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A simple model to handle the flow of people in emergency evacuation situations is con-
sidered: at every point x, the velocity U(x) that individuals at x would like to realize
is given. Yet, the incompressibility constraint prevents this velocity field to be realized
and the actual velocity is the projection of the desired one onto the set of admissible
velocities. Instead of looking at a microscopic setting (where individuals are represented
by rigid discs), here the macroscopic approach is investigated, where the unknwon is the
evolution of a density ρ(t, x). If a gradient structure is given, say U = −∇D where D

is, for instance, the distance to the exit door, the problem is presented as a Gradient
Flow in the Wasserstein space of probability measures. The functional which gives the
Gradient Flow is neither finitely valued (since it takes into account the constraints on the
density), nor geodesically convex, which requires for an ad-hoc study of the convergence
of a discrete scheme.
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1. Introduction

In the last two decades, several strategies have been proposed to model the motion

of pedestrians. Most of them rely on a microscopic approach: the degrees of freedom

are the positions of individuals, and their evolution depends on a balance between

selfish behaviour, congestion constraints, and possibily social factors (politeness,
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gregariousness). Among those microscopic models, some are based on a stochastic

description of the individual behaviour (see e.g. Ref. 27), whereas others are purely

deterministic (see Refs. 24, 28, 29).

An essential ingredient in those models lies in the way interactions between

individuals are handled, in particular in the case of high density (congestion phe-

nomena). Following the classification which holds in the modeling of granular flows,

one can differentiate the Moecular Dynamics (MD) approach (the non overlapping

constraint between rigid grains is relaxed, and handled by a short range repulsive

force) and the Contact Dynamics (CD) one (the collisions are explicitely taken into

account). In the context of pedestrians, MD strategy has proved to be quite efficient

to model congestion. In particular Helbing22,24,26 introduced the concept of social

forces, which are designed in such a way that individuals tend to repel each other

when their distance drops below a certain value. The model proposed in Ref. 34

relies on the alternative strategy: individuals do not interact with each other as

soon as they are not in contact, and the non overlapping constraint is treated in

a strong (non relaxed) way. Although it is natural to expect some link between

the two approaches (MD models are likely to converge in some way to their CD

counterparts as the repulsive force stiffness goes to infinity), it is to be noticed that

the mathematical structures of the two classes of models are quite different. In the

first case, Cauchy-Lipschitz theory for ODE’s applies, whereas CD models present

some analogies with the so-called sweeping process introduced by Moreau36 in the

70’, for which a dedicated framework has been developped (see Refs. 20, 21, 35).

In the case of macroscopic models, the first strategy (congestion is treated in a

relaxed way) is favoured, as it allows to use classical methods for studying PDE.

For example, crowd motion models inspired from traffic flow models have been de-

velopped (see Refs. 14, 12, 13). They take the form of hyperbolic conservation laws,

and they are essentially monodimensional in space. In higher dimension, Bellomo

and Dogbe4,19 proposed second order models, where a phenomenological relation

describes how the crowd modifies its own speed:
{
∂tρ + ∇x · (ρv) = 0

∂tv + (v · ∇x)v = F(ρ,v)

Typically, the motion is governed by F, which has two parts: a relaxation term

toward a definite speed, and a repulsif term to take into account that pedestrians

tend to avoid high density areas. Degond18 uses the same approach to model sheep

herds. In this model, the term F depends on a pressure which blows up when the

density approaches a given congestion density (barrier method). There also exist

first order models, where the velocity field is directly defined as a function of the

density (see e.g. Refs. 30, 31, 15). Another class of models is described by Piccoli

and Tosin in Refs. 38, 39. They propose a time-evolving measures framework, where

the velocity of the pedestrian is composed by two terms: a desired velocity and an

interaction velocity. The last one models the reaction of the pedestrian to the other

surrounding pedestrians (namely, people can deviate from their preferred path if
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they enter a crowded area).

To our knowledge, as the ones presented above, all macroscopic models rely

on a relaxed expression of the congestion. Let us mention however the work of

Buttazzo, Jimenez and Oudet in Ref. 9, where the optimal transportation between

two given densities is computed under constraints (obstacles, congestion, ...) which

can be strongly expressed. Yet, this approach is very different from the model we

describe later, since its goal is to find an optimal transport between densities as in

the work of Benamou and Brenier5 (which is the classical reference for dynamical

formulations of transport problems), whereas optimal transportation is in our case

a very suitable tool. Moreover, we will mainly make use of the distance that optimal

transport induces on probability measures rather than looking at the optimal maps

themselves, as we will see after a brief description of the model we consider.

The macroscopic model we present here is based on a strong expression of the

congestion constraint. It is a natural extension of the microscopic approach pro-

posed in Refs. 34, 35, 41, which we describe here in its simpler form. The crowd

configuration is represented by the position vector q = (q1, . . . ,qN ). Each of the

N individuals whishes to have a velocity Ui which depends on its position only:

Ui = U(qi), where U(·) is some given velocity field over R
2 (typically U = −∇D,

where D is the geodesic distance to the exit). To account for non-overlapping,

it is assumed that the actual velocity u = (u1, . . . ,uN ) is the ℓ2-projection of

Ũ = (U1, . . . ,UN ) = (U(q1), . . . ,U(qN )) onto the cone of feasible velocities Cq

(i.e. the set of velocities which do not lead to a violation of the non-overlapping

constraint). The model takes the form







dq

dt
= u

u = PCq
Ũ

(1.1)

In the spirit of this microscopic approach, the model we propose here rests on

the two following principles

(1) the pedestrian population is described by a density ρ which is subject to remain

below a certain maximal value (equal to 1 in what follows), this density follows

an advection equation,

(2) the advecting field u is the closest, among admissible fields (i.e. which do not

lead to a violation of the constraint), to some spontaneous field U, which cor-

responds to the strategy people would follow in the absence of others.

If we denote by Cρ the cone of admissible velocities (i.e. set of velocities which

do not increase density in already saturated zones, see next section for a proper

definition), the model takes the following form

{
∂tρ+ ∇ · ρu = 0

u = PCρ
U

(1.2)
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where the projection is meant in the L2 sense. As a matter of fact, in the same way

as Cauchy-Lipschitz theory for ODE’s no longer applies for CD in the microscopic

case, we cannot use classical methods to study Equation (1.2), as well as most of the

PDE’s we could encounter in the CD macroscopic models. This is due in particular

to the lack of regularity of the velocity u (whose natural regularity is L2), which

prevents us to apply the characteristic method or even DiPerna-Lions theory. The

non-continuous dependence of the operator PCρ
with respect to ρ is another source

of problems.

Instead, we will see that this PDE corresponds to a Gradient Flow in the Wasser-

stein space (i.e. the space of probability measures endowed with the distance W2

induced by the optimal transport under quadratric cost), provided that the spon-

taneous velocity field has a gradient structure: U = −∇D. This means that we

consider the functional

Φ(ρ) =







∫

Ω

D(x)ρ(x)dx if ρ ≤ 1

+∞ otherwise

and we look for the curve of measures ρ(t, .) which follows the steepest descent direc-

tion of Φ starting from a given datum ρ0. This curve will happen to solve equation

(1.2). This is a general and very efficient method to find solutions to certain evolu-

tion PDE’s which been made possible by the theory of optimal transportation. This

theory owes its origin to Kantorovich33, but has been widely developped thereafter

(see the books by Villani42,43). Several equations have been approached by this

method, for instance the classical heat equation, as well as the Fokker-Planck or

the porous media equations (see Refs. 32, 37, 11). Notice that, as the functional

which is used to produce the porous media equation as a Gradient Flow is

ρ 7→
∫

ρ(x)mdx,

our case can be considered as its limit when m tends to infinity. All the theory of

Gradient Flow in Wasserstein Spaces is treated in the reference book by Ambrosio-

Gigli-Savaré2 and one of the key assumptions is the lambda-convexity of the func-

tional, which ensures better estimates. On the other hand, some existence results

can be obtained without this assumption, but they have to be treated carefully by

hand, as it happens in Ref. 7. In our case, even if we suppose D to be lambda-

convex, we face the same kind of difficulties if we want to add the presence of an

exit door on the boundary of Ω where the measure can concentrate (see Section 2).

As far as crowd motion is concerned, the two-dimensional setting is natural

and higher dimension do not make clear sense. Yet, we shall develop the theory in

any dimension, for we believe that the present approach could be fruitful in the

modeling of pressureless gases. In particular, Bouchut et al.8 propose a model of

pressureless gas for which the density is subject to remain less than 1. This model

is essentially mono-dimensionnal (the construction of explicit solutions proposed in

Ref. 6 uses extensively the one-dimensionality). As our model can be seen as a first
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order (in time) version of this second order pressureless gas model, we believe that

the handling of the congestion constraint we propose here, which applies in any

dimension, might be used in the future for a macroscopic description of granular

flows in higher dimension.

The paper is organized as follows: In Section 2 we present the model in the Eule-

rian setting and a related discrete minimizing movement scheme (MMS). We explain

how a straightforward use of a convergence theorem in Ref. 2 asserts a convergence

of the trajectories for the discrete MMS to some continuous pathline. Identification

of this limit with a solution to the initial problem can be done unformally. Yet some

technical obstacles (in particular the handling of walls) prevent us from obtaining

a fully rigorous proof based on this approach. The actual proof of convergence to

a solution of the crowd motion model is based on alternative arguments. The end

of this section describes this convergence results. As the presence of an exit raises

some very specific technical difficulties, we propose in Section 3 a proof in the case

there is no exit. The proof in the general case in given in Section 4. To illustrate the

convergence theorem, we present in Section 5 an idealized (yet non trivial) situation

where both eulerian solutions and discrete MMS trajectories can be described with

accuracy.

2. The eulerian model and its gradient flow formulation

2.1. Eulerian model

The model we propose is designed to handle emergency evacuation situations : the

behaviour of individuals is based on optimizing their very own trajectory, regardless

of others, but the fulfillment of individual strategies is made impossible because of

congestion.

The model takes the following form: given a domain Ω (the building), whose

boundary Γ is composed of Γout (the exit) and Γw (the walls), we describe the

current distribution of people by a measure ρ of given mass (say 1 without loss of

generality) supported within Ω. To model the fact that people getting through the

door are out of danger, yet keeping a constant total mass without having to model

the exterior of the building, we shall assume that ρ may concentrate on Γout. In

this spirit, we denote by K the set of all those probablity measures over R
2 that

are supported in Ω, and that are the sum of a diffuse part, with density between 0

and 1, in Ω, and a singular part carried by Γout.

We shall denote by U the spontaneous velocity field: U(x) represents the velocity

that an individual at x would have if he were alone. It is taken equal to 0 outside Ω.

The set Cρ of feasible velocities correspond to all those fields which do not increase

ρ on the saturated zone (unformally, ∇ · u ≥ 0 in [ρ = 1]), and which accounts

for walls (people do not walk through them). As we plan to define Cρ as a closed

convex set in L2(Ω), those constraints do not make sense as they are, and we shall
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Ω

Γout Γw

Fig. 1. Geometry.

favor a dual definition of this set. Let us introduce the “pressure” space

H1
ρ = {q ∈ H1(Ω) , q ≥ 0 a.e. in Ω , q(x) = 0 a.e. on [ρ < 1] , q|Γout

= 0}.
The proper definition of Cρ reads

Cρ = {v ∈ L2(Ω)2 ,

∫

Ω

v · ∇q ≤ 0 ∀q ∈ H1
ρ} (2.1)

The model is based on the assumption that the actual instantaneous velocity

field is the feasible field which is the closest to U in the least-square sense, i.e. it

is defined as the L2-projection of U onto the closed convex cone Cρ. Finally the

problem consists in finding a trajectory t 7→ ρ(t) ∈ K which is advected by u, i.e.

such that (ρ,u) is a (weak) solution of the transport equation in R
2

∂tρ+ ∇ · (ρu) = 0, (2.2)

where u verifies, for almost every t,

u = PCρ
U. (2.3)

Remark 2.1. The fact that Γout is likely to carry some mass calls for some proper

definition of the velocity on this zero-measure set. As the exit plays the role of a

reservoir in our model, we shall actually consider that all feasible fields vanish on

Γout, so that velocity u given by (2.3) will be considered as defined Lebesgue-a.e.

in Ω and vanishing on Γout.

Remark 2.2. Boundary conditions (walls and exit).

The unilateral divergence constraint and the behaviour at walls and exit are im-

plicitly contained in the dual expression of Cρ, as illustrated by the following con-

siderations. We assume in this remark that [ρ = 1] = ω where ω ⊂ Ω is a smooth

subdomain, and that all fields are smooth. First of all, by taking tests pressures

which are smooth and compactly supported in ω, we obtain ∇ · u ≥ 0 in the sat-

urated zone. As the pressure vanishes on Γout, the velocity is free on that part of

the boundary (free outlet condition, as in Darcy flows). Consider now a situation

where the saturated zone covers the wall Γw. For any smooth function ϕ defined on
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Γw consider a sequence of extensions ϕε supported within ω ∪ Γw, which converges

to 0 in L2(Ω). Then
∫

Ω

u · ∇ϕε ≤ 0 ∀ε > 0

implies

−
∫

Ω

ϕε∇ · u +

∫

Γw

ϕεu · n ≤ 0 ∀ε > 0.

As the first term goes to 0 with ε we obtain that the velocity necessarily enters

the domain on the saturated wall (what we adressed before as “people do not walk

through walls”).

2.2. Gradient flow formulation

In this section we introduce a discrete evolution problem in the Wasserstein space,

whose limit will be Gradient Flow of a suitable functional, and we establish un-

formally the link between this new problem and the crowd motion model. The

formal equivalence, which will be proved rigorously in the following sections, will

be satisfied in the case where U = −∇D is the opposite of a gradient.

Let us denote by P2 the set of probablity measures over R
2 endowed with the

Wasserstein distance, and by

K = {ρ ∈ P2 , supp(ρ) ⊂ Ω , ρ = ρout + ρΩ , ρΩ(x) ≤ 1 a.e., supp(ρout) ⊂ Γout}
(2.4)

the set of feasible densities. Let an initial density ρ0 be given, and τ > 0 a time

step. We build ρ0
τ = ρ0, ρ1

τ , . . . as follows

ρk
τ = argmin

P2(Rd)

{

J(ρ) + IK(ρ) +
1

2τ
W 2

2 (ρ, ρk−1
τ )

}

(2.5)

where W2 is the Wasserstein distance, J is the dissatisfaction functional defined as:

J(ρ) :=

∫

Ω

D(x)ρ(x) dx, (2.6)

and IK is the indicatrix of K :

IK(ρ) =

∣
∣
∣
∣

0 if ρ ∈ K

+∞ if ρ /∈ K

The function D is typically the distance to the door Γout, and to D we associate a

vector field U = −∇D. It is important in order to have vanishing velocities on the

door that D is minimal and constant on Γout.

We admit here that under reasonable assumptions this process is indeed an

algorithm (i.e. ρk+1
τ is uniquely defined as the minimizer of the function above),

and we denote by ρτ the piecewise constant interpolate of ρ0
τ , ρ1

τ , . . . .
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As τ goes to 0, by Prop. 2.2.3, Th. 2.3.1, and Th. 11.1.3 in Ref. 2, ρτ converges

to some trajectory t 7→ ρ in K, which is a (weak) solution to

∂tρ+ ∇ · (ρu) = 0,

where u is such that, for almost every t,

u ∈ −∂ (J + IK) (ρ)

where ∂Ψ denotes the strong subdifferential of Ψ. Furthermore u minimizes the L2

norm among all those fields in the subdifferential above.

Let us now prove unformally that this characterizes the instantaneous velocity

as the projection of U = −∇D onto Cρ. This subdifferential of a function Ψ at ρ

in the Wasserstein setting is defined as the set of fields u such that,

Ψ(ρ) +

∫

Ω

〈u, t(x) − x〉 dρ(x) ≤ Ψ(t# ρ) + o(||t − i||)

where t denotes a transport map acting on ρ. Note that the previous inequality does

not provide any information as soon as t# ρ is not feasible (in that case the right-

hand side is +∞). Let us consider a feasible field v ∈ Cρ, and let us assume that,

for ε small enough, tε = i + εv pushes forward ρ onto a measure in K (this is not

true in general, see Remark 2.3). Note that tε is defined ρ-almost everywhere, with

Γout carrying some mass, but as it vanishes on Γout (see Remark 2.1), the singular

part of ρ remains unchanged. Having ε go to 0 in the subdifferential inequality, we

obtain
∫

∇D · v dρ(x) +

∫

u · v dρ(x) ≤ 0,

so that u + ∇D = u −U belongs to C◦
ρ , the polar cone to Cρ. As u minimizes the

L2 norm over U + Cρ, u identifies with the projection of U onto Cρ, which ends

this unformal proof.

Remark 2.3. In general, there exist feasible densities ρ ∈ K (defined by (2.4)) and

fields v ∈ Cρ (defined by (2.1)) such that (i + εv)# ρ exits K for any ε > 0, this is

why the considerations above do not make a rigorous proof. Consider for example ω

a dense open subset in Ω, with a small measure, and define ρ as 1ωc . The pressure

space is {0}, and Cρ is L2(Ω): any field is feasible. If one considers now a strictly

contractant field (with negative divergence), it is clear that (i+εv)# ρ /∈ K for any

ε > 0. Notice also that this kind of paradox does not depend on the fact that we

chose a “linear” perturbation (i+ εv), since the same would happen if one, instead,

perturbs the identity by following the flow of the vector field v for a time ε (which

is classically a better choice in order to satisfy the density constraint).

As explained in the previous remark, the approach carried out in this section is

not a rigorous proof that the advecting field is actually the projection of U onto Cρ.

We conjecture that projecting (i + εv)# ρ onto K (for the Wasserstein distance)

introduce a perturbation which is negligible compared to ε, so that v may actually
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be used as a test-function, but this conjecture raises some technical issues which we

were not able to solve. In what follows we give an alternate proof which circumvents

the necessity to characterize ∂(J + IK).

2.3. Notations and statement of the main result

We first recall some results on the continuity equation: let (ρ(t, .))t>0 be a family

of density measures on R
d, and v : (t, x) ∈ R

+ × R
d 7→ v(t, x) ∈ R

d be a Borel

velocity field such that:

∫ T

0

∫

Rd

|v(t, x)|ρ(t, x) dx < +∞ (2.7)

We say that (ρ,v) satisfies the continuity equation with initial condition

{
∂tρ+ ∇ · (ρv) = 0

ρ(0, .) = ρ0
(2.8)

if for all ϕ ∈ C∞
c ([0, T [×R

d) we have:

∫ T

0

∫

Rd

(∂tϕ(t, x) + ∇ϕ(t, x) · v(t, x)) ρ(t, x) dx +

∫

Rd

ϕ(0, x)ρ0(x) dx = 0 (2.9)

Let us recall that if ρ(t, .) is a solution of the continuity equation, there exists a

narrowly continuous curve ρ̃(t, .) such that ρ(t, .) = ρ̃(t, .) for a.e. t. In general, we

will always focus on this continuous representation.

We now detail the construction of a discrete family of densities (ρk
τ ) that ap-

proches in a sense we will precise later the solution of the continuity equation we

are interested with. For a fixed time step τ > 0, we define the sequence (ρk
τ ) of

density measures on Ω using the recursive scheme:







ρ0
τ = ρ0

ρk
τ ∈ argmin

P2(Rd)

{

J(ρ) + IK(ρ) +
1

2τ
W 2

2 (ρ, ρk−1
τ )

}

(2.10)

where W2 is the Wasserstein distance, and J is the dissatisfaction functional defined

in (2.6).

This construction is a minimizing movement scheme as described by DeGiorgi

and Ambrosio in Refs. 17, 1 and then - in the framework of probability measures -

in Refs. 2, 3 with functional Φ(ρ) = J(ρ) + IK(ρ).

We define on Ω̊ the discrete velocities: vk
τ =

i − tk
τ

τ
, where tk

τ is the unique

optimal transport function from ρk
τ to ρk−1

τ , which is well defined on Ω̊ (but not

necessarely on Γout, due to the singular part of ρk
τ ). We also define Ek

τ = ρk
τv

k
τ

on Ω̊ (by abuse of notation, we will write Ω̊ instead of Ω when we want to stress
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that we are not considering the boundary). We can interpolate these discrete values

(ρk
τ ,v

k
τ ,E

k
τ )k≥0 by the piecewise constant functions defined by:







ρτ (t, .) = ρk
τ

vτ (t, .) = vk
τ

Eτ (t, .) = Ek
τ

if t ∈ ](k − 1)τ, kτ ] (2.11)

Our goal is to prove that ρτ converges when τ → 0 to a solution of the continuity

equation (2.8). Here is our main result:

Theorem 2.1. Let Ω be a convex bounded set of R
d, D : R

d → R a continuous

λ-convex function, ρ0 a probability density, and (ρk
τ ) constructed following the re-

cursive scheme (2.10).

Then there exists a family of probability densities (ρ(t, .))t>0, and a family of veloci-

ties (u(t, .))t>0 such that (ρτ (t, .),Eτ (t, .)) narrowly converge to (ρ(t, .), ρ(t, .)u(t, .))

for a.e. t. Moreover, (ρ,u) satisfies the continuity equation:







∂tρ+ ∇.(ρu) = 0

u(t, .) = PCρ(t,.)
U for a.e. t

ρ(0, .) = ρ0

(2.12)

where U = −∇D, and Cρ(t,.) is defined in (2.1).

We will first prove this theorem in the particular case where there is no exit. In

the following section, we thus assume that Γout = ∅, which will imply that all the

measures are absolutely continuous with respect to the Lebesgue measure. Then we

will extend the proof to the general case.

Remark 2.4. We chose to assume here a λ−convexity hypothesis on D both in

order to clarify some statements, which are easier to state and prove under this

assumption (see for instance Lemma 3.1 and the subsequent Remark 3.1) and be-

cause the typical case we think of is D = d(·,Γout), where Γout is a flat part of the

boundary of the convex set Ω. This implies that D is convex as well. It would be

interesting to study the case of non-convex domains Ω (for instance with obstacles),

and use the geodesic distance for computingD, which would lead to a non-λ−convex

function, but this is not yet possible by means of our techniques, since one should

work with the Wasserstein distance W2 computed w.r.t. the geodesic distance itself,

which is not much studied.

Anyway, it can be checked that the only point throughout the paper where

λ−convexity is used is the proof of Lemma 3.1 but Remark 3.1 explains how to get

rid of this assumption: this means that, for existence purposes, it may be withdrawn.

On the other hand, the λ−convexity assumption is typical in this gradient flow

problems, because it allows for uniqueness and stability results, and we think that

similar results could be achieved in our case as well.
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3. Existence result in a domain with no exit

3.1. Technical lemmas

Since we will make a strong use of optimality conditions in terms of the dual problem

in Monge-Kantorovitch theory, let us briefly recall what we need.

Given the two probabilities µ and ν on Ω we always have

1

2
W 2

2 (µ, ν) = max

{∫

Ω

ϕdµ+

∫

Ω

ψ dν, φ, ψ ∈ C0(Ω) : φ(x) + ψ(y) ≤ 1

2
|x− y|2

}

,

the maximum being always realized by a pair of c−concave conjugate functions

(ϕ, ψ) with ϕ = ψc and ψ = ϕc, where the c−transform of a function χ is defined

through

χc(y) = inf
x∈Ω

1

2
|x− y|2 − χ(x)

(with generalizations to other costs c rather than the square of the distance). We will

call Kantorovitch potential from µ to ν (resp., from ν to µ) any c−concave function

ϕ (resp., ψ) such that (ϕ,ϕc) (respectively, (ψc, ψ)) realizes such a maximum. We

have uniqueness of the optimal pair as soon as one of the support of one of the two

measures is the whole domain Ω.

Lemma 3.1. Let D : R
d 7→ R λ-convex, and ρ̄ ∈ K. Then, there exists τ∗ such

that for all τ < τ∗:

(i) The functional φ(ρ) = Φ(ρ) +
1

2τ
W 2

2 (ρ, ρ̄) admits a unique minimizer ρm.

(ii) There exists a Kantorovitch potential ϕ̄ from ρm to ρ̄, such that:
∫

Ω

(

D +
ϕ̄

τ

)

ρ ≥
∫

Ω

(

D +
ϕ̄

τ

)

ρm for all ρ ≤ 1 a.e. (3.1)

Proof. (i) The existence of a minimizer can easily be proved using a minimizing

sequence of φ(ρ). Let ρ1, ρ2 be two different minimizers, and ri the optimal transport

between ρ̄ and ρi. We define rt := (1 − t)r1 + t r2 and ρt := rt#ρ1, for t ∈ ]0, 1[.

We know that ρt =
ρ

| det∇rt|
◦ (rt)

−1. As M 7→ (detM)−1 is convex on S++
d , and

∇ri ∈ S++
d , we have :

ρt(x) ≤
(

1 − t

det∇r1
+

t

det∇r2

)

ρ̄ ◦ (rt)
−1(x).

We also know that ρ1 and ρ2 are admissible, therefore:
ρ̄

det∇ri
≤ 1 a.e., and

we obtain: ρt ≤ 1. We have then: φ(ρt) =

∫

Ω

D((1 − t)r1(x) + t r2(x))ρ̄(x) dx +

1

2τ
W 2

2 (ρt, ρ̄). Since D is λ-convex

D((1− t)r1(x)+ t r2(x)) ≤ (1− t)D(r1(x))+ tD(r2(x))− λ

2
t(1− t)|r1(x)− r2(x)|2.
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Moreover, W 2
2 (., ρ̄) is 1-convex along the interpolation ρt (see lemma 9.2.1 p. 206

in Ref 2), therefore, for τ small enough, we have: φ(ρt) < (1 − t)φ(ρ1) + tφ(ρ2) =

infK φ(ρ), which is absurd.

(ii) We first assume that ρ̄ > 0 a.e., which implies that the Kantorovich potential

ϕ̄ from ρm to ρ̄, satisfying ϕ̄(x0) = 0 (with x0 any fixed point in Ω), is unique. Let

us define a small perturbation of ρm: let ρ ≤ 1 be a probability density, ε > 0 and

ρε := ρm + ε(ρ− ρm). As ρm minimizes φ(ρ), we have:

J(ρε) − J(ρm) +
1

2τ
(W 2

2 (ρε, ρ̄) −W 2
2 (ρm, ρ̄)) ≥ 0 (3.2)

The first part of the left side of the inequality can easily be calculated:

J(ρε) − J(ρm) =

∫

Ω

D(x)(ρε − ρm)(x) dx = ε

∫

Ω

D(x)(ρ − ρm)(x) dx

Let us estimate the second part: we denote by (ϕε, ψε) some Kantorovich potentials

associated to ρ̄ and ρε. We have:






1

2
W 2

2 (ρε, ρ̄) =

∫

Ω

ϕε(x)ρε(x) dx+

∫

Ω

ψε(y)ρ̄(y) dy

1

2
W 2

2 (ρm, ρ̄) ≥
∫

Ω

ϕε(x)ρm(x) dx +

∫

Ω

ψε(y)ρ̄(y) dy

where φε is a Kantorovitch potential from ρε to ρ̄.

Thus:
1

2
(W 2

2 (ρε, ρ̄) −W 2
2 (ρm, ρ̄)) ≤

∫

Ω

ϕε(x)(ρε − ρm)(x) dx = ε

∫

Ω

ϕε(x)(ρ −
ρm)(x) dx, and we can deduce from inequality (3.2) that:
∫

Ω

D(x)(ρ− ρm)(x) dx +
1

τ

∫

Ω

ϕε(x)(ρ − ρm)(x) dx ≥ 0 for all admissible ρ

Let ε tend to 0: ϕε converges to the unique Kantorovich potential ϕ̄ from ρm to ρ̄.

This gives
∫

Ω

D(x)(ρ − ρm)(x) dx +
1

τ

∫

Ω

ψc(x)(ρ − ρm)(x) dx ≥ 0 for all admissible ρ

We now prove the general case: let ρ̄δ > 0 a.e., ρ̄δ ≤ 1 a.e., such that ρ̄δ

converges to ρ̄ when δ tends to 0. Using (i), there exists a unique minimizer ρm,δ

of φδ(ρ) :=

∫

Ω

Dρ + IK +
1

2τ
W 2

2 (ρ, ρ̄δ), and it converges to ρm as δ tends to 0.

Moreover, we have proved that:
∫

Ω

D(x)(ρ − ρm,δ)(x) dx +
1

τ

∫

Ω

ϕ̄δ(x)(ρ − ρm,δ)(x) dx ≥ 0 for all admissible ρ

with ϕ̄δ that converges to a Kantorovitch potential ϕ̄. Taking the limit δ → 0, we

obtain the desired inequality. For this kind of arguments concerning optimality for

transport costs and other functionals, see for instance Ref. 10.

Remark 3.1. if D is not λ-convex, we can’t prove uniqueness of the minimizer

of φ. However, if ρm is a minimizer, it still satisfies the inequality (ii). Indeed, in
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the second part of the proof of (ii), we can define ρm,δ as a minimizer of φδ(ρ) +

cδW
2
2 (ρ, ρm), where cδ → 0 (so that the optimality condition that we see at the

limit δ → 0 disregards this term), but slowly (so that it makes ρm,δ converge to

ρm). Obviously this kind of argument was not necessary if one only wanted to prove

this optimality condition for one minimizer ρm, and not for every minimizer.

Lemma 3.2. (Decomposition of the spontaneous velocity):

The spontaneous velocity U = −∇D can be written as follows:

U = vk
τ + ∇pk

τ with pk
τ ∈ H1

ρk
τ

(3.3)

Proof. Using the previous lemma, we know that there exists a Kantorovich poten-

tial ϕ̄ from ρk
τ to ρk−1

τ such that ρk
τ is a solution of the minimizing problem:

ρk
τ ∈ argmin

ρ∈K

{∫

Ω

D(x)ρ(x) dx +
1

τ

∫

Ω

ϕ̄(x)ρ(x) dx

}

which imposes:






ρk
τ = 1 on [F < l]

ρk
τ ≤ 1 on [F = l]

ρk
τ = 0 on [F > l]

with F :

∣
∣
∣
∣
∣
∣

Ω → R

x 7→ D(x) +
ϕ̄(x)

τ

and l ∈ R is chosen such that ρk
τ satisfies:

∫

Ω

ρk
τ dx = 1.

We can then define a pressure like function:

pk
τ (x) := (l − F (x))+ =

(

l −D(x) − ϕ̄(x)

τ

)

+

(3.4)

which satisfies: pk
τ ≥ 0, and pk

τ = 0 on [ρk
τ < 1], therefore pk

τ ∈ H1
ρk

τ
.

Moreover, on [ρk
τ > 0], we have: ∇pk

τ = −∇D− ∇ϕ̄
τ

(where the density vanishes vk
τ

may be modified at will, so that we can keep the same formula). Since we have

vk
τ =

i − tk
τ

τ
=

∇ϕ̄
τ
,

we get the desired decomposition for the spontaneous velocity : U = vk
τ + ∇pk

τ .

Let us now define the densities ρ̃τ (t), that interpolate the discrete values (ρk
τ )

along geodesics:

ρ̃τ (t) =

(
t− (k − 1)τ

τ
(id− tk

τ ) + tk
τ

)

#

ρk
τ (3.5)

We also define ṽτ (t, .) as the unique velocity field such that ṽτ (t, .) ∈ Tanρ̃t
P2(R

d)

and (ρ̃τ , ṽτ ) satisfy the continuity equation. As before, we define: Ẽτ = ρ̃τ ṽτ .
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After these definitions we will give some a priori bounds on the curves, the

pressures and the velocities that we defined. In order to get these bounds, we need

to start from some estimates which are standard in the framework of Minimizing

Movements. The sequence (ρk
τ )k satisfies an estimate on its variation which gives a

Hölder and H1 behavior. From the minimality of ρk
τ , compared to ρk−1

τ , one gets

W 2
2 (ρk

τ , ρ
k−1
τ ) ≤ 2τ(Φ(ρk

τ ) − Φ(ρk−1
τ )).

Since Φ coincides on J , which is bounded, on the sequence (ρk
τ )k, then we have

W 2
2 (ρk

τ , ρ
k−1
τ ) ≤ Cτ (discrete Hölder behavior), but we also have, if we sum up

over k

∑

k

τ

(
W2(ρ

k
τ , ρ

k−1
τ )

τ

)2

≤ 2Φ(ρ0) (3.6)

which is the discrete version of an H1 estimate. As for ρ̃τ (t), it is an absolutely

continuous curve in the Wasserstein space and its velocity on the time interval

[(k−1)τ, kτ ] is given by the ratio W2(ρ
k−1
τ , ρk

τ )/τ . Hence, the L2 norm of its velocity

on [0, T ] is given by

∫ T

0

|ρ̃′τ |2W2
(t)dt =

∑

k

W 2
2 (ρk

τ , ρ
k−1
τ )

τ
(3.7)

and, thanks to (3.6), it admits a uniform bound independent of τ (here we use

the notation |σ′|(t) for the metric derivative of a curve σ and |σ′|W2(t) means

that this metric derivative is computed according to the distance W2). This gives

compactness of the curves ρ̃τ , as well as an Hölder estimate on their variations

(since H1 ⊂ C0,1/2).

Lemma 3.3. (A priori estimates):

We have the following a priori estimates:

(i) vτ is τ-uniformly bounded in L2((0, T ), L2
ρτ

(Ω)).

(ii) pτ is τ-uniformly bounded in L2((0, T ), H1(Ω)).

(iii) Eτ and Ẽτ are τ-uniformly bounded measures.

Proof. (i) We have the following equalities:

∫ T

0

∫

Ω

ρτ |vτ |2 =
∑

k

∫ kτ

(k−1)τ

∫

Ω

ρk
τ |vk

τ |2 =
∑

k

(
∫ kτ

(k−1)τ

dt

)(∫

Ω

ρk
τ (x)

|x − tk
τ (x)|2
τ2

dx

)

=
∑

k

τ
W 2

2 (ρk−1
τ , ρk

τ )

τ2
=

1

τ

∑

k

W 2
2 (ρk−1

τ , ρk
τ )

Thanks to the general estimate (3.6) we get

∫ T

0

∫

Ω

ρτ |vτ |2 ≤ 2Φ(ρ0).
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(ii) Since we have shown the following decomposition: ∇pτ = −∇D− vτ , we have:
∫ T

0

∫

Ω

ρτ |∇pτ |2 ≤ 2

∫ T

0

∫

Ω

ρτ |vτ |2 + 2

∫ T

0

∫

Ω

ρτ |∇D|2 ≤ C.

But pτ = 0 on [ρτ < 1], therefore

∫ T

0

∫

Ω

|∇pτ |2 =

∫ T

0

∫

Ω

ρτ |∇pτ |2 ≤ C.

(iii) We look at Ẽτ and we use the estimates (3.6) and (3.7).

∫ T

0

∫

Ω

|Ẽτ | =

∫ T

0

∫

Ω

ρ̃τ |ṽτ | ≤
∫ T

0

(∫

Ω

ρ̃τ |ṽτ |2
) 1

2
(∫

Ω

ρτ

) 1
2

︸ ︷︷ ︸

=1

≤
∫ T

0

(∫

Ω

ρ̃τ |ṽτ |2
) 1

2

≤
√
T

(
∫ T

0

∫

Ω

ρτ |vτ |2
) 1

2

≤ C

Therefore, Ẽτ is a τ -uniformly bounded measure. The proof for Eτ is almost the

same, estimating L1 norms with L2 norms by Cauchy-Schwartz.

Lemma 3.4. Assume that µ and ν are absolutely continuous measures, whose den-

sities are bounded by a same constant C. Then, for all function f ∈ H1(Ω), we have

the following inequality:
∫

Ω

f d(µ− ν) ≤
√
C ||∇f ||L2(Ω)W2(µ, ν)

Proof. Let µt be the constant speed geodesic between µ and ν, and wt the velocity

field such that (µ,w) satisfies the continuity equation, and ||wt||L2(µt) = W2(µ, ν).

For all t, µt is absolutely continuous, and its density is bounded by the same constant

C a.e.. Therefore:
∫

Ω

f d(µ− ν) =

∫ 1

0

d

dt

(∫

Ω

f(x)dµt(x)

)

dt =

∫ 1

0

∫

Ω

∇f ·wt dµt dt

≤
(∫ 1

0

∫

Ω

|∇f |2 dµt dt

)1/2 (∫ 1

0

∫

Ω

|wt|2 dµt dt

)1/2

≤
√
C ||∇f ||L2(Ω)W2(µ, ν)

Remark: With the same method, we can also prove:
∫

Ω

f d(µ− ν) ≤ C
1
p ||∇f ||Lp(Ω)Wq(µ, ν)

for all f ∈ W 1,p and q such that 1
p + 1

q = 1. More generally, if µ, ν ∈ Lr(Ω) and

||µ||Lr , ||ν||Lr ≤ C, one has

∫

Ω

f d(µ − ν) ≤ C
1
q′ ||∇f ||Lp(Ω)Wq(µ, ν), provided

1
p + 1

q + 1
r = 1 + 1

qr .
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3.2. Proof of the theorem in a domain with no exit

Step 1: convergence of (ρ̃τ , Ẽτ ) and (ρτ ,Eτ )

We have proved that ρ̃τ and Ẽτ are τ -uniformly bounded measures, thus there exists

(ρ,E) such that (ρ̃τ , Ẽτ ) converges narrowly to (ρ,E). Let us prove that (ρτ ,Eτ )

converges to the same limit as (ρ̃τ , Ẽτ ).

We start from the ρ−part. The curves ρ̃τ actually converge uniformly in [0, T ]

with respect to theW2−distance. The curves ρτ and ρ̃τ coincide on every time of the

form kτ . The former is constant on every interval ](k − 1)τ, kτ ], whereas the latter

is uniformly Hölder continuous of exponent 1/2, which implies W2(ρ̃τ (t), ρτ (t)) ≤
Cτ

1
2 . This proves that ρτ converges uniformly to the same limit as ρ̃τ .

We now consider a function f ∈ C∞
c ([0, T ]×Ω), and prove that

∫ T

0

∫

Ω

f
(
Ẽτ−Eτ

)

converges to 0 as τ tends to 0. We have: ρ̃τ (t, .) = Tt#ρ
k
τ where

Tt = (t− (k − 1)τ)vk
τ + tkτ .

Therefore

ρ̃τ (t+h, .) = (Tt+hv
k
τ )#ρ

k
τ = ((id+hvk

τ◦Tt
−1)◦Tt)#ρ

k
τ = (id+hvk

τ◦Tt
−1)#ρτ (t, .),

which implies that: t
ρ̃τ (t+h,.)
ρ̃τ (t,.) = id+hvk

τ ◦Tt
−1. We can then express ṽτ explicitely :

ṽτ (t, .) = lim
h→0

t
ρ̃τ (t+h,.)
ρ̃τ (t,.) − id

h
= lim

h→0

hvk
τ ◦ Tt

−1

h
= vk

τ ◦ Tt
−1,

and obtain
∫

Ω

f(t, x) ρ̃τ (t, x) ṽτ (t, x) dx =

∫

Ω

f(t,Tt(x)) ρ
k
τ (x) ṽτ (t,Tt(x)) dx

=

∫

Ω

f(t,Tt(x)) ρ
k
τ (x)vk

τ (x) dx

Hence
∫ T

0

∫

Ω

f
(
Ẽτ − Eτ

)
≤
∑

k

∫ τk+1

τk

∫

Ω

|f(t, x) − f(t,Tt(x))| |vk
τ (x)| ρk

τ (x) dx dt

≤
∑

k

∫ τk+1

τk

∫

Ω

Lipf |x− Tt(x)||vk
τ (x)| ρk

τ (x) dx dt

≤
∑

k

∫ τk+1

τk

∫

Ω

Lipf τ |vk
τ (x)|2 ρk

τ (x) dx dt ≤ C Lipf τ

Step 2: existence of the limit velocity

Let us prove that E is absolutely continuous with respect to ρ. Let θ be a scalar

measure, and F a vectorial measure: the function

Θ : (θ,F) 7→







∫ T

0

∫

Ω

|F|2
θ

if F << θ a.e. t ∈ [0, T ]

+∞ otherwise
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is l.s.c. for the weak-⋆ convergence of measures. Since we have shown the τ -uniform

bound:
∫ T

0

∫

Ω

|Eτ |2
ρτ

≤ C,

we have Θ(ρ,E) < +∞. Therefore E is absolutely continuous with respect ρ, and

there exists u(t, .) ∈ L2(ρ(t, .)) such that E = ρu. Moreover, (ρ, ρu) satisfies the

(linear) continuity equation, as limit of (ρ̃τ , Ẽτ ).

Let us now prove that u(t) ∈ Cρ(t). Let t0 ∈ (0, T ), h > 0, and q ∈ H1
ρ(t0,.). By

the continuity equation, we have

∫ t0+h

t0

∫

Ω

∇q(x) · ut(x)ρ(t, x) dx =

∫

Ω

[ρ(t0, x) − ρ(t0 + h, x)] q(x) dx

Since ρ(t0, .) = 1 wherever q > 0, and ρ(t0 + h, .) ≤ 1 a.e.,
∫

Ω

[ρ(t0, x) − ρ(t0 + h, x)] q(x) dx ≤ 0, and we have for a.e. t0

0 ≥ 1

h

∫ t0+h

t0

∫

Ω

∇q(x).ut(x)ρ(t, x) dx −→
h→0

∫

Ω

∇q(x) · u(t0, x)ρ(t0, .)(x) dx

=

∫

Ω

∇q(x).u(t0, x) dx

Using the same method between t0−h and t0, we also obtain the converse inequality.

Finally, we have for a.e. t0
∫

Ω

∇q(x) · u(t0, x) dx = 0 for all q ∈ H1
ρ(t0,.) (3.8)

Step 3: the limit velocity satisfies: u = PCρ
U

We first prove the decomposition: U = u(t, .) + ∇p(t, .) for a.e. t. We have Eτ =

ρτvτ = −ρτ (∇D + ∇pτ ) = −ρτ∇D −∇pτ since pτ = 0 on [ρτ < 1]. Let us prove

that pτ converges to p ∈ H1
ρ : as pτ ∈ L2([0, T ], H1(Ω)), there exists p such that

pτ weakly converges to p in L2([0, T ], H1(Ω)). We have obviously: p ≥ 0 a.e., but

it is more difficult to show that p(t, .) = 0 on [ρ(t) < 1]. We consider the average

functions:

pa,b
τ =

1

b − a

∫ b

a

pτ (t, .) dt and pa,b =
1

b− a

∫ b

a

p(t, .) dt.

Since pτ = 0 on [ρτ < 1], we have

0 =

∫ b

a

∫

Ω

pτ (t, x)(1 − ρτ (t, x)) dx dt =
1

b− a

∫ b

a

∫

Ω

pτ (t, x)(1 − ρτ (a, x)) dx dt

+
1

b− a

∫ b

a

∫

Ω

pτ (t, x)(ρτ (a, x) − ρτ (t, x)) dx dt.
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The first integral reads:

∫

Ω

pa,b
τ (x)(1−ρτ (a, x)) dx −→

τ→0

∫

Ω

pa,b(x)(1−ρ(a, x)) dx, as

pa,b
τ weakly converges in H1(Ω) - therefore strongly in L2(Ω) - to pa,b, and ρτ (a, .)

weakly-⋆ converges in L∞(Ω) to ρ(a, .). Moreover, for every Lebesgue point a of

p(., x), we have: pa,b −→
b→a

p(a, .), therefore, for all these a, we have

∫

Ω

pa,b(x)(1 − ρ(a, x)) dx dt −→
b→a

∫

Ω

p(a, x)(1 − ρ(a, x)) dx.

Using lemma 3.4, we obtain for the second integral:

∫ b

a

∫

Ω

pτ (t, x)
(
ρτ (a, x) − ρτ (t, x)

)
dx dt

≤
∫ b

a

||∇pτ (t, .)||L2(Ω)W2(ρτ (a, .), ρτ (t, .))
︸ ︷︷ ︸

≤C
√

b−a

dt

≤ C
√
b− a

(
∫ b

a

||∇pτ (t, .)||2L2(Ω) dt

) 1
2
(
∫ b

a

dt

) 1
2

≤ C(b− a)

(
∫ b

a

||∇pτ (t, .)||2L2(Ω) dt

) 1
2

As

∫ T

0

||∇pτ (t, .)||2L2(Ω) dt is τ -uniformly bounded, ||∇pτ (t, .)||2L2(Ω) weakly con-

verges to a measure µ. Therefore, beyond a zero measure set of points a, we have

lim
τ→0

1

b− a

∫ b

a

∫

Ω

pτ (t, x)(ρτ (a, x) − ρτ (t, x)) dx dt ≤ C
√

µ([a, b]) −→
b→a

0

We finally obtain:

∫

Ω

p(a, x)(1 − ρ(a, x)) dx = 0 for almost every a.

Hence E = −ρ∇D −∇p, with p = 0 on [ρ < 1], so: E = −ρ(∇D + ∇p). Since:

E = ρu, we have shown the following decomposition:

u = −∇D −∇p i.e. U = ∇p+ u.

Moreover, by Equality (3.8), u and ∇p satisfy the complementarity relation for a.e.

t:
∫

Ω

∇p(t, x) · u(t, x) dx = 0

which implies that we have exactly: u(t) = PCρ(t)
U.

4. Proof of the theorem in the general case

We consider here the general case where Γout 6= ∅.
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4.1. Lack of geodesic convexity

The main problem we encounter when we want to generalize the previous proof

is the fact that the classical geodesics no longer belong to the admissible space K,

which is no more a geodesically convex set. Indeed, if we consider a density ρ0 which

is constant equal to 1 on a subset of Ω, a measure ρ1 which is concentrated on Γout,

and the geodesic ρ(t, .) between them, the density of ρ(t, .) will be of the order of

1/(1 − t) where it is positive, and therefore ρ(t, .) 6∈ K for all t ∈ ]0, 1[.

This is one of the main reasons that prevent from using the standard theory

of Gradient flow for geodesically convex functionals in the Wasserstein space (see

Ref. 2).

In this section we will investigate the connectedness properties of the set K. For

the sake of this work, we will see that we need to estimate the length to connect

two measures in K at a very single point of the proof. Yet, we think that these

estimates are interesting in themselves and this is why we try to present them so

that they will be valid in any dimension d.

We define a new distance, coming from a minimal length approach, on K:

Proposition 4.1. (Continuity of the length L) For µ, ν ∈ K, we define the length

L(µ, ν) = inf

{∫ 1

0

|σ′|W2(t)dt : σ(t) ∈ K, σ(0) = µ, σ(1) = ν

}

(4.1)

This length is finite, and it is a distance on K which is continuous for the narrow

convergence: if (µn), (νn) are sequences that narrowly converge in K to µ and ν,

then L(µn, νn) converges to L(µ, ν).

To prove this proposition, we will first analyze the case were the domain Ω

is the unit cube and the door is one of the sides. We set Q =]0, 1[d−1×] − 1, 0[,

Q = [0, 1]d−1 × [−1, 0] and S = [0, 1]d−1 × {0}. We will still denote by K the set

of admissible measures, i.e. those who are composed by a density less than 1 in Q

and by a possibly singular part on S. We will denote by y the last component of

a point (x, y) ∈ R
d = R

d−1 × R. When integrating over S, we write dx instead of

Hd−1(dx) or similar expressions.

Let us start from a simpler case.

A first useful lemma is the following:

Lemma 4.1. Let ρ0, ρ1 be two probability measures on Q of the form ρi = ρi
Q +ρi

S,

where ρi
Q has a density on Q bounded by k and ρi

S is concentrated on S. Set ℓ =

W1(ρ
0, ρ1). Then, for any Lipschitz continuous function j we have

∫

S

jd(ρ0
S − ρ1

S) ≤ Lip(j)ℓ+ c(k)||j||L∞ℓ1/2,

∫

Q

j(ρ0
Q − ρ1

Q) ≤ 2Lip(j)ℓ+ c(k)|||j||L∞ℓ1/2.
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Proof. We start from the first estimate: consider a function χδ : Q → [0, 1] such

that χδ = 1 on S, χδ = 0 outside a strip of width δ from S, and |∇χδ| ≤ δ−1 (as a

matter of fact, it defines this function as χδ(x, y) = (1 + δ−1y)+). We may write
∫

S

jd(ρ0
S − ρ1

S) =

∫

Q

jχδd(ρ
0 − ρ1) −

∫

Q

jχδd(ρ
0
Q − ρ1

Q) ≤ Lip(jχδ)ℓ + kδ||j||L∞ .

Then we use Lip(jχδ) ≤ Lip(j) + ||j||L∞δ−1 and we get
∫

S

jd(ρ0
S − ρ1

S) ≤
(

Lip(j) +
||j||L∞

δ

)

ℓ+ kδ||j||L∞ ,

which implies, by choosing δ = ℓ1/2,
∫

S

jd(ρ0
S − ρ1

S) ≤ Lip(j)ℓ+ c(k)||j||L∞ℓ1/2.

As far as the second estimate is concerned, just write
∫

Q

j(ρ0
Q − ρ1

Q) =

∫

Q

j(ρ0 − ρ1) −
∫

S

jd(ρ0
S − ρ1

S)

and use

∫

Q

j(ρ0 − ρ1) ≤ Lip(j)ℓ and the previous inequality.

It is important to notice in the above inequality that, once we fix ρi
Q or ρi

S , the

two estimates separately make ℓ appear, where ℓ may be the W1 distance between

any pair of measures, satisfying the constraints, having ρi
Q or ρi

S as an internal or

boundary part, respectively. The pair of measures we use need not to be the same

in the two estimates.

Lemma 4.2. Let ρ0, ρ1 ∈ K be two admissible probability measures on Q and

L,M ≥ 1. Suppose that ρ0 and ρ1 are of the following form:

ρi = ρi
Q + ρi

S , ρi
Q ≪ Ld, ρi

S = hi · Hd−1, hi ≤M, Lip(hi) ≤ L, i = 0, 1.

Then, there exists a curve ρt from ρ0 to ρ1, contained in K (the set of admissible

measures) and such that its W2−length does not exceed C(d)M1/2
√
Lℓ+Mℓ1/2,

where we set ℓ := W1(ρ
0, ρ1).

Moreover, the same stays true if ℓ stands for a number such that there exist

“extensions” of ρi
Q on S and of ρi

S on Q that belong to K and such that for both

extensions the new W1−distance is smaller than ℓ (but the two extensions may be

different). If instead of staying in K the constraint on the density in Q is relaxed to

“being smaller than k” with k > 1, the constant will also depend on k, as in Lemma

4.1.

Proof. It is possible to replace the two probabilities on Q with probabilities ρ̃i on

R = [0, 1]d−1 × [−1,M ] so that ρ̃i is absolutely continuous with density less than 1

and (πQ)#ρ̃
i = ρi (where πQ is the projection on Q). We will take

ρ̃i = ρi
Q + 1y<hi(x) · Ld.



September 18, 2009 17:55 WSPC/INSTRUCTION FILE CrowdGradFlow

21

Consider the geodesic ρ̃t from ρ̃0 to ρ̃1. It is a curve of measure whose length is

exactlyW2(ρ̃
0, ρ̃1). Moreover, if one projects on Q all the trajectories of the particles

of this curve, one gets the curve (πQ)#ρ̃
t, which connects ρ0 to ρ1 but stays in K

(since the only effect of the projection is to send all the mass on R \Q on S, while

the densities inside Q are not affected. And we know that the densities of ρ̃t will

not be larger than 1, since this is the case for a geodesic between two measures with

densities bounded by 1.

Hence we only need to estimate W2(ρ̃
0, ρ̃1). For simplicity, let us estimate W1

instead of W2. We will conclude by the inequality W2 ≤ (diamR)1/2W
1/2
1 . Notice

that the diameter of R is
√

(M + 1)2 + d− 1 ≤ C(d)M .

To estimate W1, take a function f ∈ Lip1(R). What follows will be easier to

justify in case f is regular but everything will work (by density, or instance), for

any f whose Lipschitz constant does not exceed 1. Let us define, for x ∈ [0, 1]d−1

and a, b ∈ [0,M ],

g(x, a, b) =

∫ b

a f(x, t)dt

b− a
.

We denote by gx, ga and gb the partial derivatives of g. We can verify that

|gx(x, a, b)| =

∣
∣
∣

∫ b

a fx(x, t)dt
∣
∣
∣

|b− a| ≤ Lip(f) = 1,

then we compute gb and we get

|gb(x, a, b)| =

∣
∣
∣
∣

f(x, b)

b− a
− g(x, a, b)

b− a

∣
∣
∣
∣
≤ Lip(f)

|b− a| |b− a| = 1,

and, analogously, |ga| ≤ 1.

In particular, if one takes two Lipschitz functions a(x) and b(x), one has

Lip(g(x, a(x), b(x))) ≤ 1 + Lip(a) + Lip(b).

Now we write
∫

R

f d(ρ̃0 − ρ̃1) =

∫

Q

f d(ρ0
Q − ρ1

Q) +

∫

S

(
∫ h0(x)

0

f(x, t)dt−
∫ h1(x)

0

f(x, t)dt

)

dx.

We estimate both terms thanks to the previous lemma. The first term in the right

hand side is less than ℓ, while for the second we may write

∫

S

(
∫ h0(x)

0

f(x, t)dt−
∫ h1(x)

0

f(x, t)dt

)

dx =

∫

S

g(x, h0(x), h1(x))(h0(x)−h1(x))dx.

Hence we are in the case of the previous lemma with j(x) = g(x, h0(x), h1(x)), and

hence Lip(j) ≤ 1 + 2L and ||j||L∞ ≤ M +
√
d (the first estimate comes from our

study of g, for the second just suppose that f vanishes somewhere on S).

Hence we get, using the arbitrariness of the function f

W1(ρ̃
0, ρ̃1) ≤ ℓ+ (1 + 2L)ℓ+ 2Mℓ1/2.
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To simplify the computations we use 1 ≤M,L and get

W2(ρ̃
0, ρ̃1) ≤ C(d)M1/2W1(ρ̃

0, ρ̃1)1/2 ≤ C(d)M1/2
√

Lℓ+Mℓ1/2.

The last part of the statement is an easy consequence of the technique we used

and of Lemma 4.1.

Theorem 4.1. Let µ0 and µ1 be two probabilities in K. Then there exists

a curve (µt)t connecting µ0 to µ1, such that its W2−length does not exceed

C(d)W1(µ0, µ1)
1/(4d) and that µt ∈ K for every t.

Proof. Take ε > 0 and modify µi into a new measure ρi ∈ K by regularizing in

the direction of x: it is sufficient to take the convolution of µi
S with a kernel of the

form C(ε1−d − ε−d|x|)+. This ensures that the W1 distance has not increased and

that the new measures on S will have Lipschitz and bounded densities on S, with

M ≤ Cε1−d and L ≤ Cε−d, and on Q the constraint is kept as well. Yet, there is

a problem: these measures may exit the domain. There are two possible ways for

solving this problem, and both will be useful.

One possibility is rescaling of a factor (1 + 2ε)−1, so that all the mass is pushed

again into the domain. This does not change significantly the values of M and L

but the densities inside will be no more bounded by 1. They will be bounded by a

constant k close to 1. In this case too the Wasserstein distance has not increased,

since the rescaling was a contraction.

The other possibility is composing with a contracting transport T : Qε → Q (Qε

being the ε−neighborhood of Q) , which is chosen so that the convolution of the

constant function 1 is sent onto the constant function 1 (this is possible thanks to

the fact the convolution keeps the mass unchanged). This construction ensures that

the constraint inside Q will be satisfied but unluckily, since the inverse of T is not

Lipschitz continuous (due to the fact that the densities vanished on the boundary

of Qε), it is not suitable for S. Anyway, in this case too, the Wasserstein distance

was not increased.

Hence we do a mixed procedure: we use the second possibility in Q and the

first on S. It is clear that in this way we have good densities both in Q and on S,

and we can apply Lemma 4.1 and the last statement of Lemma 4.2. Notice that

the W1−distance between the two measures ρi ∈ K that we constructed could be

larger than ℓ. It is easily estimated by something like ℓ+ ε but this is not sufficient

for the following estimates.

Now, to connect µ0 to µ1, one can first connect each µi to ρi, and the cost is no

more than ε, since it is sufficient to spread every particle on a ball of radius ε (i.e.

the radius of the support of the previous kernel) when we do convolution, and then

to move it no more than ε when we compose with a contraction. After that, one

uses the previous Lemma to estimate the length for connecting ρ0 to ρ1 and gets

min length ≤ 2ε+ C(d)ε(1−d)/2
√

ε−dℓ+ ε1−dℓ1/2 = 2ε+ C(d)ε
3
2−d

√

ℓ

ε2
+
ℓ1/2

ε
,
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where ℓ denotes the W1 distance between µ0 and µ1. If one supposes that ε is chosen

so that ℓε−2 is smaller than 1, one can estimate the last sum in the square root and

get

min length ≤ 2ε+ C(d)ε1−dℓ1/4.

Choosing ε = ℓ1/(4d) gives at the same time that ℓε−2 is small and that the minimal

length may be estimated by ℓ1/(4d).

To approach the general case one needs to use the following theorem, which

has already been used in a transport-related setting with density constraints in the

variational theory of incompressible Euler equations by Y. Brenier and provides a

useful tool for reducing to the cube (see Refs 16 and 40 for the applications to fluid

mechanics).

Theorem 4.2. For any sufficiently good domain Ω ⊂ R
d which is homeomorphic to

the cube, there exists a bi-lipschitz homeomorphism φ : Ω → Q such that φ#(Ld
|Ω) =

cLd
|Q. Moreover, the behavior of φ on the boundary may be prescribed at will.

4.2. Generalization of the technical lemmas

In this section, we briefly explain how to generalize the technical lemmas we used

in the first proof (with Γout = ∅).

Conditions on the minimizer for the discrete problem.

• First of all, in lemma 3.1, we can’t prove the uniqueness of the minimizer ρm

with the same method. Indeed, exactly as we explained in the previous section

for geodesics, the interpolation ρt between two possible minimizers does not

necessarily belong to K. Therefore, we will have to apply the “selection” method

explained in Remark 3.1 in order to prove inequality (3.1). More precisely, the

case where ρ̄ > 0 remains unchanged, but in the general case, we fix a minimizer

ρm of φ, and we define ρm,δ as a minimizer of

φδ(ρ) :=

∫

Ω

Dρ+ IK(ρ) +
1

2τ
W 2

2 (ρ, ρ̄δ) + cδW
2
2 (ρ, ρm),

with cδ that converges to 0 slower than W2(ρ̄, ρ̄δ). Since ρm and ρm,δ are mini-

mizers of J and φδ, we have the following inequalities:






∫

Ω

Dρm,δ +
1

2τ
W 2

2 (ρm,δ, ρ̄δ) + cδW
2
2 (ρ, ρm) ≤

∫

Ω

Dρm +
1

2τ
W 2

2 (ρm, ρ̄δ)
∫

Ω

Dρm +
1

2τ
W 2

2 (ρm, ρ̄) ≤
∫

ΩDρm,δ +
1

2τ
W 2

2 (ρm,δ, ρ̄)

which implies, using the triangular inequality:

W 2
2 (ρm,δ, ρm) ≤ 1

2τcδ

[
W 2

2 (ρm,δ, ρ̄) −W 2
2 (ρm,δ, ρ̄δ) +W 2

2 (ρm, ρ̄δ) −W 2
2 (ρm, ρ̄)

]

≤ C

2τcδ
W2(ρ̄, ρ̄δ) −→

δ→0
0
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Therefore, ρm,δ converges to the fixed minimizer ρm. We can then pass to the

limit δ → 0, and obtain the same inequality for ρm.

• It is also useful to notice another feature of the problem with an exit Γout: once

some mass arrives to the exit, it does not move anymore. This precisely means

the following: if γk
τ is an optimal transport plan from the selected measure ρk

τ

to the previous one, ρk−1
τ , and (x, y) ∈ supp(γk

τ ) with y ∈ Γout, then y = x.

This means that all the mass which was already on the door for ρk−1
τ will not

move. To prove it, it is sufficient to consider the map F : Ω×Ω → Ω×Ω defined

by F (x, y) = (y, y) if y ∈ Γout and F (x, y) = (x, y) if y /∈ Γout. The measure

F#γ
k
τ is a transport plan between a new measure ρ and ρk−1

τ , which reduces the

transport cost and the functional J (since D is minimal on the exit). Moreover,

since ρ is obtained from ρk
τ by moving some mass onto the door, we have ρ ∈ K

as well. This would contradict the optimality of ρk
τ unless F#γ

k
τ = γk

τ , which is

the thesis.

This also proves uniqueness of the optimal transport plan between ρk
τ and ρk−1

τ

since, if we look it the other way around (from ρk−1
τ to ρk

τ ), we can decompose

the problem in one part which will not move (corresponding to ρk−1
τ 1Γout

) and

one part which is the transport of an absolutely continuous density (ρk−1
τ 1Ω̊ ).

We will also denote by Ek
τ the excess mass of ρk

τ with respect to ρk−1
τ on the

exit, i.e. Ek
τ := ρk

τ (Γout) − ρk−1
τ (Γout) ≥ 0.

• In lemma 3.2, the solution of

ρk
τ ∈ argmin

ρ∈K

{∫

Ω

D(x)ρ(x) dx +
1

τ

∫

Ω

ϕ̄(x)ρ(x) dx

}

is not necessarily the same in the general case, as there exists no limit density

on Γout. Let us define: l := inf
x∈Γout

F (x), and Γmin = {x ∈ Γout : F (x) = l}. If

|[F < l]| ≥ 1, then the solution is the same as in the previous proof. However,

if |[F < l]| < 1, it costs less to put a part of the density onto Γout. The solution

is therefore given by:







ρk
τ = 1 on [F < l]

ρk
τ > 0 on Γmin, with ρk

τ (Γmin) = 1 − |[F < l]|
ρk

τ ≤ 1 on [F = l]\Γmin

ρk
τ = 0 on [F > l]

The pressure pk
τ defined by

pk
τ (x) := (l − F (x))+ =

(

l −D(x) − ϕ̄(x)

τ

)

+

then belongs to H1
ρk

τ
, and we prove the decomposition U = vk

τ +∇pk
τ as before.
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In order to prove the a priori estimates of lemma 3.3, we have to take into

account the singularity part of the densities on Γout. Notice that, to avoid any

ambiguity where the transport does not exist, we only defined a discrete velocity

vector field inside Ω̊. To be clearer, we want to spend some disambiguation words

on what Ẽτ and Eτ are in this case.

• The measure Ẽτ is as usual defined as the vector measure satisfying the conti-

nuity equation with the curve ρ̃τ . We also have an explicit formula in terms of

the optimal transport plans γk
τ from ρk

τ to ρk−1
τ : for any t ∈ [k − 1τ, kτ [ take

Ẽτ (t) :=
(
π(kτ−t)/τ

)

#

(
x− y

τ
· γk

τ

)

,

where πs(x, y) = (1 − s)x+ sy.

• The measure Eτ is simply defined as the product of ρτ1Ω̊ times the velocity

vector field defined in Section 2.3, on the non-singular part only (again we use

Ω̊ instead of Ω to stress that the boundary is excluded). As before, the idea is

that this vector measure satisfies good properties from optimality conditions,

while the previous one satisfies the continuity equation. We need to compare

them.

• There is also in this case a third vector measure, that we can call Êτ , which is

defined exactly as Ẽτ but ignoring the part on Γout:

Êτ (t) :=
(
π(kτ−t)/τ

)

#

(
x− y

τ
· 1x∈Ω̊γ

k
τ

)

.

The utility of Êτ is that it is more easily comparable to Eτ .

We come back to the proof of lemma 3.3: as a matter of fact, we now have:

W 2
2 (ρk−1

τ , ρk
τ ) = τ2

∫

Ω

ρk
τ |vk

τ |2 +

∫

Γout×Ω

|x− y|2dγk
τ (x, y),

where γk
τ is the optimal transport plan between ρk

τ and ρk−1
τ . Therefore, we have

∫

Ω

ρτ |vτ |2 ≤ τ−2W 2
2 (ρk−1

τ , ρk
τ ),

and the a priori estimates (i) and (ii) are still satisfied. The proof of (iii) is un-

changed, but let us remark that we have no longer the equality:
∫

Ω

ρ̃k
τ |ṽk

τ |2 =

∫

Ω

ρk
τ |vk

τ |2,

and that the geodesic ρ̃τ does not belong to K.

Lemma 3.4 is no longer true for densities that are not absolutely continuous

with respect to the Lebesgue measure. Indeed, as we have seen before, the geodesic
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between two densities of K does not belong to K. We prove instead the following

lemma:

Lemma 4.3. Let µ, ν ∈ K. Then, for all function f ∈ H1 with f = 0 on Γout, we

have the following inequality:
∫

Ω

f d(µ− ν) ≤ ||∇f ||L2(Ω)L(µ, ν)

where L(µ, ν) is the length of the shortest path in K joining µ and ν (see (4.1)).

Proof. The proof is an adaptation of the one of Lemma 3.4 : let σt be a minimal

length curve inK joining µ and ν, and let wt such that (σ,w) satisfies the continuity

equation and ||wt||L2(σt) = L(µ, ν). Since f ∈ H1 with f = 0 on Γout, then ∇f does

not see the part of σw on the boundary), so that we have:

∫

Ω

f d(µ− ν) =

∫ 1

0

d

dt

(∫

Ω

fdσt

)

=

∫ 1

0

∫

Ω̊

∇f · wt dσt dt

≤
(∫ 1

0

∫

Ω̊

|∇f |2 dσt dt

)1/2(∫ 1

0

∫

Ω̊

|wt|2 dσt dt

)1/2

≤ ||∇f ||L2(Ω)L(µ, ν)

since σt ≤ 1 in Ω̊.

4.3. Generalization of the proof

At step 1, we need again to prove that the limits of Ẽτ and Eτ are the same. As

far as the limits of ρ̃τ et ρτ are concerned, everything works as in Section 3.2: this

also proves that the limit curve ρ belongs to K, since this is the case for ρτ (but

not for ρ̃τ ).

It is easy to check that the comparison we did in Step 1 of Section 3.2 may be

performed again so as to obtain that the limit of Êτ and Eτ are the same. What

we need to do now is proving that the limit of Êτ and Ẽτ are the same. We will

prove that the mass of Ẽτ − Êτ is negligible, i.e. that

∫ T

0

dt

∫

Ω

d
∣
∣Ẽτ (t) − Êτ (t)

∣
∣→ 0.

To do this, it is sufficient to estimate

T/τ
∑

k=0

∫ kτ

(k−1)τ

dt

∫

Ω×Ω

|x− y|
τ

1Γout×Ω dγ
k
τ =

T/τ
∑

k=0

∫

Ω×Ω

|x− y|1Γout×Ω dγ
k
τ .

Thanks to what we underlined before, namely that the mass which is on Γout does

not move any more, we know that |x − y|1Γout×Ω dγ
k
τ = |x − y|1Γout×Ω̊ dγ

k
τ and
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the mass of 1Γout×Ω̊ dγ
k
τ is exactly the excess mass Ek

τ . Thanks to the Lemma 4.4

below, we can go on and obtain

T/τ
∑

k=0

∫

Ω×Ω

|x− y|1Γout×Ω dγ
k
τ =

T/τ
∑

k=0

∫

Ω×Ω

|x− y|1Γout×Ω̊ dγ
k
τ

≤
T/τ
∑

k=0

(∫

Γout×Ω̊

|x− y|2dγk
τ

) 1
2
(∫

Γout×Ω̊

dγk
τ

) 1
2

≤
T/τ
∑

k=0

W2(ρ
k−1
τ , ρk

τ )4/3

≤





E(T/τ)
∑

k=1

W2(ρ
k−1
τ , ρk

τ )2





2
3




E(T/τ)
∑

k=1

1





1
3

≤ (Cτ)
2
3

(
T

τ

) 1
3

= C τ
1
3 −→

τ→0
0

Lemma 4.4. Suppose µ, ν ∈ K and set E := |µ(Γout) − ν(Γout)|. Then we have

E ≤ CW
2/3
2 (µ, ν), where the constant C depends on the geometry of Ω and Γout.

Proof. Suppose for simplicity ν(Γout) ≥ µ(Γout). Take an optimal transport plan

γ from µ to ν. Consider γ′ = 1Ω̊×Γout
γ. The mass of γ′ is a number E′, larger than

E. Let µ′ be the projection of γ′ on the first variable (x): it is a measure with mass

E′, dominated by 1Ω̊µ (and hence it is absolutely continuous with density smaller

than 1). We have

W 2
2 (µ, ν) =

∫

|x− y|2 dγ ≥
∫

|x− y|2 dγ′ ≥
∫

d(x,Γout)
2 dγ′ =

∫

d(x,Γout)
2dµ′.

It is sufficient to prove that this last integral is larger than c(E′)3. Set d(x) :=

d(x,Γout): we will use the fact that |[d ≤ t]| ≤ ct. We have

∫

d(x)2dµ′ =

∫ ∞

0

µ′([d2 > t])dt =

∫ ∞

0

(
E′ − µ′([d ≤

√
t])
)
dt

≥
∫ ∞

0

(
E′ − |[d ≤

√
t]|
)

+
dt ≥

∫ (E′/c)2

0

(
E′ − c

√
t
)

+
dt = c(E′)3.

At step 2, we prove with the same method that E is absolutely continuous with

respect to the density ρ̄ := lim
τ→0

(ρτ )Ω = ρΩ (the decomposition of the measures into

a part on Γout and a part on Ω̊ passes to the limit, because of the density bound

on Ω̊): there exists u such that E = ρΩu. Moreover (ρ,E) satisfies the continuity

equation, and we can prove again the equality
∫

Ω

∇q · u dx = 0 ∀ q ∈ H1
ρ

At step 3, the first estimates are still true, since we integrate over Ω̊ (pτ = 0 on

Γout). However, we can’t use lemma 3.4 anymore. Instead, we apply lemma 4.3 and

get the inequality
∫ b

a

∫

Ω

pτ (t, x)
(
ρτ (a, x)−ρτ (t, x)

)
dx dt ≤

∫ b

a

||∇pτ (t, .)||L2(Ω)L(ρτ (a, .), ρτ (t, .)) dt
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Using proposition (4.1) and the same notation as in Section 3.2, step 3, the limit

τ → 0 reads:

lim
τ→0

1

b− a

∫ b

a

∫

Ω

pτ (t, x)
(
ρτ (a, x) − ρτ (t, x)

)
dx dt ≤ 1

b− a

√

µ([a, b])

(
∫ b

a

L(ρ(a), ρ(t))2 dt

) 1
2

Since at the limit, the curve ρ(t) belongs to K for every t, we have also:

L(ρ(a), ρ(t)) dt ≤
∫ t

a

|ρ′|W2(s) ds ≤
(∫ t

a

|ρ′|2W2
(s) ds

)1/2

(t− a)1/2 ≤ C(b− a)1/2.

Therefore, we have the following inequality:

lim
τ→0

1

b− a

∫ b

a

∫

Ω

pτ (t, x)
(
ρτ (a, x) − ρτ (t, x)

)
dx dt ≤ 1

b− a

√

µ([a, b])

(
∫ b

a

C(b − a) dt

) 1
2

= C
√

µ([a, b]) −→
b→a

0 for a.e. a

and we conclude the proof as in the particular case Γout = ∅.

5. Illustration: a convergent corridor

We present here an example where both the transport equation and discrete process

of the gradient-flow problem can be solved quasi-explicitely. We also give numer-

ical estimations on the convergence of the discrete scheme to the solution of the

continuity equation.

We want to model the displacement of a crowd throught a convergent corridor.

We thus take for Ω a portion of a cone, expressed in polar coordinates as
[
r ∈

[a,R], θ ∈ [−α, α]
]

(see fig 2), with a possible “exit” Γout = {a} × [−α, α], and we

take for D the distance to the exit (or to the apex, which is equivalent): D(r) = r.

We assume that the initial density is uniform: ρ0(r) = ρ0 < 1. We will consider in

this section two examples: the case a = 0 with no exit (so that people will in the

end concentrate on the neighborhood of the vertex) and the case a > 0 with exit.

Thanks to the symmetry of this problem, the minimizing movement scheme can

be written as a minimization problem on the transport function:






ρ0
τ = ρ0

ρk
τ = sk#ρ

k−1
τ where sk ∈ argmin

t#ρk−1
τ ∈K

{
∫ R

a

(

D(t(r)) +
1

2τ
|r − t(r)|2

)

ρk−1
τ (r) r dr

}

(5.1)

Let us first consider the case where a = 0 (and Γout = ∅), where this problem

can be explicitely solved: ρk
τ is given by

ρk
τ (r) =







1 on [a, bkτ [

ρ0

(

1 +
kτ

r

)

on [bkτ , R− kτ [

0 on [R− kτ,R]

(5.2)
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a

U

R

b(t)

Ω

Γout

Γw

Fig. 2. Modeling of the displacement of a crowd throught a convergent corridor.

where bkτ satisfies the recurrence relation

{
b0τ = 0

(bkτ )2 − ρ0(bkτ + kτ)2 = (bk−1
τ )2 − ρ0(bk−1

τ + (k − 1)τ)2
(5.3)

and the solution of the continuity equation can be easily calculated:

ρ(t, r) =







1 if r ∈ [a, b(t)[

ρ0

(

1 +
t

r

)

if r ∈ [b(t), R− t]

0 if r ∈ [R− t, R]

where







b(0) = 0

b′(t) = ρ0 b(t) + t

b(t) − ρ0 (b(t) + t)

(5.4)

In figure 3, we represent the discrete densities ρk
τ at different times for the numerical

values τ = 0.01, a = 0, R = 10, and ρ0 = 0.4. Let us remark that the recurrence

relation that satisfies bkτ is a numerical scheme for the ODE on b(t). Indeed, it writes

bkτ − bk−1
τ

τ
= F

(
bkτ + bk−1

τ

2
,
2k − 1

2
τ

)

where F (r, t) = ρ0 b(t) + t

b(t) − ρ0 (b(t) + t)

Using the conservation of the total amount of people, it is easy to prove that this

scheme is exact at every time step kτ , and so is the discrete solution ρk
τ .

We now consider the case a > 0 with exit. The densities have then the same

form, except that the evolution of the interface in the continuous case is now given
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Fig. 3. Evolution of the solution of the minimizing movement scheme in the case where Γout = ∅.

by

{
b′(t) = Φ(t, b(t))

b(t0) = a
with : Φ(t, r) =







ρ0

(

1 +
t

r

)

− r − a

r ln(r/a)

1 − ρ0

(

1 +
t

r

) if r ≤ R− t

− r − a

r ln(r/a)
if r > R− t

whereas in the discrete case, bkτ satisfies now the recurrence relation

{
(bkτ )2 − a2 − ρ0(b

k
τ + kτ)2 = (bk−1

τ )2 − r2e − ρ0(b
k−1
τ + (k − 1)τ)2 if bk−1

τ < R− (k − 1)τ

(bkτ )2 − a2 = (bk−1
τ )2 − r2e if bk−1

τ ≥ R− (k − 1)τ

where re is the (unknown) radius such that people who were between a and re at

step k − 1 will exit the corridor (i.e. arrive at a) at step k. This radius is given as

the minimum of an integral expression that we will not develop here. In figure 4,

we represent the discrete densities for a = 1 and for the same numerical values as

before.

Fig. 4. Evolution of the solution of the minimizing movement scheme in the case with exit.
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It is also interesting to estimate numerically the error between the solution of

the continuity equation and the solution of the minimizing movement scheme. In

this purpose, we consider the case where the density is initially saturated (ρ0 = 1),

and we compute b and bτ with high accuracy (high order method for the ODE on

b, and precise quadrature and optimization methods to estimate re and bτ ), so that

space discretization does not affect error estimation. We obtain numerically that bτ
converges to b when τ tends to 0 with an error of order 1 (interpolation polynom of

τ 7→ |b(T ) − bτ (T )| gives order 0.989 for T = 1), which gives also an order 1 error

for the Wasserstein distance between ρ and ρτ .
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