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Abstract

We consider non zero sum two players di�erential games. We study Nash
equilibrium payo�s and publicly correlated equilibrium payo�s. If players use
deterministic strategies, it has been proved that the Nash equilibrium pay-
o�s are precisely the reachable and consistent payo�s. Referring to repeated
games, we introduce mixed strategies which are probability distributions on
pure strategies. We prove that the set of Nash equilibrium payo�s when us-
ing mixed strategies is convex and compact. Unexpectedly, this set is larger
than the closed convex hull of the set of Nash equilibrium payo�s using pure
strategies. We give a characterization for the Nash equilibrium payo�s using
mixed strategies as reachable and consistent, these concepts being adapted to
random controls. Finally, still referring to repeated games, we study the set of
publicly correlated equilibrium payo�s for di�erential games and show that it
is the same as the set of Nash equilibrium payo�s.

Introduction

We study equilibria for non zero sum di�erential games. In general, for a given
equilibrium concept, existence and characterization of the equilibria highly depend
on the strategies used by the players. There are mainly three types of strategies:

• non-anticipative strategies or memory-strategies where the choice of the current
control to be played depends on the entire past history of the game (trajectory
and controls played so far),

• feed-back strategies where the current control is chosen according only to the
actual state of the system,
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• open-loop controls where the current control is chosen at the beginning of the
game and depends only on time.

In the case of deterministic di�erential games, there are [13], [14] and [17] existence
and characterization results for Nash equilibrium payo�s. Looking for Nash equilib-
rium payo�s in feedback strategies, one usually computes Nash equilibrium payo�s
as a functions of time and space. This leads to a system of non linear partial dif-
ferential equations for which there is no general result for existence nor uniqueness
of a solution. If the system admits regular enough solutions, they allow to compute
the optimal feedbacks cf. [11] and [2]. There are few examples for this approach,
the results essentially deal with linear quadratic di�erential games where solutions
are sought amongst quadratic functions. For linear quadratic games, there are con-
ditions for existence of Nash equilibria in feedback strategies and for existence and
uniqueness of Nash equilibria in open-loops. Some numerical methods can be ap-
plied to compute equilibria [10]. The drawback is that feedback equilibria are highly
unstable [4], except in some particular cases of one dimensional games [5].
The situation seems somehow better regarding non zero sum stochastic di�erential
games. As for the deterministic case, there is a general result of existence and char-
acterization [6] in case players use non-anticipative strategies. For non degenerate
stochastic di�erential games, there is a general result for existence of a Nash equilib-
rium in feedback strategies in [3] using existence of smooth enough solutions for the
system of partial di�erential equations de�ning the equilibrium. Another approach
[12] uses BSDEs to check the existence of the solutions, prove the existence of a
Nash equilibrium and optimal feedbacks. Note that the equilibria de�ned through
this last approach are in fact equilibria in non-anticipative strategies [16] when they
both exist.
Here we deal with general deterministic non zero sum di�erential games using mixed
strategies. In our framework, "mixed strategies" refers to random combination of
non anticipative strategies. The disadvantage of non-anticipative strategies is that
they lack weak consistency compared to feedback strategies. Their main interest
is that they allow to characterize some kind of upper hull of all Nash equilibrium
payo�s using reasonable strategies.

We consider a regular non zero sum two players di�erential game running in �nite
time and we study usual equilibrium concepts such as Nash equilibrium payo�s and
publicly correlated equilibrium payo�s. We are interested in the consequences of
using random strategies rather than usual deterministic strategies.
More precisely, we consider a two players non zero sum di�erential game in IRn that
runs in �nite time t ∈ [t0, T ]. For simplicity reasons, we consider only �nal payo�s,
noticing that running payo�s are �nal payo�s of an extended game.
The dynamics of the game is given by:{

ẋ(t) = f(x(t), u(t), v(t)) t ∈ [t0, T ], u(t) ∈ U and v(t) ∈ V
x(t0) = x0

(1)

We �rst de�ne the open-loop controls: we denote by U(t0) (resp. V(t0)) the set of
measurable controls of player I (resp. player II):

U(t0) := {u(·) : [t0, T ] → U, u measurable}
V(t0) := {v(·) : [t0, T ] → V, v measurable}
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Under suitable regularity assumptions on the dynamics, if controls u ∈ U(t0) and
v ∈ V(t0) are played, they de�ne a unique solution of the dynamics (1) denoted by
t 7→ Xt0,x0,u,v

t de�ned on [t0, T ].
The payo�s only depend on the terminal position of the system, namely player I's
payo� is g1(x(T )) while player II's is g2(x(T )). We assume usual regularity conditions
on the payo� functions and assume Isaacs'condition in order to ensure the existence
of the value for the zero sum games with payo� function g1 or g2. We will denote by
V1 (resp. V2) the value function of the zero sum game where player I (resp. Player II)
aims at maximizing the �nal payo� g1(x(T )) (resp. g2(x(T ))) whereas the opponent
aims at minimizing it.
In order to put the game in normal form, we need to de�ne strategies. We �rst
consider deterministic or pure strategies:

De�nition 1 (Pure strategy). A pure strategy for player I at time t0 is a map
α : V(t0) → U(t0) which satis�es the following conditions:

• α is a measurable map from V(t0) to U(t0) where V(t0) and U(t0) are endowed
with the Borel σ-�eld associated with the L1 distance,

• α is non-anticipative with delay, i.e. there exists some delay τ > 0 such that
for any v1, v2 ∈ V(t0), if v1 ≡ v2 a.e. on [t0, t] for some t ∈ [t0, T ], then
α(v1) ≡ α(v2) a.e. on [t0, (t + τ) ∧ T ]

We denote by A(t0) (resp. B(t0)) the set of pure strategies for player I (resp. player
II) and by τ(α) the delay of the strategy α ∈ A(t0).

The point of the paper is to study the impact of introducing mixed strategies
on the equilibria. We de�ne mixed strategies as �nite probability distributions over
pure strategies:

De�nition 2 (Mixed strategy). A mixed strategy for player I at time t0 is a �nite
probability space (Ωα,P(Ωα),Pα) associated to a �nite collection of pure strategies
(α(ωα))ωα∈Ωα such that for all ωα ∈ Ωα, α(ωα) is a pure strategy.
From now on, mixed strategies (α, (Ωα,P(Ωα),Pα)) will be simply denoted α by abuse
of notation. We denote by Ar(t0) (resp. Br(t0)) the set of mixed strategies for player
I (resp. player II). Notice that for all mixed strategy α, there exists some delay τ > 0
such that for all ωα ∈ Ωα, α(ωα) is a non-anticipative strategy with delay greater
than or equal to τ .

We now are able to recall the two usual equilibrium concepts that we study:

De�nition (Nash equilibrium payo�). The pair (e1, e2) ∈ IR2 is a Nash equilibrium
payo� for the initial position (t0, x0) if for all ε > 0, there exist a strategy of player
I denoted by σ1 and a strategy for player II denoted by σ2 such that

• if the strategies (σ1, σ2) are played, then for i = 1, 2, the �nal payo� of player
i is ε-close to ei

• for i = 1, 2, if player i plays a strategy σ 6= σi whereas the opponent sticks to
the strategy σ3−i, the �nal payo� of player i will be less than or equal to the
payo� rewarding the pair of strategies (σ1, σ2) up to ε.
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De�nition (Publicly correlated equilibrium payo�). The payo� (e1, e2) ∈ IR2 is a
publicly correlated equilibrium payo� if for all ε > 0, there exist some public �ltra-
tion (F ε

t ) and some correlated strategies (σ1, σ2) namely strategies generating (F ε
t )-

measurable controls such that:

• if the strategies (σ1, σ2) are played, then for i = 1, 2, the �nal payo� of player
i is ε-close to ei

• for i = 1, 2, if player i plays a strategy σ 6= σi such that (σ, σ3−i) generate
(F ε

t )-measurable controls whereas the opponent sticks to the strategy σ3−i, the
�nal payo� of player i will be less than or equal to the payo� rewarding the pair
of strategies (σ1, σ2) up to ε.

We denote by Ec(t0, x0) the set of all equilibrium payo�s for the initial position
(t0, x0).

If we study Nash equilibrium payo�s when only pure strategies are allowed and
denote by E(t0, x0) the set of all equilibrium payo�s for the initial position (t0, x0),
then we may recall a well-known theorem. According to [13], [14] and [17], under
usual regularity conditions, the Nash equilibrium payo�s in pure strategies are ex-
actly the "reachable and consistent payo�s" (e1, e2) ∈ IR2, namely payo�s satisfying:
∀ε > 0, ∃(uε, vε) ∈ U(t0)× V(t0) such that:

• ∀i, |ei − gi(X
t0,x0,uε,vε

T )| ≤ ε

• ∀i, ∀t ∈ [t0, T ], gi(X
t0,x0,uε,vε

T ) ≥ Vi(t, X
t0,x0,uε,vε
t )− ε

Furthermore, the set of Nash equilibrium payo�s is non empty: E(t0, x0) 6= ∅.

We then study Nash equilibrium payo�s when mixed strategies are played. First
of all, noticing that any pure strategy can be considered as a mixed strategy whose
underlying probability space is trivial, the set of Nash equilibrium payo�s in mixed
strategies is a non empty superset of E(t0, x0). We recall that using mixed strategies
does not change the value of zero sum di�erential games. Next, we prove a character-
ization of Nash equilibrium payo�s in mixed strategies. Our main result (Theorem
2.1 below) states that:
The pair (e1, e2) is a Nash equilibrium payo� in mixed strategies i� for all ε > 0, there
exist random controls (uε, vε) on an underlying �nite probability space (Ω,P(Ω),P)
such that ∀i = 1, 2:

•
∣∣E[gi(X

t0,x0,uε,vε

T )]− ei

∣∣ ≤ ε

• ∀t ∈ [t0, T ], denoting by Ft = σ ((uε, vε)(s), s ∈ [t0, t]):

P
{

Vi(t, X
t0,x0,uε,vε
t ) ≤ E[gi(X

t0,x0,uε,vε

T )|Ft] + ε
}
≥ 1− ε

It appears that the set of Nash equilibrium payo�s in mixed strategies, denoted by
Er(t0, x0), is in fact compact, convex and generally strictly larger than the closed
convex hull of the set E(t0, x0). The proof heavily relies on techniques introduced
for repeated games in [1] known as "jointly controlled lotteries" and on the fact that
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we work with non-anticipative strategies with delay. Note that the characterization
could be given using trajectories following [17] rather than controls, provided the
trajectory stems from the dynamics (1).

Finally, studying publicly correlated equilibria, we show that the set of publicly
correlated equilibrium payo�s is equal to the set of Nash equilibrium payo�s using
mixed strategies. The idea of the proof uses the similarity between correlated equi-
librium payo�s and equilibrium payo�s of stochastic non zero sum di�erential games.
Indeed, the characterization of equilibrium payo�s in these games due to [6] is very
close to our characterization of Nash equilibrium payo�s.

We complete this introduction by describing the outline of the paper. In section 1,
we recall precisely the de�nitions and assumptions of the di�erential game we study.
In section 2, we give the main properties of the set of Nash equilibrium payo�s in
mixed strategies. In section 3, we prove the equivalence between the sets of Nash
equilibrium payo�s in mixed strategies and of publicly correlated equilibrium payo�s.

1 De�nitions

1.1 Assumptions on the di�erential game

Throughout the paper, for any x, y ∈ IRn, we will denote by x · y the scalar
product and by ‖x‖ the euclidian norm. The ball with center x and radius r will be
denoted by B(x, r). For any set S, 1S denotes the indicator function of S: for all
s ∈ S, 1S(s) = 1 and for all s /∈ S, 1S(s) = 0.
We �rst de�ne more precisely the assumptions on the di�erential game we are dealing
with. The dynamics of the game is given by (1):{

ẋ(t) = f(x(t), u(t), v(t)) t ∈ [t0, T ], u(t) ∈ U and v(t) ∈ V
x(t0) = x0

where 
U and V are compact subsets of some �nite dimensional spaces
U and V have in�nite cardinality,
f : IRn × U × V → IRn is bounded, continuous and uniformly

Lipschitz continuous with respect to x

(2)

These assumptions guarantee existence and uniqueness of the trajectories generated
by any pair of controls (u, v) ∈ U(t0) × V(t0). The assumption that U and V
have in�nite cardinality allows to de�ne correlation procedures relying on as many
constant controls as necessary.
We will always assume that players observe the controls played so far.
We will assume that the payo� functions g1 and g2 satisfy

gi : IRn → IR, i := 1, 2 is Lipschitz continuous and bounded. (3)

In order to guarantee existence of the value functions of the two associated zero sum
games, we assume Isaacs'condition: for all (x, ξ) ∈ IRn × IRn

H(x, ξ) = inf
u∈U

sup
v∈V

f(x, u, v) · ξ = sup
v∈V

inf
u∈U

f(x, u, v) · ξ (4)
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1.2 Payo�s associated to a pair of strategies

In order to study equilibrium payo�s of this game we have introduced in the
previous section the concepts of pure and mixed strategies. The major interest of
working with non-anticipative strategies with delay is this following useful result
stated in [9]:

Lemma 1.1 (Controls associated to a pair of strategies).

• For any pair of pure strategies (α, β) ∈ A(t0)× B(t0) there is a unique pair of
controls (uαβ , vαβ) ∈ U(t0)× V(t0) such that α(vαβ) = uαβ and β(uαβ) = vαβ

• For any pair of mixed strategies (α, β) ∈ Ar(t0) × Br(t0), and any (ωα, ωβ) ∈
Ωα × Ωβ, there is a unique pair of controls (uωαωβ

, vωαωβ
) ∈ U(t0) × V(t0)

such that α(ωα)(vωαωβ
) = uωαωβ

and β(ωβ)(uωαωβ
) = vωαωβ

. Furthermore,
the map (ωα, ωβ) 7→ (uωαωβ

, vωαωβ
) is measurable from Ωα × Ωβ endowed with

P(Ωα) ⊗ P(Ωβ) into U(t0) × V(t0) endowed with the Borel σ-�eld associated
with the L1 distance.

Given any pair of pure strategies (α, β) ∈ A(t0)×B(t0), we denote by (Xt0,x0,α,β
t )

the map t 7→ X
t0,x0,uαβ ,vαβ

t de�ned on [t0, T ] where X
t0,x0,uαβ ,vαβ
· is the unique solu-

tion of dynamics (1).

This allows us to de�ne the payo� associated to any pair of strategies. For
i = 1, 2, we shall denote by

Ji(t, x, α, β) := gi(X
t0,x0,α,β
T ) if (α, β) ∈ A(t0)× B(t0)

Ji(t, x, α, β) := Eαβ [gi(X
t0,x0,α,β
T )] if (α, β) ∈ Ar(t0)× Br(t0)

with the notation

Eαβ [gi(X
t0,x0,α,β
T )] =

∫
Ωα×Ωβ

gi(X
t0,x0,uωαωβ

,vωαωβ

T )dPα ⊗ dPβ(ωα, ωβ)

Under regularity assumptions (2), (3) and (4), the two-players zero sum game whose
payo� function is g1 (resp. g2) has a value. We denote by

V1(t, x) := sup
α∈A(t)

inf
β∈B(t)

J1(t, x, α, β) = inf
β∈B(t)

sup
α∈A(t)

J1(t, x, α, β)

the value of the zero sum game with payo� function g1 where player I aims at
maximizing his payo� and

V2(t, x) := inf
α∈A(t)

sup
β∈B(t)

J2(t, x, α, β) = sup
β∈B(t)

inf
α∈A(t)

J2(t, x, α, β)

the value of the zero sum game with payo� function g2 where player II is the maxi-
mizer. We recall that these de�nitions remain unchanged whether α ∈ A(t) or Ar(t)
and β ∈ B(t) or Br(t) cf. [8]. The assumptions also guarantee that these value
functions are Lipschitz continuous.
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It remains to introduce more precisely the concept of publicly correlated strate-
gies. We �rst have to introduce some publicly observed random signal on the proba-
bility space (Ω,F ,P) leading to some public �ltration (Ft) induced by the evolution
of the public signal received until time t. We do not assume that Ω is �nite. The
following de�nitions are adapted from [6]. We �rst introduce admissible controls:

De�nition 3 (Admissible control). An admissible control ũ for player I is a process
taking values in U progressively measurable with respect to (Ft). The set of admissi-
ble controls on [t0, T ] is denoted by Ũ(t0) for player I and Ṽ(t0) for player II.

We will identify admissible controls and denote it by ũ1 ≡ ũ2 on [t0, t] as soon as
P(ũ1 = ũ2 a.e. on [t0, t]) = 1.
We de�ne pairs of correlated strategies the following way:

De�nition 4 (Publicly correlated strategies). A pair of correlated strategies is in
fact a triplet ((Ft), α, β):

• The �ltration (Ft) is the �ltration generated by the random public signal on
the probability space (Ω,F ,P) and will be referred to as the correlation device.
Note that the correlation device is common knowledge for both players.

• a correlated strategy for player I is a map α : Ṽ(t0) → Ũ(t0) which is strongly
non-anticipative with delay cf. [6]: there exists τ(α) > 0 such that ∀(Ft)-
stopping time S and for all ṽ1, ṽ2 ∈ Ṽ(t0), if ṽ1 ≡ ṽ2 on [[t0, S]], then α(ṽ1) ≡
α(ṽ2) on [[t0, (S + τ(α)) ∧ T ]]

• a correlated strategy for player II is a map β : Ũ(t0) → Ṽ(t0) which is a strongly
non-anticipative strategy with delay.

From now on, we will omit the �ltration in the designation of publicly correlated
strategies as soon as no confusion is possible. Note that our de�nition is somehow
broader than the usual de�nition of correlated strategies in repeated games.

Note that Lemma 1.1 still holds for correlated strategies: to any pair of correlated
strategies (α, β) one can associate a unique pair of admissible controls (ũ, ṽ) such
that: α(ṽ) = ũ and β(ũ) = ṽ. The proof follows the scheme of the proof established
for admissible strategies in [6].

Given correlated strategies (α, β), the �nal payo� of player i is:

Ji(t, x, α, β) := E[gi(X
t,x,α,β
T )]

The expectation now refers to the probability of the random signals and not to strate-
gies. Notice also that pure strategies are degenerated correlated strategies using some
trivial �ltration. Finally, note that in a zero sum game, using correlated strategies
with a �xed correlation device leads to the same value as using pure strategies. In-
deed, �x the �ltration (Ft) and denote by (α̃, β̃) any pair of correlated strategies
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using the correlation device (Ft) and (α, β) any pair of pure strategies. For i = 1, 2:

sup
β̃

inf
α̃

E[gi(X
t,x,α̃,β̃
T )] ≥ sup

β
inf
α̃

E[gi(X
t,x,α̃,β
T )]

= sup
β

inf
α

gi(X
t,x,α,β
T ) = Vi(t, x)

= inf
α

sup
β

gi(X
t,x,α,β
T )

= inf
α

sup
β̃

E[gi(X
t,x,α,β̃
T )]

≥ inf
α̃

sup
β̃

E[gi(X
t,x,α̃,β̃
T )]

On the other hand we have:

sup
β̃

inf
α̃

E[gi(X
t,x,α̃,β̃
T )] ≤ inf

α̃
sup

β̃

E[gi(X
t,x,α̃,β̃
T )]

and in the end for any correlated strategies α̃, β̃ using the correlation device (Ft),
for i = 1, 2:

sup
β̃

inf
α̃

E[gi(X
t,x,α̃,β̃
T )] = Vi(t, x) = inf

α̃
sup

β̃

E[gi(X
t,x,α̃,β̃
T )]

1.3 Equilibrium payo�s

Given the de�nition of payo�s associated to a pair of strategies, we give precise
de�nitions of equilibrium payo�s:

De�nition 5 (Nash equilibrium payo� using pure strategies). The pair (e1, e2) is a
Nash equilibrium payo� in pure strategies for the initial position (t0, x0) if
∀ε > 0, ∃(αε, βε) ∈ A(t0)× B(t0) such that

∀i, |ei − Ji(t0, x0, αε, βε)| ≤ ε{
∀α ∈ A(t0), J1(t0, x0, αε, βε) ≥ J1(t0, x0, α, βε)− ε
∀β ∈ B(t0), J2(t0, x0, αε, βε) ≥ J2(t0, x0, αε, β)− ε

We denote by E(t0, x0) the set of all Nash equilibrium payo�s in pure strategies
for the initial position (t0, x0).
The characterization of these equilibria when players use pure strategies has already
been studied by Kononenko [14]: Nash equilibrium payo�s are equivalent to reach-
able and consistent payo�s. It is the same characterization as the one known as "folk
theorem" for in�nitely repeated games where Nash equilibrium payo�s are precisely
feasible and individually rational payo�s.

De�nition 6 (Nash equilibrium payo� using mixed strategies). The payo� (e1, e2)
is a Nash equilibrium payo� in mixed strategies for the initial position (t0, x0) if
∀ε > 0, ∃(αε, βε) ∈ Ar(t0)× Br(t0) such that:

1. ∀i = 1, 2, |ei − Ji(t0, x0, αε, βε)| ≤ ε

8



2. {
∀α ∈ Ar(t0), J1(t0, x0, αε, βε) ≥ J1(t0, x0, α, βε)− ε
∀β ∈ Br(t0), J2(t0, x0, αε, βε) ≥ J2(t0, x0, αε, β)− ε

We denote by Er(t0, x0) the set of all Nash equilibrium payo�s for the initial
position (t0, x0) when players use mixed strategies. We will call reachable in mixed
strategies a payo� which completes only the �rst part of the above de�nition. A
pair of strategies (αε, βε) satisfying the second point of the de�nition will be called
ε-optimal. Note that in the second part of the de�nition, we just have to check the
ε-optimality of αε (resp. βε) against pure strategies β ∈ B(t0) (resp. α ∈ A(t0)), for
mixed strategies are �nite linear combination of pure strategies. Namely, the second
part of the de�nition is equivalent to

2.

{
∀α ∈ A(t0), J1(t0, x0, αε, βε) ≥ J1(t0, x0, α, βε)− ε
∀β ∈ B(t0), J2(t0, x0, αε, βε) ≥ J2(t0, x0, αε, β)− ε

Remember we have identi�ed pure strategies with degenerated mixed strategies im-
plying Er(t0, x0) ⊃ E(t0, x0).

De�nition 7 (Publicly correlated equilibrium payo�). The payo� e = (e1, e2) ∈
IR2 is a publicly correlated equilibrium payo� if for all ε > 0, there exist correlated
strategies (αε, βε) using some correlation device (F ε

t ) such that:

• for i = 1, 2: |Ji(t0, x0, αε, βε)− ei| ≤ ε

• for all correlated strategies ((F ε
t ), α, β) :{

J1(t0, x0, α, βε) ≤ J1(t0, x0, αε, βε) + ε
J2(t0, x0, αε, β) ≤ J2(t0, x0, αε, βε) + ε

The set of all publicly correlated equilibrium payo�s with initial conditions (t0, x0)
will be denoted by Ec(t0, x0).

2 Nash equilibrium payo�s using mixed strategies

2.1 Characterization

Theorem 2.1 (Characterization of Nash equilibrium payo�s using mixed strategies).
The payo� e = (e1, e2) ∈ IR2 is a Nash equilibrium payo� i� for all ε > 0, there exist
random controls (uε, vε) on an underlying �nite probability space (Ω,P(Ω),P) such
that ∀i = 1, 2:

• e is ε-reachable: |E[gi(X
t0,x0,uε,vε

T )]− ei| ≤ ε

• (uε, vε) are ε-consistent: ∀t ∈ [t0, T ], denoting by Ft = σ ((uε, vε)(s), s ∈ [t0, t]):

P
{

Vi(t, X
t0,x0,uε,vε
t ) ≤ E

[
gi(X

t0,x0,uε,vε

T )
∣∣Ft

]
+ ε

}
≥ 1− ε
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Proof. We start with the proof of the su�cient condition.
Consider a Nash equilibrium payo� e = (e1, e2) and a pair of associated ε2

2 -optimal
mixed strategies (αε, βε). We will consider the random controls de�ned on Ω =
Ωαε ×Ωβε using the probability P = Pαε ⊗Pβε by (uε, vε)(ωα, ωβ) = (uωαωβ

, vωαωβ
).

We will denote the associated trajectories by Xε
· = Xt0,x0,uε,vε

· .

We have for small ε, for all i = 1, 2:

|E[gi(Xε
T )]− ei| ≤

ε2

2
≤ ε

We will prove that these controls are ε-consistent. Suppose on the contrary that
there exist t̄ ∈ [t0, T ] such that for example:

P
{
E

(
g1(Xε

T )
∣∣Ft̄

)
≥ V1(t̄, Xε

t̄ )− ε
}

< 1− ε

Denote by
Σε :=

{
(ωα, ωβ)/ E

(
g1(Xε

T )
∣∣Ft̄

)
≥ V1(t̄, Xε

t̄ )− ε
}

We have to introduce Maximin strategies

Lemma 2.2 (Maximin strategy). For all ε > 0, for all t ∈ (t0, T ), there exists
τ > 0 such that if we denote by Aτ (t) = {α ∈ A(t)/ τ(α) ≥ τ} there exists αε,t

g :
B(x0, (t− t0)‖f‖∞) → Aτ (t) such that:

∀x ∈ B(x0, (t− t0)‖f‖∞), inf
v∈V(t)

g1(X
t,x,αε,t

g (x)(v),v
T ) ≥ V1(t, x)− ε

Proof of Lemma 2.2.
We will build the Maximin strategy αε,t

g (·) as a collection of �nitely many pure
strategies with delay. For all x ∈ B(x0, (t−t0)‖f‖∞), there exists some pure strategy
αx ∈ A(t) such that:

inf
v∈V(t)

g1(X
t,x,αx(v),v
T ) ≥ V1(t, x)− ε/2

For continuity reasons, there exists a Borelian partition (Oi)i=1,...I of the ball B(x0, (t−
t0)‖f‖∞) such that for any i there exists some xi ∈ Oi such that

∀z ∈ Oi, inf
v∈V(t)

g1(X
t,z,αxi (v),v

T ) ≥ V1(t, z)− ε

and for all x ∈ B(x0, (t − t0)‖f‖∞), we de�ne the Maximin strategy αε,t
g (x) as the

strategy that associates to any v ∈ V(t) the control:

αε,t
g (x)(v) =

∑
i

αxi(v)1x∈Oi

Note that we have by construction:

∀x ∈ B(x0, (t− t0)‖f‖∞), inf
v∈V(t)

g1(X
t,x,αε,t

g (x)(v),v
T ) ≥ V1(t, x)− ε

10



As the de�nition of the Maximin strategy relies on a �nite collection of pure strate-
gies with delay, there exists some strictly positive delay τ such that ∀x ∈ B(x0, (t−
t0)‖f‖∞), αε,t

g (x) is a pure strategy with delay greater than or equal to τ .

We now build a mixed strategy α de�ned on Ωαε using Pαε in the following way:
for all v ∈ V(t0)

• α(ωαε)(v)(s) ≡ αε(ωαε)(v)(s) for s ∈ [t0, t̄)

• if there exist ω ∈ Ω such that (uε, vε)(ω) ≡ (αε(ωαε)(v), v) on [t0, t̄) and ω ∈ Σε,
then go on playing α(ωαε)(v)(s) ≡ αε(ωαε)(v)(s) for s ∈ [t̄, T ]

• else, play α(ωαε)(v) = α
ε
2
,t̄

g (Xt0,x0,α(ωαε )(v),v
t̄

)(v|[t̄,T ]) for all t ∈ [t̄, T ]

Note that (α(ωαε), βε(ωβε)) generates the same controls as (αε(ωαε), βε(ωβε)) for all
(ωαε , ωβε) ∈ Σε and the same controls as (αε(ωαε), βε(ωβε)) on [t0, t̄) if (ωαε , ωβε) /∈
Σε. Computing the payo� of (α, βε) and using the fact that Σε is (Ft̄)-measurable:

J1(t0, x0, α, βε) = E(g1(X
t̄,Xε

t̄
,α

ε
2 ,t̄
g (Xt̄),βε

T )1Σc
ε
) + E(g1(Xε

T )1Σε)

≥ E(V1(t̄, Xε
t̄ )1Σc

ε
)− ε

2
(1−Pα ⊗Pβ(Σε)) + E(g1(Xε

T )1Σε)

≥ E(V1(t̄, Xε
t̄ )1Σc

ε
)− ε

2
(1−P(Σε)) + E(g1(Xε

T )1Σε)

≥ E(E(g1(Xε
T )|Ft̄)1Σc

ε
) + E(g1(Xε

T )1Σε) +
ε

2
(1−P(Σε))

≥ E(g1(Xε
T )1Σc

ε
) + E(g1(Xε

T )1Σε) +
ε

2
(1−P(Σε))

> J1(t0, x0, αε, βε) +
ε2

2

This is in contradiction with the ε2

2 -optimality of (αε, βε).

We now will prove the necessary condition.

Consider some payo� e = (e1, e2) reachable and consistent as in Proposition 2.1.
For all ε > 0, we will build ε-optimal strategies rewarding a payo� ε close to e.

Fix ε > 0. Set δ small enough such that:

1. ∀t ∈ [t0, T ], ∀x ∈ IRn, ∀y ∈ B(x, δ‖f‖∞), for all i = 1, 2:

|Vi(t, x)− Vi(t + δ, y)| ≤ ε (5)

2. ∀t ∈ [t0, T ], ∀x ∈ IRn, ∀y ∈ B(x, δ‖f‖∞), ∀(u, v) ∈ U(t)×V(t), for all i = 1, 2:

|gi(X
t,x,u,v
T )− gi(X

t,y,u,v
T )| ≤ ε (6)

3. ∃N ∈ IN∗ such that Nδ = T − t0

We introduce the time partition (θ0 = t0, . . . , θk = t0 + kδ, . . . , θN = T ).

11



Set η = ε
N . Using the assumption, choose random controls (uη, vη) on (Ω,P(Ω),P)

rewarding a payo� η-close to e and η-consistent, denoting by (Ft) the �ltration
(Ft) = (σ{(uη, vη)(s), s ∈ [t0, t]}):

P
{

Vi(t, X
t0,x0,uη ,vη

t ) ≤ E[gi(X
t0,x0,uη ,vη

T )|Ft] + η
}
≥ 1− η (7)

We will set Xη
· = X

t0,x0,uη ,vη
· and for any ω ∈ Ω: Xη

· (ω) = X
t0,x0,(uη ,vη)(ω)
· .

If the random controls are in fact deterministic, we already know a way to build
some pure strategies (αε, βε) that are ε-optimal and reward a payo� ε-close to e
(cf. the construction of Proposition 6.1 in [17] for example). If the controls (uη, vη)
are real random controls, we have to build ε-optimal mixed strategies rewarding a
payo� ε-close to e. The idea of the optimal strategies (αε, βε) is to build "trigger"
mixed strategies that are correlated in order to generate controls close to (uη, vη).
We will use some correlation device depending on a jointly correlated lottery at each
"node" of the trajectories generated by (uη, vη) and, if the opponent does not play
the expected control, the player who detected the deviation swaps to the "punitive
strategy". The proof proceeds in several steps. First of all, as we have to build
correlation devices, we build random controls on a rational probability space. Then
we build correlation devices for each "node". Finally, using these correlations, we
build the optimal strategies, and check that they reward a payo� close to e and that
they are optimal.

To begin with, we introduce the explosions that are kind of "nodes" in the tra-
jectories generated by (uη, vη):

De�nition 8 (Explosion). Consider a pair of random controls (uε, vε) on a �-
nite probability space (Ω,P(Ω),P) generating �nitely many trajectories. We will
call explosion any t̄ ∈ [t0, T ) such that there exists (ω1, ω2) ∈ Ω2 such that t̄ =
sup{t/ (uε, vε)(ω1)(s) ≡ (uε, vε)(ω2)(s) on [t0, t]}.

Assume that (uη, vη) generates M̄ distinct pairs of deterministic controls with
M̄ ≥ 2 and M explosions with 1 ≤ M ≤ M̄−1 denoted by {τi}. We introduce an aux-
iliary time step τ to be de�ned later such that τ < minj 6=k |τj−τk|/2, τ < T−maxj τj

and ∃N̄ ∈ IN\{0, 1} such that N̄τ = δ. This ensures that there is no explosion on
[T − τ, T ]. We introduce another time partition (t0, . . . , tk = t0 + kτ, . . . , tNN̄ = T ).

We will have to build a jointly correlated lottery for each explosion, and we therefore
need to approximate the real probability P with a rational probability Q for it is
easier to build jointly controlled lotteries for rational probabilities:

Rational approximation of the real probability:

Consider some �nite probability space (A,P(A),PA). Set A = {a1 . . . aM}. It is
easy to prove that for all ν > 0, there exist M rational numbers mi

m with mi ∈ IN for
all i and m ∈ IN∗ such that

• for all i = 1 . . .M , |mi
m −PA(ai)| ≤ ν,

• for all i = 1 . . .M , mi ≥ 0

•
∑M

i=1
mi
m = 1

12



De�ning QA by QA(ai) = mi
m gives a rational approximation of the probability PA

up to ν on (A,P(A)).

Consider now the probability space (Ω,P(Ω),P) on which the controls (uη, vη) are
de�ned. We need a rational approximation Q of P generating conditional probabili-
ties Q(·|Ft) close to P(·|Ft) for all t ∈ [t0, T ]. Consider FT , the �ltration at time T ,
and assume it is generated by the atoms {Ωj}j=1...M̄ . Set p = minj=1...M̄ P(Ωj) > 0.
De�ne Q on (Ω,P(Ω),FT ) as the rational approximation of the probability P up to
ν p

2 . This means:

for all F ∈ FT , |P(F )−Q(F )| ≤ M̄νp

2
≤ M̄ν (8)

We will check that this rational probability is close to P if we consider conditional
probabilities: for any t ∈ [t0, T ], assume that Ft = σ({Ωt

i}i∈I) where the Ωt
i are the

atoms of the σ-algebra Ft and take any F ∈ FT . For any i ∈ I:

|P(F |Ωt
i)−Q(F |Ωt

i)| = |P(F ∩ Ωt
i)

P(Ωt
i)

− Q(F ∩ Ωt
i)

P(Ωt
i)

|+ Q(F ∩ Ωt
i)|

1
P(Ωt

i)
− 1

Q(Ωt
i)
|

≤ M̄νp

2P(Ωt
i)

+
M̄νp

2
Q(F ∩ Ωt

i)
Q(Ωt

i)P(Ωt
i)

≤ M̄νp

2P(Ωt
i)

(1 + Q(F |Ωt
i))

≤ 2M̄νp

2p
= M̄ν

As the probability space is �nite, we have P(F |Ft) =
∑

i∈I P(F |Ωt
i)1Ωt

i
and we

immediately get:

for all t ∈ [t0, T ], for all F ∈ FT : |Q(F |Ft)−P(F |Ft)| ≤ M̄ν (9)

Probability change:

From now on, we will consider the same set of random controls (uη, vη) but de�ned
on the underlying �nite probability space with rational probability (Ω,FT ,Q), and
we will omit to mention the subscript Q when writing expectations. We will check
that under the probability Q, the controls (uη, vη) still reward a payo� close to e
and are still consistent:

Lemma 2.3. For ν small enough,we have for all i = 1, 2:∣∣EQ[gi(X
η
T )]− ei

∣∣ ≤ 2η

and for all t ∈ [t0, T ]:

Q
{
Vi(t, X

η
t ) ≤ EQ

(
gi(X

η
T )

∣∣Ft

)
+ 2η

}
≥ 1− 2η

Proof. Let us choose ν such that νM̄2 max(‖g1‖∞, ‖g2‖∞, 1) ≤ η.
For the �rst inequality, if FT = σ({Ωj}j=1...M̄ ) where the Ωj are the atoms of FT ,
we have for all i = 1, 2:

∣∣EQ(gi(X
η
T ))− ei

∣∣ =

∣∣∣∣∣∣
M̄∑

j=1

gi(X
η
T (ωj))Q(Ωj)− ei

∣∣∣∣∣∣
13



where for all j, we choose some ωj ∈ Ωj . Therefore:

∣∣EQ(gi(X
η
T ))− ei

∣∣ ≤
∣∣∣∣∣∣

M̄∑
j=1

gi(X
η
T (ωj))P(Ωj)− ei

∣∣∣∣∣∣
+

M̄∑
j=1

∣∣gi(X
η
T (ωj))(P(Ωj)−Q(Ωj))

∣∣
≤

∣∣EP(gi(X
η
T ))− ei

∣∣ +
M̄∑

j=1

‖gi‖∞M̄ν due to (8)

≤ η + M̄2ν‖gi‖∞ ≤ 2η

For the second inequality, we �x t ∈ [t0, T ] and still assume FT = σ({Ωj}j=1...M̄ )
where the Ωj are the atoms of FT . For all j = 1 . . . M̄ , we choose some ωj ∈ Ωj . For
i = 1, 2, we have thanks to (9):∣∣EQ

(
gi(X

η
T )

∣∣Ft

)
−EP

(
gi(X

η
T )

∣∣Ft

)∣∣
≤

M̄∑
j=1

∣∣gi(X
η
T (ωj))Q(Ωj |Ft)− gi(X

η
T (ωj))P(Ωj |Ft)

∣∣
≤ ‖gi‖∞

M̄∑
j=1

M̄ν ≤ η

We rewrite:
EP

(
gi(X

η
T )

∣∣Ft

)
≤ EQ

(
gi(X

η
T

∣∣Ft

)
+ η (10)

We will set:
Σi

t(P) =
{
Vi(t, X

η
t ) ≤ EP

(
gi(X

η
T )

∣∣Ft

)
+ η

}
where P(Σi

t(P)) ≥ 1− η by assumption (7) and

Σi
t(Q) =

{
Vi(t, X

η
t ) ≤ EQ

(
gi(X

η
T )

∣∣Ft

)
+ 2η

}
We have Σi

t(P) ⊆ Σi
t(Q) using (10). Both sets are in Ft implying due to (8):

Q(Σi
t(Q)) ≥ Q(Σi

t(P)) ≥ P(Σi
t(P))− M̄ν ≥ 1− 2η

We now will explain how to correlate the strategies at each explosion using jointly
controlled lotteries.
Explosion procedure:

Suppose τ̄ is an explosion with τ̄ ∈ [tk, tk+1) and τ̄ is associated to ω1, ω2 ∈ Ω as in
the de�nition. We assume that the �ltration Ftk is generated by the atoms {Ωl}l∈L.
We have for some l: ω1, ω2 ∈ Ωl. By de�nition of the delay τ , there is no other
explosion on (tk, tk+1). The de�nition of an explosion allows us to set Ωl :=

⊔I
i=1 Ωl

i

with Ωl
i ∈ Ftk+1

, 2 ≤ I ≤ M̄ and for all ωι, ωj ∈ Ωl
i, (uη, vη)(ωι)(s) ≡ (uη, vη)(ωj)(s)

on [t0, tk+1). We consider the rational conditional probabilities Q(Ωl
i|Ωl) = qi(t

l
k)

q(tlk)
.
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We build a jointly controlled lottery as in [1]: consider the auxiliary two players
process with outcome matrix G, q(tlk) distinct actions ua : [tk, tk+1] → U for player
I and q(tlk) distinct actions vb : [tk, tk+1] → V for player II. Note that as we assumed
that U and V have in�nite cardinality, we can de�ne correlation controls (ua, vb) as
distinct constant controls and use distinct controls for each explosion. The matrix
G is build in such a way that the only possible outcomes are G(a, b) ∈ {1 . . . I} and
each row and each column of G contains exactly qi(tlk) times the outcome i for all
i ∈ {1 . . . I}. Note that if player II plays some �xed vb and player I plays each ua with

equiprobability 1
q(tlk)

, then the outcome will be i with probability
qi(t

l
k)

q(tlk)
= Q(Ωl

i|Ωl)
and symmetrically, if player I plays some �xed ua and player II plays each vb with
probability 1

q(tlk)
, then the outcome will be i with probability Q(Ωl

i|Ωl). Note that

this correlation procedure allows the players to correlate their controls on any Ωl
i

with probability Q(Ωl
i|Ωl) in such a way that no unilateral cheating in the use of the

correlation controls may change the outcome of the correlation matrix G.

We introduce a way to punish the opponent if he is not playing the expected control
through punitive strategies:

Lemma 2.4 (Punitive strategy). For all ε > 0, for all t ∈ (t0, T ), there exists
τ > 0 such that if we denote by Aτ (t) = {α ∈ A(t)/ τ(α) ≥ τ} there exists αε,t

p :
B(x0, (t− t0)‖f‖∞) → Aτ (t) such that:

∀x ∈ B(x0, (t− t0)‖f‖∞), sup
v∈V(t)

g2(X
t,x,αε,t

p (x)(v),v
T ) ≤ V2(t, x) + ε

Proof of Lemma 2.4.
The proof is similar to the proof of Lemma 2.2. We will build the punitive strategy
αε,t

p (·) as a collection of �nitely many pure strategies with delay. For all x ∈ B(x0, (t−
t0)‖f‖∞), there exists some pure strategy αx ∈ A(t) such that:

sup
v∈V(t)

g2(X
t,x,αx(v),v
T ) ≤ V2(t, x) + ε/2

For continuity reasons, there exists a Borelian partition (Oi)i=1,...I of the ball B(x0, (t−
t0)‖f‖∞) such that for any i there exists some xi ∈ Oi such that

∀z ∈ Oi, sup
v∈V(t)

g2(X
t,z,αxi (v),v

T ) ≤ V2(t, z) + ε

and for all x ∈ B(x0, (t − t0)‖f‖∞), we de�ne the punitive strategy αε,t
p (x) as the

strategy that associates to any v ∈ V(t) the control:

αε,t
p (x)(v) =

∑
i

αxi(v)1x∈Oi

Note that we have by construction:

∀x ∈ B(x0, (t− t0)|f‖∞), sup
v∈V(t)

g2(X
t,x,αε,t

g (x)(v),v
T ) ≤ V2(t, x) + ε
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As for the Maximin strategy, there exists some strictly positive delay τ such that
∀x ∈ B(x0, (t− t0)‖f‖∞), αε,t

p (x) is a pure strategy with delay greater than or equal
to τ .

We now have everything needed to de�ne the ε-optimal strategies.
De�nition of the strategies (αε, βε):
We recall that the idea of the strategy for Player I is to play the same control as
uη(ω), ω ∈ Ω as long as there is no explosion and as long as player II plays vη(ω).
If an explosion takes place on [tk, tk+1) meaning Ftk+1

is generated by the atoms
(Ωi)i∈I , play on this interval some correlation control as de�ned by the correspond-
ing explosion procedure, then observe at tk+1 the correlation control played by the
opponent on [tk, tk+1) and deduce from the explosion procedure on which Ωi the
game is now correlated and play uη(ωi), ωi ∈ Ωi from tk+1 on until the next explo-
sion as long as player II plays vη(ωi). Player I repeats the same procedure at each
explosion. As soon as player I detects that Player II played some unexpected control,
he swaps to the punitive strategy.

In order to de�ne the strategy in a more convenient way, we have to introduce
some auxiliary random processes depending only on the past, namely Ω̄ keeping the
information on which trajectory generated by (uη, vη) is currently being followed and
S such that S = ∅ if no deviation was observed in the past and S = (tk, x) where
tk ∈ {t0 . . . tNN̄} means that some deviation occurred on [tk, tk+1) and the punitive
strategy is to be played from the state (tk+2, x) because there is a delay between
the time at which deviation is detected and the time from which punitive strategy
is played.

First of all, in order to build the strategy αε for example, we will de�ne the
associated underlying �nite probability space. We will de�ne it by induction on
the number of explosions. We will always assume that an explosion procedure is
de�ned using constant correlation controls that are not used in any other explosion
procedure:

1. If there is no explosion, take any trivial probability space with only one element.

2. Assume that we can associate to any pair of controls generating a number of
explosion lower than or equal to n a probability space (Ωn,P(Ωn),Pn).

3. Assume we are facing a couple of random controls generating n + 1 explo-
sions. Consider the �rst explosion, that takes place in [tk, tk+1) for some k ∈
{0, . . . , NN̄−1} and such that Ftk+1

is generated by the atoms (Ωi)i=1...I . Note
that the pairs of random controls de�ned on each Ωi generate at most n explo-
sions and can therefore be associated to a probability space (Ωni ,P(Ωni),Pni).
Assume now that the set of correlation controls de�ned by the �rst explosion
procedure is Ω = {ua}a=1...q(tk) associated to the probability P such that for all
a, P(ua) = 1/q(tk). We now de�ne the probability space (Ωn+1,P(Ωn+1),Pn+1)
the following way:

• Ωn+1 = Ω×ΠI
i=1Ωni

• for all ωn+1 = (ua, ωn1 , . . . ωnI ) ∈ Ωn+1, Pn+1(ωn+1) = 1
q(tk)×ΠI

i=1Pni(ωni)
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It is easy to see that this is a well de�ned �nite probability space.

We now have de�ned Ωαε . Note that any ωαε ∈ Ωαε prescribes one correlation control
for any of the possible explosion procedures. Fix any sequence of correlation controls
(ui) possibly leading to the explosion τ̄ ∈ [tk, tk+1) associated to the atom Ωl of Ftk .
Consider the set of correlation controls {ua} associated to this explosion. Then, the
conditional probability of each ua given (ui) is by de�nition 1

q(tlk)
:

Pαε [ωαε 3 ua|ωαε 3 (ui)] =
1

q(tlk)
(11)

We now de�ne the strategy αε using auxiliary random processes:

Sαε : Ωαε × V(t0)× {tk}k=0...NN̄ → ∅ ∪ ([t0, T ]× IRn)

and
Ω̄αε : Ωαε × V(t0)× {tk}k=0...NN̄ → FT .

At time t0, for any ωαε , for any control v ∈ V(t0), we set Sαε
t0

(ωαε , v) = ∅ and
Ω̄αε

t0
(ωαε , v) = Ω and �x u0 ∈ U . For all k ∈ {0, . . . NN̄ − 1}, if αε(ωαε)(v) is built

on [t0, tk), we de�ne αε(ωαε)(v) further by:

1. If Sαε
tk

(ωαε , v) 6= ∅, for example Sαε
tk

(ωαε , v) = (ti, x), this means that player II
did not play the expected control from ts ∈ [ti, ti+1) on, then play the punitive
strategy αε(v)|[tk,tk+1) = α

η,ti+2
p (x)(v|[ti+2,T ])|[tk,tk+1) as de�ned in Lemma 2.4

and set Ω̄αε
tk+1

(ωαε , v) = ∅ and Sαε
tk+1

(ωαε , v) = Sαε
tk

(ωαε , v).

2. If Sαε
tk

(ωαε , v) = ∅, then

• if there is no explosion on [tk, tk+1) for (uη, vη)(ω), ω ∈ Ω̄αε
tk

(ωαε , v), then
play αε(ωαε)(v)|[tk,tk+1) = uη(ω)|[tk,tk+1) for some ω ∈ Ω̄αε

tk
(ωαε , v) and set

Ω̄αε
tk+1

(ωαε , v) = Ω̄αε
tk

(ωαε , v). If k ≥ 1 and if v|[tk−1,tk] 6≡ vη(ω)|[tk−1,tk]

for all ω ∈ Ω̄αε
tk

(ωαε , v) then set Sαε
tk+1

(ωαε , v) = (tk−1, X
t0,x0,αε,v
tk+1

), else set
Sαε

tk+1
(ωαε , v) = ∅

• if there is an explosion on [tk, tk+1) for (uη, vη)(ω), ω ∈ Ω̄αε
tk

(ωαε , v), play
on [tk, tk+1) the controls ua in ωαε corresponding to the current explosion
procedure then consider the control v played by player II on [tk−1∨t0, tk +
τ
2 ]:
� if k ≥ 1 and if v|[tk−1,tk] 6≡ vη(ω)|[tk−1,tk] for all ω ∈ Ω̄αε

tk
(ωαε , v) then

set Sαε
tk+1

(ωαε , v) = (tk−1, X
t0,x0,αε,v
tk+1

) and Ω̄αε
tk+1

(ωαε , v) = ∅ and de�ne
αε(ωαε) further using the procedure at step 1, else

� if v|[tk,tk+ τ
2
] 6≡ vb for any of the vb prescribed by the explosion proce-

dure, then set Ω̄αε
tk+1

(ωαε , v) = ∅ and Sαε
tk+1

(ωαε , v) = ∅. If k < NN̄−1,
play αε(ωαε)(v)|[tk+1,tk+2) = u0 and set Sαε

tk+2
(ωαε , v) = (tk, X

t0,x0,αε,v
tk+2

)
and Ω̄αε

tk+2
(ωαε , v) = ∅.

� else, player II played one of the expected controls for example vb. As-
sume Ω̄αε

tk
(ωαε , v) = Ωl. Consider G(a, b) = κ and set Ω̄αε

tk+1
(ωαε , v) =

Ωl
κ and Sαε

tk+1
(ωαε , v) = ∅. If k < NN̄−1, play αε(ωαε)(v)|[tk+1,tk+2) =

uη(ω)|[tk+1,tk+2) for some ω ∈ Ω̄αε
tk+1

(ωαε , v) and set Ω̄αε
tk+2

(ωαε , v) =
Ω̄αε

tk+1
(ωαε , v) and Sαε

tk+2
(ωαε , v) = ∅.

17



Note that this procedure indeed de�nes a mixed strategy. It also ensures that
for all k = 0, . . . , NN̄ , at time tk, Ω̄αε

tk
(v) is either the empty set or one of the atoms

of Ftk and {Sαε(v) ∈ {tk} × IRn} ∈ Fαε,v
tk

where Fαε,v
tk

= σ((αε(v), v)(s), s ∈ [t0, tk]).

The strategy βε is built symmetrically using the auxiliary random processes Ω̄βε

and Sβε .

Payo� of the strategies (αε, βε):
We will �rst study the controls generated if player I plays αε and player II plays
some pure strategy β with delay τ(β) such that β generates no deviation. We will
say that β generates no deviation as soon as for all k ∈ {0, . . . , NN̄}, Sαε

tk
(β) = ∅

(equivalently Sαε
T (β) = ∅), even if Sαε

T (β) = ∅ does not imply that the control gener-
ated by β on [T − τ, T ] is one of the vη.
We will �rst consider the values taken by the process Ω̄αε(β).

Lemma 2.5. If the strategies (αε, β) are played where β is some pure strategy with
delay such that for all k ∈ {0, . . . , NN̄}, Sαε

tk
(β) = ∅, then for all k ∈ {0, . . . , NN̄},

for all F ∈ Ftk :
Pαε

[
Ω̄αε

tk
(β) ⊂ F

]
= Q(F )

Proof. We will prove the Lemma by induction on k for all F such that F is an atom
of the �ltration Ftk .
For k = 0, this is obviously true for the �ltration Ft0 is trivial and Ω̄αε

t0
(β) = Ω.

Assume that the property of the Lemma is true at stage k, k < NN̄ − 1 and that

Ftk is generated by the atoms {Ωk
i }i∈I . Assume now that Ftk+1

= σ
(
{Ωk+1

j }j∈J

)
where the Ωk+1

j are the atoms of Ftk+1
.

• If for some i ∈ I, there exists j ∈ J such that Ωk
i = Ωk+1

j , this means that no

explosion takes place on [tk, tk+1) for the controls (uη, vη)(ω), ω ∈ Ωk
i . Assume

that Ω̄αε
tk

(β) = Ωk
i . As Sαε

tk
(β) = ∅, the strategy αε will generate on [tk, tk+1) the

control uη(ω) for any ω ∈ Ωk
i and we will get Ω̄αε

tk+1
(β) = Ω̄αε

tk
(β) = Ωk

i . This

implies Pαε

[
Ω̄αε

tk+1
(β) = Ωk

i

]
≥ Pαε

[
Ω̄αε

tk
(β) = Ωk

i

]
. On the other hand, the

de�nition of the process Ω̄αε(β) ensures that Ω̄αε
tk+1

(β) ⊆ Ω̄αε
tk

(β) and Ω̄αε
tk

(β) ∈
{Ωk

i }i∈I ∪ ∅ leading to

Pαε

[
Ω̄αε

tk+1
(β) = Ωk

i

]
= Pαε

[
Ω̄αε

tk
(β) = Ωk

i

]
= Q(Ωk

i )

• Assume now that for some i ∈ I, Ωk
i 6= Ωk+1

j for all j ∈ J . This means

there is an explosion on [tk, tk+1) for the controls (uη, vη)(ω), ω ∈ Ωk
i and

Ωk
i =

⊔ji
j=j0

Ωk+1
j . Assume that we have for some ωαε Ω̄αε

tk
(ωαε , β) = Ωk

i . Recall
that Fαε,v

tk
= σ((αε(v), v)(s), s ∈ [t0, tk]). Note that Sαε

tk
(ωαε , β) = ∅, implying

on [tk, tk+1) the strategy αε will generate one of the correlation control ua ∈ Ωαε

prescribed by the explosion procedure for Ωk
i . The conditional probability that

the control generated by αε at time tk is ua given all correlation controls played
so far is

Pαε

[
αε(β)|[tk,tk+1) = ua

∣∣∣Fαε,β
tk

]
=

1
q(tik)

×Pαε

[
Ω̄αε

tk
(β) = Ωk

i

∣∣∣Fαε,β
tk

]
18



due to (11) because every correlation control being unique, the only way to
play ua is when Ω̄αε

tk
(β) = Ωk

i . Given the controls played on [t0, tk) for any

trajectory such that Ω̄αε
tk

(β) = Ωk
i , at time tk, the pure strategy β being a

strategy with delay will generate on [tk, tk +τ(β)] the same control for example
vb whatever the control ua chosen by player I on [tk, tk+1). Note that we must
have v|[tk,tk+τ/2) is equivalent to one of the constant correlation controls, else,
player I would detect some deviation at time tk+1 and set Sαε

tk+2
(β) 6= ∅. In

the end, player II has to play on [tk, tk + τ/2) one of the correlation control vb,
and always plays the same control whatever the control ua played by player I.
Finally, we will get for all j = j0 . . . ji:

Pαε

[
Ω̄αε

tk+1
(β) = Ωk+1

j

∣∣∣Fαε,β
tk

]
= Q(Ωk+1

j |Ωk
i )×Pαε

[
Ω̄αε

tk
(β) = Ωk

i

∣∣∣Fαε,β
tk

]
and �nally taking the expectation w.r.t. Pαε :

Pαε

[
Ω̄αε

tk+1
(β) = Ωk+1

j

]
= Q(Ωk+1

j |Ωk
i )Pαε

[
Ω̄αε

tk
(β) = Ωk

i

]
= Q(Ωk+1

j |Ωk
i )Q(Ωk

i ) = Q(Ωk+1
j )

We have proven that for all k ∈ {0, . . . , NN̄ − 1}, for all atom Ωk
i of the �ltration

Ftk , Pαε

[
Ω̄αε

tk
(β) = Ωk

i

]
= Q(Ωk

i ). Noticing that there is no explosion on [T − τ, T ],
we get FT = FtNN̄−1

and due to the de�nition of the strategy and the fact that

Sαε
T (β) = ∅, we get Ω̄αε

T (β) = Ω̄αε
tNN̄−1

(β), hence the result.

We still assume that player I plays αε and player II plays some pure strategy β
such that β generates no deviation and we will compute the payo� Ji(t0, x0, αε, β)
for i = 1, 2.

Lemma 2.6. If the strategies (αε, β) are played where β is some pure strategy with
delay such that Sαε

T (β) = ∅, then for all i = 1, 2:

|Ji(t0, x0, αε, β)− ei| ≤
3ε

N

Corollary:
The strategies (αε, βε) reward a payo� 3ε

N close to e.

Proof of the Corollary. The proof of the Corollary is straightforward. Indeed, as
βε is a mixed strategy, namely a �nite probability distribution on �nitely many pure
strategies βε(ωβε) generating Sαε

T (βε(ωβε)) = ∅ against αε, we get for i = 1, 2:

|Ji(t0, x0, αε, βε)− ei| ≤
∫

Ωβε

|Ji(t0, x0, αε, βε(ωβε))− ei|dPβε(ωβε)

≤
∫

Ωβε

dPβε(ωβε)
3ε

N
=

3ε

N

Proof of Lemma 2.6. We recall that the explosions are denoted by τi, i ∈ I. For
all i ∈ I, there exists k(τi) ∈ {0, . . . , NN̄ − 2} such that τi ∈ [tk(τi), tk(τi)+1). We
denote by

∆ := [t0, T − τ)\
(
∪i∈I [tk(τi), tk(τi)+1)

)
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Assume that FT = σ({Ωj}j=1...M̄ ) where the Ωj are the atoms of FT and play-
ers are using (αε, β) as in the assumptions of the Lemma. Notice that ∀ωαε ∈
{Ω̄αε

T (β) = Ωj}, ∀ωj ∈ Ωj , the control of Player I generated by (αε(ωαε), β) satis�es
uαε(ωαε )β(s) ≡ uη(ωj)(s) ∀s ∈ ∆. Consequently, ∀ωαε ∈ {Ω̄αε

T (β) = Ωj}, the control
of player II generated by (αε(ωαε), β) satis�es vαε(ωαε )β(s) ≡ vη(ωj)(s) ∀s ∈ ∆, else
we would get Sαε

T (ωαε , β) 6= ∅. Therefore, for any ωαε satisfying Ω̄αε
T (ωαε , β) = Ωj

and any ωj ∈ Ωj , for all t ∈ [t0, T ]:∥∥∥X
t0,x0,(αε,β)(ωαε )
t −Xη

t (ωj)
∥∥∥ ≤ Mτ(1 + ‖f‖∞)eLf (T−t0)

where Lf denotes the Lipschitz constant of f and M the number of explosions. We
can choose τ small enough in order that for i = 1, 2, for all t ∈ [t0, T ]:

∣∣∣gi(X
t0,x0,(αε,β)(ωαε )
T )− gi

(
Xη

T (ωj)
)∣∣∣ ≤ η∣∣∣Vi(t, X

t0,x0,(αε,β)(ωαε )
t )− Vi(t, X

η
t (ωj))

∣∣∣ ≤ η
(12)

leading, for any j = 1 . . . M̄ and any ωj ∈ Ωj , to∣∣∣Eαε

[
gi(X

t0,x0,αε,β
T )1Ω̄αε

T (β)=Ωj

]
−E

[
gi(X

η
T )1Ωj

]∣∣∣
≤

∣∣gi(X
η
T (ωj))Pαε(Ω̄

αε
T (β) = Ωj)− gi(X

η
T (ωj))Q(Ωj)

∣∣
+ ηPαε(Ω̄

αε
T (β) = Ωj)

≤ ηQ(Ωj) due to Lemma 2.5

Finally, for all i = 1, 2:

|Ji(t0, x0, αε, β)− Ji(t0, x0, uη, vη)|

≤
M̄∑

j=1

∣∣∣Eαε

[
gi(X

t0,x0,αε,β
T )1Ω̄αε

T (β)=Ωj

]
−E

[
gi(X

η
T )1Ωj

]∣∣∣
≤

M̄∑
j=1

ηQ(Ωj) = η

Using now Lemma 2.3, we have for all i = 1, 2:

|Ji(t0, x0, αε, β)− ei| ≤ |Ji(t0, x0, αε, β)− Ji(t0, x0, uη, vη)|+ |Ji(t0, x0, uη, vη)− ei|
≤ 3η

and the strategies (αε, β) reward a payo� 3ε
N close to e.

Optimality of the strategies (αε, βε):
It remains to prove that the strategies (αε, βε) are optimal. We will prove it for βε:
there exists some constant Cα satisfying

∀β ∈ B(t0), J2(t0, x0, αε, β) ≤ J2(t0, x0, αε, βε) + Cαε. (13)

Consider some pure strategy with delay β. If β generates no deviation (Sαε
T (β) = ∅),

then we have just proven that:

J2(t0, x0, αε, β) ≤ e2 +
3ε

N
≤ J2(t0, x0, αε, βε) +

6ε

N
. (14)
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It remains to prove the same kind of result as (13) for any pure strategy β generating
some unexpected controls (leading for some ωαε to Sαε

T (ωαε , β) 6= ∅). The idea of the
proof is �rst to build some pure strategy β̃ generating the same controls as β against
αε as long as no deviation occurs and generating no deviation against αε, that is
some non-deviating extension of β. We then will compare the payo�s induced by β
and β̃.

Lemma 2.7 (Non deviating extension β̃ of some pure strategy β of player II). To any
pure strategy with delay β, one can associate a pure strategy with delay β̃ satisfying:

• Sαε(β̃) = ∅

• The pairs of strategies (αε(ωαε), β) and (αε(ωαε), β̃) generate the same pairs of
controls on [t0, T−τ ]×{Sαε

T (β) = ∅}∪k∈{0,...,NN̄} [t0, tk]×{S
αε
T (β) ∈ {tk}×IRn}.

Proof. In order to build the strategy β̃, we will need some auxiliary processes Sβ̃ :
[t0, T ]×U(t0) → ∅∪[t0, T ]∪{6α} and Ω̄β̃ : [t0, T ]×U(t0) → FT . We will set Sβ̃ = ∅ as
long as β generates no deviation against αε and Sβ̃ = ti if β generated some deviation
on [ti, ti+1) and Sβ̃ =6α if it is impossible to correlate the trajectories because player

I is not playing αε. The process Ω̄β̃ allows to remind which control vη(ω) the strategy
is currently following. We de�ne the strategy β̃(u) for all u ∈ U(t0) using Sβ̃ and Ω̄β̃

as follows (omitting to write the dependence of Sβ̃ and Ω̄β̃ in u):

Set Sβ̃
t0

= ∅ and Ω̄β̃
t0

= Ω and �x v0 ∈ V and u0 ∈ U . For all k ∈ {0 . . . NN̄ − 1},
if β̃(u) is already built on [t0, tk), we de�ne β̃(u) on [tk, tk+1) by:

1. If Sβ̃
tk

=6α, play β̃(u)|[tk,tk+1) = v0, set Sβ̃
tk+1

=6α and Ω̄β̃
tk+1

= ∅.

2. If Sβ̃
tk
∈ [t0, T ], meaning we are building a non deviating strategy instead of

following β then

• if there is no explosion on [tk, tk+1), play β̃(u)|[tk,tk+1) = vη(ω)|[tk,tk+1) for

some ω ∈ Ω̄β̃
tk
and set Ω̄β̃

tk+1
= Ω̄β̃

tk
and Sβ̃

tk+1
= Sβ̃

tk

• if there is an explosion on [tk, tk+1) for the trajectory generated by (uη, vη)(ω)

for any ω ∈ Ω̄β̃
tk

= Ωl, then play β̃(u)|[tk,tk+1) = v1 where v1 is the �rst
correlation control of player II expected at time tk and consider the con-
trol u|[tk,tk+ τ

2
]. If it is one of the expected correlation controls for example

ua then consider G(a, 1) = i and set Ω̄β̃
tk+1

= Ωl
i and Sβ̃

tk+1
= Sβ̃

tk
, else set

Sβ̃
tk+1

=6α and Ω̄β̃
tk+1

= ∅,

3. If Sβ̃
tk

= ∅ then

• if there is no explosion on [tk, tk+1), play β̃(u)|[tk,tk+1) = vη(ω)|[tk,tk+1) for

some ω ∈ Ω̄β̃
tk
and set Ω̄β̃

tk+1
= Ω̄β̃

tk
. Then, build the control ũ such that:{

ũ(s) = u(s) ∀s ∈ [t0, tk)
ũ(s) = uη(ω)(s) ∀s ∈ [tk, T ]
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and compute the control β(ũ)|[tk,tk+1): if β(ũ)|[tk,tk+1) 6≡ vη(ω)|[tk,tk+1)

then set Sβ̃
tk+1

= tk else set Sβ̃
tk+1

= ∅
• if there is an explosion on [tk, tk+1) for the trajectory generated by (uη, vη)(ω)

for any ω ∈ Ω̄β̃
tk

= Ωl, then build the control ũ such that:{
ũ(s) = u(s) ∀s ∈ [t0, tk)
ũ(s) = u0 ∀s ∈ [tk, T ]

and compute the control v = β(ũ)|[tk,tk+τ(β)):

� If this control is none of the expected correlation controls vb, play
β̃(u)|[tk,tk+1) = v1 where v1 is the �rst expected correlation control and
consider the control u|[tk,tk+ τ

2
). If it is one of the expected correlation

controls for example ua then consider G(a, 1) = i and set Ω̄β̃
tk+1

= Ωl
i

and Sβ̃
tk+1

= tk, else set Sβ̃
tk+1

=6α and Ω̄β̃
tk+1

= ∅,
� If this control v corresponds to one of the correlation controls pre-
scribed by the jointly controlled lottery at tk for example vb then
play β̃(u)|[tk,tk+ τ

2
] = vb and β̃(u)|(tk+ τ

2
,tk+1) = β(u)|(tk+ τ

2
,tk+1). Con-

sider the control u|[tk,tk+ τ
2
). If it is none of the expected correlation

controls, set Sβ̃
tk+1

=6α and Ω̄β̃
tk+1

= ∅. If it is one of the correlation

controls, for example ua, consider G(a, b) = i and set Ω̄β̃
tk+1

= Ωl
i.

Then compute the control β(u)|[tk,tk+ τ
2
]. If β(u)|[tk,tk+ τ

2
] 6≡ vb then

set Sβ̃
tk+1

= tk else set Sβ̃
tk+1

= ∅.

It is clear that β̃ is a pure strategy with delay. Indeed, β̃ is anticipative with respect
to β but non anticipative with respect to the control u of the opponent. Furthermore
β̃ satis�es Sαε

T (β̃) = ∅ and Ω̄αε
T (β̃) 6= ∅. As long as β generates no deviation, the

controls generated by (αε, β) and (αε, β̃) are the same. Note that {Sβ̃
T = tk} ∈ Fαεβ̃

tk

where Fαεβ̃
tk

= σ
(
(αε, β̃)(s), s ∈ [t0, tk]

)
.

We have for any deviating pure strategy β:

J2(t0, x0, αε, β) =
NN̄−1∑

i=0

Eαε

(
g2(X

t0,x0,αε,β
T )1Sαε

T (β)∈{ti}×IRn

)
+ Eαε(g2(X

t0,x0,αε,β
T )1Sαε

T (β)=∅)

(15)

Assume that for example Sαε
T (β) = (ti, x). This means that some deviation occurred

on [ti, ti+1). There exists k ∈ {1 . . . N} such that [ti, ti+1) ⊂ [θk−1, θk). Using the
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de�nition of the strategy αε and introducing the non deviating extension β̃ of β:

g2(X
t0,x0,αε,β
T )1Sαε

T (β)=(ti,x) = g2(X
ti+2,x,α

η,ti+2
p (x),β

T )1Sαε
T (β)=(ti,x)

≤ (V2(ti+2, x) + η)1Sαε
T (β)=(ti,x)

≤
[
V2(ti, X

t0,x0,αε,β
ti

) + η + ε
]
1Sαε

T (β)=(ti,x) due to (1)

≤
[
V2(ti, X

t0,x0,αε,β̃
ti

) + 2ε
]
1Sαε

T (β)=(ti,x)

≤
[
Eαε(V2(θk, X

t0,x0,αε,β̃
θk

)|Fαεβ̃
ti

) + 3ε
]
1Sαε

T (β)=(ti,x)

due to (1) because (θk − ti) ≤ δ

We introduce this last inequality because our estimate of V2(ti, X
t0,x0,αε,β̃
ti

) induces
some error term of length η, therefore we need to sum up at most N such error terms
in order to bound the global error to some ε.
In the end we have for all ti ∈ [θk−1, θk):

g2(X
t0,x0,αε,β
T )1Sαε

T (β)∈{ti}×IRn ≤
[
Eαε

(
V2(θk, X

t0,x0,αε,β̃
θk

)
∣∣Fαεβ̃

ti

)
+ 3ε

]
1Sαε

T (β)∈{ti}×IRn

(16)

The point now is to get an estimate of V2(θk, X
t0,x0,αε,β̃
θk

). We will prove the following
Lemma:

Lemma 2.8. For all t ∈ {tk}k=0...NN̄ , for all pure strategy β̃ generating no deviation
against αε, we have:

Pαε

{
V2(t, X

t0,x0,αε,β̃
t ) ≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )

∣∣Fαεβ̃
t

)
+ 4η

}
≥ 1− 2η

where (Fαεβ̃
t ) = σ

(
(αε, β̃)(s), s ∈ [t0, t]

)
Proof. Assume that t ∈ {tk}k=0...NN̄ and Ft = σ({Ωi}i∈I) where the Ωi are the
atoms of Ft. As the pure strategy β̃ generates no deviation, denoting by Ω̄αε(β̃)
the auxiliary process built in the de�nition of the strategy αε as the opponent is
playing β̃, we have for all i ∈ I, there exist atoms Ωi

j of the �ltration FT such that

Ωi =
⊔

j∈J(i) Ωi
j . Then using (12) for any ωj ∈ Ωi

j , for any j ∈ J(i):

V2(t, X
t0,x0,αε,β̃
t )1Ω̄αε

T (β̃)=Ωi
j
≤

[
V2(t, X

η
t (ωi

j)) + η
]
1Ω̄αε

T (β̃)=Ωi
j

Using the fact that {Ω̄αε
t (β̃) = Ωi} = ∪j∈J(i){Ω̄αε

T (β̃) = Ωi
j}, and that ∀ωj ∈ Ωi

j ,
∀ωi ∈ Ωi, V2(t, X

η
t (ωj)) = V2(t, X

η
t (ωi)), we get for any i ∈ I and any ωi ∈ Ωi

V2(t, X
t0,x0,αε,β̃
t )1Ω̄αε

T (β̃)=Ωi
≤ [V2(t, X

η
t (ωi)) + η]1Ω̄αε

T (β̃)=Ωi
(17)

Note that a more careful examination of the proof of Lemma 2.5 shows that:

Pαε

(
Ω̄αε

T (β̃) = Ωi
j |F

αεβ̃
t

)
= Q(Ωi

j |Ωi)Pαε

(
Ω̄αε

t (β̃) = Ωi|Fαεβ̃
t

)
= Q(Ωi

j |Ωi)1Ω̄αε
t (β̃)=Ωi

Then, using (12):∣∣∣Eαε

(
g2(X

t0,x0,αε,β̃
T )

∣∣Fαεβ̃
t

)
1Ω̄αε

t (β̃)=Ωi
−E

(
g2(X

η
T )|Ωi

)
1Ω̄αε

t (β̃)=Ωi

∣∣∣ ≤ η (18)
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We now have to recall that if we denote by

Ση
t =

{
V2(t, X

η
t ) ≤ E

(
g2(X

η
T )

∣∣Ft

)
+ 2η

}
then due to Lemma 2.3:

Q(Ση
t ) ≥ 1− 2η

This implies that for all i ∈ I, for all trajectory satisfying Ω̄αε
t (β̃) = Ωi ⊂ Ση

t and for
all ωi ∈ Ωi:

V2(t, X
t0,x0,αε,β̃
t )1Ω̄αε

t (β̃)=Ωi
≤ [V2(t, X

η
t (ωi)) + η]1Ω̄αε

t (β̃)=Ωi
(due to (17))

≤
[
E(g2(X

η
T )|Ωi) + 3η

]
1Ω̄αε

t (β̃)=Ωi
(for Ωi ⊂ Ση

t )

≤
[
Eαε

(
g2(X

t0,x0,αε,β̃
T )|Fαεβ̃

t

)
+ 4η

]
1Ω̄αε

t (β̃)=Ωi
(due to (18))

We now can check that as announced:

Pαε

{
V2(t, X

t0,x0,αε,β̃
t ) ≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )

∣∣Fαεβ̃
t

)
+ 4η

}
≥ Pαε

{
Ω̄αε

t (β̃) ⊂ Ση
t

}
≥ Q(Ση

t ) (due to Lemma 2.5)

≥ 1− 2η

We will denote by:

Σαεβ̃
t =

{
V2(t, X

t0,x0,αε,β̃
t ) ≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )

∣∣Fαεβ̃
t

)
+ 4η

}
We now will compute a more precise estimate of V2(θk, X

t0,x0,αε,β̃
θk

) denoting by ‖g‖∞
some bound of the payo� functions g1 and g2:

V2(θk, X
t0,x0,αε,β̃
θk

) ≤
[
Eαε

(
g2(X

t0,x0,αε,β̃
T )

∣∣Fαεβ̃
θk

)
+ 4η

]
1

Σαεβ̃
θk

+ ‖g‖∞1
(Σαεβ̃

θk
)c

≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )

∣∣Fαεβ̃
θk

)
1

Σαεβ̃
θk

+ ‖g‖∞1
(Σαεβ̃

θk
)c

+ 4η

≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )

∣∣Fαεβ̃
θk

)
+ ‖g‖∞1

(Σαεβ̃
θk

)c
+ 4η

(19)

assuming g2 is non negative, which is possible without lack of generality because this
function is bounded.

It remains to introduce this estimate (19) in inequality (16) to get for all i ∈
{0, . . . , NN̄ − 1}, if ti ∈ [θ(k−1), θk):

g2(X
t0,x0,αε,β
T )1Sαε

T (β)∈{ti}×IRn

≤
[
Eαε

(
V2(θk, X

t0,x0,αε,β̃
θk

)
∣∣Fαεβ̃

ti

)
+ 3ε

]
1Sαε

T (β)∈{ti}×IRn

≤ Eαε

(
Eαε

(
g2(X

t0,x0,αε,β̃
T )

∣∣Fαεβ̃
θk

)
+ ‖g‖∞1

(Σαεβ̃
θk

)c
+ 4η

∣∣∣Fαεβ̃
ti

)
1Sαε

T (β)∈{ti}×IRn

+ 3ε1Sαε
T (β)∈{ti}×IRn thanks to (19)

≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )

∣∣Fαεβ̃
ti

)
1Sαε

T (β)∈{ti}×IRn

+ ‖g‖∞Pαε

(
(Σαεβ̃

θk
)c

∣∣Fαεβ̃
ti

)
1Sαε

T (β)∈{ti}×IRn + 7ε1Sαε
T (β)∈{ti}×IRn
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Note that at time ti there is no deviation, implying Fαεβ̃
ti

= Fαεβ
ti

and

g2(X
t0,x0,αε,β
T )1Sαε

T (β)∈{ti}×IRn ≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )

∣∣Fαεβ
ti

)
1Sαε

T (β)∈{ti}×IRn

+ ‖g‖∞Pαε

(
(Σαεβ̃

θk
)c

∣∣Fαεβ
ti

)
1Sαε

T (β)∈{ti}×IRn + 7ε1Sαε
T (β)∈{ti}×IRn

Using the fact that {Sαε(β) ∈ {ti}× IRn} is (Fαεβ
ti

)-measurable due to the de�nition
of the strategy αε, we get for i = 0 . . . NN̄ − 1, if ti ∈ [θk−1, θk):

g2(X
t0,x0,αε,β
T )1Sαε

T (β)∈{ti}×IRn ≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )1Sαε

T (β)∈{ti}×IRn

∣∣Fαεβ
ti

)
+ ‖g‖∞Eαε

(
1

(Σαεβ̃
θk

)c
1Sαε

T (β)∈{ti}×IRn

∣∣Fαεβ
ti

)
+ 7ε1Sαε

T (β)∈{ti}×IRn (20)

We now use this estimate to compute the expectation of the payo� in case there is
some deviation:

NN̄−1∑
i=0

Eαε

(
g2(X

t0,x0,αε,β
T )1Sαε

T (β)∈{ti}×IRn

)

≤
NN̄−1∑

i=0

Eαε

(
Eαε

(
g2(X

t0,x0,αε,β̃
T )1Sαε

T (β)∈{ti}×IRn |Fαεβ
ti

))

+
N∑

k=1

kN̄−1∑
i=(k−1)N̄

Eαε

(
‖g‖∞Eαε(1(Σαεβ̃

θk
)c
1Sαε

T (β)∈{ti}×IRn |Fαεβ
ti

)
)

+ 7ε due to (20)

≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )1Sαε

T (β) 6=∅

)
+ ‖g‖∞

N∑
k=1

Eαε

(
1

(Σαεβ̃
θk

)c
1Sαε

T (β)∈[θk−1,θk)×IRn

)
+ 7ε

≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )1Sαε

T (β) 6=∅

)
+ ‖g‖∞

N∑
k=1

Pαε

(
(Σαεβ̃

θk
)c

)
+ 7ε

≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )1Sαε

T (β) 6=∅

)
+ ‖g‖∞

N∑
k=1

2ε

N
+ 7ε thanks to Lemma 2.8

≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )1Sαε

T (β) 6=∅

)
+ 2‖g‖∞ε + 7ε

(21)
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Going back to our estimate of J2(t0, x0, αε, β) as in (15) we can write:

J2(t0, x0, αε, β) =
NN̄−1∑

i=0

Eαε

(
g2(X

t0,x0,αε,β
T )1Sαε

T (β)∈{ti}×IRn

)
+ Eαε

(
g2(X

t0,x0,αε,β̃
T )1Sαε

T (β)=∅

)
≤ Eαε

(
g2(X

t0,x0,αε,β̃
T )1Sαε

T (β) 6=∅

)
+ (2‖g‖∞ + 7)ε

+ Eαε

(
g2(X

t0,x0,αε,β̃
T )1Sαε

T (β)=∅

)
due to (21)

≤ Eαε(g2(X
t0,x0,αε,β̃
T )) + (2‖g‖∞ + 7)ε

≤ J2(t0, x0, αε, βε) +
6ε

N
+ (2‖g‖∞ + 7)ε thanks to (14)

This proves that βε is (13 + 2‖g‖∞)ε optimal. The proof is symmetric to state
that αε is (13 + 2‖g‖∞)ε optimal.

Finally, we have build mixed strategies (αε, βε) rewarding a payo� 3ε close to e
and (13 + 2‖g‖∞)ε optimal. This proves e is a Nash equilibrium payo�.

2.2 Convexity of the set of Nash equilibrium payo�s using mixed

strategies

Proposition 2.9. The set Er(t0, x0) of all Nash equilibrium payo�s in mixed strate-
gies is convex and compact in IR2.

Proof. Let (e1, e2) ∈ IR4 be a pair of Nash equilibrium payo�s in mixed strategies.
We will prove that (λe1 +(1−λ)e2) is a Nash equilibrium payo� in mixed strategies
for all λ ∈ (0, 1). We will simply build random controls satisfying the characteri-
zation property of Theorem 2.1. As for j = 1, 2, ej is a Nash equilibrium payo�,
we may choose random controls (uj , vj) on an underlying �nite probability space
(Ωj ,P(Ωj),Pj) such that ∀i, j = 1, 2:

• |Ej(gi(X
t0,x0,uj ,vj

T ))− ej
i | ≤

ε
3

• ∀t ∈ [t0, T ], denoting by F j
t = σ

(
(uj , vj)(s), s ∈ [t0, t]

)
:

Pj
{

Vi(t, X
t0,x0,uj ,vj

t ) ≤ Ej
(
gi(X

t0,x0,uj ,vj

T )
∣∣F j

t

)
+

ε

3

}
≥ 1− ε

We need to build controls close to the initial pairs (uj , vj), j = 1, 2, but with some
tag in order to distinguish them. Set some small delay δ > 0 such that for all
x ∈ B(x0, δ‖f‖∞), for all (u, v) ∈ U(t0)× V(t0), for all i = 1, 2, for all t ≥ t0 + δ:

∣∣∣Vi(t, X
t0,x0,u,v
t )− Vi(t− δ,Xt0,x,u,v

t−δ )
∣∣∣ ≤ ε

3∣∣∣gi(X
t0,x0,u,v
T )− gi(X

t0,x,u,v
T−δ )

∣∣∣ ≤ ε
3

(22)

We now choose some u1 6= u2 ∈ U and v1 6= v2 ∈ V and set for j = 1, 2:
ūj(s) = uj for s ∈ [t0, t0 + δ)
ūj(s) = uj(s− δ) for s ∈ [t0 + δ, T ]
v̄j(s) = vj for s ∈ [t0, t0 + δ)
v̄j(s) = vj(s− δ) for s ∈ [t0 + δ, T ]
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We will as usual denote by X̄j
· = Xt0,x0,ūj ,v̄j

· for j = 1, 2. We immediately get
thanks to (22) ∀i, j = 1, 2:

|Ej(gi(X̄
j
T ))− ej

i | ≤ 2
ε

3
≤ ε (23)

and for all t ∈ [t0, T ], denoting by F̄ j
t = σ

(
(ūj , v̄j)(s), s ∈ [t0, t]

)
:

Pj
{

Vi(t, X̄
j
t ) ≤ Ej

(
gi(X̄

j
T )

∣∣F̄ j
t

)
+ ε

}
≥ 1− ε (24)

For i, j = 1, 2, denote by

Σij
t =

{
Vi(t, X̄

j
t ) ≤ Ej

(
gi(X̄

j
T )

∣∣F̄ j
t

)
+ ε

}
We now de�ne a new �nite random space Ω = {1, 2} × Ω1 × Ω2 endowed with the
probability P de�ned for all ω = (j, ω1, ω2) by:{

P(j, ω1, ω2) = λP1(ω1)P2(ω2) if j = 1
P(j, ω1, ω2) = (1− λ)P1(ω1)P2(ω2) if j = 2

and de�ne on Ω the random controls (u, v) de�ned by:{
(u, v)(j, ω1, ω2) = (ū1, v̄1)(ω1) if j = 1
(u, v)(j, ω1, ω2) = (ū2, v̄2)(ω2) if j = 2

We will denote by X· = Xt0,x0,u,v
· . It remains to prove that for i = 1, 2:

• |E[gi(XT )]− λe1
i − (1− λ)e2

i | ≤ ε

• ∀t ∈ [t0, T ], denoting by Ft = σ ((u, v)(s), s ∈ [t0, t]):

P
{
Vi(t, Xt) ≤ E

[
gi(XT )

∣∣Ft

]
+ ε

}
≥ 1− ε

The �rst relation is easy to prove. For i = 1, 2, we have:∣∣E[gi(XT )]− λe1
i − (1− λ)e2

i

∣∣
=

∣∣λE1[gi(X̄1
T )] + (1− λ)E2[gi(X̄2

T )]− λe1
i − (1− λ)e2

i

∣∣
≤ λ

∣∣E1[gi(X̄1
T )]− e1

i

∣∣ + (1− λ)
∣∣E2[gi(X̄2

T )]− e2
i

∣∣
≤ ε thanks to (23)

In order to prove the second inequality, for i = 1, 2, we denote by

Σi
t =

{
Vi(t, Xt) ≤ E

(
gi(XT )

∣∣Ft

)
+ 3ε

}
We have for i = 1, 2 and t ∈ [t0 + δ, T ]:

E
(
gi(XT )

∣∣Ft

)
= E

(
gi(XT )(1{1}×Ω1×Ω2 + 1{2}×Ω1×Ω2)

∣∣Ft

)
= E

(
gi(X̄1

T )
∣∣F̄1

t

)
1{1}×Ω1×Ω2 + E

(
gi(X̄2

T )
∣∣F̄2

t

)
1{2}×Ω1×Ω2

Therefore, assuming as usual that the functions gi are non negative and using (24):

E
(
gi(XT )

∣∣Ft

)
≥ [Vi(t, X̄1

t )− ε]1{1}×Σi1
t ×Ω2 + [Vi(t, X̄2

t )− ε]1{2}×Ω1×Σi2
t

≥ Vi(t, Xt)1{1}×Σi1
t ×Ω2 + Vi(t, Xt)1{2}×Ω1×Σi2

t
− ε
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And �nally:

P
(
Σi

t

)
≥ P

[
{1} × Σi1

t × Ω2 ∪ {2} × Ω1 × Σi2
t

]
≥ λ(1− ε) + (1− λ)(1− ε)
≥ 1− ε

Note that for t ∈ [t0, t0 + δ], the preceding relation is straightforward.

2.3 Comparison between the sets of Nash equilibrium payo�s in

pure and mixed strategies

We already know that the set of Nash equilibrium payo�s in mixed strategies
contains the convex hull of the set of Nash equilibrium payo�s in pure strategies. We
now try to compare these two sets and it appears that in general, they are not equal.
This result is not intuitive because the punitive strategies and the guaranteed payo�s
of the players are exactly the same whether players use pure or mixed strategies.

Proposition 2.10. There exist non zero sum di�erential games such that the set of
Nash equilibrium payo�s in mixed strategies is larger than the convex hull of the set
of Nash equilibrium payo�s in pure strategies:

Er(t0, x0) ) ConvE(t0, x0).

Proof. We will build a counter-example where a Nash equilibrium payo� in mixed
strategies does not belong to the closed convex hull of the Nash equilibrium payo�s
in pure strategies.
Consider the simple game in �nite time in IR2 with dynamics :

ẋ = u + v u, v ∈ [−1/2, 1/2]2

starting from the origin O = (0, 0) at time t = 0 and ending at time t = T = 1 with
x = (x1, x2).

The payo� functions are the Lipschitz continuous functions de�ned as follows:

g1 :


g1(x) = 1− 4|x2| for |x2| ≤ 1/4 and |x2| ≥ |x1|
g1(x) = 1− 4|x1| for |x1| ≤ 1/4 and |x1| ≥ |x2|
g1(x) = x2 + 2|x1| − 1 for x2 ≥ −2|x1|+ 1
g1(x) = 0 elsewhere

In fact g1 is a non negative function de�ned on the unit square centered at the origin
and its graph looks like a pyramid of height 1 with base the square with length
1/2 centered at the origin, completed with two symmetric triangles joining (0, 1, 0),
(1, 1, 2) and (1,−1, 0) for the �rst and (0, 1, 0), (−1, 1, 2) and (−1,−1, 0) for the
second.

g2 :
{

g2(x) = 0 for x2 ≥ 0
g2(x) = −x2 for x2 ≤ 0

The game clearly ful�ll the regularity assumptions listed in the introduction. We
will denote by L the greater of the Lipschitz-constants of g1 and g2 for the L1-norm.
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The set of all reachable points starting at time 0 from the origin O and stopping at
time T = 1 is the unit ball in IR2 for the L1 norm and the set of all reachable payo�s
is [0, 2]× {0} ∪

⋃
y∈(0,1]([0, 1− y], y). It is also clear that{

V1(t, x) = g1(x)
V2(t, x) = g2(x)

The initial values are V1(0, O) = 1 and V2(0, O) = 0, implying any Nash equilib-
rium payo� has to reward players I with at least 1 and player II with a non-negative
payo�, meaning no trajectory can end up at time T at some x such that x2 < 0
because this would cause player I to earn strictly less than 1. We then have e2 = 0
corresponding to y ≥ 0 for every Nash equilibrium payo� in pure strategies. Consid-
ering Nash equilibrium payo�s in pure strategies, we can easily compute

E(0, O) = [1, 2]× {0} = ConvE(0, O).

It is the set of all reachable payo�s such that e1 ≥ 1.

We now will compute some random controls (u, v) leading to a �nal payo� of 1
for player I and positive for player II. The controls induce the trajectories joining
(3/4, 0) at time t = 3/4 (u = v = (1/2, 0)) and then with probability one half:

• from t = 3/4 on, join (1, 1/4) at t = 1 (u = v = (1/2, 1/2)) and get the payo�
(5/4, 0)

• from t = 3/4 on, join (1,−1/4) at t = 1 (u = v = (1/2,−1/2)) and get the
payo� (3/4, 1/4)

The �nal payo� will be (e1, e2) = (1, 1/8) /∈ ConvE(0, O). We will as usual denote
by X· = X0,O,u,v

·

It remains to prove that this payo� is a Nash equilibrium payo� in mixed strate-
gies. We use the characterization of the Nash equilibrium payo�s of theorem 2.1 and
prove that along the trajectories the condition

E[gi(XT )|Ft] ≥ Vi(t, Xt)

is satis�ed. Indeed, along the trajectories:

for t ∈ [0, 1/4] V1(t, Xt) = 1− 4t and E
(
g1(XT )

∣∣Ft

)
= 1

for t ∈ [1/4, 1/2] V1(t, Xt) = 0 and E
(
g1(XT )

∣∣Ft

)
= 1

for t ∈ [1/2, 3/4] V1(t, Xt) = 2t− 1 and E
(
g1(XT )

∣∣Ft

)
= 1

for t ∈ (3/4, 1] : either V1(t, Xt) = 3t− 7/4 and E
(
g1(XT )

∣∣Ft

)
= 5/4

or V1(t, Xt) = t− 1/4 and E
(
g1(XT )

∣∣Ft

)
= 3/4

and
for t ∈ [0, 3/4] V2(t, Xt) = 0 and E

(
g2(XT )

∣∣Ft

)
= 1/8

for t ∈ (3/4, 1] : either V2(t, Xt) = 0 and E
(
g2(XT )

∣∣Ft

)
= 0

or V2(t, Xt) = t− 3/4 and E
(
g2(XT )

∣∣Ft

)
= 1/4

We can see that for t ≤ 3/4, the condition is satis�ed. Now, for each trajectory from
t = 3/4 on, we have Vi(t, Xt) is either non decreasing or constant so that for i = 1, 2
Vi(t, Xt) ≤ Vi(T,XT ) = gi(XT ) and the condition is satis�ed.
This proves that the �nal payo� (e1, e2) = (1, 1/8) is a Nash equilibrium payo� in
mixed strategies.
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3 Publicly correlated equilibrium payo�s

We recall that Ec(t0, x0) ⊃ E(t0, x0). We are going to state some characterization
of publicly correlated equilibrium payo�s and compare the set of Nash equilibrium
payo�s using mixed strategies and the set of publicly correlated equilibrium payo�s.

Theorem 3.1. The set of publicly correlated equilibrium payo�s is equal to the set
of Nash equilibrium payo�s using mixed strategies.

Proof. To begin with, we will show that Er(t0, x0) ⊆ Ec(t0, x0). We will prove that
publicly correlated equilibrium payo�s satisfy the same kind of characterization as
Nash equilibrium payo�s using mixed strategies:

Proposition 3.2 (Characterization of publicly correlated equilibrium payo�s). The
payo� e = (e1, e2) ∈ IR2 is a publicly correlated equilibrium payo� i� for all ε > 0,
there exist random controls (uε, vε), such that ∀i = 1, 2:

• |E[gi(X
t0,x0,uε,vε

T )]− ei| ≤ ε

• ∀t ∈ [t0, T ], if we denote by (F ε
t ) = σ{(uε, vε)(s), s ∈ [t0, t]}

P
{
E

[
gi(X

t0,x0,uε,vε

T )
∣∣F ε

t

]
≥ Vi(t, X

t0,x0,uε,vε
t )− ε

}
≥ 1− ε

Proof of Proposition 3.2.

The proof is a simple adaptation of the proof used in [6]. We rewrite it here for the
sake of completeness.

We begin with the necessary condition.
Let e be a publicly correlated equilibrium payo� as in De�nition 7. Fix ε and

choose ε2

2 optimal correlated strategies ((Ft), αε, βε) as in the de�nition: (αε, βε)
generates admissible controls (uε, vε) that are (Ft)-adapted. The �ltration (F ε

t ) =
(σ{(uε, vε)(s), s ∈ [t0, t]}) is a sub�ltration of (Ft). We will denote by Xε

· =
Xt0,x0,uε,vε
· .

For ε < 1, it is clear that |E[gi(Xε
T )]− ei| ≤ ε2/2 ≤ ε.

We will prove that (uε, vε) satisfy the second part of the Proposition.
Suppose on the contrary that there exist τ ∈ [t0, T ] such that:

P
{
E

(
g1(Xε

T )
∣∣F ε

τ

)
≥ V1(τ,Xε

τ )− ε
}

< 1− ε

We denote by
Σε :=

{
ω/ V1(τ,Xε

τ ) ≤ E
(
g1(Xε

T )
∣∣F ε

τ

)
+ ε

}
We have P(Σε) < 1− ε.

We will use the maximin strategy α
ε
2
,τ

g (x) as in Lemma 2.2. We de�ne the
strategy αV

ε : for all v ∈ Ṽ(t0)

• αV
ε (v)|[t0,τ ] := uε|[t0,τ ]

• αV
ε (v)|(τ,T ] := α

ε
2
,τ

g (Xt0,x0,uε,v
τ )(v|[τ,T ])
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Consider the pair (uV
ε , vV

ε ) of admissible controls generated by the (Ft) publicly
correlated strategies (αV

ε , βε), and build the admissible control ũε:

• ũε = uε on ([t0, τ)× Ωε) ∪ ([τ, T ]× Σε)

• ũε = uV
ε on [τ, T ]× Σc

ε

Note that ũε is progressively measurable with respect to (Ft). We have:

• βε(ũε) ≡ vε on [t0, τ)

• βε(ũε) ≡ vε on [τ, T )× Σε

• βε(ũε) ≡ vV
ε on [τ, T )× Σc

ε

and �nally:

J1(t0, x0, ũε, βε) = E (g1(Xε
T )1Σε) + E

(
g1(X

τ,Xε
τ ,uV

ε ,vV
ε

T )1Σc
ε

)
≥ E (g1(Xε

T )1Σε) + E
(
V1(τ,Xε

τ )1Σc
ε

)
− ε

2
P (Σc

ε)

≥ E (g1(Xε
T )1Σε) + E

(
E

(
g1(Xε

T )
∣∣F ε

τ

)
1Σc

ε

)
+ (ε− ε

2
)P (Σc

ε)

> J1(t0, x0, αε, βε) +
ε2

2

This leads to a contradiction with the ε2

2 -optimality of (αε, βε). Therefore, for all
t ∈ [t0, T ], for i = 1, 2:

P
{
E

[
gi(X

t0,x0,uε,vε

T )
∣∣F ε

t

]
≥ Vi(t, X

t0,x0,uε,vε
t )− ε

}
≥ 1− ε

It remains to prove the su�cient condition.

Fix ε > 0. Set δ small enough such that:

1. ∀t ∈ [t0, T ], ∀x ∈ IRn, ∀y ∈ B(x, δ‖f‖∞), for all i = 1, 2:

|Vi(t, x)− Vi(t + δ, y)| ≤ ε

2. ∀t ∈ [t0, T ], ∀x ∈ IRn, ∀y ∈ B(x, δ‖f‖∞), ∀(u, v) ∈ U(t)×V(t), for all i = 1, 2:

|gi(X
t,x,u,v
T )− gi(X

t,y,u,v
T )| ≤ ε

3. ∃N ∈ IN∗ such that Nδ = T − t0,

in order to build a time partition t0, . . . , tk = t0 + kδ, . . . , tN = T .
Set η = ε/N . By assumption, we have a �ltration (Fη

t ) and a pair of correlated
controls (uη, vη) satisfying the conditions of Proposition 3.2. We will as usual denote

by Xη
· = X

t0,x0,uη ,vη
· . It remains to build a pair of correlated strategies (αε, βε).

We will need "punitive strategies" as in De�nition 2.4. The idea of the strategy αε

is a trigger strategy that plays uη as long as player II plays the control vη and as
soon as a deviation from the expected control of the opponent is detected, player I
will use the punitive strategy.
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If the control of player II is v, we introduce the stopping times:

S(v) := inf{t ≥ t0/ v|[t0,t] 6≡ vη|[t0,t]}

and
τ(v) = min{tk ≥ t1/ tk > S(v)}

with the convention τ(v) = T on {S(v) = T}.
We now de�ne more precisely the strategy αε:

αε(v) =
{

uη on [[t0, τ(v)]]
αε,tk

p (Xt0,x0,uη ,v
tk

)(v|(tk,T ]) on (tk, T ]× {τ(v) = tk}

It is clear that αε is a correlated strategy for the correlation device (Fη
t ). Indeed, we

have a strongly non-anticipative strategy by de�nition, and the delay is the minimum
of the delays of the N punitive strategies αε,tk

p (·), k = 1, . . . , N . The strategy βε is
de�ned in a symmetric way.

First of all, we check that the pair of controls associated to the correlated strate-
gies (αε, βε) is (uη, vη), and we immediately get for i = 1, 2:

|Ji(t0, x0, αε, βε)− ei| ≤ ε/N ≤ ε

It remains to prove that the correlated strategies we have built are ε-optimal.
Consider a strategy β of player II, such that ((Fη

t ), αε, β) are correlated strategies.
Denote by (u, v) the pair of controls associated to (αε, β). For any k = 1, . . . , N − 1
we have:

g2(X
t0,x0,u,v
T )1{τ(v)=tk} = g2

(
X

tk,X
t0,x0,u,v
tk

,α
ε,tk
p (X

t0,x0,uη,v
tk

),v

T

)
1{τ(v)=tk}

≤ V2(tk, X
t0,x0,uη ,v
tk

)1{τ(v)=tk} + ε1{τ(v)=tk}

≤ V2

(
tk, X

S(v),Xη
S(v)

,uη ,v

tk

)
1{τ(v)=tk} + ε1{τ(v)=tk}

≤ V2(tk, X
η
tk

)1{τ(v)=tk} + 2ε1{τ(v)=tk} due to the choice of δ.

(25)

Notice also that τ(v) = T means {v(s) ≡ vη(s) ∀s ∈ [t0, T − δ]}. We now will use
these results to compute J2(t0, x0, αε, β):

J2(t0, x0, αε, β) = E
(
g2(X

t0,x0,uη ,v
T )1τ(v)=T

)
+ E

(
g2(X

t0,x0,u,v
T )1τ(v)<T

)
= E

(
g2(X

T−δ,Xη
T−δ ,uη ,v

T )1τ(v)=T

)
+

N−1∑
k=1

E
(
g2(X

t0,x0,u,v
T )1τ(v)=tk

)
≤ E

(
g2(X

η
T ) + ε)1τ(v)=T

)
+

N−1∑
k=1

E
(
(V2(tk, X

η
tk

) + 2ε)1τ(v)=tk

)
due to (25)

≤ E
(
g2(X

η
T )1τ(v)=T

)
+

N−1∑
k=1

E
(
V2(tk, X

η
tk

)1τ(v)=tk

)
+ 2ε

(26)

32



At this point we will try to get an estimate of V2(tk, X
η
tk

) for all k = 1, . . . , N − 1.
We have to use the assumptions on (uη, vη): we denote by

Σk
η :=

{
ω/ V2(tk, X

η
tk

) ≤ E
(
g2(X

η
T )

∣∣Fη
tk

)
+ η

}
and we have P(Σk

η) ≥ 1− ε/N . As V2 is bounded with a constant K we have for all
k = 1, . . . , N − 1:

V2(tk, X
η
tk

) = V2(tk, X
η
tk

)1Σk
η

+ V2(tk, X
η
tk

)1Σk
η

c

≤
(
E

(
g2(X

η
T )

∣∣Fη
tk

)
+ η

)
1Σk

η
+ K1Σk

η
c

≤ E
(
g2(X

η
T )

∣∣Fη
tk

)
+ K1Σk

η
c + η

if we assume as usual that g2 is non negative. Introducing this inequality in our
estimate (26) of J2(t0, x0, αε, β):

J2(t0, x0, αε, β) ≤ E
(
g2(X

η
T )1τ(v)=T

)
+

N−1∑
k=1

E
(
V2(tk, X

η
tk

)1τ(v)=tk

)
+ 2ε

≤ E
(
g2(X

η
T )1τ(v)=T

)
+

N−1∑
k=1

E
(
E

(
g2(X

η
T )

∣∣Fη
tk

)
1τ(v)=tk

)
+

N−1∑
k=1

E
(
K1Σk

η
c1τ(v)=tk

)
+ 3ε

≤ E
(
g2(X

η
T )1τ(v)=T

)
+ E

(
g2(X

η
T )1τ(v)<T

)
+ K

N−1∑
k=1

P
(
Σk

η
c
)

+ 3ε

≤ E
(
g2(X

η
T )

)
+ (3 + K)ε

≤ J2(t0, x0, αε, βε) + (3 + K)ε

and we have proven that αε is (3 + K)ε-optimal. The result is the same for βε. In
the end, we were able to build (3 + K)ε-optimal correlated strategies that reward a
payo� ε-close to e, meaning e is a correlated equilibrium payo�.

End of the proof of Theorem 3.1

This characterization and Theorem 2.1 ensure that any Nash equilibrium payo� us-
ing mixed strategies is in fact a publicly correlated equilibrium payo�.

Note that the only di�erence with the characterization of Nash equilibrium pay-
o�s is that publicly correlated equilibrium payo�s may rely on random controls de-
�ned on an in�nite underlying probability space, whereas in our de�nition, mixed
strategies are de�ned only on �nite underlying probability spaces.

We now will prove that Er(t0, x0) ⊇ Ec(t0, x0). We consider some publicly cor-
related equilibrium payo� satisfying the characterization of proposition 3.2 and we
will prove that we are able to build a �nite number of random controls satisfying the
characterization of theorem 2.1, implying e will be a Nash equilibrium payo�.
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Consider some publicly correlated equilibrium payo� e. Fix ε and consider the
ε2-optimal random controls (uε, vε) on the underlying probability space (Ω,F ,P).
Denote as usual by Xε

· = Xt0,x0,uε,vε
· and set for all ω ∈ Ω: Xε

· (ω) = X
t0,x0,(uε,vε)(ω)
· .

Note that these controls satisfy:
|E[gi(Xε

T )]− ei| ≤ ε2

∀t ∈ [t0, T ], if we denote by F ε
t = σ {(uε, vε)(s), s ∈ [t0, t]} :

P
{
E

[
gi(Xε

T )
∣∣F ε

t

]
≥ Vi(t, Xε

t )− ε2
}
≥ 1− ε2

(27)

If there are �nitely many distinct controls (uε, vε) there is nothing left to prove. Else,
we will build a �nite number of random controls rewarding a payo� close to e and
consistent.

We set h > 0 and h̄ > 0 to be de�ned later such that there exist Nh, Nh̄ ∈
IN∗ such that T − t0 = Nhh and (T − t0)‖f‖∞ = Nh̄h̄. We build the following
time partition Gh = {tk = t0 + kh}k=0,...,Nh

and the grid in IRn: Gh̄ = {x0 +∑n
i=1 kih̄ei}(ki)∈{−Nh̄,...,0,...,Nh̄}n where (ei)i=1...n is a basis of IRn. We now introduce

a projection on the grid:

IRn → Gh̄

Π : x 7→ min{xi ∈ Gh̄/ d1(x, xi) = infxj∈Gh̄
d1(x, xj)}

where the minimum is taken with respect to the lexicographic order and d1 is the
distance associated to the norm ‖x‖1 = maxi=1...n |xi|. From now on we will always
use this norm in IRn.

To any (tk, xi, xj) ∈ Gh ×Gh̄ ×Gh̄ we associate, if it exists some ϕ(tk, xi, xj) =
(x, u, v) ∈ IRn × U(tk) × V(tk) such that Π(x) = xi and Π(Xtk,x,u,v

tk+1
) = xj . We will

set ϕx(tk, xi, xj) = x and ϕc(tk, xi, xj) = (u, v).
We now are able to build a �nite number of random controls de�ned on (Ω,F).

To any ω ∈ Ω we associate (uη, vη)(ω) in the following way:

• Fix (u0, v0) ∈ U × V

• (uη, vη)(ω)|[t0,t1) = (u0, v0)

• for all k = 1 . . . Nh − 1, for all s ∈ [tk, tk+1):

(uη, vη)(ω)(s) = ϕc

(
tk−1,Π(Xε

tk−1
(ω)),Π(Xε

tk
(ω))

)
(s− h)

Note that the de�nition of (uη, vη) is non anticipative. From now on, we will

denote by Xη
· = X

t0,x0,uη ,vη
· and set for all ω ∈ Ω: Xη

· (ω) = X
t0,x0,(uη ,vη)(ω)
· .

We now would like to prove that the set of �nitely many random controls (uη, vη)
de�ned on (Ω,F ,P) satis�es for i = 1, 2, for some constants C1, C2, C3:

• |E[gi(X
η
T )]− ei| ≤ C1ε

• ∀t ∈ [t0, T ], if we denote by Fη
t = σ{(uη, vη)(s), s ∈ [t0, t]}

P
{
E

(
gi(X

η
T )

∣∣Fη
t

)
≥ Vi(t, X

η
t )− C2ε

}
≥ 1− C3ε
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First of all, we shall prove that the trajectories generated by (uη, vη)(ω) and (uε, vε)(ω)
are close for su�ciently small values of h and h̄.

For all k = 0 . . . Nh − 1, we have

‖Xη
tk+1

(ω)−Xε
tk

(ω)‖ ≤
∥∥∥∥X

tk−1,Xη
tk

(ω),ϕc(tk−1,Π(Xε
tk−1

(ω)),Π(Xε
tk

(ω)))

tk
−Xε

tk
(ω)

∥∥∥∥
≤

∥∥∥∥X
tk−1,ϕ(tk−1,Π(Xε

tk−1
(ω)),Π(Xε

tk
(ω)))

tk
−Xε

tk
(ω)

∥∥∥∥
+

∥∥∥X
tk−1,Xη

tk
(ω),ϕc(tk−1,Π(Xε

tk−1
(ω)),Π(Xε

tk
(ω)))

tk

−X
tk−1,ϕ(tk−1,Π(Xε

tk−1
(ω)),Π(Xε

tk
(ω)))

tk

∥∥∥
≤ h̄ +

∥∥∥ϕx(tk−1,Π(Xε
tk−1

(ω)),Π(Xε
tk

)(ω))−Xη
tk

(ω)
∥∥∥ eLf h

≤ h̄ +
(∥∥∥Xη

tk
(ω)−Xε

tk−1
(ω)

∥∥∥ + h̄
)

eLf h

because by de�nition, Π(Xε
tk

(ω)) = Π
(

X
tk−1,ϕ(tk−1,Π(Xε

tk−1
(ω)),Π(Xε

tk
(ω)))

tk

)
and

Π(Xε
tk−1

(ω)) = Π
(
ϕx(tk−1,Π(Xε

tk−1
(ω)),Π(Xε

tk
(ω)))

)
and points in B(x0, (T−t0)‖f‖∞)

having the same projection on Gh̄ are at most h̄ distant. Using backward induction,
and noticing that ‖Xη

t1
(ω)−Xε

t0(ω)‖ ≤ ‖f‖∞h, we have that for all k = 0 . . . Nh−1:

∥∥∥Xη
tk+1

(ω)−Xε
tk

(ω)
∥∥∥ ≤ h̄(1 + eLf h)

k−1∑
i=0

eiLf h + hekLf h‖f‖∞

≤ 2h̄
T − t0

h
eLf (T−t0) + heLf (T−t0)‖f‖∞

In order to minimize the distance between Xε
· (ω) and Xη

· (ω), we set for example
h̄ = h2 in order to get for all k = 0 . . . Nh:

‖Xε
tk

(ω)−Xη
tk

(ω)‖ ≤ h
[
eLf (T−t0)(2(T − t0) + ‖f‖∞) + ‖f‖∞

]
and for all t ∈ [tk, tk+1):

‖Xε
t (ω)−Xη

t (ω)‖ ≤ h
[
eLf (T−t0)(2(T − t0) + ‖f‖∞) + 3‖f‖∞

]
Finally choosing h small enough:

‖Xε
· (ω)−Xη

· (ω)‖∞ ≤ ε (28)

Now, it is easy to check that the �nal payo� using (uη, vη) is close to the payo�
generated by (uε, vε). Indeed for all i = 1, 2:

|Ji(t0, x0, uε, vε)− Ji(t0, x0, uη, vη)| ≤
∫

Ω

∣∣gi(Xε
T (ω))− gi(X

η
T (ω))

∣∣ dP(ω)

≤
∫

Ω
Lg

∥∥Xε
T (ω)−Xη

T (ω)
∥∥dP(ω)

≤ Lgε
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where Lg is maximum of the Lipschitz constant of the payo� functions g1 and g2.
Using the assumption (27) on (uε, vε), we get for all i = 1, 2 and ε < 1:∣∣E (

gi(X
η
T )

)
− ei

∣∣ ≤ Lgε + ε2 ≤ (Lg + 1)ε

It remains to prove that the trajectories generated by (uη, vη) are consistent.
For all t ∈ [t0, T ], for all i = 1, 2, using (28) we get:

Vi(t, X
η
t ) ≤ E

(
Vi(t, Xε

t )
∣∣Fη

t

)
+ LV ε (29)

where LV is maximum of the Lipschitz constant of the value functions V1 and V2,
and

E
(
gi(Xε

T )
∣∣Fη

t

)
≤ E

(
gi(X

η
T )

∣∣Fη
t

)
+ Lgε (30)

We now have to use the assumptions (27) on (uε, vε): if we denote by

Σi
ε
t :=

{
ω/ Vi(t, Xε

t ) ≤ E
(
gi(Xε

T )
∣∣F ε

t

)
+ ε2

}
we know that P(Σi

ε
t) ≥ 1− ε2. Then, denoting by K an upper bound of the payo�

functions, for all t ∈ [t0, T ], for all i = 1, 2, we get:

Vi(t, Xε
t ) ≤ E

(
gi(Xε

T )
∣∣F ε

t

)
1Σi

ε
t
+ K1(Σi

ε
t)

c + ε2

≤ E
(
gi(Xε

T )
∣∣F ε

t

)
+ K1(Σi

ε
t)

c + ε

assuming as usual that the functions gi are non negative.
Going back to our estimate of Vi(t, X

η
t ) as computed in (29) and noticing that

the �ltration (Fη
t ) is a sub�ltration of (F ε

t ), we can write:

Vi(t, X
η
t ) ≤ E

[
E

(
gi(Xε

T )
∣∣F ε

t

) ∣∣Fη
t

]
+ E

[
K1(Σi

ε
t)

c

∣∣Fη
t

]
+ ε + LV ε

≤ E
[
gi(Xε

T )
∣∣Fη

t

]
+ KP

[
(Σi

ε
t)

c
∣∣Fη

t

]
+ (LV + 1)ε

≤ E
[
gi(X

η
T )

∣∣Fη
t

]
+ KP

[
(Σi

ε
t)

c
∣∣Fη

t

]
+ (LV + Lg + 1)ε due to (30)

We rewrite this last inequality introducing the constant C∗ = max(LV , Lg, 1,K):

Vi(t, X
η
t ) ≤ E

[
gi(X

η
T )

∣∣Fη
t

]
+ C∗P

[
(Σi

ε
t)

c
∣∣Fη

t

]
+ 3C∗ε (31)

In order to estimate P[(Σi
ε
t)

c|Fη
t ], we will use the assumption P((Σi

ε
t)

c) ≤ ε2:

E
[
P

(
(Σi

ε
t)

c
∣∣Fη

t

)]
≤ ε2 ⇒ P

{
P

(
(Σi

ε
t)

c
∣∣Fη

t

)
≥ ε

}
≤ ε

This implies for all t ∈ [t0, T ], for all i = 1, 2:

P
{
Vi(t, X

η
t ) ≤ E

[
gi(X

η
T )

∣∣Fη
t

]
+ 4C∗ε

}
≥ P

{
P((Σi

ε
t)

c|Fη
t ) ≤ ε

}
≥ 1− ε

Finally, for all ε > 0, we have built �nitely many random controls (uη, vη) de�ned
on an underlying in�nite probability space, that are equivalent to random controls
de�ned on an underlying �nite probability space satisfying for ε < 1 for i = 1, 2:∣∣E[gi(X

η
T )]− ei

∣∣ ≤ 2C∗ε

and for all t ∈ [t0, T ] for i = 1, 2:

P
{

Vi(t, X
η
t ) ≤ E

[
gi(X

t0,x0,uη ,vη

T )
∣∣Fη

t

]
+ 4C∗ε

}
≥ 1− ε

This proves that e is a Nash equilibrium payo� in mixed strategies.
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