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Quantum phase transition and degeneracy of a circuit-QED vacuum

Pierre Nataf1 and Cristiano Ciuti1, ∗

1Laboratoire Matériaux et Phénomènes Quantiques, Université Paris Diderot-Paris 7 and CNRS,

Bâtiment Condorcet, 10 rue Alice Domont et Léonie Duquet, 75205 Paris Cedex 13, France

We investigate theoretically the quantum vacuum properties of a transmission line resonator
inductively coupled to a chain of N superconducting qubits. We derive the quantum Hamiltonian for
such circuit-QED system, showing that, due to the type and strength of the interaction, a quantum
phase transition occurs in the limit of large N , with a twice degenerate quantum vacuum above a
critical coupling. The phase diagram can be fully explored thanks to the controllable ultrastrong
coupling of the qubits with the modes of the transmission line resonator. For finite values of N , an
energy splitting occurs, which becomes exponentially small with increasing size and coupling.
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(September 18, 2009)
Circuit quantum electrodynamics (circuit-QED) is a
very fascinating topic for fundamental condensed mat-
ter physics, quantum optics and quantum information.
In superconducting circuit-QED systems, it has been
possible to implement on a chip the celebrated Jaynes-
Cummings model by strongly coupling a superconduct-
ing qubit to a bosonic mode of a microwave transmission
line resonator[1, 2] and also to perform quantum logi-
cal operations with two qubits[3]. Up to now, manip-
ulation of quantum states in such circuit-QED systems
has dealt with excited states. In fact, in the quantum
circuits studied up to now, the quantum optical ground
state is non-degenerate (e.g., in the Jaynes-Cummings
model the ground state is the vacuum of excitations for
the resonator times the ground state of the qubit) and
no information can be stored or processed by using only
the ground state of the circuit-QED system.

In this letter, we show that by using a chain of qubits
embedded in a transmission line resonator, it is possi-
ble to obtain a quantum phase transition affecting the
quantum vacuum of the system. We have found that
a critical coupling occurs in such a circuit-QED system
thanks to both the type and ultrastrong strength of the
interaction obtainable with inductively coupled qubits.
By analytical and numerical calculations, we show that
above the critical point, the ground state is twice degen-
erate and that it is protected with respect to some types
of local noise sources. These properties can be achieved
even with a moderate number N of qubits.

A sketch of the considered system is depicted in Fig.
1, namely a chain of N identical artificial two-level atoms
in a one-dimensional transmission line resonator. Each
qubit (’fluxonium’ [4]) is made of a Josephson junc-
tion coupled to inductances and an external magnetic
flux. This artificial atom is inductively coupled to the
transmission line resonator. The fluxonium is known to
have controllable parameters and to be free from charge
offsets[4]; moreover, the inductive coupling can produce
extremely large coupling even with a single qubit[5]. In
the case of a chain, the Hamiltonian is H =

∑

j Hj where

each cell of size a is labeled by the index j and is lo-
cated at the position xj . One can effectively model the
resonator as a sequence of inductances Lr = alr and ca-
pacitances Cr = acr [6], where lr (cr) is the inductance
(capacitance) per unit length. In each cell, the Joseph-
son junction, the capacitances, and the inductances of
both resonator and fluxonium contribute to the energy
as follows:

Hj = 4ECr
(N̂ j−1

r )2 +
(φ̂j−1

r − φ̂j
r − φ̂j

x)2

2Lr

+
(φ̂j

x)2

2L1

+
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x − φ̂j
J )2

2L2
+ 4ECJ
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2e

~
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ext) ,(1)

where the N̂ and φ̂ operators represent the number and
flux operators for the resonator elements and Joseph-
son junctions (the index ’r’ stands for resonator; ’J ’
for Josephson junction). The charging energies in the

Hamiltonian are ECr
= e2

2Cr
and ECJ

= e2

2CJ
. By

applying Kirchoff’s laws and by taking Φext = π ~

2e
, it

is possible to rewrite the global Hamiltonian as H =
Hres + HF + Hcoupling as follows:
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Hcoupling =
N

∑

j=1

G(ϕ̂j
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J , (2)

where we have introduced the dimensionless fluxes ϕj
r =

2e
~

φ̂j
r , ϕj

J = 2e
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J and the inductance energy con-
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.



2

FIG. 1: Description of the system. A chain of N iden-
tical, regularly spaced qubits (”F” stands for fluxonium[4])
are embedded in a transmission line resonator. Each flux-
onium is coupled inductively to the transmission line res-
onator. By properly tuning the external magnetic flux, the
flux-dependent potential for each fluxonium has a symmetric
double well structure with two states, |0〉 and |1〉 (with energy
difference ~ωF ) forming the two-level system artificial atom
(parameters used for the inset: EJ/ECJ

= 3, EJ/ELJ
= 20;

the third level of the fluxonium is well separated in energy).

The Hamiltonian Hres describes the transmission line
resonator with a renormalized inductance per unit of

length l̃r = lr
L1 + L2+

L2L1
alr

L1+L2
, accounting for the additional

inductances in each fluxonium. By following the quan-
tum field treatment in Ref. [6], the position-dependent
flux field can be written as:

φ̂(x) = i
∑

k ≥1

1

ωk

√

~ωk

2cr

fk(x) (âk − â†
k) (3)

where a†
k is the bosonic creation operator of a photon

mode with energy ~ωk = kπa
d

√

8EcELr
. The spatial

profile of the k-th mode is fk(x) = −
√

2/d sin(kπx
d

) for k

odd, while fk(x) =
√

2/d cos(kπx
d

) for k even, d being the
length of the one-dimensional resonator (in the following,
we will consider d = Na). The site-dependent fluxes are

simply given by the relation φ̂j
r = φ̂(xj).

The Hamiltonian HF describes the sum of the bare
energies of the artificial fluxonium atoms. By properly
tuning the external magnetic flux, it it possible to obtain
a symmetric flux-dependent potential energy, as shown in
Fig. 1, with a double well structure. Due to the strong
anharmonicity of its energy spectrum, the fluxonium can
be approximated as a two-level system, when EJ ≫ ELJ

.
We call the two first eigenstates of the jth fluxonium as
|0〉j and |1〉j and we introduce the raising operator σ̂+,j =

|1〉〈0|j and σ̂−,j = σ̂†
+,j = |0〉〈1|j . By using the Pauli

matrix notation, we have σx,j = σ̂†
+,j + σ̂+,j and σy,j =

−i(σ̂†
+,j − σ̂+,j) and σz,j = 2σ̂†

+,j σ̂+,j − 1. Leaving aside

a constant term, we then have HF =
∑

j ~ωF σ̂†
+,j σ̂+,j ,

where ~ωF is the energy splitting between the two states
|0〉 and |1〉. By considering only the two-level subspace,
the Josephson junction flux has the form

ϕ̂j
J ≃ −ϕ01(σ̂+,j + σ̂†

+,j) = −ϕ01σ̂x,j . (4)

As it will be clear in the following, it is convenient to
introduce excitation creation operators b̂†k

b̂†k =

√

2

N

N
∑

j=1

∆f⋆
k (xj)σ̂+,j (5)

for 1 ≤ k ≤ N − 1, where ∆fk(xj) = cos(
kπ(−N+1

2 +j)

d
a)

for k odd , and ∆fk(xj) = sin(
kπ(−N+1

2 +j)

d
a) for k even.

Note that the collective operator b̂†k is a linear superpo-
sition of the excitation operators in each fluxonium with
an amplitude depending on the spatial dependence of the
flux field of the transmission line resonator. In order to to
get a unitary transformation, it is also necessary to intro-
duce the operator b̂†N = 1√

N

∑

j(−1)jσ̂+,j . In the follow-

ing, we will consider only the photonic modes 1 ≤ k ≤ N
(equivalent to the first Brillouin zone associated to the
periodic spatial spacing of the artificial atoms), because,
in the conditions we are considering, the higher order
(Bragg) modes are energetically well off-resonant. Hence,
we get the following effective Hamiltonian:

H =
~

2

∑

1≤k≤N

Φ̂†
k ηMk Φ̂k (6)

where Φ̂k = ( â k, b̂k, â†
k, b̂†k)T with the Bogoliubov di-

agonal metric η = diag[1, 1,−1,−1], and the matrix:

Mk =









ωk −iΩk 0 −iΩk

iΩk ωF −iΩk 0
0 −iΩk −ωk −iΩk

−iΩk 0 iΩk −ωF









. (7)

The collective vacuum Rabi frequency reads for 1 ≤ k ≤
N − 1

~Ωk = G
4e

~
ϕ01 sin(

kπa

2d
)

1

ωk

√

~ωkN

2dcr

. (8)

( and for k = N , ~ΩN = G4e
~

ϕ01

ωN

√

~ωN N
dcr

).

Notice that each k-mode of the resonator is coupled
only to the collective matter mode with the same spa-
tial symmetry and H =

∑

k Hk. Hence, the eigenstates
are products of the eigenstates corresponding to the k-
subspaces. The effective Hamiltonian in Eq. (6) has been

obtained by assuming that the operators b̂†k are bosonic,

i.e. [b̂k, b̂†k] ≃ 1, an approximation working in the limit
N ≫ 1. The excitation spectrum of the collective bosonic
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modes depends on the eigenvalues of the matrix Mk. A
very interesting property of the circuit-QED system here
considered can be appreciated by inspecting the determi-
nant of Mk:

Det(Mk) = ωkωF (ωkωF − 4Ω2
k). (9)

Remarkably, it vanishes when the vacuum Rabi frequency
is equal to the critical coupling value

Ωc
k =

√
ωkωF

2
, (10)

implying that two of the 4 eigenvalues of Mk are exactly
zero. This is reminiscent of quantum phase transitions[7]
with Dicke-like Hamiltonians[8], where at the quantum
critical point there is a gapless bosonic excitation. For
Ωk > Ωk

c , two of the 4 eigenvalues of the matrix Mk

becomes imaginary, manifesting an instability of the nor-
mal, non-degenerate, quantum vacuum phase. Note that,
depending on the type of interaction, a system with (ul-
tra)strong coupling light-matter regime does not neces-
sarily have a quantum critical point[9].

Above the critical point, the system can not be any
longer described by the effective bosonic Hamiltonian
H in Eq. (6) and one has to necessarily consider de-
viations from bosonicity. Indeed, above the critical
coupling, other analytical approaches (e.g., expansions
based on the Holstein-Primakoff representation[8]) or ex-
act numerical diagonalizations of the actual Hamiltonian
H with fermionic operators are needed. In the limit
N → ∞, it can be shown that above the critical point a
symmetry breaking occurs and that the ground state be-
comes twice degenerate. Indeed, one can define a parity
operator P̂ = eiπν̂ , where ν̂ =

∑

k â†
kâk +

∑

j σ̂†
+,j σ̂+,j

is the operator counting the total number of excita-
tions. The Hamiltonian commutes with such parity op-
erator. In the undercritical normal phase, the vacuum
|G〉 has a well definite parity and it is therefore ’inco-
herent’, i.e. 〈G|ak|G〉 = 0 and 〈G|σx,j |G〉 = 0. On the
other hand, in the overcritical case, the parity symme-
try is broken and there is a photon and qubit coherence,
namely 〈G|ak|G〉 = αk 6= 0 and 〈G|σx,j |G〉 = βj 6= 0.
The ground state is twice degenerate, with a second or-
thogonal ground state such that 〈G′|ak|G′〉 = −αk and
〈G′|σx,j |G′〉 = −βj .

For the case of finite number of fluxonium qubits N and
finite number of modes Nm, we have performed numeri-
cal diagonalizations of the circuit-QED Hamiltonian (see
Fig. 2). In the limit of very large dimensionless coupling
(Ωk=1

ωF
→ ∞), we have also derived a simple analytical

expression for all eigenstates and in particular for the
two degenerate ground states by taking into account an
arbitrary number Nm of modes for the transmission line
resonator. It is convenient to introduce the x-polarized
states (eigenstates of σ̂x,j), namely |+〉j = 1√

2
(|1〉j +|0〉j)

and |−〉j = 1√
2
(|1〉j − |0〉j). We have found that, in such

infinite coupling limit (where HF can be neglected with
respect to Hres + Hcoupling), every eigenstate has the
following form: Πj |ζj〉 ⊗ |Ψres〉 where ζj ∈ {−, +} and
|Ψres〉 is a generic quantum state for the transmission line
resonator field. In particular, we have analytically found
the asymptotic expression for the two ground states |G+〉
and |G−〉:

|G±〉 ≃ CGΠj |±〉j ⊗ Πko
e
±( g

√
2 iko

k1.5
o sin( π

2N
)
a
†
ko

)|0〉ko
⊗ Πke

|0〉ke

(11)

with CG a normalisation constant, g = Ωk=1√
Nωk=1

the di-

mensionless coupling constant per fluxonium , ko (ke)
standing for the odd (even) k values for the resonator
modes.
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FIG. 2: First 20 energy eigenvalues (normalized to the flux-
onium transition energy) versus dimensionless vacuum Rabi
coupling for a circuit-QED system with N = 5 fluxonium
atoms, Nm = 3 resonator modes (20 cut-off quanta per mode)
and fluxonium frequency ωF = ωk=1. Due to the finite value
of N , the transition from a non-degenerate to a twice degener-
ate ground state is not abrupt. Upper inset: the difference be-
tween the considered energy eigenvalues and the ground state
energy is plotted. Lower inset: normalized energy difference
(log scale, over 8 decades) between the first 2 quasi-degenerate
levels versus the dimensionless coupling. For large couplings,
the two collective ground states are excellently approximated
by the analytical formula in Eq. (11).

Eq. (11) shows that the two degenerate ground states
are the product of a ’ferromagnetic’ state for the chain
of qubits times coherent states for the different resonator
modes. Importantly, the two orthogonal ground states
have opposite polarization of the qubits and opposite
phases for the coherent states. Fig. 2 shows the first
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20 numerically calculated eigenvalues with N = 5 and
Nm = 3. It is apparent that the transition from a
non-degenerate to a twice degenerate ground state is
not abrupt, as opposed to the thermodynamic limit of
large N . However, even for a relatively small number
of qubits and finite coupling g, quasi-degeneracy of the
circuit-QED ground state is obtained for coupling slightly
larger than the critical value (Ωc

k/ωk=1 = 0.5) predicted
by the effective bosonic Hamiltonian H in Eq. (6), which
is valid for N ≫ 1. Moreover, we have verified in detail
that above the critical value the corresponding states are
excellently described by the analytical expression in Eq.
(11) (for the strongest coupling considered in Fig. 2, the
overlap between the analytical expression for |G±〉 and
the numerical counterpart is approximately 95%).

It is important to point out that in presence of a
large, but finite coupling, HF ’perturbs’ the effect of
Hres + Hcoupling by lifting the degeneracy of the quan-
tum ground state doublet. We have found that for large
couplings the corresponding energy splitting decreases
exponentially with increasing coupling per fluxonium g
and fluxonium number N (see inset in Fig. 2). Clearly,
we recover the result of exact degeneracy in the limit of
large N . Perturbation theory also allows us to estimate
the splitting between the two first states when applying
local noise sources proportional to the operators σy,j and
σz,j . In fact, for the degenerate ground states considered
above, we have 〈G±|σ̂y,j |G±〉 = 〈G±|σ̂y,j |G∓〉 = 0 and
〈G±|σ̂z,j |G±〉 = 〈G±|σ̂z,j |G∓〉 = 0. Moreover, in pres-
ence of N qubits, the noise effect is zero up to the N -
th order perturbation theory[13]. This implies that, by
increasing the number N , the noise-induced degeneracy
splitting decreases exponentially with N , an issue that we
have also verified numerically. The degeneracy is instead
not protected with respect to local noise sources propor-
tional to σx,j , though different geometrical arrangements
in multicavity systems may add further protection.

As we describe in the following, by a judicious tuning of
the controllable parameters of the system, it is possible to
explore all the phase diagram with a realistic system. Let
us suppose that each fluxonium is resonant with the first
cavity mode, i.e., (ωF = ωk=1). In this resonant case, we
find that the dimensionless vacuum Rabi coupling reads

Ωk=1

ωk=1
=

√
N

√

Zvac

2Zrα
µνγ ∼ 5.7

√
Nγ , (12)

where ν = 1
4π

ϕ01 ∼ 1
4 for EJ

ELJ

≫ 1, µ =
sin( πa

2d
)

πa
2d

. For a
d
→

0+, we have µ ∼ 1. Finally, Zvac

2α
= h

e2 = Rk ∼ 25.8kΩ is

the impedance quantum, while Zr =
√

Lr

Cr
= 50Ω is the

standard transmission line impedance .
Finally, we have the branching ratio

γ = (
Lr

L1Lr + L1L2 + L2Lr

)
1
4

L1

(L1 + L2)
3
4

. (13)

This is the control parameter thanks to which it is possi-
ble to tune the dimensionless coupling Ωk=1

ωk=1
. The branch-

ing ratio γ is approximately zero for L1 ≪ L2 and tends
to 1 when L1

L2
≫ 1. Note that in the resonant case the

critical coupling is such that
Ωc

k=1

ωk=1
= 0.5, hence by con-

trolling the branching ratio it is indeed possible to explore
all the phase diagram.

We wish to point out that the excitations contained in
the quantum ground state cannot give rise to extracavity
microwave radiation unless a non-adiabatic modulation
of the Hamiltonian parameters is applied[11, 14]. The
quantum vacuum radiation across the quantum phase
transition is an interesting problem to explore in the
future. In the opposite limit of adiabatic changes of
the Hamiltonian, thanks to the degeneracy, it may be
possible in principle to create Berry phases (eventually
non-abelian) and conveniently control quantum super-
positions in the quantum ground state subspace, another
interesting issue to explore. In conclusion, a chain of flux-
onium atoms inductively coupled to a transmission line
resonator proposed here appears to be a very promising
system towards the observation of interesting quantum
phase transitions effects and the manipulation of quan-
tum vacuua in circuit-QED.
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