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Nash and publicly correlated equilibrium payos in non zero sum dierential games using mixed strategies

We consider non zero sum two players dierential games. We study Nash equilibrium payos and publicly correlated equilibrium payos. If players use deterministic strategies, it has been proved that the Nash equilibrium payos are precisely the reachable and consistent payos. Referring to repeated games, we introduce mixed strategies which are probability distributions on pure strategies. We prove that the set of Nash equilibrium payos when using mixed strategies is convex and compact. Unexpectedly, this set is larger than the closed convex hull of the set of Nash equilibrium payos using pure strategies. We give a characterization for the Nash equilibrium payos using mixed strategies as reachable and consistent, these concepts being adapted to random controls. Finally, still referring to repeated games, we study the set of publicly correlated equilibrium payos for dierential games and show that it is the same as the set of Nash equilibrium payos.

U(t 0 ) := {u(•) : [t 0 , T ] → U, u measurable} V(t 0 ) := {v(•) : [t 0 , T ] → V, v measurable}

Introduction

We study equilibria for non zero sum dierential games. In general, for a given equilibrium concept, existence and characterization of the equilibria highly depend on the strategies used by the players. There are mainly three types of strategies:

• non-anticipative strategies or memory-strategies where the choice of the current control to be played depends on the entire past history of the game (trajectory and controls played so far),

• feed-back strategies where the current control is chosen according only to the actual state of the system,

• open-loop controls where the current control is chosen at the beginning of the game and depends only on time.

In the case of deterministic dierential games, there are [START_REF] Kleimenov | Nonantagonist Dierential Games[END_REF], [START_REF] Kononenko | Equilibrium positional strategies in non-antagonistic dierential games (Russian)[END_REF] and [START_REF] Tolwinski | Cooperative equilibria in dierential games[END_REF] existence and characterization results for Nash equilibrium payos. Looking for Nash equilibrium payos in feedback strategies, one usually computes Nash equilibrium payos as a functions of time and space. This leads to a system of non linear partial differential equations for which there is no general result for existence nor uniqueness of a solution. If the system admits regular enough solutions, they allow to compute the optimal feedbacks cf. [START_REF] Friedman | Dierential games[END_REF] and [START_REF] Basar | Dynamic noncooperative game theory , 2 nd Edition[END_REF]. There are few examples for this approach, the results essentially deal with linear quadratic dierential games where solutions are sought amongst quadratic functions. For linear quadratic games, there are conditions for existence of Nash equilibria in feedback strategies and for existence and uniqueness of Nash equilibria in open-loops. Some numerical methods can be applied to compute equilibria [START_REF] Engwerda | LQ dynamic optimization and dierential games[END_REF]. The drawback is that feedback equilibria are highly unstable [START_REF] Bressan | Semi-cooperative strategies for dierential games[END_REF], except in some particular cases of one dimensional games [START_REF] Bressan | Small BV solutions of hyperbolic noncooperative dierential games[END_REF].

The situation seems somehow better regarding non zero sum stochastic dierential games. As for the deterministic case, there is a general result of existence and characterization [START_REF] Buckdahn | Nash equilibrium payos for nonzero sum stochastic dierential games[END_REF] in case players use non-anticipative strategies. For non degenerate stochastic dierential games, there is a general result for existence of a Nash equilibrium in feedback strategies in [START_REF] Bensoussan | Stochastic games for N players[END_REF] using existence of smooth enough solutions for the system of partial dierential equations dening the equilibrium. Another approach [START_REF] Hamadène | BSDEs with continuous coecients and stochastic dierential games[END_REF] uses BSDEs to check the existence of the solutions, prove the existence of a Nash equilibrium and optimal feedbacks. Note that the equilibria dened through this last approach are in fact equilibria in non-anticipative strategies [START_REF] Rainer | On two dierent approaches to nonzero sum stochastic dierential games[END_REF] when they both exist.

Here we deal with general deterministic non zero sum dierential games using mixed strategies. In our framework, "mixed strategies" refers to random combination of non anticipative strategies. The disadvantage of non-anticipative strategies is that they lack weak consistency compared to feedback strategies. Their main interest is that they allow to characterize some kind of upper hull of all Nash equilibrium payos using reasonable strategies.

We consider a regular non zero sum two players dierential game running in nite time and we study usual equilibrium concepts such as Nash equilibrium payos and publicly correlated equilibrium payos. We are interested in the consequences of using random strategies rather than usual deterministic strategies. More precisely, we consider a two players non zero sum dierential game in IR n that runs in nite time t ∈ [t 0 , T ]. For simplicity reasons, we consider only nal payos, noticing that running payos are nal payos of an extended game. The dynamics of the game is given by: ẋ(t) = f (x(t), u(t), v(t)) t ∈ [t 0 , T ], u(t) ∈ U and v(t) ∈ V x(t 0 ) = x 0 [START_REF] Aumann | Repeated games with incomplete information[END_REF] We rst dene the open-loop controls: we denote by U(t 0 ) (resp. V(t 0 )) the set of measurable controls of player I (resp. player II):

Under suitable regularity assumptions on the dynamics, if controls u ∈ U(t 0 ) and v ∈ V(t 0 ) are played, they dene a unique solution of the dynamics (1) denoted by t → X t 0 ,x 0 ,u,v t dened on [t 0 , T ]. The payos only depend on the terminal position of the system, namely player I's payo is g 1 (x(T )) while player II's is g 2 (x(T )). We assume usual regularity conditions on the payo functions and assume Isaacs'condition in order to ensure the existence of the value for the zero sum games with payo function g 1 or g 2 . We will denote by V 1 (resp. V 2 ) the value function of the zero sum game where player I (resp. Player II) aims at maximizing the nal payo g 1 (x(T )) (resp. g 2 (x(T ))) whereas the opponent aims at minimizing it. In order to put the game in normal form, we need to dene strategies. We rst consider deterministic or pure strategies: Denition 1 (Pure strategy). A pure strategy for player I at time t 0 is a map α : V(t 0 ) → U(t 0 ) which satises the following conditions:

• α is a measurable map from V(t 0 ) to U(t 0 ) where V(t 0 ) and U(t 0 ) are endowed with the Borel σ-eld associated with the L 1 distance,

• α is non-anticipative with delay, i.e. there exists some delay τ > 0 such that for any v 1 , v 2 ∈ V(t 0 ), if v 1 ≡ v 2 a.e. on [t 0 , t] for some t ∈ [t 0 , T ], then α(v 1 ) ≡ α(v 2 ) a.e. on [t 0 , (t + τ ) ∧ T ] We denote by A(t 0 ) (resp. B(t 0 )) the set of pure strategies for player I (resp. player II) and by τ (α) the delay of the strategy α ∈ A(t 0 ).

The point of the paper is to study the impact of introducing mixed strategies on the equilibria. We dene mixed strategies as nite probability distributions over pure strategies: Denition 2 (Mixed strategy). A mixed strategy for player I at time t 0 is a nite probability space (Ω α , P(Ω α ), P α ) associated to a nite collection of pure strategies (α(ω α )) ωα∈Ωα such that for all ω α ∈ Ω α , α(ω α ) is a pure strategy. From now on, mixed strategies (α, (Ω α , P(Ω α ), P α )) will be simply denoted α by abuse of notation. We denote by A r (t 0 ) (resp. B r (t 0 )) the set of mixed strategies for player I (resp. player II). Notice that for all mixed strategy α, there exists some delay τ > 0 such that for all ω α ∈ Ω α , α(ω α ) is a non-anticipative strategy with delay greater than or equal to τ .

We now are able to recall the two usual equilibrium concepts that we study: Denition (Nash equilibrium payo). The pair (e 1 , e 2 ) ∈ IR 2 is a Nash equilibrium payo for the initial position (t 0 , x 0 ) if for all > 0, there exist a strategy of player I denoted by σ 1 and a strategy for player II denoted by σ 2 such that • if the strategies (σ 1 , σ 2 ) are played, then for i = 1, 2, the nal payo of player i is -close to e i

• for i = 1, 2, if player i plays a strategy σ = σ i whereas the opponent sticks to the strategy σ 3-i , the nal payo of player i will be less than or equal to the payo rewarding the pair of strategies (σ 1 , σ 2 ) up to .

Denition (Publicly correlated equilibrium payo). The payo (e 1 , e 2 ) ∈ IR 2 is a publicly correlated equilibrium payo if for all > 0, there exist some public ltration (F t ) and some correlated strategies (σ 1 , σ 2 ) namely strategies generating (F t )measurable controls such that:

• if the strategies (σ 1 , σ 2 ) are played, then for i = 1, 2, the nal payo of player i is -close to e i

• for i = 1, 2, if player i plays a strategy σ = σ i such that (σ, σ 3-i ) generate (F t )-measurable controls whereas the opponent sticks to the strategy σ 3-i , the nal payo of player i will be less than or equal to the payo rewarding the pair of strategies (σ 1 , σ 2 ) up to .

We denote by E c (t 0 , x 0 ) the set of all equilibrium payos for the initial position

(t 0 , x 0 ).
If we study Nash equilibrium payos when only pure strategies are allowed and denote by E(t 0 , x 0 ) the set of all equilibrium payos for the initial position (t 0 , x 0 ), then we may recall a well-known theorem. According to [START_REF] Kleimenov | Nonantagonist Dierential Games[END_REF], [START_REF] Kononenko | Equilibrium positional strategies in non-antagonistic dierential games (Russian)[END_REF] and [START_REF] Tolwinski | Cooperative equilibria in dierential games[END_REF], under usual regularity conditions, the Nash equilibrium payos in pure strategies are exactly the "reachable and consistent payos" (e 1 , e 2 ) ∈ IR 2 , namely payos satisfying:

∀ > 0, ∃(u , v ) ∈ U(t 0 ) × V(t 0 ) such that: • ∀i, |e i -g i (X t 0 ,x 0 ,u ,v T )| ≤ • ∀i, ∀t ∈ [t 0 , T ], g i (X t 0 ,x 0 ,u ,v T ) ≥ V i (t, X t 0 ,x 0 ,u ,v t ) -
Furthermore, the set of Nash equilibrium payos is non empty: E(t 0 , x 0 ) = ∅.

We then study Nash equilibrium payos when mixed strategies are played. First of all, noticing that any pure strategy can be considered as a mixed strategy whose underlying probability space is trivial, the set of Nash equilibrium payos in mixed strategies is a non empty superset of E(t 0 , x 0 ). We recall that using mixed strategies does not change the value of zero sum dierential games. Next, we prove a characterization of Nash equilibrium payos in mixed strategies. Our main result (Theorem 2.1 below) states that: The pair (e 1 , e 2 ) is a Nash equilibrium payo in mixed strategies i for all > 0, there exist random controls (u , v ) on an underlying nite probability space (Ω, P(Ω), P) such that ∀i = 1, 2:

• E[g i (X t 0 ,x 0 ,u ,v T )] -e i ≤ • ∀t ∈ [t 0 , T ], denoting by F t = σ ((u , v )(s), s ∈ [t 0 , t]): P V i (t, X t 0 ,x 0 ,u ,v t ) ≤ E[g i (X t 0 ,x 0 ,u ,v T )|F t ] + ≥ 1 -
It appears that the set of Nash equilibrium payos in mixed strategies, denoted by E r (t 0 , x 0 ), is in fact compact, convex and generally strictly larger than the closed convex hull of the set E(t 0 , x 0 ). The proof heavily relies on techniques introduced for repeated games in [START_REF] Aumann | Repeated games with incomplete information[END_REF] known as "jointly controlled lotteries" and on the fact that we work with non-anticipative strategies with delay. Note that the characterization could be given using trajectories following [START_REF] Tolwinski | Cooperative equilibria in dierential games[END_REF] rather than controls, provided the trajectory stems from the dynamics (1).

Finally, studying publicly correlated equilibria, we show that the set of publicly correlated equilibrium payos is equal to the set of Nash equilibrium payos using mixed strategies. The idea of the proof uses the similarity between correlated equilibrium payos and equilibrium payos of stochastic non zero sum dierential games. Indeed, the characterization of equilibrium payos in these games due to [START_REF] Buckdahn | Nash equilibrium payos for nonzero sum stochastic dierential games[END_REF] is very close to our characterization of Nash equilibrium payos.

We complete this introduction by describing the outline of the paper. In section 1, we recall precisely the denitions and assumptions of the dierential game we study. In section 2, we give the main properties of the set of Nash equilibrium payos in mixed strategies. In section 3, we prove the equivalence between the sets of Nash equilibrium payos in mixed strategies and of publicly correlated equilibrium payos.

Denitions

Assumptions on the dierential game

Throughout the paper, for any x, y ∈ IR n , we will denote by x • y the scalar product and by x the euclidian norm. The ball with center x and radius r will be denoted by B(x, r). For any set S, 1 S denotes the indicator function of S: for all s ∈ S, 1 S (s) = 1 and for all s / ∈ S, 1 S (s) = 0.

We rst dene more precisely the assumptions on the dierential game we are dealing with. The dynamics of the game is given by (1):

ẋ(t) = f (x(t), u(t), v(t)) t ∈ [t 0 , T ], u(t) ∈ U and v(t) ∈ V x(t 0 ) = x 0 where       
U and V are compact subsets of some nite dimensional spaces U and V have innite cardinality, f : IR n × U × V → IR n is bounded, continuous and uniformly Lipschitz continuous with respect to x

These assumptions guarantee existence and uniqueness of the trajectories generated by any pair of controls

(u, v) ∈ U(t 0 ) × V(t 0 ).
The assumption that U and V have innite cardinality allows to dene correlation procedures relying on as many constant controls as necessary.

We will always assume that players observe the controls played so far. We will assume that the payo functions g 1 and g 2 satisfy

g i : IR n → IR, i := 1, 2 is Lipschitz continuous and bounded. (3) 
In order to guarantee existence of the value functions of the two associated zero sum games, we assume Isaacs'condition: for all (x, ξ)

∈ IR n × IR n H(x, ξ) = inf u∈U sup v∈V f (x, u, v) • ξ = sup v∈V inf u∈U f (x, u, v) • ξ (4)

Payos associated to a pair of strategies

In order to study equilibrium payos of this game we have introduced in the previous section the concepts of pure and mixed strategies. The major interest of working with non-anticipative strategies with delay is this following useful result stated in [START_REF] Cardaliaguet | Deterministic dierential games under probability knowledge of initial condition[END_REF]: Lemma 1.1 (Controls associated to a pair of strategies).

• For any pair of pure strategies (α, β) ∈ A(t 0 ) × B(t 0 ) there is a unique pair of controls

(u αβ , v αβ ) ∈ U(t 0 ) × V(t 0 ) such that α(v αβ ) = u αβ and β(u αβ ) = v αβ
• For any pair of mixed strategies (α, β) ∈ A r (t 0 ) × B r (t 0 ), and any

(ω α , ω β ) ∈ Ω α × Ω β , there is a unique pair of controls (u ωαω β , v ωαω β ) ∈ U(t 0 ) × V(t 0 ) such that α(ω α )(v ωαω β ) = u ωαω β and β(ω β )(u ωαω β ) = v ωαω β . Furthermore, the map (ω α , ω β ) → (u ωαω β , v ωαω β ) is measurable from Ω α × Ω β endowed with P(Ω α ) ⊗ P(Ω β ) into U(t 0 ) × V(t 0 )
endowed with the Borel σ-eld associated with the L 1 distance.

Given any pair of pure strategies (α, β) ∈ A(t 0 )×B(t 0 ), we denote by

(X t 0 ,x 0 ,α,β t ) the map t → X t 0 ,x 0 ,u αβ ,v αβ t dened on [t 0 , T ] where X t 0 ,x 0 ,u αβ ,v αβ •
is the unique solution of dynamics [START_REF] Aumann | Repeated games with incomplete information[END_REF]. This allows us to dene the payo associated to any pair of strategies. For i = 1, 2, we shall denote by

J i (t, x, α, β) := g i (X t 0 ,x 0 ,α,β T ) if (α, β) ∈ A(t 0 ) × B(t 0 ) J i (t, x, α, β) := E αβ [g i (X t 0 ,x 0 ,α,β T )] if (α, β) ∈ A r (t 0 ) × B r (t 0 )
with the notation

E αβ [g i (X t 0 ,x 0 ,α,β T )] = Ωα×Ω β g i (X t 0 ,x 0 ,uω αω β ,vω αω β T )dP α ⊗ dP β (ω α , ω β )
Under regularity assumptions (2), (3) and ( 4), the two-players zero sum game whose payo function is g 1 (resp. g 2 ) has a value. We denote by

V 1 (t, x) := sup α∈A(t) inf β∈B(t) J 1 (t, x, α, β) = inf β∈B(t) sup α∈A(t) J 1 (t, x, α, β)
the value of the zero sum game with payo function g 1 where player I aims at maximizing his payo and

V 2 (t, x) := inf α∈A(t) sup β∈B(t) J 2 (t, x, α, β) = sup β∈B(t) inf α∈A(t) J 2 (t, x, α, β)
the value of the zero sum game with payo function g 2 where player II is the maximizer. We recall that these denitions remain unchanged whether α ∈ A(t) or A r (t) and β ∈ B(t) or B r (t) cf. [START_REF] Cardaliaguet | Representations formulae for some dierential games with asymetric information[END_REF]. The assumptions also guarantee that these value functions are Lipschitz continuous.

It remains to introduce more precisely the concept of publicly correlated strategies. We rst have to introduce some publicly observed random signal on the probability space (Ω, F, P) leading to some public ltration (F t ) induced by the evolution of the public signal received until time t. We do not assume that Ω is nite. The following denitions are adapted from [START_REF] Buckdahn | Nash equilibrium payos for nonzero sum stochastic dierential games[END_REF]. We rst introduce admissible controls: Denition 3 (Admissible control). An admissible control ũ for player I is a process taking values in U progressively measurable with respect to (F t ). The set of admissible controls on [t 0 , T ] is denoted by Ũ(t 0 ) for player I and Ṽ(t 0 ) for player II.

We will identify admissible controls and denote it by ũ1 ≡ ũ2 on [t 0 , t] as soon as P(ũ 1 = ũ2 a.e. on [t 0 , t]) = 1. We dene pairs of correlated strategies the following way: Denition 4 (Publicly correlated strategies). A pair of correlated strategies is in fact a triplet ((F t ), α, β):

• The ltration (F t ) is the ltration generated by the random public signal on the probability space (Ω, F, P) and will be referred to as the correlation device. Note that the correlation device is common knowledge for both players.

• a correlated strategy for player I is a map α : Ṽ(t 0 ) → Ũ(t 0 ) which is strongly non-anticipative with delay cf. [START_REF] Buckdahn | Nash equilibrium payos for nonzero sum stochastic dierential games[END_REF]: there exists τ (α) > 0 such that ∀(F t )stopping time S and for all ṽ1

, ṽ2 ∈ Ṽ(t 0 ), if ṽ1 ≡ ṽ2 on [[t 0 , S]], then α(ṽ 1 ) ≡ α(ṽ 2 ) on [[t 0 , (S + τ (α)) ∧ T ]]
• a correlated strategy for player II is a map β : Ũ(t 0 ) → Ṽ(t 0 ) which is a strongly non-anticipative strategy with delay.

From now on, we will omit the ltration in the designation of publicly correlated strategies as soon as no confusion is possible. Note that our denition is somehow broader than the usual denition of correlated strategies in repeated games.

Note that Lemma 1.1 still holds for correlated strategies: to any pair of correlated strategies (α, β) one can associate a unique pair of admissible controls (ũ, ṽ) such that: α(ṽ) = ũ and β(ũ) = ṽ. The proof follows the scheme of the proof established for admissible strategies in [START_REF] Buckdahn | Nash equilibrium payos for nonzero sum stochastic dierential games[END_REF].

Given correlated strategies (α, β), the nal payo of player i is:

J i (t, x, α, β) := E[g i (X t,x,α,β T )]
The expectation now refers to the probability of the random signals and not to strategies. Notice also that pure strategies are degenerated correlated strategies using some trivial ltration. Finally, note that in a zero sum game, using correlated strategies with a xed correlation device leads to the same value as using pure strategies. Indeed, x the ltration (F t ) and denote by (α, β) any pair of correlated strategies using the correlation device (F t ) and (α, β) any pair of pure strategies. For i = 1, 2:

sup β inf α E[g i (X t,x, α, β T )] ≥ sup β inf α E[g i (X t,x, α,β T )] = sup β inf α g i (X t,x,α,β T ) = V i (t, x) = inf α sup β g i (X t,x,α,β T ) = inf α sup β E[g i (X t,x,α, β T )] ≥ inf α sup β E[g i (X t,x, α, β T )]
On the other hand we have:

sup β inf α E[g i (X t,x, α, β T )] ≤ inf α sup β E[g i (X t,x, α, β T )]
and in the end for any correlated strategies α, β using the correlation device (F t ), for i = 1, 2:

sup β inf α E[g i (X t,x, α, β T )] = V i (t, x) = inf α sup β E[g i (X t,x, α, β T )]

Equilibrium payos

Given the denition of payos associated to a pair of strategies, we give precise denitions of equilibrium payos: Denition 5 (Nash equilibrium payo using pure strategies). The pair (e 1 , e 2 ) is a Nash equilibrium payo in pure strategies for the initial position

(t 0 , x 0 ) if ∀ > 0, ∃(α , β ) ∈ A(t 0 ) × B(t 0 ) such that    ∀i, |e i -J i (t 0 , x 0 , α , β )| ≤ ∀α ∈ A(t 0 ), J 1 (t 0 , x 0 , α , β ) ≥ J 1 (t 0 , x 0 , α, β ) - ∀β ∈ B(t 0 ), J 2 (t 0 , x 0 , α , β ) ≥ J 2 (t 0 , x 0 , α , β) -
We denote by E(t 0 , x 0 ) the set of all Nash equilibrium payos in pure strategies for the initial position (t 0 , x 0 ). The characterization of these equilibria when players use pure strategies has already been studied by Kononenko [START_REF] Kononenko | Equilibrium positional strategies in non-antagonistic dierential games (Russian)[END_REF]: Nash equilibrium payos are equivalent to reachable and consistent payos. It is the same characterization as the one known as "folk theorem" for innitely repeated games where Nash equilibrium payos are precisely feasible and individually rational payos. Denition 6 (Nash equilibrium payo using mixed strategies). The payo (e 1 , e 2 ) is a Nash equilibrium payo in mixed strategies for the initial position

(t 0 , x 0 ) if ∀ > 0, ∃(α , β ) ∈ A r (t 0 ) × B r (t 0 ) such that: 1. ∀i = 1, 2, |e i -J i (t 0 , x 0 , α , β )| ≤ 2. ∀α ∈ A r (t 0 ), J 1 (t 0 , x 0 , α , β ) ≥ J 1 (t 0 , x 0 , α, β ) - ∀β ∈ B r (t 0 ), J 2 (t 0 , x 0 , α , β ) ≥ J 2 (t 0 , x 0 , α , β) -
We denote by E r (t 0 , x 0 ) the set of all Nash equilibrium payos for the initial position (t 0 , x 0 ) when players use mixed strategies. We will call reachable in mixed strategies a payo which completes only the rst part of the above denition. A pair of strategies (α , β ) satisfying the second point of the denition will be called -optimal. Note that in the second part of the denition, we just have to check the -optimality of α (resp. β ) against pure strategies β ∈ B(t 0 ) (resp. α ∈ A(t 0 )), for mixed strategies are nite linear combination of pure strategies. Namely, the second part of the denition is equivalent to 2.

∀α ∈ A(t 0 ), J 1 (t 0 , x 0 , α , β ) ≥ J 1 (t 0 , x 0 , α, β ) - ∀β ∈ B(t 0 ), J 2 (t 0 , x 0 , α , β ) ≥ J 2 (t 0 , x 0 , α , β) -
Remember we have identied pure strategies with degenerated mixed strategies implying E r (t 0 , x 0 ) ⊃ E(t 0 , x 0 ).

Denition 7 (Publicly correlated equilibrium payo).

The payo e = (e 1 , e 2 ) ∈ IR 2 is a publicly correlated equilibrium payo if for all > 0, there exist correlated strategies (α , β ) using some correlation device (F t ) such that:

• for i = 1, 2: |J i (t 0 , x 0 , α , β ) -e i | ≤
• for all correlated strategies ((F t ), α, β) :

J 1 (t 0 , x 0 , α, β ) ≤ J 1 (t 0 , x 0 , α , β ) + J 2 (t 0 , x 0 , α , β) ≤ J 2 (t 0 , x 0 , α , β ) +
The set of all publicly correlated equilibrium payos with initial conditions (t 0 , x 0 ) will be denoted by E c (t 0 , x 0 ).

2 Nash equilibrium payos using mixed strategies 2.1 Characterization Theorem 2.1 (Characterization of Nash equilibrium payos using mixed strategies).

The payo e = (e 1 , e 2 ) ∈ IR 2 is a Nash equilibrium payo i for all > 0, there exist random controls (u , v ) on an underlying nite probability space (Ω, P(Ω), P) such that ∀i = 1, 2:

• e is -reachable: |E[g i (X t 0 ,x 0 ,u ,v T )] -e i | ≤ • (u , v ) are -consistent: ∀t ∈ [t 0 , T ], denoting by F t = σ ((u , v )(s), s ∈ [t 0 , t]): P V i (t, X t 0 ,x 0 ,u ,v t ) ≤ E g i (X t 0 ,x 0 ,u ,v T ) F t + ≥ 1 -
Proof. We start with the proof of the sucient condition. Consider a Nash equilibrium payo e = (e 1 , e 2 ) and a pair of associated 2 2 -optimal mixed strategies (α , β ). We will consider the random controls dened on Ω = Ω α × Ω β using the probability

P = P α ⊗ P β by (u , v )(ω α , ω β ) = (u ωαω β , v ωαω β ).
We will denote the associated trajectories by

X • = X t 0 ,x 0 ,u ,v • .
We have for small , for all i = 1, 2:

|E[g i (X T )] -e i | ≤ 2 2 ≤
We will prove that these controls are -consistent. Suppose on the contrary that there exist t ∈ [t 0 , T ] such that for example:

P E g 1 (X T ) Ft ≥ V 1 ( t, X t ) -< 1 -

Denote by

Σ := (ω α , ω β )/ E g 1 (X T ) Ft ≥ V 1 ( t, X t ) -
We have to introduce Maximin strategies Lemma 2.2 (Maximin strategy). For all > 0, for all t ∈ (t 0 , T ), there exists τ > 0 such that if we denote by

A τ (t) = {α ∈ A(t)/ τ (α) ≥ τ } there exists α ,t g : B(x 0 , (t -t 0 ) f ∞ ) → A τ (t) such that: ∀x ∈ B(x 0 , (t -t 0 ) f ∞ ), inf v∈V(t) g 1 (X t,x,α ,t g (x)(v),v T ) ≥ V 1 (t, x) - Proof of Lemma 2.2.
We will build the Maximin strategy α ,t g (•) as a collection of nitely many pure strategies with delay. For all x ∈ B(x 0 , (t-t 0 ) f ∞ ), there exists some pure strategy α x ∈ A(t) such that:

inf v∈V(t) g 1 (X t,x,αx(v),v T ) ≥ V 1 (t, x) -/2
For continuity reasons, there exists a Borelian partition (O i ) i=1,...I of the ball B(x 0 , (tt 0 ) f ∞ ) such that for any i there exists some

x i ∈ O i such that ∀z ∈ O i , inf v∈V(t) g 1 (X t,z,αx i (v),v T ) ≥ V 1 (t, z) -
and for all x ∈ B(x 0 , (t -t 0 ) f ∞ ), we dene the Maximin strategy α ,t g (x) as the strategy that associates to any v ∈ V(t) the control:

α ,t g (x)(v) = i α x i (v)1 x∈O i
Note that we have by construction:

∀x ∈ B(x 0 , (t -t 0 ) f ∞ ), inf v∈V(t) g 1 (X t,x,α ,t g (x)(v),v T ) ≥ V 1 (t, x) -
As the denition of the Maximin strategy relies on a nite collection of pure strategies with delay, there exists some strictly positive delay τ such that ∀x ∈ B(x 0 , (t -

t 0 ) f ∞ ), α ,t g (x)
is a pure strategy with delay greater than or equal to τ .

We now build a mixed strategy α dened on Ω α using P α in the following way: for all v ∈ V(t 0 )

• α(ω α )(v)(s) ≡ α (ω α )(v)(s) for s ∈ [t 0 , t) • if there exist ω ∈ Ω such that (u , v )(ω) ≡ (α (ω α )(v), v) on [t 0 , t) and ω ∈ Σ , then go on playing α(ω α )(v)(s) ≡ α (ω α )(v)(s) for s ∈ [ t, T ] • else, play α(ω α )(v) = α 2 , t g (X t 0 ,x 0 ,α(ωα )(v),v t )(v| [ t,T ] ) for all t ∈ [ t, T ]
Note that (α(ω α ), β (ω β )) generates the same controls as (α (ω α ), β (ω β )) for all (ω α , ω β ) ∈ Σ and the same controls as

(α (ω α ), β (ω β )) on [t 0 , t) if (ω α , ω β ) / ∈ Σ .
Computing the payo of (α, β ) and using the fact that Σ is (Ft)-measurable:

J 1 (t 0 , x 0 , α, β ) = E(g 1 (X t,X t ,α 2 , t g (Xt),β T )1 Σ c ) + E(g 1 (X T )1 Σ ) ≥ E(V 1 ( t, X t )1 Σ c ) - 2 (1 -P α ⊗ P β (Σ )) + E(g 1 (X T )1 Σ ) ≥ E(V 1 ( t, X t )1 Σ c ) - 2 (1 -P(Σ )) + E(g 1 (X T )1 Σ ) ≥ E(E(g 1 (X T )|Ft)1 Σ c ) + E(g 1 (X T )1 Σ ) + 2 (1 -P(Σ )) ≥ E(g 1 (X T )1 Σ c ) + E(g 1 (X T )1 Σ ) + 2 (1 -P(Σ )) > J 1 (t 0 , x 0 , α , β ) + 2 2
This is in contradiction with the 2 2 -optimality of (α , β ).

We now will prove the necessary condition.

Consider some payo e = (e 1 , e 2 ) reachable and consistent as in Proposition 2.1. For all > 0, we will build -optimal strategies rewarding a payo close to e.

Fix > 0. Set δ small enough such that:

1. ∀t ∈ [t 0 , T ], ∀x ∈ IR n , ∀y ∈ B(x, δ f ∞ ), for all i = 1, 2: |V i (t, x) -V i (t + δ, y)| ≤ (5) 2. ∀t ∈ [t 0 , T ], ∀x ∈ IR n , ∀y ∈ B(x, δ f ∞ ), ∀(u, v) ∈ U(t) × V(t), for all i = 1, 2: |g i (X t,x,u,v T ) -g i (X t,y,u,v T )| ≤ (6) 3. ∃N ∈ IN * such that N δ = T -t 0
We introduce the time partition (θ 0 = t 0 , . . . , θ k = t 0 + kδ, . . . , θ N = T ).

Set η = N . Using the assumption, choose random controls (u η , v η ) on (Ω, P(Ω), P) rewarding a payo η-close to e and η-consistent, denoting by (F t ) the ltration

(F t ) = (σ{(u η , v η )(s), s ∈ [t 0 , t]}): P V i (t, X t 0 ,x 0 ,uη,vη t ) ≤ E[g i (X t 0 ,x 0 ,uη,vη T )|F t ] + η ≥ 1 -η (7) We will set X η • = X t 0 ,x 0 ,uη,vη • and for any ω ∈ Ω: X η • (ω) = X t 0 ,x 0 ,(uη,vη)(ω) • .
If the random controls are in fact deterministic, we already know a way to build some pure strategies (α , β ) that are -optimal and reward a payo -close to e (cf. the construction of Proposition 6.1 in [START_REF] Tolwinski | Cooperative equilibria in dierential games[END_REF] for example). If the controls (u η , v η ) are real random controls, we have to build -optimal mixed strategies rewarding a payo -close to e. The idea of the optimal strategies (α , β ) is to build "trigger" mixed strategies that are correlated in order to generate controls close to (u η , v η ). We will use some correlation device depending on a jointly correlated lottery at each "node" of the trajectories generated by (u η , v η ) and, if the opponent does not play the expected control, the player who detected the deviation swaps to the "punitive strategy". The proof proceeds in several steps. First of all, as we have to build correlation devices, we build random controls on a rational probability space. Then we build correlation devices for each "node". Finally, using these correlations, we build the optimal strategies, and check that they reward a payo close to e and that they are optimal.

To begin with, we introduce the explosions that are kind of "nodes" in the trajectories generated by (u η , v η ): Denition 8 (Explosion). Consider a pair of random controls (u , v ) on anite probability space (Ω, P(Ω), P) generating nitely many trajectories. We will call explosion any t ∈ [t 0 , T ) such that there exists

(ω 1 , ω 2 ) ∈ Ω 2 such that t = sup{t/ (u , v )(ω 1 )(s) ≡ (u , v )(ω 2 )(s) on [t 0 , t]}.
Assume that (u η , v η ) generates M distinct pairs of deterministic controls with M ≥ 2 and M explosions with 1 ≤ M ≤ M -1 denoted by {τ i }. We introduce an auxiliary time step τ to be dened later such that τ < min j =k |τ j -τ k |/2, τ < T -max j τ j and ∃ N ∈ IN\{0, 1} such that N τ = δ. This ensures that there is no explosion on [T -τ, T ]. We introduce another time partition (t 0 , . . . , t k = t 0 + kτ, . . . , t N N = T ).

We will have to build a jointly correlated lottery for each explosion, and we therefore need to approximate the real probability P with a rational probability Q for it is easier to build jointly controlled lotteries for rational probabilities: Rational approximation of the real probability: Consider some nite probability space (A, P(A), P A ). Set A = {a 1 . . . a M }. It is easy to prove that for all ν > 0, there exist M rational numbers m i m with m i ∈ IN for all i and m ∈ IN * such that

• for all i = 1 . . . M , | m i m -P A (a i )| ≤ ν, • for all i = 1 . . . M , m i ≥ 0 • M i=1 m i m = 1 Dening Q A by Q A (a i ) = m i
m gives a rational approximation of the probability P A up to ν on (A, P(A)).

Consider now the probability space (Ω, P(Ω), P) on which the controls (u η , v η ) are dened. We need a rational approximation Q of P generating conditional probabilities Q(•|F t ) close to P(•|F t ) for all t ∈ [t 0 , T ]. Consider F T , the ltration at time T , and assume it is generated by the atoms {Ω j } j=1... M . Set p = min j=1... M P(Ω j ) > 0. Dene Q on (Ω, P(Ω), F T ) as the rational approximation of the probability P up to

ν p 2 . This means: for all F ∈ F T , |P(F ) -Q(F )| ≤ M νp 2 ≤ M ν (8) 
We will check that this rational probability is close to P if we consider conditional probabilities: for any t ∈ [t 0 , T ], assume that

F t = σ({Ω t i } i∈I )
where the Ω t i are the atoms of the σ-algebra F t and take any F ∈ F T . For any i ∈ I:

|P(F |Ω t i ) -Q(F |Ω t i )| = | P(F ∩ Ω t i ) P(Ω t i ) - Q(F ∩ Ω t i ) P(Ω t i ) | + Q(F ∩ Ω t i )| 1 P(Ω t i ) - 1 Q(Ω t i ) | ≤ M νp 2P(Ω t i ) + M νp 2 Q(F ∩ Ω t i ) Q(Ω t i )P(Ω t i ) ≤ M νp 2P(Ω t i ) (1 + Q(F |Ω t i )) ≤ 2 M νp 2p = M ν
As the probability space is nite, we have P(F |F t ) = i∈I P(F |Ω t i )1 Ω t i and we immediately get:

for all t ∈ [t 0 , T ], for all F ∈ F T : |Q(F |F t ) -P(F |F t )| ≤ M ν (9) 
Probability change: From now on, we will consider the same set of random controls (u η , v η ) but dened on the underlying nite probability space with rational probability (Ω, F T , Q), and we will omit to mention the subscript Q when writing expectations. We will check that under the probability Q, the controls (u η , v η ) still reward a payo close to e and are still consistent: Lemma 2.3. For ν small enough,we have for all i = 1, 2:

E Q [g i (X η T )] -e i ≤ 2η
and for all t ∈ [t 0 , T ]:

Q V i (t, X η t ) ≤ E Q g i (X η T ) F t + 2η ≥ 1 -2η Proof. Let us choose ν such that ν M 2 max( g 1 ∞ , g 2 ∞ , 1) ≤ η.
For the rst inequality, if

F T = σ({Ω j } j=1... M )
where the Ω j are the atoms of F T , we have for all i = 1, 2:

E Q (g i (X η T )) -e i = M j=1 g i (X η T (ω j ))Q(Ω j ) -e i
where for all j, we choose some ω j ∈ Ω j . Therefore:

E Q (g i (X η T )) -e i ≤ M j=1 g i (X η T (ω j ))P(Ω j ) -e i + M j=1 g i (X η T (ω j ))(P(Ω j ) -Q(Ω j )) ≤ E P (g i (X η T )) -e i + M j=1 g i ∞ M ν due to (8) ≤ η + M 2 ν g i ∞ ≤ 2η
For the second inequality, we x t ∈ [t 0 , T ] and still assume

F T = σ({Ω j } j=1... M )
where the Ω j are the atoms of F T . For all j = 1 . . . M , we choose some ω j ∈ Ω j . For i = 1, 2, we have thanks to (9):

E Q g i (X η T ) F t -E P g i (X η T ) F t ≤ M j=1 g i (X η T (ω j ))Q(Ω j |F t ) -g i (X η T (ω j ))P(Ω j |F t ) ≤ g i ∞ M j=1 M ν ≤ η
We rewrite:

E P g i (X η T ) F t ≤ E Q g i (X η T F t + η (10) 
We will set:

Σ i t (P) = V i (t, X η t ) ≤ E P g i (X η T ) F t + η
where P(Σ i t (P)) ≥ 1 -η by assumption [START_REF] Cardaliaguet | Dierential games with asymmetric information[END_REF] and

Σ i t (Q) = V i (t, X η t ) ≤ E Q g i (X η T ) F t + 2η
We have Σ i t (P) ⊆ Σ i t (Q) using [START_REF] Engwerda | LQ dynamic optimization and dierential games[END_REF]. Both sets are in F t implying due to (8):

Q(Σ i t (Q)) ≥ Q(Σ i t (P)) ≥ P(Σ i t (P)) -M ν ≥ 1 -2η
We now will explain how to correlate the strategies at each explosion using jointly controlled lotteries. Explosion procedure: Suppose τ is an explosion with τ ∈ [t k , t k+1 ) and τ is associated to ω 1 , ω 2 ∈ Ω as in the denition. We assume that the ltration F t k is generated by the atoms {Ω l } l∈L . We have for some l: ω 1 , ω 2 ∈ Ω l . By denition of the delay τ , there is no other explosion on (t k , t k+1 ). The denition of an explosion allows us to set

Ω l := I i=1 Ω l i with Ω l i ∈ F t k+1 , 2 ≤ I ≤ M and for all ω ι , ω j ∈ Ω l i , (u η , v η )(ω ι )(s) ≡ (u η , v η )(ω j )(s) on [t 0 , t k+1 ). We consider the rational conditional probabilities Q(Ω l i |Ω l ) = q i (t l k ) q(t l k ) .
We build a jointly controlled lottery as in [START_REF] Aumann | Repeated games with incomplete information[END_REF]: consider the auxiliary two players process with outcome matrix G, q(t l k ) distinct actions u a : [t k , t k+1 ] → U for player I and q(t l k ) distinct actions v b : [t k , t k+1 ] → V for player II. Note that as we assumed that U and V have innite cardinality, we can dene correlation controls (u a , v b ) as distinct constant controls and use distinct controls for each explosion. The matrix G is build in such a way that the only possible outcomes are G(a, b) ∈ {1 . . . I} and each row and each column of G contains exactly q i (t l k ) times the outcome i for all i ∈ {1 . . . I}. Note that if player II plays some xed v b and player I plays each u a with equiprobability 1 q(t l k ) , then the outcome will be i with probability

q i (t l k ) q(t l k ) = Q(Ω l i |Ω l )
and symmetrically, if player I plays some xed u a and player II plays each v b with probability 1 q(t l k ) , then the outcome will be i with probability Q(Ω l i |Ω l ). Note that this correlation procedure allows the players to correlate their controls on any Ω l i with probability Q(Ω l i |Ω l ) in such a way that no unilateral cheating in the use of the correlation controls may change the outcome of the correlation matrix G.

We introduce a way to punish the opponent if he is not playing the expected control through punitive strategies: Lemma 2.4 (Punitive strategy). For all > 0, for all t ∈ (t 0 , T ), there exists τ > 0 such that if we denote by A τ (t) = {α ∈ A(t)/ τ (α) ≥ τ } there exists α ,t p :

B(x 0 , (t -t 0 ) f ∞ ) → A τ (t) such that: ∀x ∈ B(x 0 , (t -t 0 ) f ∞ ), sup v∈V(t) g 2 (X t,x,α ,t p (x)(v),v T ) ≤ V 2 (t, x) + Proof of Lemma 2.4.
The proof is similar to the proof of Lemma 2.2. We will build the punitive strategy α ,t p (•) as a collection of nitely many pure strategies with delay. For all x ∈ B(x 0 , (tt 0 ) f ∞ ), there exists some pure strategy α x ∈ A(t) such that:

sup v∈V(t) g 2 (X t,x,αx(v),v T ) ≤ V 2 (t, x) + /2
For continuity reasons, there exists a Borelian partition (O i ) i=1,...I of the ball B(x 0 , (tt 0 ) f ∞ ) such that for any i there exists some

x i ∈ O i such that ∀z ∈ O i , sup v∈V(t) g 2 (X t,z,αx i (v),v T ) ≤ V 2 (t, z) +
and for all x ∈ B(x 0 , (t -t 0 ) f ∞ ), we dene the punitive strategy α ,t p (x) as the strategy that associates to any v ∈ V(t) the control:

α ,t p (x)(v) = i α x i (v)1 x∈O i
Note that we have by construction:

∀x ∈ B(x 0 , (t -t 0 )|f ∞ ), sup v∈V(t) g 2 (X t,x,α ,t g (x)(v),v T ) ≤ V 2 (t, x) +
As for the Maximin strategy, there exists some strictly positive delay τ such that ∀x ∈ B(x 0 , (t -t 0 ) f ∞ ), α ,t p (x) is a pure strategy with delay greater than or equal to τ .

We now have everything needed to dene the -optimal strategies. Denition of the strategies (α , β ):

We recall that the idea of the strategy for Player I is to play the same control as u η (ω), ω ∈ Ω as long as there is no explosion and as long as player II plays v η (ω).

If an explosion takes place on [t k , t k+1 ) meaning F t k+1 is generated by the atoms (Ω i ) i∈I , play on this interval some correlation control as dened by the corresponding explosion procedure, then observe at t k+1 the correlation control played by the opponent on [t k , t k+1 ) and deduce from the explosion procedure on which Ω i the game is now correlated and play u η (ω i ), ω i ∈ Ω i from t k+1 on until the next explosion as long as player II plays v η (ω i ). Player I repeats the same procedure at each explosion. As soon as player I detects that Player II played some unexpected control, he swaps to the punitive strategy.

In order to dene the strategy in a more convenient way, we have to introduce some auxiliary random processes depending only on the past, namely Ω keeping the information on which trajectory generated by (u η , v η ) is currently being followed and S such that S = ∅ if no deviation was observed in the past and S = (t k , x) where t k ∈ {t 0 . . . t N N } means that some deviation occurred on [t k , t k+1 ) and the punitive strategy is to be played from the state (t k+2 , x) because there is a delay between the time at which deviation is detected and the time from which punitive strategy is played.

First of all, in order to build the strategy α for example, we will dene the associated underlying nite probability space. We will dene it by induction on the number of explosions. We will always assume that an explosion procedure is dened using constant correlation controls that are not used in any other explosion procedure:

1. If there is no explosion, take any trivial probability space with only one element.

2. Assume that we can associate to any pair of controls generating a number of explosion lower than or equal to n a probability space (Ω n , P(Ω n ), P n ).

3. Assume we are facing a couple of random controls generating n + 1 explosions. Consider the rst explosion, that takes place in [t k , t k+1 ) for some k ∈ {0, . . . , N N -1} and such that F t k+1 is generated by the atoms (Ω i ) i=1...I . Note that the pairs of random controls dened on each Ω i generate at most n explosions and can therefore be associated to a probability space (Ω n i , P(Ω n i ), P n i ).

Assume now that the set of correlation controls dened by the rst explosion procedure is Ω = {u a } a=1...q(t k ) associated to the probability P such that for all a, P(u a ) = 1/q(t k ). We now dene the probability space (Ω n+1 , P(Ω n+1 ), P n+1 ) the following way:

• Ω n+1 = Ω × Π I i=1 Ω n i • for all ω n+1 = (u a , ω n 1 , . . . ω n I ) ∈ Ω n+1 , P n+1 (ω n+1 ) = 1 q(t k ) ×Π I i=1 P n i (ω n i )
It is easy to see that this is a well dened nite probability space.

We now have dened Ω α . Note that any ω α ∈ Ω α prescribes one correlation control for any of the possible explosion procedures. Fix any sequence of correlation controls (u i ) possibly leading to the explosion τ ∈ [t k , t k+1 ) associated to the atom Ω l of F t k . Consider the set of correlation controls {u a } associated to this explosion. Then, the conditional probability of each u a given (u i ) is by denition 1 q(t l k ) :

P α [ω α u a |ω α (u i )] = 1 q(t l k ) (11) 
We now dene the strategy α using auxiliary random processes:

S α : Ω α × V(t 0 ) × {t k } k=0...N N → ∅ ∪ ([t 0 , T ] × IR n )
and

Ωα : Ω α × V(t 0 ) × {t k } k=0...N N → F T .
At time t 0 , for any ω α , for any control v ∈ V(t 0 ), we set S α t 0 (ω α , v) = ∅ and x), this means that player II did not play the expected control from t s ∈ [t i , t i+1 ) on, then play the punitive strategy v) and set

Ωα t 0 (ω α , v) = Ω and x u 0 ∈ U . For all k ∈ {0, . . . N N -1}, if α (ω α )(v) is built on [t 0 , t k ), we dene α (ω α )(v) further by: 1. If S α t k (ω α , v) = ∅, for example S α t k (ω α , v) = (t i ,
α (v)| [t k ,t k+1 ) = α η,t i+2 p (x)(v| [t i+2 ,T ] )| [t k ,t k+1 ) as dened in Lemma 2.4 and set Ωα t k+1 (ω α , v) = ∅ and S α t k+1 (ω α , v) = S α t k (ω α , v). 2. If S α t k (ω α , v) = ∅, then • if there is no explosion on [t k , t k+1 ) for (u η , v η )(ω), ω ∈ Ωα t k (ω α , v), then play α (ω α )(v)| [t k ,t k+1 ) = u η (ω)| [t k ,t k+1 ) for some ω ∈ Ωα t k (ω α ,
Ωα t k+1 (ω α , v) = Ωα t k (ω α , v). If k ≥ 1 and if v| [t k-1 ,t k ] ≡ v η (ω)| [t k-1 ,t k ] for all ω ∈ Ωα t k (ω α , v) then set S α t k+1 (ω α , v) = (t k-1 , X t 0 ,x 0 ,α ,v t k+1
), else set

S α t k+1 (ω α , v) = ∅ • if there is an explosion on [t k , t k+1 ) for (u η , v η )(ω), ω ∈ Ωα t k (ω α , v
), play on [t k , t k+1 ) the controls u a in ω α corresponding to the current explosion procedure then consider the control v played by player II on

[t k-1 ∨t 0 , t k + τ 2 ]: if k ≥ 1 and if v| [t k-1 ,t k ] ≡ v η (ω)| [t k-1 ,t k ] for all ω ∈ Ωα t k (ω α , v) then set S α t k+1 (ω α , v) = (t k-1 , X t 0 ,x 0 ,α ,v t k+1
) and Ωα t k+1 (ω α , v) = ∅ and dene α (ω α ) further using the procedure at step 1, else if v| [t k ,t k + τ 2 ] ≡ v b for any of the v b prescribed by the explosion procedure, then set Ωα

t k+1 (ω α , v) = ∅ and S α t k+1 (ω α , v) = ∅. If k < N N -1, play α (ω α )(v)| [t k+1 ,t k+2 ) = u 0 and set S α t k+2 (ω α , v) = (t k , X t 0 ,x 0 ,α ,v t k+2 ) and Ωα t k+2 (ω α , v) = ∅.
else, player II played one of the expected controls for example v b . Assume Ωα

t k (ω α , v) = Ω l . Consider G(a, b) = κ and set Ωα t k+1 (ω α , v) = Ω l κ and S α t k+1 (ω α , v) = ∅. If k < N N -1, play α (ω α )(v)| [t k+1 ,t k+2 ) = u η (ω)| [t k+1 ,t k+2 ) for some ω ∈ Ωα t k+1 (ω α , v) and set Ωα t k+2 (ω α , v) = Ωα t k+1 (ω α , v) and S α t k+2 (ω α , v) = ∅.
Note that this procedure indeed denes a mixed strategy. It also ensures that for all k = 0, . . . , N N , at time t k , Ωα t k (v) is either the empty set or one of the atoms of

F t k and {S α (v) ∈ {t k } × IR n } ∈ F α ,v t k where F α ,v t k = σ((α (v), v)(s), s ∈ [t 0 , t k ]).
The strategy β is built symmetrically using the auxiliary random processes Ωβ and S β . Payo of the strategies (α , β ):

We will rst study the controls generated if player I plays α and player II plays some pure strategy β with delay τ (β) such that β generates no deviation. We will say that β generates no deviation as soon as for all k ∈ {0, . . . , N N }, S α t k (β) = ∅ (equivalently S α T (β) = ∅), even if S α T (β) = ∅ does not imply that the control generated by β on [T -τ, T ] is one of the v η . We will rst consider the values taken by the process Ωα (β).

Lemma 2.5. If the strategies (α , β) are played where β is some pure strategy with delay such that for all k ∈ {0, . . . , N N }, S α t k (β) = ∅, then for all k ∈ {0, . . . , N N }, for all F ∈ F t k :

P α Ωα t k (β) ⊂ F = Q(F )
Proof. We will prove the Lemma by induction on k for all F such that F is an atom of the ltration F t k . For k = 0, this is obviously true for the ltration F t 0 is trivial and Ωα

t 0 (β) = Ω.
Assume that the property of the Lemma is true at stage k, k < N N -1 and that F t k is generated by the atoms

{Ω k i } i∈I . Assume now that F t k+1 = σ {Ω k+1 j } j∈J
where the Ω k+1 j are the atoms of F t k+1 .

• If for some i ∈ I, there exists j ∈ J such that

Ω k i = Ω k+1 j
, this means that no explosion takes place on [t k , t k+1 ) for the controls

(u η , v η )(ω), ω ∈ Ω k i . Assume that Ωα t k (β) = Ω k i . As S α t k (β) = ∅,
the strategy α will generate on [t k , t k+1 ) the control u η (ω) for any ω ∈ Ω k i and we will get Ωα

t k+1 (β) = Ωα t k (β) = Ω k i . This implies P α Ωα t k+1 (β) = Ω k i ≥ P α Ωα t k (β) = Ω k i .
On the other hand, the denition of the process Ωα (β) ensures that Ωα

t k+1 (β) ⊆ Ωα t k (β) and Ωα t k (β) ∈ {Ω k i } i∈I ∪ ∅ leading to P α Ωα t k+1 (β) = Ω k i = P α Ωα t k (β) = Ω k i = Q(Ω k i )
• Assume now that for some i ∈ I, Ω k i = Ω k+1 j for all j ∈ J. This means there is an explosion on [t k , t k+1 ) for the controls (u η , v η )(ω), ω ∈ Ω k i and

Ω k i = j i j=j 0 Ω k+1 j
. Assume that we have for some

ω α Ωα t k (ω α , β) = Ω k i . Recall that F α ,v t k = σ((α (v), v)(s), s ∈ [t 0 , t k ]). Note that S α t k (ω α , β) = ∅, implying on [t k , t k+1
) the strategy α will generate one of the correlation control u a ∈ Ω α prescribed by the explosion procedure for Ω k i . The conditional probability that the control generated by α at time t k is u a given all correlation controls played so far is

P α α (β)| [t k ,t k+1 ) = u a F α ,β t k = 1 q(t i k ) × P α Ωα t k (β) = Ω k i F α ,β t k
due to [START_REF] Friedman | Dierential games[END_REF] because every correlation control being unique, the only way to play u a is when Ωα

t k (β) = Ω k i .
Given the controls played on [t 0 , t k ) for any trajectory such that Ωα t k (β) = Ω k i , at time t k , the pure strategy β being a strategy with delay will generate on [t k , t k + τ (β)] the same control for example v b whatever the control u a chosen by player I on [t k , t k+1 ). Note that we must have v| [t k ,t k +τ /2) is equivalent to one of the constant correlation controls, else, player I would detect some deviation at time t k+1 and set S α t k+2 (β) = ∅. In the end, player II has to play on [t k , t k + τ /2) one of the correlation control v b , and always plays the same control whatever the control u a played by player I. Finally, we will get for all j = j 0 . . . j i :

P α Ωα t k+1 (β) = Ω k+1 j F α ,β t k = Q(Ω k+1 j |Ω k i ) × P α Ωα t k (β) = Ω k i F α ,β t k
and nally taking the expectation w.r.t. P α :

P α Ωα t k+1 (β) = Ω k+1 j = Q(Ω k+1 j |Ω k i )P α Ωα t k (β) = Ω k i = Q(Ω k+1 j |Ω k i )Q(Ω k i ) = Q(Ω k+1 j )
We have proven that for all k ∈ {0, . . . , N N -1}, for all atom Ω k i of the ltration

F t k , P α Ωα t k (β) = Ω k i = Q(Ω k i ).
Noticing that there is no explosion on [T -τ, T ], we get F T = F t N N -1 and due to the denition of the strategy and the fact that

S α T (β) = ∅, we get Ωα T (β) = Ωα t N N -1 (β)
, hence the result. We still assume that player I plays α and player II plays some pure strategy β such that β generates no deviation and we will compute the payo J i (t 0 , x 0 , α , β) for i = 1, 2.

Lemma 2.6. If the strategies (α , β) are played where β is some pure strategy with delay such that S α T (β) = ∅, then for all i = 1, 2:

|J i (t 0 , x 0 , α , β) -e i | ≤ 3 N

Corollary:

The strategies (α , β ) reward a payo 3 N close to e.

Proof of the Corollary. The proof of the Corollary is straightforward. Indeed, as β is a mixed strategy, namely a nite probability distribution on nitely many pure strategies β (ω β ) generating S α T (β (ω β )) = ∅ against α , we get for i = 1, 2:

|J i (t 0 , x 0 , α , β ) -e i | ≤ Ω β |J i (t 0 , x 0 , α , β (ω β )) -e i |dP β (ω β ) ≤ Ω β dP β (ω β ) 3 N = 3 N
Proof of Lemma 2.6. We recall that the explosions are denoted by τ i , i ∈ I. For all i ∈ I, there exists k(τ i ) ∈ {0, . . . , N N -2} such that

τ i ∈ [t k(τ i ) , t k(τ i )+1
). We denote by

∆ := [t 0 , T -τ )\ ∪ i∈I [t k(τ i ) , t k(τ i )+1 )
Assume that F T = σ({Ω j } j=1... M ) where the Ω j are the atoms of F T and players are using (α , β) as in the assumptions of the Lemma. Notice that ∀ω α ∈ { Ωα T (β) = Ω j }, ∀ω j ∈ Ω j , the control of Player I generated by (α (ω α ), β) satises u α (ωα )β (s) ≡ u η (ω j )(s) ∀s ∈ ∆. Consequently, ∀ω α ∈ { Ωα T (β) = Ω j }, the control of player II generated by (α (ω α ), β) satises v α (ωα )β (s) ≡ v η (ω j )(s) ∀s ∈ ∆, else we would get S α T (ω α , β) = ∅. Therefore, for any ω α satisfying Ωα T (ω α , β) = Ω j and any ω j ∈ Ω j , for all t ∈ [t 0 , T ]:

X t 0 ,x 0 ,(α ,β)(ωα ) t -X η t (ω j ) ≤ M τ (1 + f ∞ )e L f (T -t 0 )
where L f denotes the Lipschitz constant of f and M the number of explosions. We can choose τ small enough in order that for i = 1, 2, for all t ∈ [t 0 , T ]:

   g i (X t 0 ,x 0 ,(α ,β)(ωα ) T ) -g i X η T (ω j ) ≤ η V i (t, X t 0 ,x 0 ,(α ,β)(ωα ) t ) -V i (t, X η t (ω j )) ≤ η (12) 
leading, for any j = 1 . . . M and any ω j ∈ Ω j , to

E α g i (X t 0 ,x 0 ,α ,β T )1Ωα T (β)=Ω j -E g i (X η T )1 Ω j ≤ g i (X η T (ω j ))P α ( Ωα T (β) = Ω j ) -g i (X η T (ω j ))Q(Ω j ) + ηP α ( Ωα T (β) = Ω j )
≤ ηQ(Ω j ) due to Lemma 2.5 Finally, for all i = 1, 2:

|J i (t 0 , x 0 , α , β) -J i (t 0 , x 0 , u η , v η )| ≤ M j=1 E α g i (X t 0 ,x 0 ,α ,β T )1Ωα T (β)=Ω j -E g i (X η T )1 Ω j ≤ M j=1 ηQ(Ω j ) = η
Using now Lemma 2.3, we have for all i = 1, 2:

|J i (t 0 , x 0 , α , β) -e i | ≤ |J i (t 0 , x 0 , α , β) -J i (t 0 , x 0 , u η , v η )| + |J i (t 0 , x 0 , u η , v η ) -e i | ≤ 3η
and the strategies (α , β) reward a payo 3 N close to e.

Optimality of the strategies (α , β ):

It remains to prove that the strategies (α , β ) are optimal. We will prove it for β : there exists some constant C α satisfying

∀β ∈ B(t 0 ), J 2 (t 0 , x 0 , α , β) ≤ J 2 (t 0 , x 0 , α , β ) + C α . ( 13 
)
Consider some pure strategy with delay β. If β generates no deviation (S α

T (β) = ∅),
then we have just proven that:

J 2 (t 0 , x 0 , α , β) ≤ e 2 + 3 N ≤ J 2 (t 0 , x 0 , α , β ) + 6 N . ( 14 
)
It remains to prove the same kind of result as [START_REF] Kleimenov | Nonantagonist Dierential Games[END_REF] for any pure strategy β generating some unexpected controls (leading for some ω α to S α T (ω α , β) = ∅). The idea of the proof is rst to build some pure strategy β generating the same controls as β against α as long as no deviation occurs and generating no deviation against α , that is some non-deviating extension of β. We then will compare the payos induced by β and β.

Lemma 2.7 (Non deviating extension β of some pure strategy β of player II). To any pure strategy with delay β, one can associate a pure strategy with delay β satisfying:

• S α ( β) = ∅
• The pairs of strategies (α (ω α ), β) and (α (ω α ), β) generate the same pairs of controls on

[t 0 , T -τ ]×{S α T (β) = ∅}∪ k∈{0,...,N N } [t 0 , t k ]×{S α T (β) ∈ {t k }×IR n }.
Proof. In order to build the strategy β, we will need some auxiliary processes S β : [t 0 , T ]×U(t 0 ) → ∅∪[t 0 , T ]∪{ α} and Ω β : [t 0 , T ]×U(t 0 ) → F T . We will set S β = ∅ as long as β generates no deviation against α and S β = t i if β generated some deviation on [t i , t i+1 ) and S β = α if it is impossible to correlate the trajectories because player I is not playing α . The process Ω β allows to remind which control v η (ω) the strategy is currently following. We dene the strategy β(u) for all u ∈ U(t 0 ) using S β and Ω β as follows (omitting to write the dependence of S β and Ω β in u):

Set S β t 0 = ∅ and Ω β t 0 = Ω and x v 0 ∈ V and u 0 ∈ U . For all k ∈ {0 . . . N N -1}, if β(u) is already built on [t 0 , t k ), we dene β(u) on [t k , t k+1 ) by: 1. If S β t k = α, play β(u)| [t k ,t k+1 ) = v 0 , set S β t k+1 = α and Ω β t k+1 = ∅.
2. If S β t k ∈ [t 0 , T ], meaning we are building a non deviating strategy instead of following β then

• if there is no explosion on [t k , t k+1 ), play β(u)| [t k ,t k+1 ) = v η (ω)| [t k ,t k+1 ) for some ω ∈ Ω β t k and set Ω β t k+1 = Ω β t k and S β t k+1 = S β t k
• if there is an explosion on [t k , t k+1 ) for the trajectory generated by (u η , v η )(ω) for any ω ∈

Ω β t k = Ω l , then play β(u)| [t k ,t k+1 ) = v 1
where v 1 is the rst correlation control of player II expected at time t k and consider the control

u| [t k ,t k + τ 2 ]
. If it is one of the expected correlation controls for example u a then consider G(a, 1) = i and set

Ω β t k+1 = Ω l i and S β t k+1 = S β t k , else set S β t k+1 = α and Ω β t k+1 = ∅, 3. If S β t k = ∅ then • if there is no explosion on [t k , t k+1 ), play β(u)| [t k ,t k+1 ) = v η (ω)| [t k ,t k+1 ) for some ω ∈ Ω β t k and set Ω β t k+1 = Ω β t k .
Then, build the control ũ such that:

ũ(s) = u(s) ∀s ∈ [t 0 , t k ) ũ(s) = u η (ω)(s) ∀s ∈ [t k , T ] and compute the control β(ũ)| [t k ,t k+1 ) : if β(ũ)| [t k ,t k+1 ) ≡ v η (ω)| [t k ,t k+1 ) then set S β t k+1 = t k else set S β t k+1 = ∅
• if there is an explosion on [t k , t k+1 ) for the trajectory generated by (u η , v η )(ω) for any ω ∈ Ω β t k = Ω l , then build the control ũ such that:

ũ(s) = u(s) ∀s ∈ [t 0 , t k ) ũ(s) = u 0 ∀s ∈ [t k , T ] and compute the control v = β(ũ)| [t k ,t k +τ (β)) : If this control is none of the expected correlation controls v b , play β(u)| [t k ,t k+1 ) = v 1
where v 1 is the rst expected correlation control and consider the control

u| [t k ,t k + τ 2 )
. If it is one of the expected correlation controls for example u a then consider G(a, 1) = i and set

Ω β t k+1 = Ω l i and S β t k+1 = t k , else set S β t k+1 = α and Ω β t k+1 = ∅,
If this control v corresponds to one of the correlation controls prescribed by the jointly controlled lottery at

t k for example v b then play β(u)| [t k ,t k + τ 2 ] = v b and β(u)| (t k + τ 2 ,t k+1 ) = β(u)| (t k + τ 2 ,t k+1 ) . Con- sider the control u| [t k ,t k + τ 2 )
. If it is none of the expected correlation controls, set S β t k+1 = α and

Ω β t k+1 = ∅.
If it is one of the correlation controls, for example u a , consider G(a, b) = i and set

Ω β t k+1 = Ω l i . Then compute the control β(u)| [t k ,t k + τ 2 ] . If β(u)| [t k ,t k + τ 2 ] ≡ v b then set S β t k+1 = t k else set S β t k+1 = ∅.
It is clear that β is a pure strategy with delay. Indeed, β is anticipative with respect to β but non anticipative with respect to the control u of the opponent. Furthermore β satises S α T ( β) = ∅ and Ωα T ( β) = ∅. As long as β generates no deviation, the controls generated by (α , β) and (α , β) are the same. Note that {S β

T = t k } ∈ F α β t k where F α β t k = σ (α , β)(s), s ∈ [t 0 , t k ] .
We have for any deviating pure strategy β:

J 2 (t 0 , x 0 , α , β) = N N -1 i=0 E α g 2 (X t 0 ,x 0 ,α ,β T )1 S α T (β)∈{t i }×IR n + E α (g 2 (X t 0 ,x 0 ,α ,β T )1 S α T (β)=∅ ) (15) 
Assume that for example S α T (β) = (t i , x). This means that some deviation occurred on [t i , t i+1 ). There exists

k ∈ {1 . . . N } such that [t i , t i+1 ) ⊂ [θ k-1 , θ k ).
Using the denition of the strategy α and introducing the non deviating extension β of β:

g 2 (X t 0 ,x 0 ,α ,β T )1 S α T (β)=(t i ,x) = g 2 (X t i+2 ,x,α η,t i+2 p (x),β T )1 S α T (β)=(t i ,x) ≤ (V 2 (t i+2 , x) + η)1 S α T (β)=(t i ,x) ≤ V 2 (t i , X t 0 ,x 0 ,α ,β t i ) + η + 1 S α T (β)=(t i ,x) due to (1) ≤ V 2 (t i , X t 0 ,x 0 ,α , β t i ) + 2 1 S α T (β)=(t i ,x) ≤ E α (V 2 (θ k , X t 0 ,x 0 ,α , β θ k )|F α β t i ) + 3 1 S α T (β)=(t i ,x) due to (1) because (θ k -t i ) ≤ δ
We introduce this last inequality because our estimate of V 2 (t i , X t 0 ,x 0 ,α ,

β t i
) induces some error term of length η, therefore we need to sum up at most N such error terms in order to bound the global error to some . In the end we have for all

t i ∈ [θ k-1 , θ k ): g 2 (X t 0 ,x 0 ,α ,β T )1 S α T (β)∈{t i }×IR n ≤ E α V 2 (θ k , X t 0 ,x 0 ,α , β θ k ) F α β t i + 3 1 S α T (β)∈{t i }×IR n (16) The point now is to get an estimate of V 2 (θ k , X t 0 ,x 0 ,α , β θ k
). We will prove the following Lemma: Lemma 2.8. For all t ∈ {t k } k=0...N N , for all pure strategy β generating no deviation against α , we have:

P α V 2 (t, X t 0 ,x 0 ,α , β t ) ≤ E α g 2 (X t 0 ,x 0 ,α , β T ) F α β t + 4η ≥ 1 -2η where (F α β t ) = σ (α , β)(s), s ∈ [t 0 , t]
Proof. Assume that t ∈ {t k } k=0...N N and F t = σ({Ω i } i∈I ) where the Ω i are the atoms of F t . As the pure strategy β generates no deviation, denoting by Ωα ( β) the auxiliary process built in the denition of the strategy α as the opponent is playing β, we have for all i ∈ I, there exist atoms Ω i j of the ltration F T such that

Ω i = j∈J(i) Ω i j .
Then using [START_REF] Hamadène | BSDEs with continuous coecients and stochastic dierential games[END_REF] for any ω j ∈ Ω i j , for any j ∈ J(i):

V 2 (t, X t 0 ,x 0 ,α ,

β t )1 Ωα T ( β)=Ω i j ≤ V 2 (t, X η t (ω i j )) + η 1 Ωα T ( β)=Ω i j Using the fact that { Ωα t ( β) = Ω i } = ∪ j∈J(i) { Ωα T ( β) = Ω i j }, and that ∀ω j ∈ Ω i j , ∀ω i ∈ Ω i , V 2 (t, X η t (ω j )) = V 2 (t, X η t (ω i )), we get for any i ∈ I and any ω i ∈ Ω i V 2 (t, X t 0 ,x 0 ,α , β t )1 Ωα T ( β)=Ω i ≤ [V 2 (t, X η t (ω i )) + η] 1 Ωα T ( β)=Ω i (17) 
Note that a more careful examination of the proof of Lemma 2.5 shows that:

P α Ωα T ( β) = Ω i j |F α β t = Q(Ω i j |Ω i )P α Ωα t ( β) = Ω i |F α β t = Q(Ω i j |Ω i )1 Ωα t ( β)=Ω i
Then, using ( 12):

E α g 2 (X t 0 ,x 0 ,α , β T ) F α β t 1 Ωα t ( β)=Ω i -E g 2 (X η T )|Ω i 1 Ωα t ( β)=Ω i ≤ η (18) 
We now have to recall that if we denote by

Σ η t = V 2 (t, X η t ) ≤ E g 2 (X η T ) F t + 2η
then due to Lemma 2.3:

Q(Σ η t ) ≥ 1 -2η
This implies that for all i ∈ I, for all trajectory satisfying Ωα

t ( β) = Ω i ⊂ Σ η t and for all ω i ∈ Ω i : V 2 (t, X t 0 ,x 0 ,α , β t )1 Ωα t ( β)=Ω i ≤ [V 2 (t, X η t (ω i )) + η] 1 Ωα t ( β)=Ω i (due to (17)) ≤ E(g 2 (X η T )|Ω i ) + 3η 1 Ωα t ( β)=Ω i (for Ω i ⊂ Σ η t ) ≤ E α g 2 (X t 0 ,x 0 ,α , β T )|F α β t + 4η 1 Ωα t ( β)=Ω i (due to (18))
We now can check that as announced:

P α V 2 (t, X t 0 ,x 0 ,α , β t ) ≤ E α g 2 (X t 0 ,x 0 ,α , β T ) F α β t + 4η ≥ P α Ωα t ( β) ⊂ Σ η t ≥ Q(Σ η t ) (due to Lemma 2.5) ≥ 1 -2η
We will denote by:

Σ α β t = V 2 (t, X t 0 ,x 0 ,α , β t ) ≤ E α g 2 (X t 0 ,x 0 ,α , β T ) F α β t + 4η
We now will compute a more precise estimate of V 2 (θ k , X t 0 ,x 0 ,α ,

β θ k
) denoting by g ∞ some bound of the payo functions g 1 and g 2 :

V 2 (θ k , X t 0 ,x 0 ,α , β θ k ) ≤ E α g 2 (X t 0 ,x 0 ,α , β T ) F α β θ k + 4η 1 Σ α β θ k + g ∞ 1 (Σ α β θ k ) c ≤ E α g 2 (X t 0 ,x 0 ,α , β T ) F α β θ k 1 Σ α β θ k + g ∞ 1 (Σ α β θ k ) c + 4η ≤ E α g 2 (X t 0 ,x 0 ,α , β T ) F α β θ k + g ∞ 1 (Σ α β θ k ) c + 4η (19)
assuming g 2 is non negative, which is possible without lack of generality because this function is bounded.

It remains to introduce this estimate (19) in inequality [START_REF] Rainer | On two dierent approaches to nonzero sum stochastic dierential games[END_REF] to get for all

i ∈ {0, . . . , N N -1}, if t i ∈ [θ (k-1) , θ k ): g 2 (X t 0 ,x 0 ,α ,β T )1 S α T (β)∈{t i }×IR n ≤ E α V 2 (θ k , X t 0 ,x 0 ,α , β θ k ) F α β t i + 3 1 S α T (β)∈{t i }×IR n ≤ E α E α g 2 (X t 0 ,x 0 ,α , β T ) F α β θ k + g ∞ 1 (Σ α β θ k ) c + 4η F α β t i 1 S α T (β)∈{t i }×IR n + 3 1 S α T (β)∈{t i }×IR n thanks to (19) ≤ E α g 2 (X t 0 ,x 0 ,α , β T ) F α β t i 1 S α T (β)∈{t i }×IR n + g ∞ P α (Σ α β θ k ) c F α β t i 1 S α T (β)∈{t i }×IR n + 7 1 S α T (β)∈{t i }×IR n
Note that at time t i there is no deviation, implying F α

β t i = F α β t i and g 2 (X t 0 ,x 0 ,α ,β T )1 S α T (β)∈{t i }×IR n ≤ E α g 2 (X t 0 ,x 0 ,α , β T ) F α β t i 1 S α T (β)∈{t i }×IR n + g ∞ P α (Σ α β θ k ) c F α β t i 1 S α T (β)∈{t i }×IR n + 7 1 S α T (β)∈{t i }×IR n
Using the fact that {S α (β) ∈ {t i } × IR n } is (F α β t i )-measurable due to the denition of the strategy α , we get for i = 0 . .

. N N -1, if t i ∈ [θ k-1 , θ k ): g 2 (X t 0 ,x 0 ,α ,β T )1 S α T (β)∈{t i }×IR n ≤ E α g 2 (X t 0 ,x 0 ,α , β T )1 S α T (β)∈{t i }×IR n F α β t i + g ∞ E α 1 (Σ α β θ k ) c 1 S α T (β)∈{t i }×IR n F α β t i + 7 1 S α T (β)∈{t i }×IR n (20)
We now use this estimate to compute the expectation of the payo in case there is some deviation:

N N -1 i=0 E α g 2 (X t 0 ,x 0 ,α ,β T )1 S α T (β)∈{t i }×IR n ≤ N N -1 i=0 E α E α g 2 (X t 0 ,x 0 ,α , β T )1 S α T (β)∈{t i }×IR n |F α β t i + N k=1 k N -1 i=(k-1) N E α g ∞ E α (1 (Σ α β θ k ) c 1 S α T (β)∈{t i }×IR n |F α β t i ) + 7 due to (20) ≤ E α g 2 (X t 0 ,x 0 ,α , β T )1 S α T (β) =∅ + g ∞ N k=1 E α 1 (Σ α β θ k ) c 1 S α T (β)∈[θ k-1 ,θ k )×IR n + 7 ≤ E α g 2 (X t 0 ,x 0 ,α , β T )1 S α T (β) =∅ + g ∞ N k=1 P α (Σ α β θ k ) c + 7 ≤ E α g 2 (X t 0 ,x 0 ,α , β T )1 S α T (β) =∅ + g ∞ N k=1
2 N + 7 thanks to Lemma 2.8

≤ E α g 2 (X t 0 ,x 0 ,α , β T )1 S α T (β) =∅ + 2 g ∞ + 7 (21) 
Going back to our estimate of J 2 (t 0 , x 0 , α , β) as in [START_REF] Krasovskii | Game-Theoretical Control Problems[END_REF] we can write:

J 2 (t 0 , x 0 , α , β) = N N -1 i=0 E α g 2 (X t 0 ,x 0 ,α ,β T )1 S α T (β)∈{t i }×IR n + E α g 2 (X t 0 ,x 0 ,α , β T )1 S α T (β)=∅ ≤ E α g 2 (X t 0 ,x 0 ,α , β T )1 S α T (β) =∅ + (2 g ∞ + 7) + E α g 2 (X t 0 ,x 0 ,α , β T )1 S α T (β)=∅ due to (21) ≤ E α (g 2 (X t 0 ,x 0 ,α , β T )) + (2 g ∞ + 7) ≤ J 2 (t 0 , x 0 , α , β ) + 6 N + (2 g ∞ + 7
) thanks to [START_REF] Kononenko | Equilibrium positional strategies in non-antagonistic dierential games (Russian)[END_REF] This proves that β is (13 + 2 g ∞ ) optimal. The proof is symmetric to state that α is (13 + 2 g ∞ ) optimal.

Finally, we have build mixed strategies (α , β ) rewarding a payo 3 close to e and (13 + 2 g ∞ ) optimal. This proves e is a Nash equilibrium payo.

Convexity of the set of Nash equilibrium payos using mixed strategies

Proposition 2.9. The set E r (t 0 , x 0 ) of all Nash equilibrium payos in mixed strategies is convex and compact in IR 2 . Proof. Let (e 1 , e 2 ) ∈ IR 4 be a pair of Nash equilibrium payos in mixed strategies. We will prove that (λe 1 + (1 -λ)e 2 ) is a Nash equilibrium payo in mixed strategies for all λ ∈ (0, 1). We will simply build random controls satisfying the characterization property of Theorem 2.1. As for j = 1, 2, e j is a Nash equilibrium payo, we may choose random controls (u j , v j ) on an underlying nite probability space (Ω j , P(Ω j ), P j ) such that ∀i, j = 1, 2:

• |E j (g i (X t 0 ,x 0 ,u j ,v j T )) -e j i | ≤ 3 • ∀t ∈ [t 0 , T ],
denoting by F j t = σ (u j , v j )(s), s ∈ [t 0 , t] :

P j V i (t, X t 0 ,x 0 ,u j ,v j t ) ≤ E j g i (X t 0 ,x 0 ,u j ,v j T ) F j t + 3 ≥ 1 -
We need to build controls close to the initial pairs (u j , v j ), j = 1, 2, but with some tag in order to distinguish them. Set some small delay δ > 0 such that for all x ∈ B(x 0 , δ f ∞ ), for all (u, v) ∈ U(t 0 ) × V(t 0 ), for all i = 1, 2, for all t ≥ t 0 + δ:

   V i (t, X t 0 ,x 0 ,u,v t ) -V i (t -δ, X t 0 ,x,u,v t-δ ) ≤ 3 g i (X t 0 ,x 0 ,u,v T ) -g i (X t 0 ,x,u,v T -δ ) ≤ 3 (22) 
We now choose some u 1 = u 2 ∈ U and v 1 = v 2 ∈ V and set for j = 1, 2:

       ūj (s) = u j for s ∈ [t 0 , t 0 + δ) ūj (s) = u j (s -δ) for s ∈ [t 0 + δ, T ] vj (s) = v j for s ∈ [t 0 , t 0 + δ) vj (s) = v j (s -δ) for s ∈ [t 0 + δ, T ]
We will as usual denote by Xj • = X t 0 ,x 0 ,ū j ,v j • for j = 1, 2. We immediately get thanks to (22) ∀i, j = 1, 2:

|E j (g i ( Xj T )) -e j i | ≤ 2 3 ≤ (23) 
and for all t ∈ [t 0 , T ], denoting by Fj t = σ (ū j , vj )(s), s ∈ [t 0 , t] :

P j V i (t, Xj t ) ≤ E j g i ( Xj T ) Fj t + ≥ 1 - (24) 
For i, j = 1, 2, denote by

Σ ij t = V i (t, Xj t ) ≤ E j g i ( Xj T ) Fj t +
We now dene a new nite random space Ω = {1, 2} × Ω 1 × Ω 2 endowed with the probability P dened for all ω = (j, ω 1 , ω 2 ) by:

P(j, ω 1 , ω 2 ) = λP 1 (ω 1 )P 2 (ω 2 ) if j = 1 P(j, ω 1 , ω 2 ) = (1 -λ)P 1 (ω 1 )P 2 (ω 2 ) if j = 2
and dene on Ω the random controls (u, v) dened by:

(u, v)(j, ω 1 , ω 2 ) = (ū 1 , v1 )(ω 1 ) if j = 1 (u, v)(j, ω 1 , ω 2 ) = (ū 2 , v2 )(ω 2 ) if j = 2
We will denote by X • = X t 0 ,x 0 ,u,v

•

. It remains to prove that for i = 1, 2:

• |E[g i (X T )] -λe 1 i -(1 -λ)e 2 i | ≤ • ∀t ∈ [t 0 , T ],
denoting by F t = σ ((u, v)(s), s ∈ [t 0 , t]):

P V i (t, X t ) ≤ E g i (X T ) F t + ≥ 1 -
The rst relation is easy to prove. For i = 1, 2, we have:

E[g i (X T )] -λe 1 i -(1 -λ)e 2 i = λE 1 [g i ( X1 T )] + (1 -λ)E 2 [g i ( X2 T )] -λe 1 i -(1 -λ)e 2 i ≤ λ E 1 [g i ( X1 T )] -e 1 i + (1 -λ) E 2 [g i ( X2 T )] -e 2 i ≤ thanks to (23)
In order to prove the second inequality, for i = 1, 2, we denote by

Σ i t = V i (t, X t ) ≤ E g i (X T ) F t + 3
We have for i = 1, 2 and t ∈ [t 0 + δ, T ]:

E g i (X T ) F t = E g i (X T )(1 {1}×Ω 1 ×Ω 2 + 1 {2}×Ω 1 ×Ω 2 ) F t = E g i ( X1 T ) F1 t 1 {1}×Ω 1 ×Ω 2 + E g i ( X2 T ) F2 t 1 {2}×Ω 1 ×Ω 2
Therefore, assuming as usual that the functions g i are non negative and using (24):

E g i (X T ) F t ≥ [V i (t, X1 t ) -]1 {1}×Σ i1 t ×Ω 2 + [V i (t, X2 t ) -]1 {2}×Ω 1 ×Σ i2 t ≥ V i (t, X t )1 {1}×Σ i1 t ×Ω 2 + V i (t, X t )1 {2}×Ω 1 ×Σ i2 t -
And nally:

P Σ i t ≥ P {1} × Σ i1 t × Ω 2 ∪ {2} × Ω 1 × Σ i2 t ≥ λ(1 -) + (1 -λ)(1 -) ≥ 1 -
Note that for t ∈ [t 0 , t 0 + δ], the preceding relation is straightforward.

2.3 Comparison between the sets of Nash equilibrium payos in pure and mixed strategies

We already know that the set of Nash equilibrium payos in mixed strategies contains the convex hull of the set of Nash equilibrium payos in pure strategies. We now try to compare these two sets and it appears that in general, they are not equal. This result is not intuitive because the punitive strategies and the guaranteed payos of the players are exactly the same whether players use pure or mixed strategies. Proposition 2.10. There exist non zero sum dierential games such that the set of Nash equilibrium payos in mixed strategies is larger than the convex hull of the set of Nash equilibrium payos in pure strategies:

E r (t 0 , x 0 ) ConvE(t 0 , x 0 ).
Proof. We will build a counter-example where a Nash equilibrium payo in mixed strategies does not belong to the closed convex hull of the Nash equilibrium payos in pure strategies. Consider the simple game in nite time in IR 2 with dynamics :

ẋ = u + v u, v ∈ [-1/2, 1/2] 2
starting from the origin O = (0, 0) at time t = 0 and ending at time t = T = 1 with

x = (x 1 , x 2 ).
The payo functions are the Lipschitz continuous functions dened as follows:

g 1 :        g 1 (x) = 1 -4|x 2 | for |x 2 | ≤ 1/4 and |x 2 | ≥ |x 1 | g 1 (x) = 1 -4|x 1 | for |x 1 | ≤ 1/4 and |x 1 | ≥ |x 2 | g 1 (x) = x 2 + 2|x 1 | -1 for x 2 ≥ -2|x 1 | + 1 g 1 (x) = 0
elsewhere In fact g 1 is a non negative function dened on the unit square centered at the origin and its graph looks like a pyramid of height 1 with base the square with length 1/2 centered at the origin, completed with two symmetric triangles joining (0, 1, 0), [START_REF] Aumann | Repeated games with incomplete information[END_REF][START_REF] Aumann | Repeated games with incomplete information[END_REF][START_REF] Basar | Dynamic noncooperative game theory , 2 nd Edition[END_REF] and (1, -1, 0) for the rst and (0, 1, 0), (-1, 1, 2) and (-1, -1, 0) for the second.

g 2 : g 2 (x) = 0 for x 2 ≥ 0 g 2 (x) = -x 2 for x 2 ≤ 0
The game clearly fulll the regularity assumptions listed in the introduction. We will denote by L the greater of the Lipschitz-constants of g 1 and g 2 for the L 1 -norm.

The set of all reachable points starting at time 0 from the origin O and stopping at time T = 1 is the unit ball in IR 2 for the L 1 norm and the set of all reachable payos is [0, 2] × {0} ∪ y∈(0,1] ([0, 1 -y], y). It is also clear that

V 1 (t, x) = g 1 (x) V 2 (t, x) = g 2 (x)
The initial values are V 1 (0, O) = 1 and V 2 (0, O) = 0, implying any Nash equilibrium payo has to reward players I with at least 1 and player II with a non-negative payo, meaning no trajectory can end up at time T at some x such that x 2 < 0 because this would cause player I to earn strictly less than 1. We then have e 2 = 0 corresponding to y ≥ 0 for every Nash equilibrium payo in pure strategies. Considering Nash equilibrium payos in pure strategies, we can easily compute

E(0, O) = [1, 2] × {0} = ConvE(0, O).
It is the set of all reachable payos such that e 1 ≥ 1.

We now will compute some random controls (u, v) leading to a nal payo of 1 for player I and positive for player II. The controls induce the trajectories joining (3/4, 0) at time t = 3/4 (u = v = (1/2, 0)) and then with probability one half:

• from t = 3/4 on, join (1, 1/4) at t = 1 (u = v = (1/2, 1/2)) and get the payo

(5/4, 0)

• from t = 3/4 on, join (1, -1/4) at t = 1 (u = v = (1/2, -1/2))
and get the payo (3/4, 1/4) The nal payo will be (e 1 , e 2 ) = (1, 1/8) / ∈ ConvE(0, O). We will as usual denote by X • = X 0,O,u,v • It remains to prove that this payo is a Nash equilibrium payo in mixed strategies. We use the characterization of the Nash equilibrium payos of theorem 2.1 and prove that along the trajectories the condition

E[g i (X T )|F t ] ≥ V i (t, X t )
is satised. Indeed, along the trajectories:

for t ∈ [0, 1/4] V 1 (t, X t ) = 1 -4t and E g 1 (X T ) F t = 1 for t ∈ [1/4, 1/2] V 1 (t, X t ) = 0 and E g 1 (X T ) F t = 1 for t ∈ [1/2, 3/4] V 1 (t, X t ) = 2t -1 and E g 1 (X T ) F t = 1 for t ∈ (3/4, 1] : either V 1 (t, X t ) = 3t -7/4 and E g 1 (X T ) F t = 5/4 or V 1 (t, X t ) = t -1/4 and E g 1 (X T ) F t = 3/4 and    for t ∈ [0, 3/4] V 2 (t, X t ) = 0 and E g 2 (X T ) F t = 1/8 for t ∈ (3/4, 1] : either V 2 (t, X t ) = 0 and E g 2 (X T ) F t = 0 or V 2 (t, X t ) = t -3/4 and E g 2 (X T ) F t = 1/4
We can see that for t ≤ 3/4, the condition is satised. Now, for each trajectory from t = 3/4 on, we have V i (t, X t ) is either non decreasing or constant so that for i = 1, 2 V i (t, X t ) ≤ V i (T, X T ) = g i (X T ) and the condition is satised. This proves that the nal payo (e 1 , e 2 ) = (1, 1/8) is a Nash equilibrium payo in mixed strategies.

Publicly correlated equilibrium payos

We recall that E c (t 0 , x 0 ) ⊃ E(t 0 , x 0 ). We are going to state some characterization of publicly correlated equilibrium payos and compare the set of Nash equilibrium payos using mixed strategies and the set of publicly correlated equilibrium payos. Theorem 3.1. The set of publicly correlated equilibrium payos is equal to the set of Nash equilibrium payos using mixed strategies.

Proof. To begin with, we will show that E r (t 0 , x 0 ) ⊆ E c (t 0 , x 0 ). We will prove that publicly correlated equilibrium payos satisfy the same kind of characterization as Nash equilibrium payos using mixed strategies: Proposition 3.2 (Characterization of publicly correlated equilibrium payos). The payo e = (e 1 , e 2 ) ∈ IR2 is a publicly correlated equilibrium payo i for all > 0, there exist random controls (u , v ), such that ∀i = 1, 2:

• |E[g i (X t 0 ,x 0 ,u ,v T )] -e i | ≤ • ∀t ∈ [t 0 , T ], if we denote by (F t ) = σ{(u , v )(s), s ∈ [t 0 , t]} P E g i (X t 0 ,x 0 ,u ,v T ) F t ≥ V i (t, X t 0 ,x 0 ,u ,v t ) - ≥ 1 -
Proof of Proposition 3.2. The proof is a simple adaptation of the proof used in [START_REF] Buckdahn | Nash equilibrium payos for nonzero sum stochastic dierential games[END_REF]. We rewrite it here for the sake of completeness.

We begin with the necessary condition. Let e be a publicly correlated equilibrium payo as in Denition 7. Fix and choose Consider the pair (u V , v V ) of admissible controls generated by the (F t ) publicly correlated strategies (α V , β ), and build the admissible control ũ :

• ũ = u on ([t 0 , τ ) × Ω ) ∪ ([τ, T ] × Σ ) • ũ = u V on [τ, T ] × Σ c
Note that ũ is progressively measurable with respect to (F t ). We have:

• β (ũ ) ≡ v on [t 0 , τ ) • β (ũ ) ≡ v on [τ, T ) × Σ • β (ũ ) ≡ v V on [τ, T ) × Σ c
and nally:

J 1 (t 0 , x 0 , ũ , β ) = E (g 1 (X T )1 Σ ) + E g 1 (X τ,X τ ,u V ,v V T )1 Σ c ≥ E (g 1 (X T )1 Σ ) + E V 1 (τ, X τ )1 Σ c - 2 P (Σ c ) ≥ E (g 1 (X T )1 Σ ) + E E g 1 (X T ) F τ 1 Σ c + ( - 2 )P (Σ c ) > J 1 (t 0 , x 0 , α , β ) + 2 2
This leads to a contradiction with the 2 2 -optimality of (α , β ). Therefore, for all t ∈ [t 0 , T ], for i = 1, 2:

P E g i (X t 0 ,x 0 ,u ,v T ) F t ≥ V i (t, X t 0 ,x 0 ,u ,v t ) - ≥ 1 -
It remains to prove the sucient condition.

Fix > 0. Set δ small enough such that:

1. ∀t ∈ [t 0 , T ], ∀x ∈ IR n , ∀y ∈ B(x, δ f ∞ ), for all i = 1, 2: |V i (t, x) -V i (t + δ, y)| ≤ 2. ∀t ∈ [t 0 , T ], ∀x ∈ IR n , ∀y ∈ B(x, δ f ∞ ), ∀(u, v) ∈ U(t) × V(t), for all i = 1, 2: |g i (X t,x,u,v T ) -g i (X t,y,u,v T )| ≤ 3. ∃N ∈ IN * such that N δ = T -t 0 ,
in order to build a time partition t 0 , . . . , t k = t 0 + kδ, . . . , t N = T . Set η = /N . By assumption, we have a ltration (F η t ) and a pair of correlated controls (u η , v η ) satisfying the conditions of Proposition 3.2. We will as usual denote by X η • = X t 0 ,x 0 ,uη,vη • . It remains to build a pair of correlated strategies (α , β ). We will need "punitive strategies" as in Denition 2.4. The idea of the strategy α is a trigger strategy that plays u η as long as player II plays the control v η and as soon as a deviation from the expected control of the opponent is detected, player I will use the punitive strategy.

If the control of player II is v, we introduce the stopping times:

S(v) := inf{t ≥ t 0 / v| [t 0 ,t] ≡ v η | [t 0 ,t] } and τ (v) = min{t k ≥ t 1 / t k > S(v)} with the convention τ (v) = T on {S(v) = T }.
We now dene more precisely the strategy α :

α (v) = u η on [[t 0 , τ (v)]] α ,t k p (X t 0 ,x 0 ,uη,v t k )(v| (t k ,T ] ) on (t k , T ] × {τ (v) = t k }
It is clear that α is a correlated strategy for the correlation device (F η t ). Indeed, we have a strongly non-anticipative strategy by denition, and the delay is the minimum of the delays of the N punitive strategies α ,t k p (•), k = 1, . . . , N . The strategy β is dened in a symmetric way.

First of all, we check that the pair of controls associated to the correlated strategies (α , β ) is (u η , η ), and we immediately get for i = 1, 2:

|J i (t 0 , x 0 , α , β ) -e i | ≤ /N ≤
It remains to prove that the correlated strategies we have built are -optimal. Consider a strategy β of player II, such that ((F η t ), α , β) are correlated strategies. Denote by (u, v) the pair of controls associated to (α , β). For any k = 1, . . . , N -1 we have:

g 2 (X t 0 ,x 0 ,u,v T )1 {τ (v)=t k } = g 2 X t k ,X t 0 ,x 0 ,u,v t k ,α ,t k p (X t 0 ,x 0 ,uη ,v t k ),v T 1 {τ (v)=t k } ≤ V 2 (t k , X t 0 ,x 0 ,uη,v t k )1 {τ (v)=t k } + 1 {τ (v)=t k } ≤ V 2 t k , X S(v),X η S(v) ,uη,v t k 1 {τ (v)=t k } + 1 {τ (v)=t k } ≤ V 2 (t k , X η t k )1 {τ (v)=t k } + 2 1 {τ (v)=t k } due to the choice of δ. (25) 
Notice also that τ (v) = T means {v(s) ≡ v η (s) ∀s ∈ [t 0 , T -δ]}. We now will use these results to compute J 2 (t 0 , x 0 , α , β):

J 2 (t 0 , x 0 , α , β) = E g 2 (X t 0 ,x 0 ,uη,v T )1 τ (v)=T + E g 2 (X t 0 ,x 0 ,u,v T )1 τ (v)<T = E g 2 (X T -δ,X η T -δ ,uη,v T )1 τ (v)=T + N -1 k=1 E g 2 (X t 0 ,x 0 ,u,v T )1 τ (v)=t k ≤ E g 2 (X η T ) + )1 τ (v)=T + N -1 k=1 E (V 2 (t k , X η t k ) + 2 )1 τ (v)=t k due to (25) ≤ E g 2 (X η T )1 τ (v)=T + N -1 k=1 E V 2 (t k , X η t k )1 τ (v)=t k + 2 (26) 
At this point we will try to get an estimate of V 2 (t k , X η t k ) for all k = 1, . . . , N -1. We have to use the assumptions on (u η , v η ): we denote by

Σ k η := ω/ V 2 (t k , X η t k ) ≤ E g 2 (X η T ) F η t k + η
and we have P(Σ k η ) ≥ 1 -/N . As V 2 is bounded with a constant K we have for all k = 1, . . . , N -1:

V 2 (t k , X η t k ) = V 2 (t k , X η t k )1 Σ k η + V 2 (t k , X η t k )1 Σ k η c ≤ E g 2 (X η T ) F η t k + η 1 Σ k η + K1 Σ k η c ≤ E g 2 (X η T ) F η t k + K1 Σ k η c + η
if we assume as usual that g 2 is non negative. Introducing this inequality in our estimate (26) of J 2 (t 0 , x 0 , α , β):

J 2 (t 0 , x 0 , α , β) ≤ E g 2 (X η T )1 τ (v)=T + N -1 k=1 E V 2 (t k , X η t k )1 τ (v)=t k + 2 ≤ E g 2 (X η T )1 τ (v)=T + N -1 k=1 E E g 2 (X η T ) F η t k 1 τ (v)=t k + N -1 k=1 E K1 Σ k η c 1 τ (v)=t k + 3 ≤ E g 2 (X η T )1 τ (v)=T + E g 2 (X η T )1 τ (v)<T + K N -1 k=1 P Σ k η c + 3
≤ E g 2 (X η T ) + (3 + K) ≤ J 2 (t 0 , x 0 , α , β ) + (3 + K) and we have proven that α is (3 + K) -optimal. The result is the same for β . In the end, we were able to build (3 + K) -optimal correlated strategies that reward a payo -close to e, meaning e is a correlated equilibrium payo.

End of the proof of Theorem 3.1 This characterization and Theorem 2.1 ensure that any Nash equilibrium payo using mixed strategies is in fact a publicly correlated equilibrium payo.

Note that the only dierence with the characterization of Nash equilibrium payos is that publicly correlated equilibrium payos may rely on random controls dened on an innite underlying probability space, whereas in our denition, mixed strategies are dened only on nite underlying probability spaces.

We now will prove that E r (t 0 , x 0 ) ⊇ E c (t 0 , x 0 ). We consider some publicly correlated equilibrium payo satisfying the characterization of proposition 3.2 and we will prove that we are able to build a nite number of random controls satisfying the characterization of theorem 2.1, implying e will be a Nash equilibrium payo.

First of all, we shall prove that the trajectories generated by (u η , v η )(ω) and (u , v )(ω) are close for suciently small values of h and h.

For all k = 0 . . . N h -1, we have

X η t k+1 (ω) -X t k (ω) ≤ X t k-1 ,X η t k (ω),ϕc(t k-1 ,Π(X t k-1 (ω)),Π(X t k (ω))) t k -X t k (ω) ≤ X t k-1 ,ϕ(t k-1 ,Π(X t k-1 (ω)),Π(X t k (ω))) t k -X t k (ω) + X t k-1 ,X η t k (ω),ϕc(t k-1 ,Π(X t k-1 (ω)),Π(X t k (ω))) t k -X t k-1 ,ϕ(t k-1 ,Π(X t k-1 (ω)),Π(X t k (ω))) t k ≤ h + ϕ x (t k-1 , Π(X t k-1 (ω)), Π(X t k )(ω)) -X η t k (ω) e L f h ≤ h + X η t k (ω) -X t k-1 (ω) + h e L f h
because by denition, Π(X t k (ω)) = Π X t k-1 ,ϕ(t k-1 ,Π(X t k-1 (ω)),Π(X t k (ω))) t k and Π(X t k-1 (ω)) = Π ϕ x (t k-1 , Π(X t k-1 (ω)), Π(X t k (ω))) and points in B(x 0 , (T -t 0 ) f ∞ ) having the same projection on Gh are at most h distant. Using backward induction, and noticing that X η t 1 (ω) -X t 0 (ω) ≤ f ∞ h, we have that for all k = 0 . . . N h -1:

X η t k+1 (ω) -X t k (ω) ≤ h(1 + e L f h ) k-1 i=0 e iL f h + he kL f h f ∞ ≤ 2 h T -t 0 h e L f (T -t 0 ) + he L f (T -t 0 ) f ∞
In order to minimize the distance between X • (ω) and X η • (ω), we set for example h = h 2 in order to get for all k = 0 . . . N h :

X t k (ω) -X η t k (ω) ≤ h e L f (T -t 0 ) (2(T -t 0 ) + f ∞ ) + f ∞
and for all t ∈ [t k , t k+1 ):

X t (ω) -X η t (ω) ≤ h e L f (T -t 0 ) (2(T -t 0 ) + f ∞ ) + 3 f ∞
Finally choosing h small enough:

X • (ω) -X η • (ω) ∞ ≤ (28) 
Now, it is easy to check that the nal payo using (u η , v η ) is close to the payo generated by (u , v ). Indeed for all i = 1, 2:

|J i (t 0 , x 0 , u , v ) -J i (t 0 , x 0 , u η , v η )| ≤ Ω g i (X T (ω)) -g i (X η T (ω)) dP(ω)

≤ Ω L g X T (ω) -X η T (ω) dP(ω) ≤ L g
where L g is maximum of the Lipschitz constant of the payo functions g 1 and g 2 .

Using the assumption (27) on (u , v ), we get for all i = 1, 2 and < 1:

E g i (X η T ) -e i ≤ L g + 2 ≤ (L g + 1)
It remains to prove that the trajectories generated by (u η , v η ) are consistent. For all t ∈ [t 0 , T ], for all i = 1, 2, using (28) we get:

V i (t, X η t ) ≤ E V i (t, X t ) F η t + L V (29) 
where L V is maximum of the Lipschitz constant of the value functions V 1 and V 2 , and

E g i (X T ) F η t ≤ E g i (X η T ) F η t + L g (30) 
We now have to use the assumptions (27) on (u , v ): if we denote by

Σ i t := ω/ V i (t, X t ) ≤ E g i (X T ) F t + 2
we know that P(Σ i t ) ≥ 1 -2 . Then, denoting by K an upper bound of the payo functions, for all t ∈ [t 0 , T ], for all i = 1, 2, we get:

V i (t, X t ) ≤ E g i (X T ) F t 1 Σ i t + K1 (Σ i t ) c + 2 ≤ E g i (X T ) F t + K1 (Σ i t ) c +
assuming as usual that the functions g i are non negative.

Going back to our estimate of V i (t, X η t ) as computed in (29) and noticing that the ltration (F η t ) is a subltration of (F t ), we can write:

V i (t, X η t ) ≤ E E g i (X T ) F t F η t + E K1 (Σ i t ) c F η t + + L V ≤ E g i (X T ) F η t + KP (Σ i t ) c F η t + (L V + 1) ≤ E g i (X η T ) F η t + KP (Σ i t ) c F η t + (L V + L g + 1) due to (30) We rewrite this last inequality introducing the constant C * = max(L V , L g , 1, K):

V i (t, X η t ) ≤ E g i (X η T ) F η t + C * P (Σ i t ) c F η t + 3C * (31) 
In order to estimate P[(Σ i t ) c |F η t ], we will use the assumption P((Σ i t ) c ) ≤ 2 :

E P (Σ i t ) c F η t ≤ 2 ⇒ P P (Σ i t ) c F η t ≥ ≤
This implies for all t ∈ [t 0 , T ], for all i = 1, 2:

P V i (t, X η t ) ≤ E g i (X η T ) F η t + 4C * ≥ P P((Σ i t ) c |F η t ) ≤ ≥ 1 -
Finally, for all > 0, we have built nitely many random controls (u η , v η ) dened on an underlying innite probability space, that are equivalent to random controls dened on an underlying nite probability space satisfying for < 1 for i = 1, 2:

E[g i (X η T )] -e i ≤ 2C *
and for all t ∈ [t 0 , T ] for i = 1, 2:

P V i (t, X η t ) ≤ E g i (X t 0 ,x 0 ,uη,vη T ) F η t + 4C * ≥ 1 -
This proves that e is a Nash equilibrium payo in mixed strategies.

2 optimal correlated strategies ((F t ), α , β ) as in the denition: (α , β ) generates admissible controls (u , v ) that are (F t )-adapted. The ltration (F t ) = (σ{(u , v )(s), s ∈ [t 0 , t]}) is a subltration of (F t ). We will denote by X • =

We will prove that (u , v ) satisfy the second part of the Proposition. Suppose on the contrary that there exist τ ∈ [t 0 , T ] such that:

We denote by

We have P(Σ ) < 1 -.

We will use the maximin strategy α 2 ,τ g (x) as in Lemma 2.2. We dene the strategy α V : for all v ∈ Ṽ(t 0 )

Consider some publicly correlated equilibrium payo e. Fix and consider the 2 -optimal random controls (u , v ) on the underlying probability space (Ω, F, P).

Denote as usual by X

Note that these controls satisfy:

If there are nitely many distinct controls (u , v ) there is nothing left to prove. Else, we will build a nite number of random controls rewarding a payo close to e and consistent.

We set h > 0 and h > 0 to be dened later such that there exist

We build the following time partition G h = {t k = t 0 + kh} k=0,...,N h and the grid in

..,0,...,Nh} n where (e i ) i=1...n is a basis of IR n . We now introduce a projection on the grid:

where the minimum is taken with respect to the lexicographic order and d 1 is the distance associated to the norm x 1 = max i=1...n |x i |. From now on we will always use this norm in IR n .

To any

) = x j . We will set ϕ x (t k , x i , x j ) = x and ϕ c (t k , x i , x j ) = (u, v).

We now are able to build a nite number of random controls dened on (Ω, F). To any ω ∈ Ω we associate (u η , v η )(ω) in the following way:

Note that the denition of (u η , v η ) is non anticipative. From now on, we will denote by

. We now would like to prove that the set of nitely many random controls (u η , v η ) dened on (Ω, F, P) satises for i = 1, 2, for some constants C 1 , C 2 , C 3 :

• ∀t ∈ [t 0 , T ], if we denote by F η t = σ{(u η , v η )(s), s ∈ [t 0 , t]} P E g i (X η T ) F η t ≥ V i (t, X η t ) -C 2 ≥ 1 -C 3