. It collapses with
E0 when λi = S0. The equilibrium E∗∗

i lies in the non-negative cone if and only
if µi ≤ S0 and is locally exponentially unstable if it exists. Its collapses with E0

when µi = S0. Besides these equilibria, the system (1.1) can have a continuous set of
non-isolated equilibria in the non-generic cases where two or more of the break-even
concentrations are equal. In what follows we assume, that

λ1 < λ2 ≤ · · · ≤ λn, and λ1 < S0 < µ1.(2.2)

Hence E0 is locally exponentially unstable and the equilibrium E∗

1 lies in the non-
negative cone. It is locally exponentially stable if and only if

F ′

1(λ1) < 0 ⇐⇒ f1(λ1) + f ′

1(λ1)(S
0 − λ1) > 0.(2.3)

We consider the global asymptotic stability of E∗

1 .
Before presenting the results, we need the following lemma,
Lemma 2.1. The solutions S(t), xi(t), i = 1 · · ·n of (1.1) with positive initial

conditions are positive and bounded, and if λi < S0 < µi for some i = 1 · · ·n, then
S(t) < S0 for all sufficiently large t.

Proof. The proof is similar to the proof of Lemma 2.1 in [14] obtained for the
model (1.1) in the case where the yields are constant.

S

gi

λ1 λi

αi

λ1

F (λ1)

S

F

Fig. 2.1. Graphical depictions of conditions (2.5) and (2.6).

Consider the functions

gi(S) =
fi(S)

f1(S)

p1(S) − D1

pi(S) − Di

.(2.4)

Since (2.2) holds, the functions gi(S), with i ≥ 2, are negative if λ1 < S < λi and are
positive if 0 ≤ S < λ1 or λi < S < ρi where ρi = min{S0, µi}. We assume that there
exist positive real numbers αi such that (see Fig. 2.1, left)

max
0<S<λ1

gi(S) ≤ αi ≤ min
λi<S<ρi

gi(S), i ≥ 2.(2.5)

In the case where λi ≥ S0, condition (2.5) reduces simply to the condition that gi(S)
is bounded from above on the interval ]0, λ1[. Notice that this condition cannot be
satisfied in the case where, for some index i we have

lim
S→0

pi(S)

p1(S)
= +∞.
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Let F (S) = F1(S), where F1 is defined in (2.1), with i = 1. We add the following
assumption (see Fig. 2.1, right)

F (S) > F (λ1) if S ∈]0, λ1[, and F (S) < F (λ1) if S ∈]λ1, S
0[.(2.6)

The condition (2.6) is satisfied in the particular case where F ′(S) < 0 for 0 < S < S0.
For S = λ1 we obtain the condition (2.3) of local exponential stability of E∗

1 . We
have the following result.

Theorem 2.2. Consider the system (1.1). Suppose that conditions (2.2) and
(2.6) are satisfied and condition (2.5) is satisfied for each i ≥ 2. Then the equilibrium
E∗

1 is globally asymptotically stable with respect to the interior of the positive cone.
Proof. From Lemma 2.1 it follows that there is no loss of generality in restricting

our attention to 0 ≤ S < S0. Consider the function V = V (S, x1, · · · , xn) given
by (1.6), where αi are the positive constants satisfying (2.5). The function V is
continuously differentiable in the positive cone and positive except at the point E∗

1 .
The derivative of V along the trajectories of (1.1) is given by

V ′ =
p1(S) − D1

f1(S)

[

D(S0 − S) −

n
∑

i=1

xifi(S)

]

+ (x1 − x∗

1)[p1(S) − D1]

+
n

∑

i=2

αi(pi(S) − Di)xi

= [p1(S) − D1]

[

D
S0 − S

f1(S)
− x∗

1

]

+
∑n

i=2

[

αi(pi(S) − Di) − (p1(S) − D1)
fi(S)
f1(S)

]

xi

= [p1(S) − D1] [F (S) − x∗

1] +
n

∑

i=2

[pi(S) − Di] [αi − gi(S)] xi,

where gi(S) and F (S) are given by (2.4) and (2.1) respectively. First, note that, using
(2.2) and (2.6), the first term of the above sum is always non-positive for 0 < S < S0

and equals 0 for S ∈]0, S0[ if and only if S = λ1. If S ∈ [λ1, λi] then pi(S) < Di and
p1(S) > D1 so that gi(S) < 0 < αi for any choice of αi > 0. Similarly if µi < S0 and
S ∈ [µi, S

0] then pi(S) < Di and p1(S) > D1 so that gi(S) < 0 < αi for any choice of
αi > 0. On the other hand, if S ∈ [0, λ1] then pi(S) < Di and, using (2.5), gi(S) ≤ αi

so that hi(S) < 0. Finally, if S ∈ [λi, ρi] then pi(S) > Di and gi(S) ≥ αi so that
hi(S) < 0. Thus hi(S) < 0 for every S ∈]0, S0[, provided that the numbers αi satisfy
(2.5). Hence V ′ ≤ 0 and V ′ = 0 if and only if xi = 0 for i = 1 · · ·n or S = λ1 and
xi = 0 for i = 2 · · ·n. By LaSalle’s Theorem, the ω-limit set of the trajectory is E∗

1 .

Let us show that Theorem 2.2 applies in two important classical cases.

Example 1 (The Monod case). Consider the particular case where the growth
functions are given by (1.2) and the yields are constant. The equations take the form

S′ = D(S0 − S) −

n
∑

i=1

aiS

bi + S

xi

Yi

x′

i =

[

aiS

bi + S
− Di

]

xi, i = 1 · · ·n.

(2.7)

We consider the case where, for all i = 1 · · ·n, ai > Di. In that case:

λi =
biDi

ai − Di

, µi = ∞, gi(S) = wi

S − λ1

S − λi

, where wi =
aiY1(a1 − D1)

a1Yi(ai − Di)
.
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Since the function hi(S) = S−λ1

S−λi

is decreasing on [0, λ1] and on ]λi, +∞[ and admits
1 as an horizontal asymptote, we have (see Figure 2.2, right)

max
0<S<λ1

hi(S) = hi(0) < 1 < hi(ρi) = min
λi<S<ρi

hi(S).(2.8)

Thus the conditions (2.5) are satisfied with αi = wi. Since

F (S) = Y1D(S0 − S)
b1 + S

a1S
and F ′(S) = −Y1D

S2 + b1S
0

a1S2
,

the first derivative of the function F (S) is negative. Hence, condition (2.6) is satisfied.
The global stability of the equilibrium E∗

1 follows from Theorem 2.2. This was the
main result of [4] (see also [13], Section 2.4). In this case the Lyapunov function (1.6)
is simply

V =
a1 − D1

a1Y1
VH

where VH is the Lyapunov function (1.3) discovered by Hsu [4]. Hence, our Lyapunov
function (1.6) reduces to the Hsu Lyapunov function in the case of Michaelis-Menten
response functions and constant yields.

S

gi

λ1 λi

Ai
λ1

λi

Ai
c1

ci

S

hi

λ1 λi

λ1

λi

1

Fig. 2.2. On the left, the graph of the function gi(S) for pi(S) = aiS

bi+S
and yi(S) = Yi(1+ciS).

On the right the graph of the function hi(S) = S−λ1

S−λi

.

Example 2 (One species). In the case n = 1 the equations take the form

S′ = D(S0 − S) − x1f1(S)
x′

1 = [p1(S) − D1]x1
(2.9)

If λ1 < S0 < µ1 and condition (2.6) is satisfied then the equilibrium E∗

1 = (λ1, x
∗

1),

where x∗

1 = D S0
−λ1

f1(λ1)
is globally asymptotically stable with respect to the interior of

the positive quadrant. This results follows from Theorem 2.2 since in the case where
n = 1 the condition (2.5) is satisfied. The global asymptotic stability of E∗

1 was
obtained by Arino, Pilyugin and Wolkowicz [1]. These authors used the following
Lyapunov function

VAPW =

∫ S

λ1

p1(σ) − D1

f1(λ1)

S0 − λ1

S0 − σ
dσ +

∫ x1

x∗

1

ξ − x∗

1

ξ
dξ.
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They proved (see [1], Theorem 2.11) that if

1 −
f1(S)(S0 − λ1)

f1(λ1)(S0 − S)
(2.10)

has exactly one sign change for S ∈ (0, S0) then E∗

1 is globally asymptotically stable.
Condition (2.10) is equivalent to (2.6). Notice that the Lyapunov function we obtain
is not proportional to their function.

3. Applications. In this section we show how Theorem 2.2 can be fruitfully
used to analyze the stability properties of systems whose yield functions depend on
the variable S.

3.1. Michaelis-Menten growth functions and linear or quadratic yields.
Consider the the particular case where the growth functions are given by (1.2) and
the yields are linear

yi(S) = Yi(1 + ciS)(3.1)

or quadratic

yi(S) = Yi(1 + ciS
2).(3.2)

where Yi > 0 and ci ≥ 0.
Corollary 3.1. Consider the system (1.1) where the growth functions are given

by (1.2) and the yields are given by (3.1) or (3.2). Suppose that conditions (2.2) and
(2.6) are satisfied and the conditions

ciλ1 ≤ c1λi(3.3)

are satisfied for each i ≥ 2 satisfying λi < S0. Then the equilibrium E∗

1 is globally
asymptotically stable with respect to the interior of the positive cone.

Proof. For linear yields (3.1) we have

gi(S) = Ai

1 + c1S

1 + ciS

S − λ1

S − λi

, where Ai =
aiY1(a1 − D1)

a1Yi(ai − Di)
.

Thus

g′i(S) = Ai

c1 − ci

(1 + ciS)2
S − λ1

S − λi

+ Ai

1 + c1S

1 + ciS

λ1 − λi

(S − λi)2
.

Two cases can be distinguished. If c1 < ci then g′i(S) < 0 for all 0 ≤ S ≤ λ1 and
S > λi. Hence (see Fig. 2.2, left)

max
0<S<λ1

gi(S) = gi(0) = Ai

λ1

λi

and

min
λi<S<S0

gi(S) = gi(S
0) > gi(+∞) = Ai

c1

ci

.

Under condition (3.3) there exists αi satisfying (2.5). If c1 ≥ ci then the function

wi(S) = Ai

1 + c1S

1 + ciS
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is non-decreasing over [0, +∞[. Thus

max
0<S<λ1

wi(S) ≤ min
λi<S<ρi

wi(S).

Since (2.8) the functions gi(S) = wi(S)hi(S) satisfy (2.5). The result follows by
Theorem 2.2. For quadratic yields (3.2) we have

gi(S) = Ai

1 + c1S
2

1 + ciS2

S − λ1

S − λi

, where Ai =
aiY1(a1 − D1)

a1Yi(ai − Di)
.

Thus

g′i(S) = Ai

2(c1 − ci)S

(1 + ciS2)2
S − λ1

S − λi

+ Ai

1 + c1S
2

1 + ciS2

λ1 − λi

(S − λi)2
.

Next, the proof is mutatis mutandis the same as the proof given above for the case of
linear yields (3.1).

0 1 2 3 4 5
0

10

20

30

0 1 2 3 4 5
0

10

20

30

λ1

F (λ1)

λ1

F (λ1)

Fig. 3.1. The graph of the function F (S) for p1(S) = a1S

b1+S
(where a1 = 2.1/1.1, b1 = 0.5/1.1

and λ1 = 0.5) and y1(S) = Y1(1 + c1S). On the left the case c1 = 1.8 for which the condition (2.6)
is not satisfied. On the right, the case c1 = 1 for which the condition (2.6) is satisfied.

Remark. This result contains as a particular case the result of Hsu [4] which corre-
sponds to the case where the yields are constant. Indeed, for constant yields ci = 0
and condition (3.3) is satisfied. When c1 > 0, and the yield y1(S) is linear, the
function F (S) is given by

F (S) = DY1
S0 − S

a1S
(b1 + S)(1 + c1S).

Since this function is not monotone in general on the interval ]0, S0[, it is not easy
to give a condition on the parameters for which (2.6) holds. However, the graphical
depiction of condition (2.6) is very simple as shown in Fig. 3.1.

3.2. Pilyugin-Waltman’s example. This system was given in [11] as a model
of the competition in the chemostat exhibiting limit cycles. The existence of the limit
cycles is a consequence of the variable yield in the model. The model takes the form

S′ = 1 − S − 2S
0.7+S

x1

1+cS3 − m2S
6.5+S

x2

120

x′

1 = [ 2S
0.7+S

− 1]x1

x′

2 = [ m2S
6.5+S

− 1]x2.

(3.4)
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S
0 0,2 0,4 0,6 0,8 1,0

0

0,5

1,0

1,5

2,0

S
0 0,2 0,4 0,6 0,8 1,0

0

0,5

1,0

1,5

2,0

S
0 0,2 0,4 0,6 0,8 1,0

0

1

2

3

4

5

6

7

Fig. 3.2. The graph of the function F (S) for p1(S) = 2S/(0.7 + S) and y1(S) = 1 + cS3 in the
cases c = c0 (left), c = c1 (middle) and c = c2 (right).

In their study Pilyugin and Waltman [11] fixed c = 50 and considered m2 as a bi-
furcation parameter. They shown that for m2 ≥ 9.85 the system exhibits sustained
oscillations. In this section we fix m2 = 10 and we consider c ≥ 0 as a bifurcation
parameter. In this case we have

λ1 =
0.7

2 − 1
= 0.7, λ2 =

6.5

10 − 1
≈ 0.72, F (S) =

(1 − S)(0.7 + S)(1 + cS3)

2S
.

Straightforward computations lead to the formula

F ′(λ1) =
49

2000
c −

17

14
.

Hence F ′(λ1) > 0 if and only if c > 2 where c2 = 17000
343 ≈ 49.562682.

An analysis of the behavior of the function F (S) shows (see Fig. 3.2) that there
exist two bifurcation values c0 and c1, 0 < c0 < c1 < c2, such that the function
F (S) is decreasing on ]0, S0[ if and only if 0 ≤ c ≤ c0 and the function F (S) has two
extrema S1, S2 ∈]0, λ1[ satisfying F (S1) < F (λ1) < F (S2) if and only if c ∈]c1, c2[.
The numerical values of c0 and c1 are c0 ≈ 8.743009 and c1 ≈ 10.350424.

S
0 0,2 0,4 0,6 0,8 1,0

0

0,5

1,0

1,5

2,0

S
0,2 0,4 0,6 0,8 1,0

K0,01

0

0,01

0,02

0,03

0,04

0,05

0,06

Fig. 3.3. Graphical verification of assumptions (2.5) and (2.6) for (3.4) with c = 8 and
m2 = 10. On the left, the graph of the function F (S). On the right the graph of the function g2(S).

Corollary 3.2. The equilibrium E∗

1 is locally exponentially unstable if and only
if c > c2. If 0 ≤ c < c1 then the equilibrium E∗

1 is globally asymptotically stable .
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Proof. Since λ1 < λ2 and F ′(λ1) > 0 if and only if c > c2 the condition (2.3)
of local exponential stability of the equilibrium E∗

1 holds if and only if c > c2. The
condition (2.6) is satisfied if and only if 0 ≤ c < c1 (see Fig. 3.3, left). The function
g2(S) is defined by

g2(S) =
1 + cS3

216

S − λ1

S − λ2
.

For c ≥ 0, the function S 7→ 1 + cS3 is non-decreasing. Since h2(S) = S−λ1

S−λ2

satisfies
(2.8), the condition (2.5) with i = 2 holds (see Fig. 3.3, right), and the result follows
from Theorem 2.2.

6,2

0,0 4,2
0,2

0,025

0,4

0,05

2,2

0,075

0,6

0,1

0,8 0,2

0,125

0,15

Fig. 3.4. The numerical limit cycle of (3.4) with c = 8 and m2 = 10. It was computed with
initial conditions S(0) = 4, x1(0) = 2, x2(0) = 0.1. The figure shows the plot of this the trajectory
(S(t), x1(t), x2(t)) for 2000 ≤ t ≤ 2100.

t
2 020 2 040 2 060 2 080 2 100

0,0

0,2

0,4

0,6

0,8

1,0

t
2 020 2 040 2 060 2 080 2 100

0

1

2

3

4

5

6

t
2 020 2 040 2 060 2 080 2 100

0,00

0,05

0,10

0,15

Fig. 3.5. The solution S(t) (on the left), x1(t) (on the middle) and x2(t) (on the right)
corresponding to the limit cycle shown in Fig. 3.3. The limit cycle is not on the face x2 = 0.

Pilyugin and Waltman shown by numerical simulations that their system exhibits
limit cycles in the case where c = 50 and m2 ≥ 9.85 (see Figs. 3.4 and 3.5 or Fig. 4
in [11]). The example was revisited by Huang, Zhu and Chang [6] who claimed that
the limit cycle of the system should remain only on the face x2 = 0 (see [6], Remark
2). We do not agree with this claim. We performed ourselves numerical simulations
and actually the limit cycle is contained within the positive cone as shown in Figs.
3.4 and 3.5 and not in the face x2 = 0 as claimed in [6].



COMPETITION IN THE CHEMOSTAT 11

0 0,2 0,4 0,6 0,8 1,0
0

2

4

6

8

10

S
0,699995 0,700000 0,700005 0,700010

5,44499990

5,44499995

5,44500000

5,44500005

5,44500010

Fig. 3.6. Plot of F (S) for (3.4). The magnification (on the right) of the neighborhood of
λ1 = 0.7 shows that F ′(λ1) > 0. Hence the equilibrium is locally exponentially unstable.

0 0,2 0,4 0,6 0,8 1,0
0

2

4

6

8

10

0,69 0,70 0,71 0,72
5,470

5,475

5,480

5,485

5,490

Fig. 3.7. Plot of F (S) for (3.5). The magnification (on the right) of the neighborhood of
λ1 = 0.71 shows that F ′(λ1) < 0. Hence the equilibrium is locally exponentially stable. Since
condition (2.6) is not satisfied Theorem 2.2 does not apply.

Huang, Zhu and Chang [6] made a simple modification by replacing 2S/(0.7+ S)
with 2S/(0.71+S) in (3.4) and obtained an example exhibiting competitive exclusion.
The model takes the form

S′ = 1 − S − 2S
0.71+S

x1

1+50S3 − m2S
6.5+S

x2

120

x′

1 = [ 2S
0.7+S

− 1]x1

x′

2 = [ m2S
6.5+S

− 1]x2.

(3.5)

It is claimed, without proof, in [6] that the equilibrium E∗

1 is globally asymptotically
stable. Our criterion (2.6) does not apply (see Fig. 3.7) and we cannot prove the global
stability. However an explanation of the high sensitivity when 0.7 is replaced by 0.71
is easy to find. Actually the plots of the function F (S) in the case of (3.4), where
c = 50 and (3.5) are very similar (see Figs. 3.6 and 3.7, left), but a magnification
of the neighborhood of the value S = λ1 shows the differences (see Figs. 3.6 and
3.7, right). In (3.4), F ′(λ1) > 0. Hence the equilibrium E∗

1 is locally exponentially
unstable. In (3.5), F ′(λ1) < 0. Hence the equilibrium E∗

1 is locally exponentially
stable.
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3.3. Further applications. In this section we describe a class of response func-
tions pi(S) and yields yi(S) for which constants αi satisfying (2.5) exist and hence
Theorem 2.2 can be applied.

Proposition 3.3. Suppose that conditions (2.2) and (2.6) are satisfied. For each
i ≥ 2., if wi(S) satisfies

max
0<S<λ1

wi(S) ≤ min
λi<S<ρi

wi(S),(3.6)

where wi(S) = gi(S) S−λi

S−λ1

, then the equilibrium E∗

1 is globally asymptotically stable
with respect to the interior of the positive cone.

Proof. Since (3.6) and (2.8) the functions gi(S) = wi(S)hi(S) satisfy (2.5) and
hence the result follows by Theorem 2.2.

It is convenient to use the notation

Pi(S) =
S − λi

pi(S) − Di

pi(S).

Then

pi(S) =
DiPi(S)

Pi(S) + λi − S
(3.7)

and

wi(S) =
y1(S)

yi(S)

Pi(S)

P1(S)
.

Remark. Notice that we can take the functions Pi(S) as any functions that are
positive for 0 < S ≤ S0 and satisfy Pi(0) = 0 and use formulas (3.7) to define the
functions pi(S) for i = 1 · · ·n and S ∈ [0, S0]. We must impose also

Pi(S) > S − λi, for all S ∈ [0, S0] and i = 1 · · ·n.

The functions (3.7) satisfy that pi(S) < Di for S ∈ [0, λi[ and pi(S) > Di for S ∈
]λi, S

0]. Thus µi > S0. If we find a class of yield functions yi(S) such that the
conditions (3.6) hold, then we can use Proposition 3.3 to obtain the global asymptotic
stability of the equilibrium E∗

1 .

As a particular application of Proposition 3.3, we consider the following proto-
types of response functions often found in the literature. These functions were consid-
ered also by Wolkowicz and Lu [14] who indicated for each combination of them that
it is always possible to find appropriate constants αi satisfying the criterion (1.4).

The Holling type II (Michaelis-Menten or Monod) growth functions

pi(S) =
DimiS

(mi − 1)S + λi

correspond to the choice Pi(S) = mi and mi > 1. For these functions we have
µi = +∞. The case where mi = 1 reduces to the Holling type I (Lotka-Volterra)
growth functions pi(S) = DiS/λi. For linear yields (3.1) we have

wi(S) =
Y1mi

Yim1

1 + c1S

1 + ciS
.
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If c1 ≥ ci then wi(S) is non-decreasing over [0, +∞[ and hence conditions (3.6) are
satisfied. Notice that the condition c1 ≥ ci implies the condition (3.3) of Corollary
3.1. For quadratic yields (3.2) we have

wi(S) =
Y1mi

Yim1

1 + c1S
2

1 + ciS2
.

If c1 ≥ ci then wi(S) is non-decreasing over [0, +∞[ and hence conditions (3.6) are
satisfied. Notice that the condition c1 ≥ ci implies the condition (3.3) of Corollary
3.1.

The Holling type III (or sigmoidal) growth functions

pi(S) =
DimiS

2

(ai + S)(bi + S)
, with mi =

(ai + λi)(bi + λi)

λ2
i

(3.8)

correspond to the choice

Pi(S) =
(ai + λi)(bi + λi)S

2

(ai + bi)λiS + aibi(S + λi)
.

For these functions we have µi = +∞.
Proposition 3.4. Consider the system (1.1) where pi(S) are given by (3.8) and

yi(S) = Yi are constant. Suppose that conditions (2.2) and (2.6) are satisfied and

v1ui ≥ u1vi, i ≥ 2(3.9)

where ui = aibiλi and vi = (ai + bi)λi + aibi. Then the equilibrium E∗

1 is globally
asymptotically stable with respect to the interior of the positive cone.

Proof. We have

wi(S) =
Y1

Yi

(ai + λi)(bi + λi)

(a1 + λ1)(b1 + λ1)

(a1 + b1)λ1S + a1b1(S + λ1)

(ai + bi)λiS + aibi(S + λi)
.

These functions are of the form wi(S) = ki
u1+v1S
ui+viS

where the ki’s are constant. If
(3.9) holds then wi(S) is non-decreasing over [0, +∞[ and hence conditions (3.6) are
satisfied. The result follows by Proposition 3.3.

For the growth functions (3.8) we can find another class of yield functions for
which our result applies. Indeed, for the yields given by

yi(S) =
Yi

(ai + bi)λiS + aibi(S + λi)

the functions

wi(S) =
Y1

Yi

(ai + λi)(bi + λi)

(a1 + λ1)(b1 + λ1)

are constant, and hence conditions (3.6) are satisfied. If condition (2.6) holds then
the global stability of the equilibrium E∗

1 follows from Proposition 3.3.
The prototype for a non-monotone response function

pi(S) =
DimiS

(ai + S)(bi + S)
, with mi =

(ai + λi)(bi + λi)

λi

(3.10)
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corresponds to the choice

Pi(S) =
(ai + λi)(bi + λi)

aibi − λiS
.

For these functions we have µi = aibi

λi

.
Proposition 3.5. Consider the system (1.1) where the functions pi(S) are given

by (3.10) and yi(S) = Yi are constant. Suppose that conditions (2.2) and (2.6) are
satisfied and

λ1aibi ≥ λia1b1, S0 < µi, i ≥ 2.(3.11)

Then the equilibrium E∗

1 is globally asymptotically stable with respect to the interior
of the positive cone.

Proof. We have

wi(S) =
Y1

Yi

(ai + λi)(bi + λi)

(a1 + λ1)(b1 + λ1)

a1b1 − λ1S

aibi − λiS
.

If (3.11) holds then wi(S) is non-decreasing on [0, S0] and hence condition (3.6) are
satisfied. The result follows by Proposition 3.3.

For the growth functions (3.10) we can find another class of yield functions for
which our result applies. Indeed, assume that µi > S0, that is aibi − λiS

0 > 0. For
the yields given by

yi(S) =

{

Yi

aibi−λiS
if 0 ≤ S ≤ S0,

Yi

aibi−λiS0 if S > S0,

the functions

wi(S) =
Y1

Yi

(ai + λi)(bi + λi)

(a1 + λ1)(b1 + λ1)

are constant on [0, S0], and hence conditions (3.6) are satisfied. If condition (2.6)
holds then the global stability of the equilibrium E∗

1 follows from Proposition 3.3.
Hereafter we use the remark following Proposition 3.3 to define two new classes

of functions, which are not considered in the literature, for which our results apply.
A class of monotone response functions of the form (3.7) is obtained with

Pi(S) = αi

[

S +
αS

1 + βS

]

where α > 0, β > 0 and αi ≥ 1. In this case we have

pi(S) =
DiαiS(1 + α + βS)

ααiS + (1 + βS)(αiS − S + λi)
.

For constant yields yi(S) = Yi the functions wi(S) = Y1αi

Yiα1

are constant and hence

conditions (3.6) are satisfied. For linear yields (3.1) we have wi(S) = Y1αi

Yiα1

1+c1S
1+ciS

. If
c1 ≥ ci then wi(S) is non-decreasing and hence conditions (3.6) are satisfied. For

quadratic yields (3.2) we have wi(S) = Y1αi

Yiα1

1+c1S2

1+ciS2 . If c1 ≥ ci then wi(S) is non-
decreasing and hence conditions (3.6) are satisfied.



COMPETITION IN THE CHEMOSTAT 15

A class of non-monotone response functions of the form (3.7) is obtained with

Pi(S) = αiS
2

and αi > 1
4λi

. In this case we have

pi(S) =
DiαiS

2

αiS2 − S + λi

.

For constant yields yi(S) = Yi the functions wi(S) = Y1αi

Yiα1

are constant and hence

conditions (3.6) are satisfied. For linear yields (3.1) we have wi(S) = Y1αi

Yiα1

1+c1S
1+ciS

. If
c1 ≥ ci then wi(S) is non-decreasing and hence conditions (3.6) are satisfied. For

quadratic yields (3.2) we have wi(S) = Y1αi

Yiα1

1+c1S2

1+ciS2 . If c1 ≥ ci then wi(S) is non-
decreasing and hence conditions (3.6) are satisfied.

4. Discussion. In this paper we considered a mathematical model (1.1) of n
species of microorganisms in competion in a chemostat for a single resource. The
model incorporates both monotone and non-monotone response functions, distinct
removal rates and variable yields. We demonstrated that the CEP holds for a large
class of growth functions and yields.

Even with constant yields, the problem is not yet completely solved: the CEP
holds for a large class of growth functions [2, 3, 4, 8, 14, 15] but an important open
question remains: is the CEP true assuming only that the fi are monotone with no
restriction on the Di ? This major open problem remains unresolved after more than
thirty years [7]. However, in the case of constant yields numerical simulations of model
(1.1) have only displayed competitive exclusion.

In the case where the yields are constant, it is known [3] that the CEP holds
provided that Di = D for all i, the set Q =

⋃

i∈N ]λi, µi[ is connected, and S0 ∈ Q,
where N = {i : λi < S0}. Li [8] conjectured that this result can be extented to the
case of different removal rates. Under condition (2.2), it is clear that the set Q is
connected, and S0 ∈ Q. The condition λ1 < λi for i 6= 1 can be stated without loss of
generality, by labelling the populations such that the index i = 1 corresponds to the
lowest break-even concentration, but the condition λ1 < S0 < µ1 in (2.2) cannot be
stated without loss of generality. If µ1 < S0, it is not possible to show the CEP by the
methods that we used. To the best of our knowledge, in the case of different removal
rates and non-monotone response functions, the CEP has been proved only under the
assumption S0 < µ1 [8, 14, 15]. However, Rapaport and Harmand [12] considered the
case of two populations and proposed conditions on the growth functions such that
the CEP holds under the condition µ1 < S0. It should be interesting to extend their
methods to more general cases. We leave this problem for future investigations.

Our results enlarge the class of growth functions for which the CEP holds. More
substantially our results concern also the case of variable yields, for which it is known
[1, 6, 11] that more exotic dynamical behaviours, including limit cycles, are possible.
Thus in the case of variable yields, it is of great importance to have criteria ensuring
the global convergence to an equilibrium with at most one surviving species. We
extended the result of Hsu [4] to the case of linear or quadratic yields.

Our proof relies on the construction of non-strict Lyapunov functions, i.e. Lya-
punov functions whose derivative along the trajectories are non-positive. We conjec-
ture that the strictification techniques of Chapter 5 of [9] can be used to construct
strict Lyapunov functions, i.e. Lyapunov functions whose derivative along the tra-
jectories are definite negative, which next can be used to establish some robustness
properties. This can be the subject of further research.
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