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Abstract 

The artificial hands for sociable robotics and prosthetics are expected to be touched by other 

people. Because the skin is the main interface during the contact, a need arises to duplicate 

humanlike characteristics for artificial skins for safety and social acceptance. Towards the goal of 

replicating humanlike social touch, this paper compares the skin compliance, conformance and 

hysteresis of typical robotic and prosthetic skin materials, such as silicone and polyurethane, with 

the published biomechanical behaviour of the human fingertip. The objective was achieved 

through materials characterization, finite element (FE) modeling and validation experiments. Our 

initial attempt showed that the selected types of silicone and polyurethane materials did not exhibit 

the same qualities as the human fingertip skin. However, the methodologies described herein can 

be used to evaluate other materials, their possible combinations or other fingertip design 

configurations.  
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Bio-robotics and biomedical robotics, Prosthetics, Artificial Skin, Finite Element 

Method, Skin Compliance, Conformance, Hysteresis.  
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1 Introduction 

A grand challenge in robotics is to create robots with an inherent notion of sociability - robots 
with emotion, capable of imitation and acquisition of social skills, and ultimately, create an 
emotional connection with humans. To achieve a more natural human-robot interaction, it was 
suggested that a socially interactive robot must demonstrate ‘believable’ behaviour: it must 
establish appropriate social expectations, it must regulate social interaction, and it must follow 
social conventions and norms [1]. 

Touch is important in social interactions. Social touch are all those instances in which people 
touch each other, when shaking hands, when giving a pat in the back as a sign of congratulations 
and even in high-fives. Unless some form of alternative greetings are invented in the future, the 
typical social touches exchanged among humans may likely remain even with social robots (e.g. 
[2]). Yet, one should not easily assume that humans will be comfortable with the idea of shaking 
an artificial hand made from a stiff material and can grip with a force that can reach up to 100 N 
(see reference [3] for a comparison of the grasping forces of artificial hands). In addition to the 
appropriate controls for a safe handshake grip and other forms of social touch, humanlike skin 
softness would be a reasonable requirement for the sociable robots envisioned to directly interact 
with humans in a social setting.  

Similarly, humanlike appearance and softness characteristics are needed for prosthetic hands. 
The hand is the foremost representation of the self-image which each person projects and which is 
perceived by others [4]. Any disfigurement of the hand, which is among the easily noticed part of 
the body, certainly affects the psychological well-being. The reported effects of amputation are 
depression, feelings of hopelessness, low self-esteem, fatigue, anxiety and sometimes suicidal 
ideation of the patient [5]. It was found that concealment of prosthesis usage is an effective coping 
strategy so that the prosthetic users can integrate socially and prevent stigmatization [6].  

For this purpose, modern prosthetic hands are being made with very humanlike appearances. In 
fact, they can now be constructed to match the exact skin tone of the user while the sculptors can 
artistically create detailed skin surface with fingerprints, hairs and pores (e.g. Livingskin [7]). 
However, with the stiff materials such as PVC and stiff silicones currently being used for 
commercial prosthetic hands (e.g. [8],  Otto Bock PVC cosmetic glove [9]), concealing its usage 
would be difficult in cultures where the handshake is the primary gesture to exchange goodwill for 
social interactions (e.g. simple greetings, employment, business dealings, dating).  

For sociable robotics and prosthetics, selecting a suitable synthetic skin that would satisfy the 
social and functional requirements from a wide variety of available materials would be practically 
difficult. To achieve a soft robotic fingertip, materials like polymers, rubbers, sponge, fine powder, 
paste and cosmetic gel were evaluated [10]. Several variations of an outer skin of silicone and a 
soft inner core of polyurethane or polyester foam was also implemented in [11-14]. A 
polyurethane-based material called Technogel® was evaluated for an anthropomorphic hand [15]. 
In addition, there were many important properties that have been previously suggested. It was 
suggested that artificial skins should possess softness, elasticity, some mechanical resistance and 
the ability to identify different materials through thermal conductivity [16, 17]. Others considered 
frictional properties [18]; rolling properties [19]; compatibility to the fabrication process [20] the 
skin’s mechanical filtering effect [21]; appearance and elasticity of the skin [22]. Prioritizing one 
or a combination of these properties over others and then selecting the materials appropriately 
make the task even more difficult. 

Benchmarking the candidate materials with the human fingertip would be a reasonable 
approach. Presenting the synthetic material’s behaviour side-by-side with a familiar system like 
the human fingertip would enable the robot designer to easily select which materials are suitable 
for his/her application, particularly when a bio-inspired design is intended. This paper aims to 
evaluate how close or how far are the typical prosthetic and humanoid robotic skin materials, such 
as silicone and polyurethane, to the biomechanical behaviour of the human fingertip. The silicone 
material that was selected in this paper was previously used as the skin covering of the CyberHand 
[23, 24] while the polyurethane was used as the embedding material of a tactile microsensor of an 
anthropomorphic hand [25]. The criteria of skin compliance, hysteresis and skin conformance 
previously defined in the human fingertip studies [26, 27] were used for comparisons. An initial 
assessment would be important to know whether a homogeneous layer of synthetic material would 
be sufficient in duplicating the human skin’s mechanical properties.  
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This study was confined to the fingertip for the following reasons. First, there is sufficient 
amount of data on the human fingertip with which we can compare the mechanical properties of 
the synthetic materials. The human fingertip has been experimented for indentations with various 
objects: two-point probes [28, 29], objects with gap/gratings [27, 28], wedge [30]; as well as 
different loading conditions: ramp-loading with a plate [31], dynamic [26, 32, 33] and tangential 
loading [34, 35]. Second, tactile sensor designers have often referred to the human fingertip to 
draw inspiration [36-39]. Hence, the artificial fingertip is the location most likely to be sensorized 
and the synthetic skin's mechanical behaviour has to be understood. 

1.1 Skin Compliance, Conformance and Hysteresis 

Soft artificial fingertips with humanlike mechanical properties will offer many benefits. Skin 
compliance, for instance, is the property which allows large displacements to occur under small 
changes in force. Studies in fingertip biomechanics [26, 40] report that for forces below 1N, the 
initial low-force contact of the fingertip to an object leads to a large increase in the contact area 
enabling the object to be grasped in a stable manner. For forces greater than 1N, the fingertip acts 
as a stiff pad wherein the contact area changes minimally with increasing contact force; as the 
grasp force is increased, the fingerpad stiffness is also increased thereby maintaining stable 
grasping.  

Vega-Bermudez and Johnson [27] argues that compliance does not measure the degree to which 
the skin bends and moulds to the stimulus. The skin’s ability to conform to the object or the 
surface is critical for the recognition of small objects or surface features. For robotics and 
prosthetics design purposes, conformance is a critical property especially when an artificial tactile 
sensory system is to be embedded beneath the skin. The skin’s inability to deflect will prevent the 
spatial feature of an object to be transmitted to the embedded tactile sensors. In [41], we reported 
two skin conformance measures in the literatures that we were aware of. In psychophysics, skin 
conformance was measured as the degree to which the human fingertip skin invaded the slots of a 
grating. In robotics, the conformance of different materials was measured as the height of 
penetration of a right triangle towards the robotic fingertip at given a constant force [10]; a 
material like a sponge will be highly conformant whereas a stiff object like plastic will be the least.  

Hysteresis is the dissipated energy on the fingertip pulp [26] and can be shown when the loading 
and unloading curves do not coincide [42]. This property is especially useful to absorb the energy 
from high forces that may be experienced during grasping, catching of objects or accidental 
impacts. 

1.2 Related work on Skin Modeling 

Mechanistic models of the skin have been presented both in the robotics and fingertip 
biomechanics literatures. In robotics, Fearing and Hollerbach [43] first modeled embedded tactile 
sensors as linear elastic half spaces. Speeter [44] simulated the 3D contact of a sphere and a 
homogeneous, linear, isotropic pad using finite element (FE) method. Ricker and Ellis [45] argued 
that tactile sensors embedded on a skin are better modeled mechanically with the FE analysis, due 
to the method’s ability to capture the geometry and boundary conditions more faithfully than 
classical techniques. Again using FE methods, Shimojo [21] studied the low-pass filter effect of an 
elastic cover and it was shown that a covering of at least 0.2 mm thickness can have a serious 
effect on the embedded tactile sensor arrays with spatial resolution of less than 1 mm. 

To simulate the behaviour of a fingertip subjected to an external load, various modeling 
techniques were proposed in the biomechanics literatures. In Serina et al [26], the fingertip was 
modeled as an inflated ellipsoidal membrane for the epidermis filled with an incompressible fluid. 
Maeno et al [46, 47] developed a two-dimensional FE model of the fingertip with epidermis, 
dermis and subcutaneous tissue layers. In Phillips and Johnson [48], the continuum mechanics 
theory was used to model the skin by a homogeneous, isotropic and elastic incompressible 
medium. In Srinivasan [30], the “waterbed” model was proposed wherein the finger was 
represented as a fluid contained in a hyperelastic membrane corresponding to the skin. The 
“continuum” model [48] could not predict the time-dependent evolution of the external loading 
applied to the finger due to the elastic behaviour hypothesis. On the other hand, the “waterbed” 
model [30] could not predict the stress and the strain distributions inside the subcutaneous tissue.  

 Wu et al [49, 50] proposed a more realistic model by using an FE modeling technique that 
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takes into account the time-dependent behaviour of the subcutaneous tissue and the skin. Their 2D 
model incorporated the anatomical features of a human fingertip consisting of the skin (epidermis 
and dermis), subcutaneous tissue, bone and nail. The advantages of their proposed fingertip model 
over the previous “continuum” and “waterbed” fingertip models include its ability to predict the 
deflection profile of the fingertip surface, the stress and strain distributions within the soft tissue 
and the dynamic response of the fingertip to mechanical stimuli. The next section describes the 
procedure on how the Wu et al visco-hyperelastic model was implemented for the synthetic 
materials. 

The following sections are organized as follows. In Section 2, we present the characterization 
procedures made on the material samples. In Section 3, we describe how the fingertip model was 
developed and experimentally validated. Through simulations, we then compared in Section 4 the 
mechanical behaviour of synthetic and human fingertip skins. Section 5 presents the discussion 
and the concluding remarks.  

 

2 Materials Characterization 

2.1 Material Samples 

Two materials were evaluated in this study: silicone (GLS 40, Prochima, s.n.c., Italy) and 
polyurethane (Poly 74-45, Polytek Devt Corp, USA). The silicone sample has a Shore A value of 
11 while the polyurethane sample has a value of 45 (i.e., a lower value indicates a low resistance to 
an indenter in a standard durometer test). Three samples were obtained for each of these materials. 
The samples were prepared in moulds having holes of 8 mm diameter and a height of 10 mm.  

2.2 Material Parameter Identification 

2.2.1 Constitutive Equations  

In order to simplify the comparison between the characterized materials and the human fingertip 
data, the hyperelastic and viscoelastic constitutive equations that were used here were the same as 
the ones implemented by Wu et al [49, 50]. However, their model was modified here by making 
the constitutive equations for the subcutaneous and the skin layers to be the same due to the visco-
hyperelastic nature of the synthetic materials. The poroelastic constitutive equation that they 
implemented was unnecessary for our purposes because no fluid flow is involved, unlike what is 
within the human fingertip. The total stress is made equal to the sum of the hyperelastic (HE) 
stress and the viscoelastic (VE) stress such that: 

       (1) 

where t is the time. The hyperelastic behaviour was derived from a function of strain energy 
density per unit volume, U.  
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where J = λ1 λ2 λ3 is the volume ratio, αi  and µi are the hyperelastic material parameters, β = ν/(1 - 
2ν) where ν is the Poisson’s ratio, N is the number of terms used in the strain energy function, and 
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F and C are the deformation gradient and the right Cauchy-Green deformation tensors, 
respectively. It was assumed that the candidate materials were incompressible, and therefore J was 
set to unity. In the case of uniaxial compression tests, the following were used for the 
identification: λ1 = λ, λ2 = λ3 = λ^(1/2).  

The viscoelastic behaviour was defined as follows, with a relaxation function g(t) applied to the 
hyperelastic stress: 

!!"!" dtg HE
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In order to describe several time constants for the relaxation, the stress relaxation function g(t) 
was defined using the Prony series of order NG, where gi and τi are the viscoelastic parameters:  

!
"

#
$
%

&
''= (

=

'
G

i

N

i

t
i egtg

1

/ )1(1)( )

         (5) 

The number of coefficients to identify is equal to 2(N+NG)+1(ν) for each material type. The 
coefficients for hyperelastic (N), stress relaxation (NG) and Poisson’s numbers (ν) are shown in 
Table 1. 

Table 1. Coefficients of the Synthetic Materials 

 

 

 

 

 

 

 

 

 

2.2.2 Method for identifying the coefficients 

The indentation tests were performed in a materials testing machine (MTS 810, MTS Systems 
Corp, USA). Industrial Vaseline™ grease (Degryp-oil) was periodically applied to both the 
moving cylinder and the fixed plate to decrease the so called “barrel effect” due to friction. The 
contact between plates and the specimen was determined when the force reading was seen to be 
0.03 N.  The test was repeated three times for each of the three different specimens in order to 
estimate the influence of the specimen’s fabrication on the results, i.e. casting procedure.  

The coefficients for both the viscoelastic and hyperelastic equations were required. To 
determine these, two tests were necessary. First, the coefficients of the viscoelastic (VE) behaviour 
gi and τi were determined from relaxation tests at 20, 30 and 40% nominal strain.  A compression 
rate of 60 mm/s to peak was applied on the specimen. This resulted into an initial stress that is 
theoretically equal to the hyperelastic stress, which depends only on the strain. To allow the 
material to relax, the compressing plate’s position was held constant for about 60 s or when the 
force was estimated to have reached its asymptotic value. Because the hyperelastic part of the 
stress remained constant during relaxation, the coefficients of the viscoelastic equation can be 
directly identified from the relaxation function.  

Second, the coefficients of the hyperelastic behaviour µ i and α i were determined from 
compression tests performed at 1, 5 and 10 mm/s loading rates, until 45% of nominal strain (i.e. 
5.5 mm final length). These compression rates are too low to reproduce a purely hyperelastic 
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Silicone (ν = 0.49) 

gi 0.015 0.044 0.029 

τi (s) 0.025 0.150 0.300 

µi (MPa) 0.080 0.010 - 

αi 0.001 15.500 - 

Polyurethane (ν = 0.47) 

gi 0.167 0.158 0.113 

τi (s) 0.100 1.380 25.472 

µi (MPa) 0.100 0.063 - 

αi 5.500 8.250 - 
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behaviour, which allows the coefficients of the hyperelastic (HE) equation to be identified. 
Furthermore, due to the slow loading rates, the viscoelastic behaviour has taken effect. Hence, the 
identified coefficients from the relaxation function were applied into the identification procedure 
of the coefficients of the hyperelastic equation.  

The assumption of 60 mm/s loading velocity was validated a posteriori. The viscoelastic and 
hyperelastic coefficients were implemented to validate the following conditions: the combined 
hyperelastic and viscoelastic behaviours (Eq. 1), the hyperelastic behaviour alone (Eq. 3) and the 
viscoelastic behaviour alone (Eq. 4). The curves for the combined hyperelastic and viscoelastic 
behaviour has a 1.4% error from the purely hyperelastic condition for the silicone material. The 
error was 3.9% for the polyurethane material.  

2.3 Results of the Material Parameter Identification 

2.3.1 Viscoelastic Parameters 

The stress relaxation response of silicone and polyurethane are shown in Fig. 1a and 1c for the 
20, 30 and 40% strains. An excellent match between the experimental and the analytical curves 
can be seen. The experimental curves for all the strains can be fitted by an equation with NG=3, 
where NG denotes the number of terms used in the relaxation function of Eq. (5). Silicone required 
the least effort to compress as compared to polyurethane. It can also be observed from Fig. 1a and 
1c that silicone reached the steady state faster than polyurethane. The stress relaxation coefficients 
for gi and τi are shown on Table 1. 

 

Fig. 1  The analytical and experimental curves for relaxation and compression of silicone (a and b) 

and polyurethane (c and d). For the relaxation curves (a and c), the significant drop in the stress 

magnitude of silicone took effect before 1 sec. Silicone stabilized immediately whereas 

polyurethane slowly approached its relaxed state. As for the compression curves (b and d), silicone 

exhibited a nonlinear response compared to polyurethane. 
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2.3.2 Hyperelastic Parameters 

An NG=3 stress relaxation equation obtained previously and an N=2 hyperelastic equation were 
able to fit a good curve into the experimental compression curves as shown in Fig. 1b and Fig. 1d. 
To reach the maximum strain of 45% (i.e. 5.5 mm final length), silicone required a lower amount 
of force to be indented compared to polyurethane for the loading rates of 1, 5 and 10 mm/s. 
Silicone exhibited a nonlinear response compared to polyurethane. This implies that silicone 
initially compresses more with minimal applied stress but later stiffens as the stress increases. 
Likewise, the hyperelastic coefficients for µi and αi are shown on Table 1. 

 

3 Fingertip Model and Validation Experiments 

3.1 Finite Element Model of the Fingertip 

A two-dimensional finite element (FE) model of a fingertip (Fig. 2) was created in the 
commercial finite element software Abaqus™/Standard 6.5 (Abaqus, Inc., Pawtucket, RI). The 
plain strain 8-node bi-quadratic element type was used to model the fingertip. A thickness unit of 1 
was set. About 670 elements were used in the model. The interface at the bottom region of the 
model was fixed in all the degrees of freedom. This configuration approximates the stiff bone, nail 
and the tissue between them. From the x-ray analysis in [51], this tissue can be assumed to be stiff.  

The indenters were set to have a vertical downward movement towards the fingertip. Two types 
of indenters were used. For the wedge indentation test, the loading conditions were similar to the 
experiments of Srinivasan [30], which was later simulated in Abaqus™ by Wu et al [49]. The 
indenter had a width of 0.05 mm similar to the tip of the wedge used in the human experiments 
[30]. An indentation of 1 mm was applied at the first second and was maintained constant for the 
next 100 seconds. For the quasi-static plate indentation test, the plate was indented 1 mm towards 
the fingertip with a rate of 0.2 mm/s. The indenters were modeled as rigid, analytical surface. The 
contact between the indenter and the fingertip was assumed to be frictionless. 

 

Fig. 2  The two-dimensional finite element model of the synthetic fingertip. The shape was made 

to approximate a cross-section of the human fingertip. The fixed region serves as a stiff support 
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similar to the function of the bone and nail. The 0.05 mm-tipped wedge and flat plate indenters 

were oriented as shown. They were modeled as rigid, analytical surfaces. 

3.2 Validation Experiments on the Fingertip Model 

3.2.1 Fingertip prototypes 

The fingertip prototypes were fabricated using the silicone and polyurethane materials described 
in Sec. 2.1. The geometry in Fig. 2 was made to be symmetrical and was physically extended to 22 
mm. Three prototypes were fabricated for each of these materials. Each of the fingertip specimen 
was glued (Polyolefin 406, Loctite) to a rigid base material fabricated from thermoplastic by a 
rapid prototyping machine. The base was assumed to be a single material combined altogether as 
the fingertip’s bone, nail and the material in between them. The thermoplastic had a Young’s 
modulus of 775 MPa.  

3.2.2 Experimental Protocol 

The tests were performed in a materials testing machine. Additional equipment included a 
lighting system and a CCD camera capable of capturing images with 1280 x 1024 pixels 
resolution. The camera was linked to the testing machine’s data acquisition system. The indenters 
were attached to a load cell, which was then mounted on the fixed part of the testing machine (Fig. 
3). The load cell has a force resolution of 0.01N. The fingertip prototype was mounted on the 
moving lower plate. The vertex of finger prototype was positioned relative to the indenters using 
the real-time video feedback on the computer display. In addition to the visual feedback, the 
contact between fingertip and the indenter was determined when the force read-out was seen to be 
around 0.03 N. Pre-tests were conducted. Once the desired set-up was achieved, an image of a 4 
mm dia. bolt (i.e. an M4 bolt) was taken together with the specimen to establish the scale of the 
image. 

 

Fig. 3  The compression and imaging experimental set-up to validate the finite element model. (a) 

The set-up includes a materials testing machine, a lighting system and a CCD camera. (b) shows 

the wedge indenter above the fingertip specimen while (c) shows the flat surfaced-indenter in a 

similar setup. 
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For the wedge indentation test, the fingertip specimen was indented 1 mm towards the fixed 

wedge at a rate of 1 mm/s. The displacement was maintained static for 100 s. Images were taken at 
time T=0, T=1 s and T=100 s. For the quasi-static loading test, the specimen was indented 1 mm 
with a rate of 0.2 mm/s. Images were not taken as they were not necessary; the imaging 
experiments with a fine wedge tip of 0.05 mm was deemed to be sufficient. In all the tests, the 
reaction forces from the indenters, the indentation displacement and the time were recorded. Each 
specimen was changed after every experimental run to allow them to recover from any relaxation 
effects. Each material was tested five times. The mean and standard deviation of the experimental 
data are plotted in Fig. 5.  

3.2.3 Simulation Validation 

The simulation and the experimental results were compared to validate the FE model. For the 
wedge indentation, the force-time curves were compared; for the quasi-static plate indentation, the 
force-displacement curves. For both of these, the resulting force values from the simulations were 
multiplied by 22 mm (i.e. thickness of the fingertip prototype) because the FE model was assumed 
to have a thickness unit of 1 (cf. Sec. 3.1). In plane strain simulations, the Abaqus™ software 
reports the loads and reaction forces as ‘per unit thickness’. From the results of the simulation and 
validation in Fig. 5a and 5b, it can be confirmed that when the actual thickness of the prototype is 
multiplied by the forces obtained from the simulations, the simulation values achieve the true 
forces. 

3.2.4 Image Processing Technique 

In addition to the comparisons in the force-time-displacement curves, the surface profile of the 
simulation and the experimental results were also compared. The open source GIMP (GNU Image 
Manipulation Program, www.gimp.org) was used to digitally post-process the acquired images 
whereas the digitization of the surface profile was performed in Matlab (Mathworks, MA). To 
extract the surface profile of the finger prototypes, a three step process was done. First, it was 
necessary to determine the reference point in the image. Hence, the image at T=0 s and images at 
T=1 s or T=100 s were superimposed (Fig. 4). The reference point was set at the right corner of the 
wedge and its intersection with the T=0 s curve. Second, the grid size on the GIMP interface was 
set to a resolution of 0.01 mm. The grids coinciding with the fingertip profile were marked with 
crosshairs to further improve the accuracy once the profiles were to be digitized outside of GIMP. 
Finally, the crosshairs representing the fingertip surface profiles at T=1 s and at T=100 s were 
manually digitized and plotted separately using a code written in Matlab. 

 

Fig. 4  The processed image for digitization. To determine a reference point, the image at T=0 s 

(lower curve) was superimposed with the image of T=1 s or T=100 s (upper curve). The reference 

point was set at the intersection of the rightmost corner of the wedge and the profile at T=0 s. To 



11 

improve the ease and accuracy of manual digitization, the points of the upper curve’s profile that 

coincided with the 0.01 mm resolution grids of the GIMP user interface were marked with 

crosshairs. 

 

3.3 Results of the Simulation and Validation 

3.3.1 Wedge and Plate Indentation 

For the wedge indentation, the results of the FE simulation with the mean and standard 
deviation of the five tests for each of the materials were plotted in Fig. 5a. Silicone was softer 
compared to polyurethane as silicone required less than half of the effort of polyurethane to be 
indented by a wedge to 1 mm. In terms of relaxation, silicone recovered immediately while 
polyurethane continued to stabilize until 100 s. There was a good agreement between the FE 
simulation and the experimental curves having errors less than 10%. Fig. 5b shows the 
experimental and simulation curves for the synthetic materials in a quasi-static plate loading. The 
simulation curves of polyurethane had a better fit to the experimental curves compared to silicone. 
At their peak forces, silicone had an error within 10%, while polyurethane had less. 

 

Fig. 5  Validation results of the indentations with the wedge (a) and plate (b). (a). The force-time 

curves in the wedge indentation experiment and simulations were compared for the silicone and 

polyurethane materials to validate the FE fingertip model. (b). The force-displacement curves in 

the plate indentation experiment and simulations were compared for the silicone and polyurethane 

materials. The experimental curves resulted from five indentation tests for each material type. 

3.3.2 Surface Profile Imaging 

The simulation and validation surface fingertip profiles were plotted in Fig. 6. The relative 
differences between the simulated curves of both silicone (Fig. 6a) and polyurethane (Fig. 6b) and 
the corresponding averaged experimental data are less than 10%. The differences in the results 
between silicone and polyurethane can be expected since the curves in Fig. 5 already showed some 
differences in the simulation and validation curves of the two materials, which may be due to the 
parameter estimation process. The imaging results, however, were useful in verifying how small 
those differences were in terms of their relative displacements. 
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Fig. 6  The simulation and validation surface profiles of the synthetic fingertip for silicone (a) 

polyurethane (b). The surface profiles were plotted from the rightmost corner of the wedge to 7 

mm distance (the full width was 8 mm). 

4 Synthetic and Human Fingertip Comparisons 

4.1 Simulation Procedure 

4.1.1 Skin Compliance and Hysteresis 

Serina et al [26] showed that the indentation angle has a strong influence on the experimental 
results. For accurate comparisons, it is important that the angles of inclination of the indenter are 
similar. However, most of the experiments on the human fingertip have the indenters inclined at 
20° to 40° [27, 32, 33, 52, 53]. In Serina et al [26], experimental results with the contact angle of 
0° with respect to the horizontal plane were provided. This data was attractive for our work’s 
purposes because of the limitations imposed by the planar FE fingertip model in this study.  

In Serina et al’s experiments [26], human subjects repeatedly tapped their left index finger on a 
flat plate, while the contact force and pulp displacement were measured. The tapping experiments 
were conducted at three contact angles from the horizontal plane (0°, 45° and 90°) and five tapping 
rates (0.25, 0.5, 1, 2 and 3 Hz). Subjects were instructed to match the applied force history to the 
positive half of a sine wave with amplitude 5.0 ± 0.5 N. The pulp tissue was determined to be in a 
quasi-equilibrium state after 2.5 min of continuous tapping. Pulp displacements at 1 and 4 N were 
obtained. The hysteresis was computed to be the area between the loading and unloading curves.  

In the simulations here, the geometry is made the same as the fingertip geometry shown in Fig. 
2 and the length was assumed to be 10 mm (i.e. length towards the page), which is approximately 
the length of finger contact when the finger is pressed to the plate at 0°. To achieve this, note that 
the forces obtained in the simulations were multiplied by 10 as the force outputs from the 
simulation are given as ‘per unit thickness’. It was further assumed that a plate applies the cyclic 
load of 0.5 Hz normal to the fingertip surface. Hence, the negative half of a sine wave with 
amplitude of 5 N was applied. Similar to human experiments in [26], the displacements 
corresponding to 1 and 4 N were obtained for comparison with the human fingertip data. The 
hysteresis was computed as the area between the loading and unloading curves.  

4.1.2 Skin Conformance 

Rather than applying a constant force indentation on the skin surface similar to the previous 
conformance experiments by Shimoga and Goldenberg [10] and Vega-Bermudez and Johnson 
[27], a constant displacement indentation of 1 mm was used here. As such, the differences in the 
surface deflections of the materials can be equally compared. For this paper, the surface deflection 
of the synthetic materials and human fingertip in the wedge experiments of Srinivasan [30] were 
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plotted. In Srinivasan’s experiments [30], a 0.05 mm wedge was indented on the human fingertip 
and the surface deflection was measured. To have a complete comparison, it was also necessary to 
compare the effort required by the wedge to indent the human fingertip and the synthetic materials 
to 1 mm. Therefore, the force-time curves also needed to be evaluated. However, in Srinivasan’s 
paper [30] the force-time curves were not reported. To resolve this, it was necessary to use the 
simulation results of the same wedge indentation test by Wu et al [49], which took into 
consideration the force-time behaviour of the fingertip. The simulation results of the human 
fingertip in [49] together with the polyurethane and silicone were normalized with respect to the 
maximum force value of polyurethane. 

4.2 Results 

4.2.1 Skin Compliance and Hysteresis 

Fig. 7 and Table 2 show that the synthetic materials were not as compliant as the human 
fingertip. A plate indentation of 1 N resulted to a displacement on the synthetic fingertip skin of 
0.28 mm for polyurethane and 0.43 mm for silicone. The human fingertip's displacement was 1.83 
mm [26]. With hysteresis computed as the area bounded by the loading and unloading curves, the 
synthetic materials were found to have low values of 0.17 N·mm for silicone and 0.29 N·mm for 
polyurethane while the human fingertip has a high hysteresis value of 2.26 N·mm [26].  

 

Fig. 7  Finite element simulation results for skin compliance and hysteresis. The simulation data 

for silicone and polyurethane were compared with published biomechanical data of the human 

fingertip. The force-displacement curves were obtained for the loading-unloading cycle by a plate 

at 0.5 Hz. 

Table 2. Displacement and Hysteresis Comparisons 

 

 

 

 

 

 

 

 

Disp. (mm) at  

1 N at the 

Loading Curve 

 

Disp. (mm) at  

4 N at the 

Loading Curve 

 

Hysteresis   

(N·mm) 

Human 
Fingertip, 0.5 

Hz, inclined 0° 
(Serina et al 

1997) 

 
1.83 

 
2.91 

 
2.26 

Silicone 0.45 1.03 0.17 

Polyurethane 0.28 0.67 0.29 
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4.2.2 Skin Conformance 

The surface deflection of the human fingertip experiments of Srinivasan [30] and the simulation 
results of the polyurethane and silicone synthetic materials were plotted together on Fig. 8a. The 
synthetic materials had a fairly good overall agreement with the human fingertip from the wedge 
corner to around 2 mm distance, demonstrating the synthetic materials’ capacity to bend or follow 
surface features. However, the human fingertip takes minimal effort to be indented. The force-time 
curves from the simulations are shown on Fig. 8b comparing the human fingertip and the synthetic 
materials. The human fingertip conforms to a wedge with very minimal force exerted as shown by 
the resulting plot near zero.   

 

Fig. 8  Finite element simulation results on skin conformance. (a) Comparisons between the 

conformance of the synthetic materials and the human fingertip to a sharp wedge are shown. The 

conformance was comparable but higher forces were required for the synthetic materials to 
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achieve such displacements as shown in (b). (b) The effort required by the wedge to indent the 

fingertip is shown. The results were normalized to the value of the peak force of polyurethane to 

show the relative differences. It does not take much effort for the human fingertip to conform to a 

wedge.  

5 Discussion and Conclusion 

The finite element simulations on the fingertip model showed that a homogeneous layer of 
silicone or polyurethane materials were far from the mechanical behaviour of the human fingertip. 
In terms of skin compliance, silicone was indented to 39% and polyurethane to 37% of their 
maximum fingertip compression at 1N load. The data of Serina et al [26] showed that the human 
fingertip experienced large displacements equivalent to 62% before the contact force reached 1N. 
The hysteresis value, which is the computed as the area within the loading and unloading curves, 
was 0.29 N·mm for polyurethane and 0.17 N·mm for silicone as compared to 2.26 N·mm for the 
human fingertip. For skin conformance, both synthetic materials conformed well from the corner 
of the wedge until the 2 mm distance but required higher forces for the surface deflection to be 
achieved.  

5.1 Limitations of the study 

Plane strain elements were used in the FE simulations. With a plane strain assumption [42], it is 
assumed that constant deformations and strains occur at the z-axis (i.e. for Fig. 2, the axis towards 
the page). In reality, for incompressible materials (i.e. those materials with no volume changes 
when compressed), it is expected that the material bulges in the directions which were not 
constrained. Nevertheless, the simulation model developed here is useful for low strain 
indentations as can be observed in the simulation and validation results of Fig. 5 and Fig. 6. The 
applied nominal strain for the simulation results of the silicone and polyurethane samples was 20% 
of the skin thickness. For the simulation results of the FE model developed here to be valid, it is 
recommended that the nominal strains to be applied should be within the 20% limit. 

One may also argue that the simulations are no longer necessary when the prototypes are 
already sufficient to make the comparisons. The advantage of this study’s approach permits the 
reusability of both the material coefficients and the FE fingertip model. If desired, the various 
loading conditions similar to those in the literatures on fingertip biomechanics can be simulated 
without the urgency of physical experimentations. Furthermore, once the suitable fingertip 
materials have been selected, the simulation approach opens the possibility to visualize and 
analyze the internal effects on the artificial fingertip given an externally applied stimulus. From 
this, different design options can be evaluated especially when tactile sensors are to be embedded. 
Simulations can be conducted before any fabrication can take place, thus avoiding or reducing the 
costly trial-and-error stage. 

5.2 Comparisons with Previous Works 

The usual measure of softness in engineering materials is through the Shore durometer values. 
However, softness per se does not explicitly show the surface deflections and viscoelastic effects 
in during the synthetic skin’s relaxation. In the development of physically and behaviorally 
humanlike robots, it has been acknowledged that soft, sensing skins are important for interactive 
robots but not much work has been done in this area [22]. In the current paper, a systematic 
approach has been developed for comparing synthetic skin materials against the compliance, 
hysteresis and conformance of the human fingertip. Presumably, these are the criteria that would 
help designers select materials that would resemble a realistic feeling of soft touch in the social 
interactions of prosthesis users or humanoids robots. Using the human model as a benchmark 
would be reasonable since there is no gold standard defined yet by the robotics community for the 
characteristics of artificial skins for human-robot interaction. 

Previous works in robotics have found compliance and conformance to be important for 
grasping, manipulation and sensing [10, 11, 43, 54-58] but have not compared these properties 
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directly to the human fingertip.  As for hysteresis, this property is beneficial to absorb the energy 
from impacts and is present in the highly hysteretic nature of human and animal skins. However, 
to achieve an accurate result from an embedded artificial tactile sensor, hysteresis is a detrimental 
property [59, 60] for at least two reasons [61]. First, upon loading, the signals from an embedded 
sensor will have a long decay until the hysteretic skin material stabilizes. Second, upon release of 
the load, the material will gradually return to its initial state. With a hysteretic skin material, the 
embedded sensor will continue to be on its active state even after the load on the skin surface has 
been completely removed. The balance between impact absorption for grasping/catching purposes 
and the compensation of hysteresis for tactile sensing applications remains an open research issue.  

5.3 Conclusion 

Towards the goal of humanlike social touch for sociable robotics and prosthetics, this paper 
compared the behaviour of typical synthetic skin materials such as silicone and polyurethane with 
the published data on skin compliance, hysteresis and conformance properties of the human 
fingertip. Samples of silicone and polyurethane were characterized and their material coefficients 
were implemented in a finite element (FE) model of a fingertip. The model was validated with 
wedge and plate indentations in addition to imaging experiments. The simulation and the 
experimental force-time curves of the wedge indentation as well as the force-displacement curves 
of the plate indentation were in good agreement. The imaging results of the surface profiles were 
also acceptable as the profiles of the simulation and the experiments were in agreement as well.  

The synthetic materials showed that they were not as compliant as compared to the human 
fingertip. The hysteresis values of the synthetic materials, however, were far lower compared to 
the human fingertip. The conformance of silicone and polyurethane to a wedge were similar to the 
human fingertip but the synthetic materials required higher forces for the deflection to be achieved. 
While the initial attempt on the synthetic materials did not exhibit close similarities to the human 
fingertip, the results are valuable as the baseline data of reference. Other designers contemplating 
on the use of such type of materials and in similar geometric configuration can also benefit from 
these results. The methodologies described herein can be extended to evaluate other materials such 
as foams, gels, fluids, other soft materials and their combinations; different internal geometries of 
the fingertip can also be explored.  
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