A note on strong convergence to common fixed points of nonexpansive mappings in Hilbert spaces

Jean-Philippe Chancelier*

18 septembre 2009

Résumé

The aim of this paper is to investigate the links between \mathcal{T}_C -class algorithms [1], CQ Algorithm [6, 8] and shrinking projection methods [9]. We show that strong convergence of these algorithms are related to coherent \mathcal{T}_C -class sequences of mapping. Some examples dealing with nonexpansive finite set of mappings and nonexpansive semigroups are given. They extend some existing theorems in [1, 6, 9, 7].

1 Introduction

Let C be a closed convex subset of a Hilbert space \mathcal{H} . A mapping T of C into itself is called nonexpansive if

$$||Tx - Ty|| \le ||x - y||$$
 for all $x, y \in C$.

We denote by Fix(T) the set of fixed points of T. That is

$$\operatorname{Fix}(T) \stackrel{\text{\tiny def}}{=} \{ x \in C \, : \, Tx = x \} \, . \tag{1}$$

There are many iterative methods for approximation of common fixed points of a family of nonexpansive mapping in a Hilbert space. In Section 2 we recall the CQ Algorithm [6, 8] (Algorithm 2) associated to a sequence of mappings $(T_n)_{n\geq 0}$ of C into itself. The CQ Algorithm when applied to a sequence of mappings of \mathcal{H} into itself is the same as a Haugazeau method [4] studied in [1, Algorithm 3.1] and applied to \mathcal{T} -class mappings.

We straighforwardly generalize, in Section 2, the \mathcal{T} -class to take into account mappings of C into itself. We denote this new class by the \mathcal{T}_C -class. Using this extension, the CQ Algorithm (Algorithm 2) coincides with the Haugazeau method (Algorithm 1) and a strong convergence theorem can be obtained by following results from [1]. Note that the convergence theorem is obtained for \mathcal{T}_C -class sequences which are coherent (Definition 3).

In [9] another algorithm called the shrinking projection method is also studied. One of our aims in this article is to prove that, rephrased in the context

^{*}Université Paris-Est, CERMICS, École des Ponts, 6 & 8 av. B. Pascal, 77455 Marne-la-Vallée, France.

of \mathcal{T}_C -class algorithm, the convergence results of this new algorithm (Algorithm 3) is also related to coherent sequences of \mathcal{T}_C -class mappings. We give in Theorem 6 a strong convergence result of Algorithm 3 for \mathcal{T}_C -class coherent sequence of mappings. Section 4 is devoted to the proof. The strong convergence of Algorithm 3 is also proved in [9, Theorem 3.3] for sequence of nonexpansive mappings satisfying the NST-condition(I) (Definition 9). It is easy to prove that if R is a nonexpansive mapping of C into itself then T = (R + Id)/2 belongs to the \mathcal{T}_C -class and that a sequence of nonexpansive mappings satisfying the NST-condition(I) is coherent. Thus Theorem 6 extends [9, Theorem 3.3] and Theorem 3.4].

In Section 3 we show that specific sequences of mappings are coherent. Combined with Theorem 6 it can be considered as an extension to some existing theorems in [6, 9, 7].

2 The T_C -class iterative algorithms, CQ algorithm and the shrinking projection method

We first recall here the \mathcal{T} -class iterative algorithms as defined by H. Bauschke and P. L. Combettes [1].

For $(x, y) \in \mathcal{H}^2$ and S a subset of \mathcal{H} , we define the mapping H_S as follows :

$$H_S(x,y) \stackrel{\text{\tiny def}}{=} \{ z \in S \mid \langle z - y, x - y \rangle \le 0 \} .$$

$$(2)$$

We also define the mapping H by $H \stackrel{\text{def}}{=} H_{\mathcal{H}}$. Note that $H_S(x,x) = S$ and for $x \neq y, H(x,y)$ is a closed affine half space. For a nonempty closed convex C, we denote by $Q_C(x,y,z)$ the projection, when it exists, of x onto $H_C(x,y) \cap H_C(y,z)$ and Q the projection when $C = \mathcal{H}$, that is $Q \stackrel{\text{def}}{=} Q_{\mathcal{H}}$. As an intersection of two closed affine half spaces and a closed convex, $H_C(x,y) \cap H_C(y,z)$ is a possibly empty closed convex.

It is easy to check, from the definition of H, that y is the projection of xonto H(x, y) and we therefore have $Q(x, x, y) = P_{H(x,y)}x = y$. Where P_C is the metric projection from \mathcal{H} onto C. Moreover, if $y \in C$ then we also have that yis the projection of x onto $H_C(x, y)$ which gives $Q_C(x, x, y) = y$.

The algorithm studied in [1] is the following

Algorithm 1 Given $x_0 \in C$ and a sequence $(T_n)_{n\geq 0}$ of mappings $T_n : C \to \mathcal{H}$, we consider the sequence $(x_n)_{n\geq 0}$ generated by the following algorithm :

$$x_{n+1} = Q_C(x_0, x_n, T_n x_n)$$

A very similar algorithm exists under the name of CQ algorithm [6, 8]:

Algorithm 2 Given $x_0 \in C$, we consider the sequence $(x_n)_{n\geq 0}$ generated by the following algorithm :

$$\begin{cases} y_n = R_n x_n, \\ C_n \stackrel{def}{=} \{ z \in C \mid ||y_n - z|| \le ||x_n - z|| \} , \\ D_n \stackrel{def}{=} \{ z \in C \mid \langle x_n - z, x_0 - x_n \rangle \ge 0 \} , \\ x_{n+1} = P_{(C_n \cap D_n)} x_0. \end{cases}$$

The link between the two algorithms is described by the following lemma.

Lemma 1 The sequence generated by Algorithm 2 coincides with the sequence given by $x_{n+1} = Q_C(x_0, x_n, T_n x_n)$ with $T_n \stackrel{\text{def}}{=} (R_n + Id)/2$.

Proof : Following [1], the proof easily follows from the equality

$$4\langle z - Tx, x - Tx \rangle = ||Rx - z||^2 - ||x - z||^2.$$

The convergence of Algorithm 1 and therefore of Algorithm 2 when $C = \mathcal{H}$ is studied in [1]. It relies on two requested properties of the sequence $(T_n)_{n\geq 0}$. First, the sequence $(T_n)_{n\geq 0}$ must belong the \mathcal{T} -class which means that for all $n \in \mathbb{N}$ we must have $T_n \in \mathcal{T}$ where \mathcal{T} is defined as follows :

Definition 2 A mapping $T : C \mapsto \mathcal{H}$ belongs to the \mathcal{T}_C -class if it is an element of the set \mathcal{T}_C :

$$\mathcal{T}_C \stackrel{\text{def}}{=} \{T: C \mapsto C \mid \operatorname{dom}(T) = C \quad and \quad (\forall x \in C) \operatorname{Fix}(T) \subset H(x, Tx)\}$$

When $C = \mathcal{H}$, we use the notation $\mathcal{T} = \mathcal{T}_{\mathcal{H}}$. Second, the sequence $(T_n)_{n \ge 0}$ must be coherent as defined below.

Definition 3 [1] A sequence $(T_n)_{n\geq 0}$ such that $T_n \in \mathcal{T}_C$ is coherent if for every bounded sequence $\{z_n\}_{n\geq 0} \in C$ the following holds :

$$\begin{cases} \sum_{n\geq 0} \|z_{n+1} - z_n\|^2 < \infty\\ \sum_{n\geq 0} \|z_n - T_n z_n\|^2 < \infty \end{cases} \Rightarrow \mathcal{M}(z_n)_{n\geq 0} \subset \bigcap_{n\geq 0} Fix(T_n) \tag{3}$$

where $\mathcal{M}(z_n)_{n\geq 0}$ is the set of weak cluster points of the sequence $(z_n)_{n\geq 0}$.

Theorem 4 [1, Theorem 4.2] Suppose that $C = \mathcal{H}$ and the \mathcal{T}_C -class sequence $(T_n)_{n\geq 0}$ is coherent. Then, for an arbitrary orbit of Algorithm 1, exactly one of the following alternatives holds :

- (a) $F \neq \emptyset$ and $x_n \rightarrow_n P_F x_0$;
- (b) $F = \emptyset$ and $x_n \rightarrow_n +\infty$;
- (c) $F = \emptyset$ and the algorithm terminates,

where the set F is defined by $F \stackrel{\text{def}}{=} \bigcap_{n \ge 0} Fix(T_n)$.

Remark 5 In the previous proof, it is supposed that $C = \mathcal{H}$. If C is a nonempty closed convex subset of \mathcal{H} , Theorem 4 (a) remains valid.

In [9] another iterative algorithm called the *shrinking projection method* is studied. Using our notation it can be rephrased as follows :

Algorithm 3 Given $x_0 \in C$ and $C_0 \stackrel{\text{def}}{=} C$, we consider the sequence $(x_n)_{n\geq 0}$ (when it exists) generated by the following algorithm :

$$\begin{cases} C_{n+1} \stackrel{\text{def}}{=} C_n \cap H(x_n, T_n x_n) & \text{with} \quad T_n \stackrel{\text{def}}{=} (R_n + Id)/2 \\ x_{n+1} = P_{C_{n+1}} x_0. \end{cases}$$

The previous algorithm is stopped once $C_n = \emptyset$. One of the results of this paper is the proof that the convergence of Algorithm 3 is governed by the same rules as for the convergence of Algorithm 1.

Theorem 6 Suppose that the \mathcal{T}_C -class sequence $(T_n)_{n\in\mathbb{N}}$ is coherent and let

$$F \stackrel{\text{def}}{=} \bigcap_{n \in \mathbb{N}} Fix(T_n) \,.$$

Then, if $F \neq \emptyset$ the sequence $(x_n)_{n\geq 0}$ produced by Algorithm 3 and Algorithm 1 converges to $P_F x_0$.

Proof : As pointed out in the introduction the case of Algorithm 1 when $C = \mathcal{H}$ is proved in Theorem 4. The extension to the case of a closed nonempty subset C of \mathcal{H} is straightforward and we will not give an explicit proof. The proof of the case of Algorithm 3 is postponed to Section 4.

Remark 7 The first condition for the convergence is the fact that the sequence $(T_n)_{n\geq 0}$ must belong to the \mathcal{T}_C -class. Note that by [1, Proposition 2.3] $T \in \mathcal{T}$ iff the mapping 2T - Id is quasi nonexpansive and $dom(T) = \mathcal{H}$. The equivalence remains true for \mathcal{T}_C -class if $dom(T) = \mathcal{H}$ is replaced by dom(T) = C.

Thus, if $T_n \stackrel{\text{def}}{=} (R_n + Id)/2$, a necessary and sufficient condition for the sequence $(T_n)_{n\geq 0}$ to belong to the \mathcal{T}_C -class is that the sequence $(R_n)_{n\geq 0}$ is a sequence of quasi nonexpansive mappings.

Remark 8 Moreover, it is a well known fact [3, Theorem 12.1] that 2T - Id is nonexpansive iff T is firmly nonexpansive. Thus, a sufficient condition for the mapping T to belong to the T_C -class is that T is a firmly nonexpansive mapping, i.e.:

$$||Tx - Ty||^2 \le \langle x - y, Tx - Ty \rangle \quad \forall (x, y) \in C^2$$
(4)

 $or \ equivalently$

$$||Tx - Ty||^{2} \le ||x - y||^{2} - ||(T - Id)x - (T - Id)y||^{2} \quad \forall (x, y) \in C^{2}.$$
 (5)

We recall here the definition of the NST-condition (I) [5]. Let $(T_n)_{n\geq 0}$ and \mathcal{F} be two families of nonexpansive mappings of C into itself such that

$$\emptyset \neq \operatorname{Fix}(\mathcal{F}) \stackrel{\text{def}}{=} \bigcap_{n \in \mathbb{N}} \operatorname{Fix}(T_n),$$

where $\operatorname{Fix}(\mathcal{F})$ is the set of all common fixed points of mappings from the family \mathcal{F} .

Definition 9 The sequence $(T_n)_{n\geq 0}$ of mappings is said to satisfy the NSTcondition (I) with \mathcal{F} if, for each bounded sequence $(z_n)_{n\geq 0} \subset C$, we have that $\lim_{n\to\infty} ||z_n - T_n z_n|| = 0$ implies that $\lim_{n\to\infty} ||z_n - T z_n|| = 0$ for all $T \in \mathcal{F}$.

Remark 10 Suppose that \mathcal{F} is a family of nonexpansive mappings. It is easy to see that a sequence $(T_n)_{n\geq 0}$ of mappings satisfying a NST-condition (I) with \mathcal{F} is coherent. Indeed, from a demi-closed principle or using [9, Lemma 3.1] if $||x_n - Tx_n|| \mapsto 0$ for all $T \in \mathcal{T}$ then $\mathcal{M}(x_n)_{n\geq 0} \subset Fix(\{T\}_{T\in \mathcal{T}})$.

3 Coherent sequences of mappings

We consider here Algorithms 1 and 3 for a sequence of mappings $(R_n)_{n\geq 0}$ built by N level iterations. Our aim is to give conditions under which the sequence $(R_n)_{n\geq 0}$ or equivalently $(T_n)_{n\geq 0} \stackrel{\text{def}}{=} (R_n + Id)/2$ is coherent¹ and apply Theorem 6 to get convergence results.

Let $N \geq 1$ and $(T_n^{(j)})_{n\geq 0}: C \to \mathcal{H}$ for $1 \leq j \leq N$ be a finite set of sequences of nonexpansive mappings. Given also a family of sequences of real parameters $(\alpha_n^{(j)})_{n\geq 0}$ for $1 \leq j \leq N$, we define new sequences $(\Gamma_n^{(j)})_{n\geq 0}: C \to \mathcal{H}$ by the recursive equations :

$$\Gamma_n^{(j)} x \stackrel{\text{def}}{=} \alpha_n^{(j)} x + (1 - \alpha_n^{(j)}) T_n^{(j)} \Gamma_n^{(j+1)} x \quad \text{and} \quad \Gamma_n^{(N+1)} x \stackrel{\text{def}}{=} x \tag{6}$$

 \mathbf{H}_{α} : We will assume that the sequences of real parameters $(\alpha_n^{(j)})_{n\geq 0}$ satisfy the following condition : for $2 \leq j \leq N$ and for all $n \in \mathbb{N}$ we have $\alpha_n^{(j)} \in (a, b)$ with 0 < a < b < 1 and $\alpha_n^{(1)} \in [0, b)$.

Using the sequence of mappings $R_n \stackrel{\text{def}}{=} \Gamma_n^{(1)}$ in Algorithms 1 and 3 gives N level algorithms. We will consider the following specific examples :

- **H**₁ Each sequence $(T_n^{(j)})_{n\geq 0}$ is constant, *i.e* $T_n^{(j)} = T^{(j)}$ for $1 \leq j \leq N$ and $F \stackrel{\text{def}}{=} \operatorname{Fix}(\{T^{(j)}, 1 \leq j \leq N\})$ is nonempty.
- **H**₂ The $(T_n^{(j)})_{n\geq 0}$ sequences for $1 \leq j \leq N$ are given by $T_n^{(j)} = T^{(j)}(t_n)$, where $\{T^{(j)}(t):t\geq 0\}$ is a finite set of given semigroups and $(t_n)_{n\geq 0}$ is a sequence of real numbers such that $\liminf_n t_n = 0$, $\limsup_n t_n > 0$ and $\lim_n (t_{n+1}-t_n) = 0$. We assume that $F \stackrel{\text{def}}{=} \operatorname{Fix} \left(\{T^{(j)}(t), 1\leq j\leq N, t\geq 0\}\right)$ is nonempty.
- **H**₃ The $(T_n^{(j)})_{n\geq 0}$ sequences for $1\leq j\leq N$ are given by

$$T_n^{(j)}x = \frac{1}{t_n} \int_0^{t_n} T^{(j)}(s) x ds , \qquad (7)$$

where $\{T^{(j)}(t): t \ge 0\}$ is a finite set of given semigroups and $(t_n)_{n\ge 0}$ is a positive divergent sequence of real numbers. We assume that $F \stackrel{\text{def}}{=}$ Fix $(\{T^{(j)}(t), 1 \le j \le N, t \ge 0\})$ is nonempty.

¹By [1, Proposition 4.5] if $(T_n)_{n\geq 0} \in \mathcal{T}$ and $T'_n \stackrel{\text{def}}{=} Id + \lambda_n(T_n - Id)$ with $\lambda_n \in [\delta, 1]$ and $\delta \in]0, 1]$. Then $(T_n)_{n\geq 0}$ is coherent iff $(T'_n)_{n\geq 0}$ is coherent.

Theorem 11 Given a finite set of N nonexpansive sequences $(T_n^{(j)})_{n\geq 0}$ satisfying \mathbf{H}_1 , \mathbf{H}_2 , or \mathbf{H}_3 . The sequence $(x_n)_{n\geq 0}$ produced by Algorithm 1 and Algorithm 3 with $R_n \stackrel{\text{def}}{=} \Gamma_n^{(1)}$ and $(T_n)_{n\geq 0} \stackrel{\text{def}}{=} (R_n + Id)/2$ converges to $P_F x_0$. The mappings $\Gamma_n^{(j)}$ being defined by equation (6) with parameters $\alpha_n^{(j)}$ satisfying \mathbf{H}_{α} .

Proof: The proof is obtained by showing that the sequence of mappings $(T_n)_{n\geq 0}$ is coherent in each given case and by applying Theorem 6 to conclude. The coherence is proved in the sequel in Proposition 15 for the case \mathbf{H}_1 , in Proposition 17 for the case \mathbf{H}_2 and in Proposition 19 for the case \mathbf{H}_3 .

We start here by a set of lemmata which are common to all cases.

Lemma 12 Let T be a F-quasi nonexpansive mapping and for $\beta \in (0,1)$ the mapping $T_{\beta} \stackrel{\text{def}}{=} \beta Id + (1-\beta)T$. For $p \in F$ and all $x \in H$ we have :

$$\beta(1-\beta)\|x - Tx\|^2 \le 2(\|x - p\| - \|T_\beta x - p\|)\|x - p\|$$
(8)

Proof : For $p \in F$ and all $x \in H$ we have :

$$||T_{\beta}x - p||^{2} = ||\beta(x - p) + (1 - \beta)(Tx - p)||^{2}$$

= $\beta ||x - p||^{2} + (1 - \beta)||Tx - p||^{2} - \beta(1 - \beta)||Tx - x||^{2}$
 $\leq ||x - p||^{2} - \beta(1 - \beta)||Tx - x||^{2}.$

We thus obtain

$$\beta(1-\beta)\|Tx-x\|^{2} \leq (\|x-p\|-\|T_{\beta}x-p\|)(\|x-p\|+\|T_{\beta}x-p\|) \\ \leq 2(\|x-p\|-\|T_{\beta}x-p\|)\|x-p\|.$$

Lemma 13 Let T a F-quasi nonexpansive mapping. For $\beta \in (0,1)$ we define the mapping $T_{\beta} \stackrel{\text{def}}{=} \beta Id + (1 - \beta)T$. For $p \in F$, all $x \in H$ and S a F-quasi nonexpansive mapping, we have :

$$\beta(1-\beta)\|x - Tx\|^2 \le 2\|x - ST_\beta x\|\|x - p\|.$$
(9)

If moreover S is nonexpansive we also have :

$$||x - Sx|| \le ||x - ST_{\beta}x|| + ||Tx - x||.$$
(10)

Proof : For $p \in F$ and all $x \in H$ we have :

$$\begin{aligned} \|x - p\| &\leq \|x - ST_{\beta}x\| + \|ST_{\beta}x - p\| \\ &\leq \|x - ST_{\beta}x\| + \|T_{\beta}x - p\|. \end{aligned}$$

We thus have $||x - p|| - ||T_{\beta}x - p|| \le ||x - ST_{\beta}x||$ which combined with Lemma 12 gives equation (9).

Now if S is nonexpansive,

$$\begin{aligned} \|x - Sx\| &\leq \|x - ST_{\beta}x\| + \|ST_{\beta}x - Sx\| \leq \|x - ST_{\beta}x\| + \|T_{\beta}x - x\| \\ &\leq \|x - ST_{\beta}x\| + (1 - \beta)\|Tx - x\| \leq \|x - ST_{\beta}x\| + \|Tx - x\|. \end{aligned}$$

Lemma 14 Suppose that $F \stackrel{\text{def}}{=} \bigcap_{\{n \in \mathbb{N}; 1 \leq j \leq N\}} Fix(T_n^{(j)})$ is not empty suppose that for a bounded sequence $(x_n)_{n\geq 0}$ and a fixed value of j we have $||x_n - T_n^{(j)}\Gamma_n^{(j+1)}x_n|| \to 0$. Moreover, suppose that for $2 \leq j \leq N$ and all $n \in \mathbb{N}$ we have $\alpha_n^{(j)} \in (a,b)$ with 0 < a < b < 1. Then for all $k \geq j$ we have $||x_n - T_n^{(k)}x_n|| \to 0$.

Proof : Note first that the sequences $(T^{(j)})_{1 \leq j \leq N}$ and $(\Gamma^{(j)})_{1 \leq j \leq N+1}$ are composed of nonexpansive mappings. Indeed the composition of nonexpansive mappings is nonexpansive and for $\beta \in (0,1)$ $\beta Id + (1 - \beta)S$ is nonexpansive when S is nonexpansive. The sequences are also F-quasi nonexpansive since it is straightforward that $F \subset \operatorname{Fix}(\Gamma_n^{(j)})$ for all $j \in [1, N]$ and $n \in \mathbb{N}$ and if S is nonexpansive it is also $\operatorname{Fix}(S)$ -quasi nonexpansive.

The proof then follows by backward induction on j. Assume that the result is true for j + 1 then we will prove that it is true for j. Using the definition of $\Gamma_n^{(j+1)}$ and using equation (9) for $p \in F$, $S = T_n^{(j)}$, $T = T_n^{(j+1)} \Gamma_n^{(j+2)}$ and $\beta = \alpha_n^{(j+1)}$ (we thus have $T_\beta = \Gamma_n^{(j+1)}$) we obtain :

$$\alpha_n^{(j+1)}(1-\alpha_n^{(j+1)}) \|x_n - T_n^{(j+1)}\Gamma_n^{(j+2)}x_n\|^2 \le 2\|x_n - T_n^{(j)}\Gamma_n^{(j+1)}x_n\| \|x_n - p\|$$
(11)

We thus obtain that $||x_n - T_n^{(j+1)}\Gamma_n^{(j+2)}x_n|| \to 0$ and by induction hypothesis we obtain $||x_n - T_n^{(k)}x_n|| \to 0$ for $k \ge j + 1$. Now using equation (10) with $S \stackrel{\text{def}}{=} T_n^{(j)}, T \stackrel{\text{def}}{=} T_n^{(j+1)}\Gamma_n^{(j+2)}$ and $\beta = \alpha_n^{(j+1)}$ we get :

$$\|x_n - T_n^{(j)}x_n\| \le \|x_n - T_n^{(j)}\Gamma_n^{(j+1)}x_n\| + \|T_n^{(j+1)}\Gamma_n^{(j+2)}x_n - x_n\|$$
(12)

and the result follows for j.

3.1 The case H_1

Proposition 15 In the case \mathbf{H}_1 , the sequence $(R_n)_{n\geq 0}$, defined by $R_n \stackrel{\text{def}}{=} \Gamma_n^{(1)}$ with parameters satisfying \mathbf{H}_{α} , satisfy the NST-condition(I) with $\mathcal{F} \stackrel{\text{def}}{=} Fix\{T^{(j)}, \ldots, s\}$ and the sequence $T_n = (R_n + Id)/2$ is a \mathcal{T}_C -class and

 $\mathcal{F} \stackrel{\text{def}}{=} Fix\{T^{(j)}_{1 \leq j \leq N}\}$ and the sequence $T_n = (R_n + Id)/2$ is a \mathcal{T}_C -class and coherent sequence.

Proof: We have $||x_n - R_n x_n|| = ||x_n - T_n^{(1)} \Gamma_n^{(2)} x_n|| (1 - \alpha_n^{(1)})$. Thus, if for each bounded sequence $(x_n)_{n\geq 0} ||x_n - R_n x_n|| \mapsto 0$ we also have $||x_n - T_n^{(1)} \Gamma_n^{(2)} x_n|| \mapsto 0$ since $(1 - \alpha_n^{(1)})$ is bounded from zero. Using Lemma 14 we have $||x_n - T^{(j)} x_n|| \mapsto 0$ for $1 \leq j \leq N$ which gives use the NST-condition(I) with \mathcal{F} . Now we consider the sequence $(T_n)_{n\geq 0}$. The sequence belongs to the \mathcal{T}_C -class since $2T_n - Id = R_n$ is nonexpansive and thus quasi nonexpansive. Now if $||x_n - T_n x_n|| \mapsto 0$ we also have $||x_n - R_n x_n|| \mapsto 0$ and thus using the NST-condition(I) we have $||x_n - T^{(j)} x_n|| \mapsto 0$ for $1 \leq j \leq N$. Since the $T^{(j)}$ are nonexpansive they are also demi-closed [2, Lemma 4] and thus we must have $\mathcal{M}(x_n)_{n\geq 0} \subset \operatorname{Fix}(\{T^{(j)}, 1 \leq j \leq N\}) = \operatorname{Fix}(\{T_n\}_{n\in\mathbb{N}})$. The sequence $(T_n)_{n\geq 0}$ is thus in the \mathcal{T}_C -class and coherent. □

Remark 16 For N = 1 we recover [9, Theorem 1.1] and [9, Theorem 4.1].

3.2 The case H_2

Let $\{T(t) : t \ge 0\}$ be a family of mappings from a subset C of \mathcal{H} into itself. We call it a nonexpansive semigroup on C if the following conditions are satisfied :

- (i) T(0)x = x for all $x \in C$;
- (ii) T(s+t) = T(s)T(t) for all $s, t \ge 0$;
- (iii) for each $x \in C$ the mapping $t \mapsto T(t)x$ is continuous;
- (iv) $||T(t)x T(t)y|| \le ||x y||$ for all $x, y \in C$ and $t \ge 0$.

Proposition 17 In the case \mathbf{H}_2 , the sequence $(R_n)_{n\geq 0}$, defined by $R_n \stackrel{\text{def}}{=} \Gamma_n^{(1)}$ with parameters satisfying \mathbf{H}_{α} , satisfy the NST-condition(I) with $\mathcal{F} \stackrel{\text{def}}{=} Fix\{T^{(j)}(t)_{1\leq j\leq N,t\geq 0}\}$ and the sequence $T_n = (R_n + Id)/2$ is a \mathcal{T}_C -class and coherent sequence.

Proof : As in the proof of Proposition 15 we obtain that for each bounded sequence $(x_n)_{n\geq 0}$ such that $||x_n - R_n x_n|| \mapsto 0$ we also have $||x_n - T^{(j)}(t_n) x_n|| \mapsto 0$ for $1 \leq j \leq N$. Now it is easy to prove that the weak cluster points of the sequence $(x_n)_{n\geq 0}$ are in F. The proof for each fixed j is the same as in [7, Theorem 2.2, page 6]. We thus obtain the coherence of the sequence $(T_n)_{n\geq 0}$. \Box

Remark 18 For N = 1 we recover [7, Theorem 2.1] for Algorithm 3 and [7, Theorem 2.2] for Algorithm 1.

3.3 The case H_3

Proposition 19 In the case \mathbf{H}_3 , the sequence $(R_n)_{n\geq 0}$, defined by $R_n \stackrel{\text{def}}{=} \Gamma_n^{(1)}$ with parameters satisfying \mathbf{H}_{α} , satisfy the NST-condition(I) with

 $\mathcal{F} \stackrel{\text{\tiny def}}{=} Fix\{T^{(j)}(t)_{1 \leq j \leq N, t \geq 0}\}$ and the sequence $T_n = (R_n + Id)/2$ is a \mathcal{T}_C -class and coherent sequence.

Proof : As in the proof of Proposition 15 we obtain that for each bounded sequence $(x_n)_{n\geq 0}$ such that $||x_n - R_n x_n|| \mapsto 0$ we also have $||x_n - T^{(j)}(t_n) x_n|| \mapsto 0$ for $1 \leq j \leq N$. Now it is easy to prove that the weak cluster points of the sequence $(x_n)_{n\geq 0}$ are in F. The proof for each fixed j is the same as in [6, Theorem 4.1]. For each fixed j, it is a consequence of the inequality [6, Equation (8)]:

$$\|T^{(j)}(s)x_n - x_n\| \le 2\|T_n^{(j)}x_n - x_n\| + \|T(s)(T_n^{(j)}x_n) - T_n^{(j)}x_n\|$$
(13)

for every $0 \leq s < +\infty$ and $n \in \mathbb{N}$ with $T_n^{(j)}$ and the fact that the right hand side of the above inequality goes to zero as n goes to infinity for a bounded sequence $(x_n)_{n\geq 0}$ using [6, Lemma 2.1]. We thus obtain the coherence of the sequence $(T_n)_{n\geq 0}$.

Remark 20 For N = 1 we recover [6, Theorem 4.1] for Algorithm 1 and [9, Theorem 4.4] for Algorithm 3.

4 Proof of Theorem 6

We prove here the strong convergence of Algorithm 3 for a T_C -class sequence of coherent mappings. The proof follows the same steps as the proof of the convergence of Algorithm 1 in [1], we therefore give references to the original propositions.

The proof results from the next proposition and theorem in the following way. Let $(x_n)_{n\geq 0}$ be an arbitrary orbit of Algorithm 3 and let $F \stackrel{\text{def}}{=} \operatorname{Fix}(\{T_n\}_{n\in\mathbb{N}})$. If $F \neq \emptyset$, then by Proposition 21 (*iv*) the sequence is defined. By Theorem 22 (*ii*) the sequence is bounded. Thus (*v*) is fulfilled and by the coherence property we have $\mathcal{M}(x_n)_{n\geq 0} \subset F$. Then, by Theorem 22 (*iv*), the sequence strongly converges to $P_F(x_0)$.

Proposition 21 [1, Proposition 3.4] Let $(x_n)_{n\geq 0}$ be an arbitrary orbit of Algorithm 3. Then :

- (i) If x_{n+1} is defined then $||x_0 x_n|| \le ||x_0 x_{n+1}||$.
- (ii) If x_n is defined then $x_0 = x_n \iff x_n = x_{n-1} = \dots = x_0 \iff x_0 \in \bigcup_{k=0}^{n-1} Fix(T_k).$
- (iii) If $(x_n)_{n\geq 0}$ is defined then $(||x_0 x_n||)_{n\in\mathbb{N}}$ is increasing.
- (iv) $(x_n)_{n\geq 0}$ is defined if $F \stackrel{\text{def}}{=} Fix(\{T_n\}_{n\in\mathbb{N}}) \neq \emptyset$.

Proof: (i) : If x_{n+1} is defined we have $x_{n+1} = P_{C_{n+1}}x_0$ and thus $x_{n+1} \in C_{n+1} \subset C_n$ and since $x_n = P_{C_n}x_0$ we have $||x_0 - x_n|| \leq ||x_0 - x_{n+1}||$. (ii) : The fist equivalence follows from (i). The second one is proved by induction. Note first that H is such that $y = P_{H(x,y)}x$. Now for $y \in C$, we obtain also that $y = P_{C \cap H(x,y)}x$. for n = 1, we have $x_1 = P_{C \cap H(x_0,T_0x_0)}x_0 = T_0x_0$ and thus $x_1 = x_0 \iff x_0 \in \text{Fix}(T_0)$. Now assume that the equivalence if fulfilled for n.

We have

$$x_{n+1} = x_n = \dots = x_0 \iff \begin{cases} x_0 \in \bigcup_{k=0}^{n-1} \operatorname{Fix}(T_k) \\ x_0 = x_{n+1} = P_{C \cap \bigcap_{k=0}^n H(x_k, T_k x_k)} \\ = P_{C \cap H(x_0, T_n x_0)} = T_n x_0 \,. \end{cases}$$

(*iii*) follows from (*i*). (*iv*) : The algorithm is defined if $C_n \neq \emptyset$ for all $n \in \mathbb{N}$. Thus it is enough to prove that $C \cap \left(\bigcap_{n \in \mathbb{N}} H(x_n, T_n x_n)\right) \neq \emptyset$. By definition of the \mathcal{T}_C class we have $\operatorname{Fix}(T_n) \subset C \cap H(x_n, T_n x_n)$ and the result follows.

Theorem 22 ([1, Theorem 3.5]) Let $(x_n)_{n>0}$ be an arbitrary orbit of Algorithm 3 and let $F \stackrel{\text{def}}{=} \bigcap_{n \in \mathbb{N}} Fix(T_n)$. Then

- (i) If $(x_n)_{n>0}$ is defined then : $(x_n)_{n>0}$ is bounded $\iff (||x_0 x_n||)_{n \in \mathbb{N}}$ converges.
- (ii) If $F \neq \emptyset$, then $(x_n)_{n \geq 0}$ is bounded and $(\forall n \in \mathbb{N})x_n \in F \iff x_n =$ $P_F(x_0).$
- (iii) If $F \neq \emptyset$, then $(||x_0 x_n||)_{n \in \mathbb{N}}$ converges and $\lim_{n} \|x_0 - x_n\| \le \|x_0 - P_F x_0\|.$
- (iv) If $F \neq \emptyset$, then : $\lim_n x_n = P_F(x_0) \iff \mathcal{M}(x_n)_{n \in \mathbb{N}} \subset F$. (v) If $(x_n)_{n \geq 0}$ is defined and bounded then $\sum_{n \geq 0} ||x_{n+1} x_n||^2 < +\infty$ and $\sum_{n>0} \|x_n - T_n x_n\|^2 < +\infty.$

Proof: (i) follows from Proposition 21 (i). (ii) : If $F \neq \emptyset$ then by Proposition 21 (iv) the sequence is defined. We have $F \subset C \cap \left(\bigcap_{n \in \mathbb{N}} H(x_n, T_n x_n)\right)$ and thus $F \subset C_n$. Now, from $P_F(x_0) \in C_n$ and $x_n = P_{C_n} x_0$ we obtain $||x_n - x_0|| \leq C_n$ $||x_0 - P_F(x_0)||$ and (ii) follows. (iii) follows from (i), (ii) and the previous inequality. (iv): The forward implication is trivial. For the reverse implication, the proof exactly follows (iv) of [1, Theorem 3.5] since it does not involve C. (v): From $x_n = P_{C_n} x_0$ and $x_{n+1} \in C_n$ we obtain :

$$\langle x_0 - x_n, x_n - x_{n+1} \rangle \ge 0.$$

We thus have :

$$\|x_{n+1} - x_n\|^2 \leq \|x_{n+1} - x_n\|^2 + 2 \langle x_{n+1} - x_n, x_n - x_0 \rangle$$

$$\leq \|x_0 - x_{n+1}\|^2 - \|x_0 - x_n\|^2.$$
 (14)

Hence $\sum_{n>0} ||x_{n+1} - x_n||^2 \le \sup_{n \in \mathbb{N}} ||x_0 - x_n||^2 < +\infty$ since $(x_n)_{n \ge 0}$ is bounded. For all $n \in \mathbb{N}$ we have $x_{n+1} \in H(x_n, T_n x_n)$, which implies,

$$||x_{n+1} - x_n||^2 = ||x_{n+1} - T_n x_n||^2 - 2 \langle x_{n+1} - T_n x_n, x_n - T_n x_n \rangle + ||x_n - T_n x_n||^2 \geq ||x_n - T_n x_n||^2,$$
(15)

and we therefore obtain $\sum_{n>0} ||x_n - T_n x_n||^2 < +\infty$.

Références

- H. H. Bauschke, P. L. Combettes, A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces, Mathematics of Operations Research 26 (2) (2001) 248–264.
- [2] F. Browder, Convergence theorems for sequences of nonlinear operators in banch spaces, Math. Z. 100 (1967) 201–225.
- [3] K. Goebel, W. Kirk, Topics in Metric Fixed Point Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press ed., 1990.
- [4] Y. Haugazeau, Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes, Ph.D. thesis, Université de Paris, Paris (1968).
- [5] K. Nakajo, K. Shimoji, W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings in banach spaces, J. Nonlinear Convex Anal. 8 (2007) 11–34.
- [6] K. Nakajo, W. Takahashi, Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups, J. Math. Anal. Appl. 279 (2003) 372–379.
- Strong [7] S. Saejung, convergence theorems for nonexpansive semigroups without bochner integrals, Fixed Points Theory Appl.doi :10.1155/2008/745010.
- [8] M. Solodov, B. Svaiter, Forcing strong convergence of proximal point iterations in a hilbert space, Math. Program. Ser. A (87) (2000) 189–202.
- [9] W. Takahashi, Y. Takeuchi, R. Kubota, Strong convergence theorems by hybrid methods for families of nonexpansive mappings in hilbert spaces, Journal of Mathematical Analysis and Applications 341 (1) (2008) 276–286.