N

N
N

HAL

open science

Discrete Riemann Surfaces and the Ising model
Christian Mercat

» To cite this version:

Christian Mercat. Discrete Riemann Surfaces and the Ising model. Communications in Mathematical

Physics, 2001, 218 (1), pp.177-216. 10.1007/s002200000348 . hal-00418532

HAL Id: hal-00418532
https://hal.science/hal-00418532
Submitted on 19 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-00418532
https://hal.archives-ouvertes.fr

Discrete Riemann Surfaces and the Ising Model

Christian Mercat

Université Montpellier 2, France
E-mail: mercat@math.univ-montp2.fr

Received 23 May 2000/ Accepted: 21 November 2000

Abstract: We define a new theory of discrete Riemann surfaces and present
its basic results. The key idea is to consider not only a cellular decomposition
of a surface, but the union with its dual. Discrete holomorphy is defined by a
straightforward discretisation of the Cauchy-Riemann equation. A lot of classical
results in Riemann theory have a discrete counterpart, Hodge star, harmonicity,
Hodge theorem, Weyl’s lemma, Cauchy integral formula, existence of holomor-
phic forms with prescribed holonomies. Giving a geometrical meaning to the
construction on a Riemann surface, we define a notion of criticality on which
we prove a continuous limit theorem. We investigate its connection with crit-
icality in the Ising model. We set up a Dirac equation on a discrete universal
spin structure and we prove that the existence of a Dirac spinor is equivalent to
criticality.
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1. Introduction

We present here a new theory of discrete analytic functions, generalising to
discrete Riemann surfaces the notion introduced by Lelong-Ferrand [LE].
Although the theory defined here may be applied wherever the usual Rie-
mann Surfaces theory can, it was primarily designed with statistical mechanics,
and particularly the Ising model, in mind [McCWI[ID]. Most of the results can
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be understood without any prior knowledge in statistical mechanics. The other
obvious fields of application in two dimensions are electrical networks, elasticity
theory, thermodynamics and hydrodynamics, all fields in which continuous Rie-
mann surfaces theory gives wonderful results. The relationship between the Ising
model and holomorphy is almost as old as the theory itself. The key connection
to the Dirac equation goes back to the work of Kaufman [K] and the results in
this paper should come as no surprise for workers in statistical mechanics; they
knew or suspected them for a long time, in one form or another. The aim of
this paper is therefore, from the statistical mechanics point of view, to define a
general theory as close to the continuous theory as possible, in which claims as
“the Ising model near criticality converges to a theory of Dirac spinors” are given
a precise meaning and a proof, keeping in mind that such meanings and proofs
already exist elsewhere in other forms. The main new result in this context is
that there exists a discrete Dirac spinor near criticality in the finite size Ising
model, before the thermodynamic limit is taken. Self-duality, which enabled
the first evaluations of the critical temperature [KW.[Ons|[Wan5b()], is equivalent
to criticality at finite size. It is given a meaning in terms of compatibility with
holomorphy.

The first idea in order to discretise surfaces is to consider cellular decompo-
sitions. Equipping a cellular decomposition of a surface with a discrete metric,
that is giving each edge a length, is sufficient if one only wants to do discrete har-
monic analysis. However it is not enough if one wants to define discrete analytic
geometry. The basic idea of this paper is to consider not just the cellular decom-
position but rather what we call its double, i.e. the pair consisting of the cellular
decomposition together with its Poincaré dual. A discrete conformal structure is
then a class of metrics on the double where we retain only the ratio of the lengths
of dual edgesﬂ. In Ising model terms, a discrete conformal structure is nothing
more than a set of interaction constants on each edge separating neighbouring
spins in an Ising model of a given topology.

A function of the vertices of the double is said to be discrete holomorphic if
it satisfies the discrete Cauchy-Riemann equation, on two dual edges (x,2’) and

(v, 9,
) = fly) _ f@) — f(@)
U(y,y') l(z,2’)

This definition gives rise to a theory which is analogous to the classical theory
of Riemann surfaces. We define discrete differential forms on the double, a Hodge
star operator, discrete holomorphic forms, and prove analogues of the Hodge
decomposition and Weyl’s lemma. We extend to our situation the notion of pole
of order one and we prove existence theorems for meromorphic differentials with
prescribed poles and holonomies. Similarly, we define a Green potential and a
Cauchy integral formula.

Up to this point, the theory is purely combinatorial. In order to relate the
discrete and continuous theories on a Riemann surface, we need to impose an
extra condition on the discrete conformal structure to give its parameters a geo-
metrical meaning. We call this semi-criticality in Sect.[3l The main result here is

1 By definition, a discrete Riemann surface is a discrete surface equipped with a discrete
conformal structure in this sense.
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Fig. 1: The discrete Cauchy-Riemann equation.

that the limit of a pointwise convergent sequence of discrete holomorphic func-
tions, on a refining sequence of semi-critical cellular decompositions of the same
Riemann surface, is a genuine holomorphic function on the Riemann surface. If
one imposes the stronger condition of criticality on the discrete conformal struc-
ture, one can define a wedge product between functions and 1-forms which is
compatible with holomorphy.

Finally, for applications of this theory to statistical physics, one needs to
define a discrete analogue of spinor fields on Riemann surfaces. In Sect. [4] we
first define the notion of a discrete spin structure on a discrete surface. It sheds
an interesting light onto the continuous notion, allowing us to redefine it in
explicit geometrical terms. In the case of a discrete Riemann surface we then
define a discrete Dirac equation, generalising an equation appearing in the Ising
model, and show that criticality of the discrete conformal structure is equivalent
to the existence of a local massless Dirac spinor field.

In Sect.[2] we present definitions and properties of the theory which are purely
combinatorial. First, in the empty boundary case, we recall the definitions of dual
cellular complexes, notions of deRham cohomology. We define the double A, we
present the discrete Cauchy-Riemann equation, the discrete Hodge star on A, the
Laplacian and the Hodge decomposition. In Subsect. 2.2, we prove Dirichlet and
Neumann theorems, the basic tools of discrete harmonic analysis. In Subsect.
we prove existence theorems for 1-forms with prescribed poles and holonomies.
In Subsect. 2241 we deal with the basic difficulty of the theory: The Hodge star
is defined on A while the wedge product is on another complex, the diamond
{, obtained from I" or I'* by the procedure of tile centering [GS87]. We prove
Weyl’s lemma, Green’s identity and Cauchy integral formulae.

In Sect. Bl we define semi-criticality and criticality and prove that it agrees
with the usual notion for the Ising model on the square and triangular lattices.
We present Voronoi and Delaunay semi-critical maps in order to give examples
and we prove the continuous limit theorem. We prove that every Riemann surface
admits a critical map and give examples. On a critical map, the product between
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functions and 1-forms is compatible with holomorphy and yields a polynomial
ring, integration and derivation of functions. We give an example showing where
the problems are.

In Sect. [l we set up the Dirac equation on discrete spin structures. We moti-
vate the discrete universal spin structure by first showing the same construction
in the continuous case. We show discrete holomorphy property for Dirac spinors,
we prove that criticality is equivalent to the existence of local Dirac spinors and
present a continuous limit theorem for Dirac spinors.

2. Discrete Harmonic and Holomorphic Functions

In this section, we are interested in properties of combinatorial geometry. The
constructions are considered up to homeomorphisms, that is to say on a combi-
natorial surface, as opposed to Sect. [3l where criticality implies that the discrete
geometry is embedded in a genuine Riemann surface.

2.1. First definitions. Let X be an oriented surface without boundary. A cellular
decomposition I" of X is a partition of X into disjoint connected sets, called cells,
of three types: a discrete set of points, the vertices I; a set of non intersecting
paths between vertices, the edges I'1; and a set of topological discs bounded by
a finite number of edges and vertices, the oriented faces I';. A parametrisation
of each cell is chosen, faces are mapped to standard polygons of the euclidean
plane, and edges to the segment (0, 1); we recall particularly that for each edge,
one of its two possible orientations is chosen arbitrarily. We consider only locally
finite decompositions, i.e. any compact set intersects a finite number of cells. In
each dimension, we define the space of chains C(I") as the Z-module generated
by the cells. The boundary operator 9 : Cy,(I") — Cj_1(I") partially encodes the
incidence relations between cells. It fulfills the boundary condition 99 = 0.

We now describe the dual cellular decomposition I'* of a cellular de-
composition I" of a surface without boundary. We refer to [VeDh] for the general
definition. Though we formally use the parametrisation of each cell for the def-
inition of the dual, its combinatorics is intrinsically well defined. To each face
F € I'; we define the vertex F™* € Iy inside the face F', the preimage of the ori-
gin of the euclidean plane by the parametrisation of the face. Each edge e € I7,
separates two faces, say Fi, Fy € I (which may coincide), hence is identified
with a segment on the boundary of the standard polygon corresponding to Fi,
respectively Fo. We define the dual edge e* € Iy as the preimage of the two seg-
ments in these polygons, joining the origin to the point of the boundary mapped
to the middle of e. It is a simple path lying in the faces F} and F,, drawn be-
tween the two vertices F}* and Fj (which may coincide), cutting no edge but e,
once and transversely. As the surface is oriented, to the oriented edge e we can
associate the oriented dual edge e* such that (e, e*) is direct at their crossing
point. To each vertex v € Iy, with vy,...,v, € I as neighbours, we define the
face v* € I'y by its boundary ov* = (v,v1)* + ... 4+ (v,v)* + ... + (v, v,)*.

Remark 1. I'* is a cellular decomposition of X' [Veb]. If we choose a parametrisa-
tion of the cells of I'™*, we can consider its dual I"**; it is a cellular decomposition
homeomorphic to I" but the orientation of the edges is reversed. The bidual of
e € I is the reversed edge e** = —e (see Fig. ).
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0. The vertex dual to a face. 1. Dual edges. 2. The face dual to a vertex.
Fig. 2: Duality.

The double A of a cellular decomposition is the union of these two dual
cellular decompositions. We will speak of a k-cell of A as a k-cell of either I" or
.

A discrete metric ¢ is an assignment of a positive number £(e) to each edge
e € Ay, its length. For convenience the edge with reversed orientation, —e, will
be assigned the same length: ¢(—e) := £¢(e). Two metrics ¢,¢' : A3 — (0, 400)
belong to the same discrete conformal structure if the ratio of the lengths
ple) == eé((e;)) = eé,((ee*)), on each pair of dual edges e € I}, e* € ') are equal.

A function f on A is a function defined on the vertices of I" and of I'*. Such
a function is said to be holomorphic if, for every pair of dual edges (z,z") € I}
and (y,y) = (z,2')* € I, it fulfills

f@)—fly)  f@) = f(x)
(y,y') Ux,2’)

It is the naive discretisation of the Cauchy-Riemann equation for a function f,
which is; in local orthonormal coordinates (x,y):

of _,of
oy Oz’

Here, we understand two dual edges as being orthogonal.

This equation, though simple, was never considered in such a generality. It
was introduced by Lelong-Ferrand for the decomposition of the plane by the
standard square lattice Z2. It is also called monodiffric functions; for background
on this topic, see [Duf]. Polynomials of degree two, restricted to the square lattice,
give examples of monodiffric functions. See also the works of Kenyon [Ken| and
Schramm and Benjamini who considered more than lattices.

The usual notions of deRham cohomology are useful in this setup. We said
that k-chains are elements of the Z-module Cy(A), generated by the k-cells, its
dual space C*(A) := Hom (Cj(A),C) is the space of k-cochains. We will denote
the coupling by the usual integral and functional notations: f(x) for a function
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f € C%A) on a vertex x € Ag; [, for a 1-form a € C'(A) on an edge e € Ay;
and [[,w for a 2-form w € C*(A) on a face F € As.

The coboundary d : C*(A) — C*t1(A) is defined by the Stokes formula
(with the same notations as before):

| at=row) =)~ f@  [[da=fa.

(z,2") OF

As the boundary operator splits onto the two dual complexes I and I'*, the
coboundary d also respects the direct sum C*(A) = CF(I") @ C*(I™).

The Cauchy-Riemann equation can be written in the usual form *df = —idf
for the following Hodge star * : C¥(A) — C27%(A) defined by:

We extend it to functions and 2-forms by:

[[s=10. st = [[w

As, by definition, for each edge e € Ay, p(e)p(e*) = Ze((i)) f((;)) =1,

the Hodge star fulfills on k-forms, ** = (=1)*@=FId e ).
It decomposes 1-forms into —i, respectively +i, eigenspaces, called type
(1,0), resp. type (0,1) forms:

Cl(A) = CH(A) e OV (A).

The associated projections are denoted:

T10) = = (Id +ix): C1(A) — C1O(4),

(Id — ix): CL(A) — COD(A).

N = N =

o1 =
A 1-form is holomorphic if it is closed and of type (1,0):
a€ 2 (A) < da=0and *xa=—iu

It is meromorphic with a pole at a vertex x € Ay if it is of type (1,0) and not
closed on the face x*. Its residue at x is defined by

1
Res,; (o) :=

20w Joue

The residue theorem is merely a tautology in this context.
We define d’,d”, the composition of the coboundary with the projections on
eigenspaces of * as its holomorphic and anti-holomorphic parts:

d = T(1,0) © d, d' = T, °d
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from functions to 1-forms,
d:=domqy, d':=domy

from 1-forms to 2-forms and &’ = d” = 0 on 2-forms. They verify d’*> = 0 and
" =0.

The usual discrete laplacian, which splits onto I' and I'™* independently,
reads A := —d *d x — * d * d as expected. Its formula for a function f € C°(A)
on a vertex x € Ay, with x1,...,x, as neighbours is

n
(Af)(@) =" plw,zx) (f () = f(@x) - (2.1)
k=1

As in the continuous case, it can be written in terms of d’ and d” operators: For
functions, A = i« (d'd” — d"d’), in particular holomorphic and anti-holomorphic
functions are harmonic. The same result holds for 1-forms.

In the compact case, the operator d* = —xdx is the adjoint of the coboundary
with respect to the usual scalar product, (f,g) := >_ ¢4, f(7)g(z) on functions,
similarly on 2-forms and

@) =3 o) () ([5) on1-torms

ecAq
It gives rise to the Hodge decomposition,

Proposition 1 (Hodge theorem). In the compact case, the k-forms are de-
composed into orthogonal direct sums of exact, coexact and harmonic forms:

C*(A) =Im d @ Im d* &* Ker A,
harmonic forms are the closed and coclosed ones:
Ker A = Ker d N Ker d*.

In particular the only harmonic functions are locally constant. Harmonic 1-forms
are also the sum of holomorphic and anti-holomorphic ones:

Ker A = Ker d' &' Ker d”.

Beware that A being disconnected, the space of locally constant functions is
2-dimensional. The function € which is +1 on I" and —1 on I'* is chosen as the
second basis vector.

The proof is algebraic and the same as in the continuous case. As the Lapla-
cian decomposes onto the two dual graphs, this result tells also that for any
harmonic 1-form on I, there exists a unique harmonic 1-form on the dual graph
I'* such that the couple is a holomorphic 1-form on A, it’s simply ap« :=i*ap.
These decompositions don’t hold in the non-compact case; there exist non-closed
and/or non-co-closed, harmonic 1-forms.
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2.2. Dirichlet and Neumann problems.

Proposition 2 (Dirichlet problem). Consider a finite connected graph I,
equipped with a function p on the edges, and a certain non-empty set of points
D marked as its boundary. For any boundary function f2 : (0I')g — C, there
exists a unique function f, harmonic on Iy \ D such that flar = f°.

We refer to the usual laplacian defined by Eq. 211

If f9 =0, the solution is the null function. Otherwise, it is the minimum of
the strictly convex, positive functional f +— (df,df), proper on the non-empty
affine subspace of functions which agree with £ on the boundary.C]

Definition 1. Given I' a cellular decomposition of a compact surface with bound-
ary X, define the double X2 := X U X, union with the opposite oriented surface,
along their boundary. The double I'? is a cellular decomposition of the compact
surface X2. Consider its dual I'** and define I'* := X N I'%*. We don’t take into
account the faces of I'** which are not completely inside X but we do consider
the half-edges dual to boundary edges of I' as genuine edges noted (0I'*); and
define (OI'*)o := I'?* N X as the set of their boundary vertices.

A function p on the edges of I' yields an extension to I'y by defining p(e*) :=
1
ple)

Remark 2. I'* is not a cellular decomposition of the surface; the half-edges dual
to boundary edges do not bound any face of I'*.

Proposition 3 (Neumann problem). Consider I' a cellular decomposition
of a disk, equipped with a function p on its edges. Choose a boundary vertex
Yo € (0I'*)g, a value fo € C, and on the set of boundary edges e € (0I'*)1, not
incident to yo, a 1-form .

Then there exists a unique function f, harmonic on I'* \ (0I'*)g such that
f(yo) = fo and [ df = [ a for all e € (OI'™*); not incident to yo.

It is a dual problem. Let ef € (0I'*)1, be the edge incident to yo and ey €
(011 its dual. Consider, on the set of boundary edges e € (9I'); different from
ep, the 1-form defined by i % a. Integrating it along the boundary, we get a
function f2 on (0I')g, well defined up to an additive constant. The Dirichlet
theorem gives us a function f harmonic on Iy \ (9I)o corresponding to f9.
Integrating the closed 1-form i % df on I'* yields the desired harmonic function
.0

Remark 3. The number of boundary points in I" is the same as in I'*, and as every
harmonic function on I', when the surface is a disk, defines a harmonic function
on I'* such that their couple is holomorphic, unique up to an additive constant,
the space of holomorphic functions, resp. 1-forms, on the double decomposition
with boundary A is |[(0A4)o]/2 + 1, resp. [(0A)g|/2 — 1 dimensional.

The theorem is true for more general surfaces than a disk but the proof is
different, see the author’s PhD thesis [M]. There are £2 versions of these theorems
too.
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2.3. Fxistence theorems. We have very similar existence theorems to the ones in
the continuous case. We begin with the main difference:

Proposition 4. The space of discrete holomorphic 1-forms on a compact surface
without boundary is of dimension twice the genus.

The Hodge theorem implies an isomorphism between the space of harmonic
forms and the cohomology group of A. It is the direct sum of the cohomology
groups of I' and of I'* and each is isomorphic to the cohomology group of the
surface which is 2¢g dimensional on a genus g surface. It splits in two isomorphic
parts under the type (1,0) and type (0,1) sum. As any holomorphic form is
harmonic, the dimension of the space of holomorphic 1-forms is 2¢.01

We can give explicit basis to this vector space as in the continuous case [Si€].
To construct them, we begin with meromorphic forms:

Proposition 5. Let X be a compact surface with boundary. For each wvertex
x € Ag\ 9, and a simple path A on A going from x to the boundary there exists
a pair of meromorphic 1-forms g, B with a single pole at x, with residue +1
and which have pure imaginary, respectively real holonomies, along loops which
don’t have any edge dual to an edge of \.

Proposition 6. Let X be a compact surface. For each pair of vertices x,z’ € Ag
with a simple path X\ on A from x to x’, there erists a unique pair of meromor-
phic 1-forms oy 4, By.or with only poles at x and ', with residue +1 and —1
respectively, and which have pure imaginary, respectively real holonomies, along
loops which don’t have any edge dual to an edge of .

In both cases, the forms are (Id + ix)df with f a solution of a Dirichlet
problem at 2 (and 2’) for a and of a Neumann problem on the surface split open
along the path A for 8. The uniqueness in the second proposition is given by
the difference: the poles cancel out and yield a holomorphic 1-form with pure
imaginary, resp. real holonomies, so its real part, resp. imaginary part, can be
integrated into a harmonic, hence constant function. So this part is in fact null.
Being a holomorphic 1-form, the other part is null too. We refer to the author’s
PhD thesis [M] for details.(]

As in the continuous case, it allows us to construct holomorphic forms with
(no poles and) prescribed holonomies:

Corollary 1 Let A, B € Z1(A) be two non-intersecting simple loops such that
there exists exactly one edge of A dual to an edge of B (dual loops). There exists
a unique holomorphic 1-form @ ap such that Re( [, Pap) =1 and fv b5 € 1R
for every loop v which doesn’t have any edge dual to an edge of A.

We decompose A in two paths AY and Aj. It gives us two 1-forms 3, , and
By.z, then

1
Pup = %(@674 + 67;96) (2-2)

fulfills the conditions.[]
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2.4. The diamond < and its wedge product. Following [Whif], we define a wedge
product, on another complex, the diamond <>, constructed out of the double A:
Each pair of dual edges, say (z,2') € It and (y,y') = (z,2')* € Iy, defines (up
to homeomorphisms) a four-sided polygon (z,y,z’,y’) and all these constitute
the faces of a cellular complex called ¢ (see Fig. B).

P

Fig. 3: The diamond <.

On the other hand, from any cellular decomposition < of a surface by four-
sided polygons one can reconstruct the double A. A difference is that A may
not be disconnected in two dual pieces I" and I, it is so if each loop in ¢ is
of even length; we will restrict ourselves to this simpler case. This is not very
restrictive because from a connected double, refining each quadrilateral in four
smaller quadrilaterals, one gets a double disconnected in two dual pieces.

Definition 2. A discrete surface with boundary is defined by a quadrilateral
cellular decomposition  of an oriented surface with boundary such that its double
complex A is disconnected in two dual parts.

This definition is a generalisation of the more natural previous Definition [
It allows us to consider any subset of faces of {) as a domain yielding a discrete
surface with boundary. While any edge of A has a dual edge, a vertex of A
has a dual face if and only if it is an inner vertex. Punctured surfaces can be
understood in these terms too: An inner vertex v € Ay is a puncture if it is
declared as being on the boundary and its dual face v* removed from As.

We construct a discrete wedge product, but while the Hodge star lives on the
double A, the wedge product is defined on the diamond <: A : C% () x CH(O) —
CHH($). Tt is defined by the following formulae, for f,g € C°($), a, 3 € C1($)
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and w € C%($):
(f-g)(x) =f(x) g(x) for x € o,

T) +
fa ::w / (x,y)c for (z,y) € O1,
(z,y)
[[orwiy [ ofo- [ afs
(z1,22,23,74) (ﬂEk LT Tk Tht1)  (Tht1,%k) (Tr,Tr—1)
f)+f(x2)+f(z3)+f(wa)
Jf e /]
4
11 ro,Tr3, I4) (I17I27I3,14)

for (x1, 2,23, 14) € Oo.
Lemma 1. d¢ s a derivation with respect to this wedge product.
To take advantage of this property, one has to relate forms on < and forms
on A where the Hodge star is defined. We construct an averaging map A

from C*($) to C*(A). The map is the identity for functions and defined by the
following formulae for 1 and 2-forms:

[ aeor=5| [+[+[+ [ |ao (2.3)

(z,2") (z.y) (v, r’)(r y') (y',x)

[ [ Atwo) = Z /[ e (2.4)

(ﬂﬂkaylw T,Yk—1)

where notations are made clear in Fig. @l With this definition, dq4A = Ad, but
the map A is neither injective nor always surjective, so we can neither define a
Hodge star on { nor a wedge product on A. An element of the kernel of A is
given for example by d¢e, where € is +1 on I" and —1 on I™.

On the double A itself, we have pointwise multiplication between functions,
functions and 2-forms, and we construct an heterogeneous wedge product for

1-forms: with a, 3 € C1(A), define a A 3 € C1($) by

J[ o= fafofa]s

(z,y,2",y") (z,2")(y,y")  (yy') (" x)

It verifies A(ae) A A(Bg) = o A Bo, the first wedge product being between
1-forms on A and the second between forms on ). Of course, we also have for
integrable 2-forms:

[J 5o [[ e = [ e =g [ 4o

And for a function f,

O/Zf-w<>=%4 (f o) = /wao
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Fig. 4: Notations.

whenever f - we is integrable.

Explicit calculation shows that for a function f E Co(A), denotmg by x. the
characteristic function of a vertex x € Ag, (Af)(z) = — ffA - xAx,. So by
linearity one gets Weyl’s lemma: a function f is harmomc iff for any compactly
supported function g € CY(A),

/ f-Ag=0.
Az

One checks also that the usual scalar product on compactly supported forms
on A reads as expected:

@)=Y ote) [ ) (/f):é/aw.

ecAq

In some cases, for example, the decomposition of the plane by lattices, the av-
eraging map A is surjective. We define the inverse map B : C1(A) — C1(¢)/Ker A
and A¢ = do B * d and we then have

Proposition 7 (Green’s identity). For two functions f,g on a compact do-
main D C o,

//D(f~A<>gg~A<>f)ng(f.B*dgg,B*df)0'

This means that for any representatives of the classes in C'({)/Ker A the
equality holds, but each integral separately is not well defined on the classes.
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2.5. Cauchy integral formula.

Proposition 8. Let A a double map and D a compact region of {o homeomor-
phic to a disc. Consider an interior edge (x,y) € D; there exists a meromorphic
L-form vy, € CY(D \ (x,y)) such that the holonomy fv Vg along a cycle v in

D only depends on its homology class in D\ (z,y), and faD Vg,y = 20T.

Consider the meromorphic 1-form p, , = oy + a, € C*(A N D) defined by
existence Theorem[Blon D. It is uniquely defined up to a global holomorphic form
on D. Its only poles are x and y of residue +1 so it verifies a similar holonomy
property, but on AN D\ (z,y). We define a 1-form v, , on $ N D\ R, such that
Ha,y = Avg, in the following way: Let f(z_a) Vgy = A, a fixed value, and for an
edge (2',y’) € Dy, with o’ € Iy, y' € I{, given two paths in D, A%, € C1(I)
and )\gl € Cy(I'™) respectively from 2’ to x and from y to y/,

/ Vey ::/ Hay +/ Vz,y"’/ , My _7{ Ha,y,
(z,y") AZ, (z,A) AY 7]

Y

where [7] is the homology class of AZ, + (z,y) + )\Z, + (y',2") on the punctured
domain.[]

Vs.y is the discrete analogue of —2

p— with zo = (z,y). It is closed on every face
of D\ R. By definition, the average of v, , on the double map is the meromorphic
form Avg .y = g,y

It allows us to state

Proposition 9 (Cauchy integral formula). Let D be a compact connected
subset of Oo and (x,y) € Dy two interior neighbours of D with a non-empty
boundary. For each function f € C°(A),

ﬁD Fovey = //D A" f A pray + Qi”W-

The proof is straightforward: The edge (x,y) bounds two faces in D, let
R = (abcd) the rectangle made of these faces (see Fig. Bl).

c Y b
e
D

Fig. 5: The rectangle R in a domain D defined by an edge (x,y) € $1.

On D\R,
d<>(f . l/myy) = d<>f ANVgy + f- d@yzﬁy.
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The (1,0) part of df disappears in the wedge product against the holomorphic
form pi, ,, SO we can substitute

dofAVey =daf NAvg,y = d’f N Ha,y-

Integrating over D, as v, , is closed on D \ R, we get:

% f'Vac,y = // d//f/\ﬂz,y +% f'Vac,y-
oD D\R OR

Explicit calculus shows that §,, f - vey = [[d"f A poy + 2ir {2 IW)

Remark 4. Since for all a € C1(<$), the locally constant function e defined by
e(I') = +1,e(I'*) = —1, verifies € - @« = 0, an integral formula will give the same
result for a function f and f 4 Ae. Therefore such a formula can not give access
to the value of the function at one point but only to its average value at an edge

of <.

Corollary 2 For f € £2(A) a holomorphic function, the Cauchy integral formula
reads, with the same notations,

f@) +fly) Ljé I
2 © 2w v

The Green function on the lattices (rectangular, triangular, hexagonal, Kagomé,
square/octogon) is exactly known in terms of hyperelliptic functions ([Hug|] and
references in Appendix 3). As the potential is real, it means that the discrete
Dirichlet problem on these lattices can be exactly solved this way, once the
boundary values on the graph and its dual are given: if these values are real
and [" and imaginary on its dual, the solution is real on I" and pure imaginary
on the dual so the contributions f(x) and f(y) are simply the real and imag-
inary parts of the contour summation respectively. Unfortunately, this pair of
boundary values are not independant but related by a Dirichlet to Neumann

problem [CdV96].

3. Criticality

The term criticality, as well as our motivation to investigate discrete holomorphic
functions, comes from statistical mechanics, namely the Ising model. A critical
temperature is defined that restrains the interaction constants, interpreted here
as lengths. We will see these geometrical constraints in Sect.

Technically, as far as the continuous limit theorem is concerned, a weaker
property, called semi-criticality is sufficient, it gives us a product between func-
tions and forms. Moreover, at criticality, this product will be compatible with
holomorphy.
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3.1. Semi-criticality. Define Cy := {(r,t) : r > 0,t € R/0Z}/(0,t) ~ (0,t) with
the metric ds? := dr? + r?dt* as the standard cone of angle 6 > 0 [Trd].

The cones can be realized by cutting and pasting paper, demonstrating their
local isometry with the euclidean complex plane.

Let X be a compact Riemann surface and P C X a discrete set of points. A
flat Riemannian metric with P as conic singularities is an atlas {Zy, :
U, — U C Cy, >}rep of open sets U, C X, a neighbourhood of a singularity
x € P, into open sets of a standard cone, such that the singularity is mapped
to the vertex of the cone and the changes of coordinates Cyy : U NV — C are
euclidean isometries.

There is a lot of freedom allowed in the choice of a flat metric for a given
closed Riemann surface X': Any finite set P of points on X with a set of angles
0, > 0 for every x € P such that 27x(¥) = > . p(27m — 0,), defines uniquely a
Riemannian flat metric on X' with these conic singularities and angles [Trol.

Consider such a flat riemannian metric on a compact Riemann surface X and
(A, £) a double cellular decomposition of X' as before.

Definition 3. (A,¢) is a semi-critical map for this flat metric if the conic
singularities are among the vertices of A and { can be realized such that each face
(x,y,2',y") € $ao is mapped, by a local isometry Z preserving the orientation, to a
four-sided polygon (Z(x), Z(y), Z(x"), Z(y")) of the euclidean plane, the segments
[Z(x), Z(2")] and [Z(y), Z(y")] being of lengths {(x,x"), L(y,y") respectively and
forming a direct orthogonal basis. We name 6(A, L) the supremum of the lengths
of the edges of .

The local isometric maps Z are discrete holomorphic.

Voronoi and Delaunay complexes [PS85] are interesting examples of
semi-critical dual complexes. Any discrete set of points @) on a flat Riemannian
surface, containing the conic singularities, defines such a pair:

We first define two partitions V' and D of X into sets of three types: 2-sets,
1-sets and O-sets, and then show that they are in fact dual cellular complexes.
They are defined by a real positive function mg on the surface, the multiplicity.

Consider a point € X; as the set @ is discrete, the distance d(z, Q) is realized
by geodesics of minimal length, generically a single one. Let mg(z) € [1,00) be
the number of such geodesics. If mg(x) = 1, there exists a vertex m(z) € @ such
that the shortest geodesic from x to m(z) is the only geodesic from x to @ with
such a small length.

The Voronoi 2-set associated to a vertex v in Q, is 7~ !(v), that is to say the
set of points of X closer to this vertex than to any other vertex in ). Each 2-set
of V is a connected component of mél(l).

Likewise, the 1-sets are the connected components of mél(Q). They are asso-
ciated to pairs of points in Q.

The 0-sets are the connected components of mél([ii, +00)). Generically, they
are associated to three points in Q.

V is a cellular complex (see below) and the complex D is its dual (generically
a triangulation), its vertices are the points in @, its edges are segments (z,x’)
for x, 2’ € @ such that there exist points equidistant and closer to them.

Proposition 10. The Voronoi partition, on a closed Riemann surface with a
flat metric with conic singularities, of a given discrete set of points ) containing
the conic singularities, is a cellular complex.
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We have to prove that 2-sets are homeomorphic to discs, 1-sets are segments
and O-sets are points.

First, 2-sets are star-shaped, for every point x closer to v € @ than to any
other point in @, along a unique portion of a geodesic, the whole segment [z, v]
has the same property.

2-sets are open, if x is closer to v € ) than to any other point in @Q, as it is
discrete, d(z, @ \ v) — d(z,v) > 0. By triangular inequality, every point in the
open ball of this radius centred at x is closer to v than to any other point in Q).

So 2-sets are homeomorphic to discs.

Let x be a point in a 1-set. It is defined by exactly two portions of geodesics
D, D’ from z to y,y" € @ (they may coincide). By definition, the open sphere
centred at x containing D U D’ doesn’t contain any point of Q) so it can be lifted
to the universal covering, where the usual rules of euclidean geometry tell us that
the set of points equidistant to y and 3’ around z is a submanifold of dimension
1. As the surface is compact, if it is not a segment, it can only be a circle. Then,
it’s easy to see that the surface is homeomorphic to a 2-sphere and that y and
y' are the only points in (). But this is impossible because an euclidean metric
on a 2-sphere has at least three conic singularities [Tro].

The same type of arguments shows that 0-sets are isolated points.Od

Fig. 6: The Voronoi/Delaunay decompositions associated to two points on a
genus two surface.

Proposition 11. Such Delaunay/Voronoi dual complexes are semi-critical maps
of the surface. Hence any Riemann surface admits semi-critical maps.

The edge in V' dual to (z,2') € D; is a segment of their mediatrix so is
orthogonal to (z,z’). Hence, equipped with the euclidean length on the edges,
(V, D) is a semi-critical map.OJ

Remark 5. Apart from Voronoi/Delaunay maps, circle packings [CAVI0] give
another very large class of examples of interesting semi-critical decompositions

(see Fig. [1).
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Fig. 7: Circle packing, the dual vertex to a face.

The semi-criticality of a double map gives a coherent system of angles ¢ in
(0,7) on the oriented edges of A. An edge (x,2’) € A; is the diagonal of a certain
diamond; ¢(z,2’) is the angle of that diamond at the vertex z. In particular,
d(x,2") # ¢(2',x) a priori. They verify that for every diamond, the sum of the
angles on the four directions of the two dual diagonals is 27 (see Fig. [§). Then
the conic angle at a vertex is given by the sum of the angles over the incident
edges.

Fig. 8: A system of angles for a semi-critical map.

3.2. Continuous limit. We state the main theorem, a converging sequence of
discrete holomorphic functions on a refining sequence of semi-critical maps of
the same Riemann surface, converges to a holomorphic function. Precisely:

Theorem 3. Let X be a Riemann surface and (FA,fy)ren a sequence of semi-
critical maps on it, with respect to the same flat metric with conic singularities.
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Assume that the lengths 0, = §(*A) tend to zero and that the angles at the
vertices of all the faces of the * are in the interval [n, 27 — n] with n > 0.

Let (fi)ren be a sequence of discrete holomorphic functions fi, € £2(*A), such
that there exists a function f on X which verifies, for every converging sequence
(zk)ken of points of X with each xi, € *Ag, f(limy(zx)) = limy(fe(zr)), then
the function f is holomorphic on X.

Such a refining sequence is easy to produce (see Fig. @) but the theorem
takes into account more general sequences. A more natural refining sequence,
which mixes the two dual sequences is given by a series of tile centering proce-
dures [GS87]: If one calls /2 the cellular decomposition constructed from ¢ by
replacing each tile by four smaller ones of half its size, and I'({/2), I'™*({/2) the
double cellular decomposition it defines, one has

I'($/2) =T'(0)“U”I($) and the interesting following sequence:

') —=0—I(/2) =-0/2— - = O/2" — ...
SN / NS N (3.1)
Q) r(¢/2) :

The horizontal arrows correspond to tile centering procedures, and the ascending,
respectively descending arrows, to tile centering, resp. edge centering procedures.
This sequence is not that exciting though since locally, the graph rapidly looks
like a rectangular lattice. More interesting inflation rules staying at criticality
can be considered too (see Fig. 2T]).

The demonstration of the continuous limit theorem needs three lemmas:

Fig. 9: Refining a semi-critical map.

Lemma 2. Let (fi)ren be a sequence of functions on an open set 2 C C such
that there exists a function f on (2 wverifying, for every converging sequence
(zx)ken of points of (2, f(limk(zk)) = limy (fk(zk)) Then the function [ is
continuous and uniform limit of (fx) on any compact.
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Taking a constant sequence of points, we see that (fj) converges to f point-
wise. So with the notations of the theorem, (f(xy)) converges to f(z) and
(fi(xk))ien to f(xr). Combining the two, (f(xy)) converges to f(x) so f is con-
tinuous. If the convergence was not uniform on a compac sett, then there would
exist a converging sequence (zj) with (fi(xr) — f(2)) not converging to zero.
But f is continuous in z = lim(xy) and (fx(x)) converges to f(z), which,
combined, contradicts the hypotheses.[]

Lemma 3. Let (ABCD) be a four sided polygon of the Euclidean plane such
that its diagonals are orthogonal and the vertices angles are in [n, 2w — n] with
n > 0. Let (M,M') be a pair of points on the polygon. There exists a path on
(ABCD) from M to M’ of minimal length . Then
MM’ _ sinng
> .
¢~ 4

It is a straightforward study of a several variables function. If the two points
are on the same side, MM’ = ¢ and sinn < 1. If they are on adjacent sides, the
extremal position with M M’ fixed is when the triangle M M’ P, with P the vertex
of (ABCD) between them, is isocel. The angle in P being less than 7, MM

. 7
sin 4 > =51, If the points are on opposite sides, the extremal configuration is

given by Fig. [[012., where %M/ = LZ”Z.D

M M
M’
1. M, M’ on adjacent sides. 2. M, M’ on opposite sides.

Fig. 10: The two extremal positions.

Lemma 4. Let (A, £) be any double cellular decomposition and o € CH() a
closed 1-form. The 1-form f -« is closed for any holomorphic function f € 2(A
if and only if o is holomorphic.

Just check.

Proof[3 We interpolate each function f, from the discrete set of points ¥/
to a function fj of the whole surface, linearly on the edges of % and harmonicly
in its faces.

Let (¢;) be a converging sequence of points in X. Each ¢}, is in the adherence
of a face of . Let x,y; be the minimum and maximum of Re f;, around the
face. By the maximum principle for the harmonic function Re fj,

Re fi(zr) < Re fu(C) < Re fi(yr).
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Moreover, the distance between xj and (i is at most 20, as well as for yi. It
implies that () and (yx) converge to @ = lUm(¢x), (fx(zx)) and (fr(yx)) to
f(z), and (Re fr(¢x)) to Re f(x); and similarly for its imaginary part. So, by
Lemma[ the function f is continuous, and is the uniform limit of (f) on every
compact set. In particular, it is bounded on any compact.

By the theorem of inessential singularities, since f is continuous hence bounded
on any compact set, and that conic singularities form a discrete set in X, to show
that f is holomorphic, we can restrict ourselves to each element U C X of a eu-
clidean atlas of the punctured surface (without conic singularities). We have an
explicit coordinate z on U.

Let v be a homotopically trivial loop in U of finite length ¢. We are going to
prove that fv fdz = 0. The theorem of Morera then states that f is holomorphic.

Let us fix the integer k. By application of Lemma[Bon every face of %) crossed
by 7, we construct a loop vx € C1 (%)), homotopic to v, of length £(v;) < sélln
(see Fig. M. As the diameter of a face of % is at most 26y, all these faces are
contained in the tubular neighbourhood of v of diameter 4d;. Its area is 46;¢

and it contains the set C' of X between ~ and ;.

Fig. 11: The discretised path.

Assume f is of class C', on the compact C, |0f] is bounded by a number M.
Applying Stockes formula to fdz,

Ijgf(Z)dz— ﬁk f(z)dz| < //C |0f(2)|dz Adz < M x 45,L.

So ¢ f(z)dz = lim ¢ f(z)dz. Taking a sequence of class C' functions con-
verging uniformly to f on C, we prove the same result for f simply continuous
because all the paths into account are of bounded lengths.
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As (f1.) converges uniformly to f on C and the paths are of bounded lengths,
we also have that (| f% (fe(z) — f(2))dz|)ren tends to zero. But because the

interpolation is linear on edges of %, f'm fr(2)dz = f% frdZ, the second integral

being the coupling between a 1-chain and a I-cochain of *. But since f, and
dZ are discrete holomorphic, fpdZ is a closed 1-form, and §w frdZ = 0. So

ka fx(2)dz tends to zero and

ﬁf(z)dz =0.
]

3.3. Criticality.

Proposition 12. Let « be a holomorphic 1-form, f -« is holomorphic for any
holomorphic function if and only if f(y = f(z, e for each pair of dual edges
(@,2), (y,y").

Let (z,y,2,y") € O2 be a face of {, the Cauchy-Riemann equation for f - a,
on the couple (x,2’) and (y,y’) is the nullity of:

ff~a ff~oz

Wy @)
((y,y') {(z,2")
L @)+ fy) fl@)+ () f(@') + fy) f@)+ fy)
' 2 /a+ 2 /a+ 2 /“
(y,x) (z,y") (y,2')

1 fe)+ fy) f@) + fly) f@) + f(y) f@) + )
_Ze(:c,:c')( 2 /O‘Jrf atT g O”Lf/a)
(z,y) (y,2') (z,y") (y'2")
f)—fly)
y,y')

~(fa+ [a)
(yx)  (y,2)

after having developed, used the holomorphy of «, then the holomorphy of f.OJ

So to be able to construct out of the holomorphic 1-forms dZ given by local
flat isometries, and a holomorphic function a holomorphic 1-form fdZ, we have
to impose that for each face (z,y,2",y") € $o, Z(x) — Z(y) = Z(y') — Z(a').
Geometrically, it means that each face of the graph { is mapped by Z to a
parallelogram in C. But as the diagonals of this parallelogram are orthogonal, it
is a lozenge (or rhombus, or diamond).

Definition 4. A double (A,£) of a Riemann surface X is critical if it is semi-
critical and each face of {o are lozenges. Let §(A) be the common length of their
sides.

Remark 6. This has an intrinsic meaning on X, the faces of { are genuine
lozenges on the surface and every edge of A can be realized by segments of
length given by ¢, two dual edges being orthogonal segments.



22 Christian MERCAT

Another equivalent way to look at criticality can be useful: a double (4, ¢) is

critical if there exists an application Z : X'\ P — C from the universal covering
of the punctured surface X' \ P for a finite set P C Ay into C identified to the
oriented Euclidean plane R? such that

— the image of an edge a € A; is a linear segment of length (a),

— two dual edges are mapped to a direct orthogonal basis,

— Z is an embedding out of the vertices,

— there exists a representation p of the fundamental group 71 (X \ P) into the
group of isometries of the plane respecting orientation such that,

Vy e m(X\ P),Zovy=p(y)eZ,

— and the lengths of all the segments corresponding to the edges of > are all
equal to the same 0 > 0.

The criticality of a double map gives a coherent system of angles ¢ in (0, )
on the unoriented edges of A, ¢(x, 2’) is the angle in the lozenge for which (z, ')
is a diagonal, at the vertex x (or a’). They verify that for every lozenge, the sum
of the angles on the dual diagonals is 7. Then the conic angle at a vertex is given
by the sum of the angles over the incident edges.

Every discrete conformal structure (A,¢) defines a conformal structure on
the associated topological surface by pasting lozenges together according to the
combinatorial data (though most of the vertices will be conic singularities). Con-
versely,

Theorem 4. Every closed Riemann surface accepts a critical map.

Proof[J} We first produce critical maps for cylinders of any modulus: Consider
a row of n squares and glue back its ends to obtain a cylinder, its modulus, the
ratio of the square of the distance from top to bottom by its area is %
Stacking m such rows upon each other, one gets a cylinder of modulus “*.
Squares can be bent into lozenges yielding a continuous family of cylinders of
moduli ranging from zero to 2 (see Fig. [Z). Hence we can get cylinders of any
modulus.

Fig. 12: Two bent rows.

Dehn twists can be performed on these critical cylinders, see Fig.

Gluing three cylinders together along their bottom (n has to be even), one
can produce trinions of any modulus (see Fig. [[4) and these trinions can be
glued together according to any angle. Hence, every Riemann surface can be so

produced [Bus]. O
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Fig. 13: Performing a Dehn twist.

Fig. 14: Gluing three cylinders into a trinion.

Remark 7. An equilateral surface is a Riemann surface which can be triangulated
by equilateral triangles with respect to a flat metric with conic singularities.
Equilateral surfaces are the algebraic curves over Q [VoSh| so are dense among
the Riemann surfaces. Cutting every equilateral triangle into nine, three times
smaller, triangles (see Fig. [[H]), one can couple these triangles by pairs so that
they form lozenges, hence a critical map.

In Figures are some examples of critical decompositions of the plane.
In Fig. 2Ol a higher genus example, found in Coxeter [Coxl], of the cellular
decomposition of a collection of handlebodies (the genus depends on how the
sides are glued pairwise) by ten regular pentagons, the centre is a branched
point of order three; together with its dual, they form a critical map. It is the
case for any cellular decomposition by just one regular tile when its vertices are
co-cyclic. This decomposition gives rise to a critical sequence using the Penrose
inflation rule [GS87]. Fig. 2lillustrates this inflation rule sequence on a simpler
genus two example where each outer side has to be glued with the other parallel
side.

8.4. Physical interpretation.

Theorem 5. A translationally invariant discrete conformal structure (A, p) on
A the double square or triangular/hexagonal lattices decomposition of the plane
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Fig. 15: An equilateral triangle cut in nine yielding lozenges.

Fig. 16: A 1-parameter family of critical deformations of the square lattice.

or the genus one torus, is critical and flat if and only if the Ising model defined
by the interaction constants K. := %Arcsinhpe on each edge e € Ay is critical as
usually defined in statistical mechanics [McCTW).

Proof . 'We prove it by solving another problem which contains these two par-
ticular cases, namely the translationally invariant square lattice with period
two [Yam]. At a particular vertex, the flat critical condition on the four confor-
mal parameters is:

4
g arctanp; = ,
i=1

which is obviously invariant by all the symmetries of the problem, including
duality. When p; = p;12, we get the usual period one Ising model criticality on
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Fig. 17: A 2-parameters family of critical deformations of the triangu-
lar /hexagonal lattices. This family, key to the solution of the triangular Ising
model, induced Baxter to set up the Yang-Baxter equation [Bax]. Our notion of
criticality fits beautifully into this framework.

Fig. 18: The order 5 Penrose quasi crystal.

the square lattice
sinh 2K}, sinh 2K, = 1,

and likewise when one of the four parameters degenerates to zero or infinity, the
three remaining coefficients fulfill
sinh 2K sinh 2K ;7 sinh 2K = sinh 2K + sinh 2K 77 + sinh 2Ky

which is (a form of) the criticality condition for the triangular/hexagonal Ising
model. The case shown in Fig. [[6] occurs when p; = ps = 1, implying p2ps = 1.
O
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Fig. 19: Lozenge patchworks.

Fig. 20: Higher genus critical handlebody.

We see here that flat criticality, when the angles at conic singularitites are
multiples of 27, is more meaningful than criticality in general. This theorem
is important because it shows that statistical criticality is meaningful even at
the finite size level. It is well known [KW] that for lattices, it corresponds to
self-duality, which has a meaning for finite systems; here we see that self-duality
corresponds to a compatibility with holomorphy. In a sense, our notion of crit-
icality defines self-duality for more complex graphs than lattices. Furthermore,
we will see in Sect. Ml that criticality implies the existence of a discrete mass-
less Dirac spinor, which is the core of the Ising model. Although we saw that
criticality implies a continuous limit theorem, the thermodynamic limit is not
necessary for criticality to be detected, and to have an interesting meaning.

It is easy to produce higher genus flat critical maps and compute their crit-
ical temperature, the examples in Figures have four kinds of interactions
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Fig. 21: Sequence of critical maps of a genus two handlebody using Penrose
inflation rule.

corresponding to the diagonals of the two kinds of quadrilateral tiles. They are
critical when the angles of the quadrilaterals are £, 2?”, 3?’7, and 4?”, corresponding
to Ising interactions

nm
inh 2K,, = tan —. 2
sin an 10 (3.2)

The author had made no attempt to verify these values numerically.

A general way is, considering a critical genus one torus made up of a transla-
tionally invariant lattice, to cut two parallel segments of equal length and seam
them back, interchanging their sides. This creates two conic singularities where
an extra curvature of —2m is concentrated at each point, yielding a genus two
handlebody. Repeating the process, we may produce critical handlebodies of ar-
bitrarily large genus if we start with a very fine mesh. One has to beware that
our continuous limit theorem applies only to fixed genus, it cannot grow with
the refinement of the mesh. This explains why the union-jack lattice (the square
lattice and its diagonals) or the three dimensional Ising model, which can be
modelled as a genus mnp surface for a 2m x 2n x 2p cubic network, are beyond
the scope of our technique as far as a continuous limit theorem is concerned.
With this restriction in mind, we see that both the existence and the value of
a critical temperature is essentially a local property and neither depends on the
genus nor on the modulus of the handlebody. It is not the case for more interest-
ing quantities such as the partition function, which can be obtained in principle
from the discrete Dirac spinor that criticality provides, defined in Sect. @ But
such a calculus is beyond the scope of this article.

Apart from the standard lattices, the critical temperature of other well known
graphs can be computed using our method, for example the labyrinth [BGH],
whose diamond is pictured in Fig. B2l has the topology of the square lattice but
has five different interactions strengths controlled by two binary words, labelling
the columns and rows by 0’s and 1’s. And also new ones such as the “street
graph” depicted in Fig. Its double row transfer matrix appears to be the
product of three commuting transfer matrices, two triangular and a square one.

Other cases such as the Kagomé or more generally lattices of chequered
type [Uti] can be handled using a technique called electrical moves [CAV90]
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which enables us to move around, and causes appearing or disappearing conic
singularities of a flat metric. This will be the subject of a subsequent article,
explaining the relationship between discrete holomorphy, electrical moves and
knots and links. These electrical moves act in the space of all the graphs with
discrete conformal structures in a similar way to that of the Baxterisation pro-
cesses in the spectral parameter space of an integrable model (see [AdJABM]).
We are going to see that the link with statistical mechanics is even deeper than
simply pointing out a submanifold of critical systems inside the huge space of all
Ising models, as the similarity with the continuous case extends to the existence
of a discrete Dirac spinor near criticality.

3.5. Polynomial ring.

Definition 5. Let (A, ¢) be a critical map. In a given flat map Z : U — C on the
simply connected U, choose a vertex zg € Ay, and for a holomorphic function f,
define the holomorphic functions T and f' by the following formulae:

f1(z) = e(2)f(2),
where f denotes the complex conjugate and e(I') = 4+1,e(I"™*) = —1,

)= (/ f*dZ)T-

See [Duf] for similar definitions. Notice that f’ is defined up to € if one changes
the base point.

Proposition 13. Let (A, ¢)be a critical map. In a given flat map Z : U — C on
the simply connected U, for every holomorphic function f € 2(A), df = f'dZ.
We hence call f' the derivative of f.

Consider an edge (z,y) € {1, x € To,y € I,

So [, f1dZ = LS (Z(y) — Z(2))(Z(y) - Z(2)) = f(y) — f(2).0

Definition 6. Let U be a simply connected flat region and zy € U. Define in-
ductively the holomorphic functions Z*(z) := fzzo %Zk’le given Z° := 1. As
the space of holomorphic functions on U is finite dimensional, these functions
are not free; let Py be the minimal polynomial such that Py (Z)=Z"+...=0.

Conjecture 6 The space of holomorphic functions on U, convex, is isomorphic

to C[Z)/Py.
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We won’t define here the notion of convexity, see [CAV96]. The question is
whether the set (Z*) generates the space of holomorphic functions. The problem
is that zeros are not localised, and as the power of Z* increases, the set of its
zeros spread on the plane and get out of U. Figure 24l is an example on the unit
square lattice with U the square [—10, 10] & [—10, 10]i, the degree increases with
k until 16 where four zeros get out of the square. So a definition of the degree
of a function by a Gauss formula is delicate.

Z'% and its zeros. Z16 and its zeros.

Fig. 24: The zeros of Z1¢ get out of the square [—10, 10] & [-10, 10]i.

4. Dirac Equation

Although we believe our theory can be applied to a lot of different problems, our
motivation was to shed new light on statistical mechanics and the Ising model
in particular. This statistical model has been linked with Dirac spinors since the
work of Kaufman [K] and Onsager and Kaufman [KO]. We refer among others
to [McCWRILSMJLKC]. Hence we are interested in setting up a Dirac equation in
the context of discrete holomorphy. To achieve this goal we first have to define
the discrete analogue of the fibre bundle on which spinors live. We therefore
have to define a discrete spin structure. Physics provides us with a geometric
definition [KC] based on paths in a certain Zs-homology, that we generalise to
our need (higher genus, boundary, arbitrary topology). We begin by showing
that such an object in the continuum is indeed a spin structure, then define the
discrete object. We then set up the Dirac equation for discrete spinors, show
that it implies holomorphy and that the existence of a solution is equivalent to
criticality. The Ising model gives us an object which satisfies the discrete Dirac
equation, namely the fermion, ¥ = opu as defined in [KC], corresponding to a
similar object defined previously by Kaufman [K]. It fulfills the Dirac equation
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at criticality, but also off criticality, corresponding to a massive Dirac spinor.
We will end this article by describing off-criticality, as defined by the author’s
Ph.D. advisor, Daniel Bennequin.

4.1. Universal spin structure. A spin structure [Mil] on a principal fibre bundle
(E, B) over a manifold B, with SO(n) as a structural group, is a principal fibre
bundle (E’, B), of structural group Spin(n), and a map f : E/ — FE such that
the following diagram is commutative:

E’' x Spin(n) — E’
N\
LA Lf B
/

E xSO(n) — E

where A is the standard 2-fold covering homomorphism from Spin(n) to SO(n).

In this paper we consider only spin structures on the tangent bundle of a
surface. On a generic Riemann surface X, there is not a canonical spin structure.
We are going to describe a surface ¥, 22-x(¥)_fold covering of X', on which there
exists a preferred spin structure. It allows us to define every spin structure on X
as a quotient of this universal spin structure. We will treat the continuous case
and then the discrete case.

Definition 7. Let X be a differentiable surface with a base-point y°; 3 s the
set of pairs (z,[N2), where z € X is a point and [Na the homology of a path A
from y° to z considered in the relative homology H1(X,{y°, 2}) ® Zs.

Y is the 227x(*) covering associated to the intersection H of the kernels of
all the homomorphisms from 71 (X) to Zg, that is to say the quotient of the
universal covering by the subgroup H C 71 (X) of loops whose homology is null
modulo two.

Choose vy a tangent vector at y°. For each point z € X, define ¥, := X'\
{y°, 2z} UST US!, the blown up of ¥ at 3° and z (add only one circle in the case
y" = 2). Consider the set of oriented paths in X,, from the point corresponding
to the vector vg at y° to the directions at z (the vector vg is needed only when
z = y°). Define an equivalence relation ~, (see Fig. BH) on this set by stating
that two paths A, X are equivalent if and only if A— X is a cycle and [A—X]2 =0
in the homology Hy (X \ {z},Z2).

Definition 8. The universal spin structure S of X is the set of pairs (z,[\|~.),
with z € X and [N ~_ the ~,-equivalence class of the path X from y° to z in X,.

Theorem 7. S is a spin structure on Y and is the only one such that the action
of the fundamental group w1 (X)) on X can be lifted to. Moreover it is the pull-back
of any spin structure on X.

Proof . The proof is in three steps, we check that S is a spin structure, we define
a spin structure Sy through group theory and we show that both are equal to a
third spin structure Sj.
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1.z #y° 2.z =19
Fig. 25: Paths of different classes with respect to ~ for z # y° and z = ¢/°.

There is an obvious projection from & to ¥ defined by (z,[A~.) — (z, []2).
The fibre of this projection at (z,[A]2) is the set of ~.-equivalence classes of
paths from 4° to the blown-up circle at z. To each class is associated the tangent
direction at z so S, is a covering of ST.(X). As Hy (X \ {z},Zs) is 23X
dimensional (a loop around z is not homologically trivial), for each point in
ST(Z:’ ), there are two different lifts. The path in S, corresponding to turning
around z once yields the Zy-deck transformation. Hence § is a spin structure on
.

Let G := 71 (X)) and G’ := 71 (STY); the S'-fibre bundle ST(X) — X induces
a short exact sequence Z — G’ —G. Every double covering of ST X is defined
by the kernel S’ of an homomorphism u from G’ to Z/2, moreover, for S’ to be
a spin structure, its intersection with the subgroup Z must be 2Z.

Likewise, the fibration Yy nnphes that the fundamental group H’

71 (STX) of the directions bundle of X is the subgroup of G over H := 71'1(2)

7Z—H — H

I (4.1)
Z— G — @G

The intersection of the subgroups H’ and S’ is a well defined spin structure
So on 3: Indeed, consider another spin structure S” = Ker (v : G' — Z/2) on
X, its intersection with Z is 2Z hence the kernel of u — v contains the whole
subgroup Z, that is to say u — v comes from a homomorphism of G to Z/2 and
we have S” N H' = S’ N H'. In other words, Sy is the unique spin structure on
Y which is the pull-back of a spin structure on X and it is the pull-back of any
spin structure.

Let z € X be a point, consider the set of paths in STY from the base point
(yY,v°) to any direction at 2. Consider on this set the equivalence relation ~/,
defined by fixed extremities Z/2-homology. The class [A].. of a path A from
(y°,v%) to (z,v) is its homology class in Hy(STX, {(y°,v"), (z,v)}) ® Z/2. The
projection ST —» X splits Hy (ST X, {(y°,v°), (z,v)}) ® Z/2 into

7)2 — Hi(STX, {(y° "), (,0)}) @ Z/2 — H (2, {3°, 2}) @ Z/2,  (4.2)

hence the set Sy of pairs (z, [A]~, ) for all points z € X' and all paths A, is a spin

structure on 3.
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Let S’ be a spin structure on X, it defines an element in Z/2 for each loop
in STX. So each path in STX beginning at (y°,v") defines, through the split-
ting[£2] an element in S; which is then the pull-back of S’ to Y, hence Sy = Sy.

On the other hand § = &7 because there is a continuous projection from S to
S1: For an element (z,[\]~.), consider a C'-path A\ € X representing the class.
Lift it to a path in ST'X by the tangent direction at each point, its class [A]~.
only depends on [A].. and gives us an element in S;. O

4.2. Discrete spin structure.

Definition 9. Let T be a cellular complex of dimension two, a spin structure
on Y is a graph 1”7, double cover of the 1-skeleton of T such that the lift of the
boundary of every face is a non-trivial double cover. They are considered up to
isomorphisms. Let Sp be the set of such spin structures.

A spinor ¢ on Y’ is an equivariant complex function on T’ regarding the
action of 7)2, that is to say, for all € € T, W(€) = —(€) if & represents the
other lift.

Remark 8. Usually, a spinor field is a section of a spinor bundle, that is to say a
square root of a tangent vector field. Here, we consider square roots of covectors;
we should say cospinors.

A discrete spin structure is encoded by a representation of the cycles of 1,
Z1(Y) == Ker 0 N C1(Y), into Z/2 which associates to v € Z1(T), the value
u(y) = 0 if it can be lifted in 77 to a cycle and u(y) = 1 if it can not. By
construction, the value of the boundary of a face is 1 and the value of a cycle
which is the boundary of a 2-chain of 7" is the number of faces enclosed, modulo
two.

We are going to show that this structure is indeed a good notion of discrete
spin structure. First, there are as many discrete spin structures on a surface as
there are in the continuous case:

Proposition 14. On a closed connected oriented genus g surface X, the set Sp
of inequivalent discrete spin structures of a cellular decomposition T is of cardinal
229 The space of representations of the fundamental group of the surface into
7.2 acts freely and transitively on Sp.

We explicitly build discrete spin structures and count them: Let T" be a maximal
tree of T, that is to say a sub-complex of dimension one containing all the vertices
of T and a maximal subset of its edges such that there is no cycle in T'. Choose
2g edges (ex)1<k<2g in T \ T such that the 2g cycles (v) € Z1(1)% extracted
from (T'U ex)i1<k<2g form a basis of the fundamental group of ¥ (and 7). Let
T, := T Uy e and consider T, the sub-complex of the dual 7* formed by all the
edges in T not crossed by T4. It is a maximal tree of 7*. Likewise we define
TJ/r =T Uy 6;.

We construct inductively a spin structure 7”: its first elements are a double
copy of T' and we add edges without any choice to make as we take leaves out of
T, . When only cycles are left, a choice concerning an edge ey, has to be taken,
opening a cycle in 7', . The process goes on until 77, is empty.
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These choices are completely encoded by a representation p such as in the
remark, and the 2¢g values (u(yx))1<k<24 determine the spin structure. On the
other hand, this representation defines the spin structure and there are 229 such
different representations. Hence the choices of the maximal tree and the edges
ey, are irrelevant.

Because a cycle in 7 belongs to a class in the fundamental group of the
surface (up to a choice of a path to the base point, irrelevant for our matter),
the representations of the fundamental group into Z/2 obviously act on spin
structures: A representation p : 71 (X) — Z/2 associates to a spin structure
defined by a representation u : Z1(1") — 7Z/2, the spin structure defined by the
representation p(u) such that p(u)(y) = u(y) + p([v]), where [y] € m1(X) is the
class of the cycle v in the fundamental group. This action is clearly free, and
transitive because the set of representations is of cardinal 229. [

Given A = I' U I'* a double cellular decomposition, we introduce a cellular
decomposition which is the discretised version of the tangent directions bundle
of both I and I'*:

Definition 10. The triple graph 1" is a cellular complex whose vertices are un-
oriented edges of &, Yo = {{z,y}/(x,y) € O1}. Two vertices {z,y},{z',y'} € Ly
are neighbours in T iff the edges (x,y) and (z',y") are incident (that is to say
x=a orx =1y ory=2a ory=1y"), and they bound a common face of <{.
There are two edges in T for each edge in A. For this to be a cellular decompo-
sition of the surface in the empty boundary case, one needs to add faces of three
types, centred on vertices of I', of I'* and on faces of & (see Fig. [26).

Fig. 26: The triple graph 7.

Remark 9. The topology of the usual tangent directions bundle is not at all
mimicked by the incidence relations of 7, the former is 3 dimensional and the
latter is a 2-cellular complex.

Let (2°,9%) € &1 be a given edge. All the complexes I', I'*,{, T are lifted to
3.
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Definition 11. The discrete universal spin structure T' is the following
1-complex: Its vertices are of the form ((x,y), [7;’0]), where (x,y) € 1y s a pair

of neighbours in { and 'ygo is a path from y° toy on I'*, avoiding the faces x*
and z%*. We are interested only in its relative homology class modulo two, that
is to say [y4 ] € Hi(I'*\z*,{y°,y}) ® Zy. We will denote a point by ((x, Y):Vy0)

and identify it with ((m,y),v’zo) whenever 750 and V’Zo are homologous.

Two points ((z,y),7,0) and ((:E',y'),vgf)) are neighbours in T’ if

—z=a, (y,y) € I} and 'yyyo f’yg,o + (y,y') is homologous to zero in Hy(I'*\
SC*>®Z2, )
—y=1v, (z,2') € I} and 750—7;’, is homologous to zero in Hy (I \ x*) ® Zs.

T’ is a double covering of 7" and it is connected around each face (see Fig. 2T).
It is a discrete spin structure on 7 in the sense defined above. Once a basis of the
fundamental group 71 (") is chosen, every representation of the homology group
of X into Zy allows us to quotient this universal spin structure into a double
covering of 7', yielding a usual spin structure 7.

Fig. 27: Double covering around faces of 7.

4.8. Dirac equation. A spinor changes sign between the two lifts in 77 of a
vertex of 7', in other words it is multiplied by —1 when it turns around a
face. The faces of 7 which are centred on diamonds are four sided. We set
up the spin symmetry equation for a function ¢ on 1{, on a positively ori-
ented face (£1,82,83,84) € 15 around a diamond, lifted to an 8-term cycle

(grag;aggagz_agfv52_553_754_) S Zl(T/):
(&) = (&) (4.3)
It implies obviously that ¢ is a spinor, that is to say ((£;7) = —C(£F).
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The coherent system of angles ¢ given by a semi-critical structure locally
provides a spinor respecting the spin symmetry away from conic singularities:
Define half angles 8 on oriented edges of 7" in the following way: Each edge
(&,&') € 11 cuts an edge a € Ay, set 0(&,&') := i@ whether (&,&’) turns in the
positive or negative direction around the diamond. Choose a base point & € 17,
define ¢ by ((&) =1 and

(&) ==expiy_O(N) (4.4)

A€y

for any path v from & to £. The sum of the half angles are equal to 7 around the
faces of ¢ and half the conic angle around a vertex, so if it is a regular flat point,
we get 27“ = 7 again, hence ( is a well defined spinor. As diagonals of the faces of
& are orthogonal, ¢ fulfills the spin symmetry. Moreover, if the conic angles are
congruous to 27 modulo 47, ¢ can be extended to any simply connected region;
if the fundamental group acts by translations, ¢ is defined on the whole 7.

We are going to define a propagation equation which comes from the Ising
model. Tt is fulfilled by the fermion defined by Kaufman [K] which is known to
converge to a Dirac spinor near criticality. We will use the definition ¢ = ou
given by Kadanoff and Ceva [KC]. The Dirac equation has a long history in
the Ising model, beginning with the work of Kaufman [K] and Onsager and
Kaufman [KO], we refer among others to [McCWSILSMJ[KC]. The equation
that we need is defined explicitly in [DD], hence we will name it the Dotsenko
equation, even though it might be found elsewhere in other forms. It is fulfilled
by the fermion at criticality as well as off criticality. But this equation is only a
part of the full Dirac equation. For a function ¢ on 77, with the same notations
as before, and if a € A; is the diagonal of the diamond, between ((2,(3) and

(C4,C1) (see Fig. 28):
C&5) = V14 p(a)2¢(&) — pla)(&). (4.5)

A check around the diamond shows that it also implies that ( is a spinor: We
write the Dotsenko equation in & and E;' ,

C(&7) =V 14 p(a*)2¢(&5) — pla®)C (&),
C(&3) =1+ p(a)2¢(&]) — pla)S(&r),

hence, as /1 + p(a)2/1 + p(a*)? = p(a) + p(a*),

C(&7) =p(a™)C(&5) — V1 + pla)2¢(E])
=p(a”)(V1+ p(a)?C(&) — p(a)C(&r)) — V1 +p(a*)2C(E7)
=— (&)

The Dirac equation is the conjunction of the symmetry (£3]) and the Dot-
senko ([A3) equations. We will see that this same equation describes the massive
and massless Dirac equation, the mass measuring the distance from criticality.

Given two spinors ¢, (', their pointwise product is no longer a spinor but a
regular function on 7. As there are two edges in T for each edge in A, there
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Fig. 28: The Dotsenko equation.

is an obvious averaging map from 1-forms on 7" to 1-forms on A: We define
dr(¢’ € CY(A) by the following formula, with the same notation as before,

2 / dr(¢" = C(83)¢" (&3) — C(€2)C"(&2) + € (&4)¢" (&4) — C(&1)C" (&)

dy((’ is by definition an exact 1-form on 7" but its average is not a priori exact
on A.

Fig. 29: The 1-form on A associated to two spinors.

Proposition 15. If { and (' respect whether the spin symmetry or the Dotsenko
equation, then dy((" is a closed 1-form. If ¢ is a Dirac spinor and ¢’ fulfills the
Dotsenko equation, then dy (¢’ is holomorphic, dyr((’' anti-holomorphic and every
holomorphic 1-form on A can be written this way on a simply connected domain,
uniquely up to a constant.

A sufficient condition for dy((’ to be closed on A is that, with the same

notations as above, ((£3)¢"(€3) — ((£2)¢"(€2) = C(€4)¢(€4) — C(€1)¢ (€1) Decause

fay* dy((’ for a vertex y € Ap is a sum of such differences on the edges of T°
around y. This is so if there exists a 2 x 2-matrix A such that

(déh) = (&&h)
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a similar formula for ¢’, and *A (1 _01) A= (1 _01) The solutions are of

0 0
/ 2
the form A = (6 16;( A \/11—)\2) for a complex number A € C, e = +1 and a

determination of v/1 + A2. This is the case for the spin symmetry, A\ = —i,e = +1
and for the Dotsenko equation, A = p(a),e = —1,v/1 4+ A2 > 0.
If ¢ is a Dirac spinor and ¢’ fulfills the Dotsenko equation, then

[ dree =ctene e - e

=iC(&) (V1 + p(a)2C'(&3) — p(a)¢ (&) — iC(&N)C(&3)
=iC(&) (V1 + p(a)2¢'(&5) — p(a)C’(63))
(a)

—i(v/T+ p(a)2¢(&d) = pla)C(EN))C (&)
=ip(a) (C(&)¢' (&) — <& (&)

So dy (¢’ is holomorphic. Of course, dC¢’ is anti-holomorphic. Conversely, if dy¢¢’
is holomorphic with ¢ a Dirac spinor, then ¢’ fulfills the Dotsenko equation.

Given a holomorphic 1-form a € 2(1:9(A), define ay on 77 by the obvious
map f({z7y}7{y7l/}) ar = f(%m,) a. It is a closed 1-form on 7 because « is closed
on /A, so there exists a function a on any simply connected domain of 17, unique
up to an additive constant, such that dya = ap. A check shows that the only
spinors ¢ such that dy(¢” = 0 on A are the one proportional to . It is consistent
with the fact that the Dirac spinor is of constant modulus (see Eq. (£0])). Hence
the function ¢’ := a/¢ on 7" is the unique spinor (up to a constant times 1/¢ ~ ()
such that dy((’ = .0

Notice that for ¢ a Dirac spinor, the holomorphic 1-form associated to it on
A is locally, for a given flat coordinate Z, dy(( = AdZ, with A € C a certain
constant.

4.4. Ezistence of a Dirac spinor.

Theorem 8. There exists a Dirac spinor on a double map iff it is critical for
a given flat metric with conic angles congruous to 2w modulo 47 and such that
the fundamental group acts by translations. The Dirac spinor is unique up to a
multiplicative constant.

Proof[8 Let ¢ be a non-zero Dirac spinor. Consider a positively oriented face
(&1,&2,8€3,&4) € Ty around a diamond with diagonals a, a* as in Fig. 2§ lifted to
an 8-term cycle

(&F &5, &5.60.60.65 .65 ,€7) € C1(Y7). The equation

FECHS pla*) +1
1+ p(a*)?

defines an angle ¢(a) € (0, ) for every edge a € A;.
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The Dotsenko and symmetry equations combine into

pla) +i +
! (46)

The fact that ¢ is a spinor implies that, summing the four angles around the dia-
mond, we get ¢/(?(@)+0(a")) — 1 Ag each angle is less than 7, their sum is equal
to w. The same consideration around a vertex x € Ay, yields exp z(ww/)eAl ¢>(12,z’) =
—1. So ¢ is a coherent system of angles and the map is critical with conic angles
congruous to 27 modulo 4.

Conversely, given ¢ a coherent system of angles with conic angles congruous
to 27 modulo 47, the preceding construction described by Eq. [{4) gives the
only Dirac spinor. [

In this case, dZ is a well defined holomorphic 1-form on the whole surface.

C(&) =

Corollary 9 Let (A, p) be a discrete conformal structure and P a set of ver-
tices, containing among others the vertices v such that the sum,_, Arctanp(e),
summed over all edges e incident to v, is greater than 2w. The discrete conformal
structure is critical with P as conic singularities if and only if there exist Dirac
spinors on every simply connected domain containing no point of P.

We define in which sense a discrete spinor converges to a continuous spinor.
We don’t define these spinors on specific spin structures but rather on the uni-
versal spin structure S.

Consider a sequence of finer and finer critical maps such as in Theorem
Choose a converging sequence of base points (29, y?) € k7, on each critical map

-

0,0
such that the direction sequence (d—éﬁ%o—)) converges to a tangent vector (2°,v?).
k'Jk

Consider a sequence of points (zx,yr) € ¥y, defining a sequence of points
Torun)
By compacity of the circle, there exist such sequences for every point x € X
and the criticality implies that it is in at least three directions for flat points,
separated by angles less than 7.

The different limits allow us to identify, after a certain rank, the relative
homology groups Hy (I \ z}, {42, yx }) ® Zs with Hy (X, {(2°,0°), (z,v)}) ® Zs,
the classes of paths in the blown-up of X at 20 and z.

() converging to  in X and a converging sequence of directions v = lim

Definition 12. We will say that a sequence (i )ren of spinors converges if and
only if, for any converging sequences, ((xk,yk) € kTO)keN defining a limit tan-
gent vector, and ([A]),cn of classes of paths in kI* from yY toy, avoiding the

face x}, the sequence of values (Ci(zk, [Ax])) converges.

Remark 10. It defines a continuous limit spinor ¢ by equivariance: Let = € >,
the set D, of directions in which there exist converging sequences of discrete
directions is by definition a closed set. Let u,v two boundary directions of D,
such that the entire arc A of directions between them is not in D,. Consider
[(z,[N2), (z, [N]2)] C S alift of A. The circle S! acts on the directions, hence on
the ~,-classes, let ¢ € (0,7) the angle such that (z,e'¥[\],) = (z,[\].). Define

((a, €)= e (a, N,
o

where v(¢) = 28] (4(¢) =

(@, [Na) for Dirac spinors).
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Theorem 10. Given a sequence of critical maps such as in Theorem [3 with
Dirac spinors on all of them, they can be normed so that they converge to the
usual Dirac spinor on the Riemann surface.

In a local flat map Z, the square of the discrete Dirac spinor on R s (up to
a multiplicative constant) the 1-form dZ evaluated on the edges. Hence their
sequence converges.

4.5. Massive Dirac equation, discrete fusion algebra and conclusions. For com-
pleteness and motivation, we describe below the situation off-criticality where
elliptic integrals come into play, and investigate a form of the discrete fusion
algebra in the Ising model. This work was done by Daniel Bennequin and will
be the subject of a subsequent article.

A massive system in the continuous theory is no longer conformal. In the
same fashion, Daniel Bennequin defined a massive discrete system of modulus k
as a discrete double graph (A, p) such that, for each pair (a,a*) of dual edges,

pla)p(a™) = = (4.7)

The massless case corresponds to & = 1. We showed that criticality was
equivalent to a coherent system of angles ¢(a) such as shown in Fig. B, defined
@ = p(a), and adding up to 27 at each vertex of the double, except at
conic singularities. The Dirac spinor was constructed using the half angles ¢(2a).
Similarly, for every edge, we define the massive “half angle” u(a) as the elliptic
integral

by tan

¢(a)

2 d(p
u(a) = , 4.8
A S ® )
where the measure is deformed by
Kk =1, (4.9)
A(p) := /1 — k2sin? ¢, (4.10)

Al(p) :=1/1—k*sin? ¢. (4.11)

Using these non-circular half angles, and the corresponding “square angle”

I = fog T‘,i(%, one can construct a massive Dirac spinor wherever the following
“flatness” condition is fulfilled:
r —ula)) = 1l mo k- Tor each tace € Ao, .
1 1 d 4l f h face F' € A 4.12
acdF

Z(u(a)) = I;» mod 4I for each vertex v € Ap. (4.13)

a>v

Daniel Bennequin noticed that the fusion algebra of the Ising model could be
understood at the finite level: Consider a trinion made of cylinders of a square
lattice, of width m and n, glued into a cylinder of width m+n. It has been known
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since Kaufman [K] that, in the transfer matrix description of the Ising model,
the configuration space of the Ising model on each of the three boundaries is a
representation of spin groups spin(m), spin(n) and spin(m+n) respectively. If m
is odd, there exists a unique irreducible representation A of spin(m) but when
m is even, there are two irreducible representations, AT and A~. A pair of pants
gives us a map spin(m) x spin(n) — spin(m-+n), in the case of a pair of pants of
height zero, it’s the inclusion given by the usual product. The representations of
spin(m + n) induce representations of the product group that can be split into
irreducible representations. If the three numbers are even,

AT S AT @ AT+ AT @ AT, (4.14)
AT S ATRAT+ A" AT, (4.15)
(4.16)
while if only one of them is even,
A—-ATRA+A™ ® A, (4.17)
4.18)
and if m and n are both odd,
AT - AR A, (4.19)
AT - AR A (4.20)
Let us compile these data in an array and relabel A by o, AT by 1 and A~ by
“ le o
i 1 Ly (4.21)
oclool+e

This is read as follows, the 1 + € in the slot ¢ ® o for example, means that the
representation 1 and the representation e of spin(m + n) both induce a factor
o ® o in the representation in the product group spin(m) x spin(n).

We get exactly the fusion rules of the Ising model. The only difference com-
pared with the continuous case is that the algebra is not closed at a finite level.
The columns, rows and entries are not representations of the same group, rather
we have a product of representations of spin(n) and spin(m) as a factor of a
representation of spin(n + m).

These results provide evidence that a discrete conformal field theory might
be looked for: the discrete Dirac spinor at criticality is the discrete version of
the conformal block associated with the field ¥ and some sort of fusion algebra
can be identified at the finite level. The program we contemplate is, first to
investigate other statistical models and see if there are such patterns. If that is
the case, we must then mimic in the discrete setup the vertex operator algebra
of the continuous conformal theory. This can be attempted by defining a discrete
operator algebra, in a similar fashion to Kadanoff and Ceva [KC], and splitting
this algebra according to its discrete holomorphic and anti-holomorphic parts.
The hope is that some aspects of the powerful results and techniques defined by
Belavin, Polyakov and Zamolodchikov [BPZ] will still hold. A very interesting
issue would be, as we have done for the Ising model, to realize the fusion rules
of a theory in the discrete setup, yielding its Verlinde algebra.
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