Jean-Philippe Chancelier 
  
A note on strong convergence to common fixed points of nonexpansive mappings in Hilbert spaces

.

Introduction

Let C be a closed convex subset of a Hilbert space H. A mapping T of C into itself is called nonexpansive if T x -T y ≤ xy for allx, y ∈ C .

We denote by Fix(T ) the set of fixed points of T . That is

Fix(T ) def = {x ∈ C : T x = x} . (1) 
There are many iterative methods for approximation of common fixed points of a family of nonexpansive mapping in a Hilbert space. In Section 2 we recall the CQ Algorithm [START_REF] Nakajo | Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups[END_REF][START_REF] Solodov | Forcing strong convergence of proximal point iterations in a hilbert space[END_REF] (Algorithm 2) associated to a sequence of mappings (T n ) n≥0 of C into itself. The CQ Algorithm when applied to a sequence of mappings of H into itself is the same as a Haugazeau method [START_REF] Haugazeau | Sur les inéquations variationnelles et la minimisation de fonctionnelles convexes[END_REF] studied in [1, Algorithm 3.1] and applied to T -class mappings.

We straighforwardly generalize, in Section 2, the T -class to take into account mappings of C into itself. We denote this new class by the T C -class. Using this extension, the CQ Algorithm (Algorithm 2) coincides with the Haugazeau method (Algorithm 1) and a strong convergence theorem can be obtained by following results from [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF]. Note that the convergence theorem is obtained for T C -class sequences which are coherent (Definition 3).

In [START_REF] Takahashi | Strong convergence theorems by hybrid methods for families of nonexpansive mappings in hilbert spaces[END_REF] another algorithm called the shrinking projection method is also studied. One of our aims in this article is to prove that, rephrased in the context of T C -class algorithm, the convergence results of this new algorithm (Algorithm 3) is also related to coherent sequences of T C -class mappings. We give in Theorem 6 a strong convergence result of Algorithm 3 for T C -class coherent sequence of mappings. Section 4 is devoted to the proof. The strong convergence of Algorithm 3 is also proved in [START_REF] Takahashi | Strong convergence theorems by hybrid methods for families of nonexpansive mappings in hilbert spaces[END_REF]Theorem 3.3] for sequence of nonexpansive mappings satisfying the NST-condition(I) (Definition 9). It is easy to prove that if R is a nonexpansive mapping of C into itself then T = (R + Id)/2 belongs to the T C -class and that a sequence of nonexpansive mappings satisfying the NST-condition(I) is coherent. Thus Theorem 6 extends [9, Theorem 3.3 and Theorem 3.4].

In Section 3 we show that specific sequences of mappings are coherent. Combined with Theorem 6 it can be considered as an extension to some existing theorems in [START_REF] Nakajo | Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups[END_REF][START_REF] Takahashi | Strong convergence theorems by hybrid methods for families of nonexpansive mappings in hilbert spaces[END_REF][START_REF] Saejung | Strong convergence theorems for nonexpansive semigroups without bochner integrals[END_REF].

The T C -class iterative algorithms, CQ algorithm and the shrinking projection method

We first recall here the T -class iterative algorithms as defined by H. Bauschke and P. L. Combettes [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF].

For (x, y) ∈ H 2 and S a subset of H, we define the mapping H S as follows :

H S (x, y) def = {z ∈ S | z -y, x -y ≤ 0} . (2) 
We also define the mapping H by H def = H H . Note that H S (x, x) = S and for x = y, H(x, y) is a closed affine half space. For a nonempty closed convex C, we denote by Q C (x, y, z) the projection, when it exists, of x onto H C (x, y) ∩ H C (y, z) and Q the projection when C = H, that is

Q def = Q H .
As an intersection of two closed affine half spaces and a closed convex, H C (x, y) ∩ H C (y, z) is a possibly empty closed convex.

It is easy to check, from the definition of H, that y is the projection of x onto H(x, y) and we therefore have Q(x, x, y) = P H(x,y) x = y. Where P C is the metric projection from H onto C. Moreover, if y ∈ C then we also have that y is the projection of x onto H C (x, y) which gives Q C (x, x, y) = y.

The algorithm studied in [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF] is the following Algorithm 1 Given x 0 ∈ C and a sequence (T n ) n≥0 of mappings T n : C → H, we consider the sequence (x n ) n≥0 generated by the following algorithm :

x n+1 = Q C (x 0 , x n , T n x n )
A very similar algorithm exists under the name of CQ algorithm [START_REF] Nakajo | Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups[END_REF][START_REF] Solodov | Forcing strong convergence of proximal point iterations in a hilbert space[END_REF] :

Algorithm 2 Given x 0 ∈ C, we consider the sequence (x n ) n≥0 generated by the following algorithm :

           y n = R n x n , C n def = {z ∈ C | y n -z ≤ x n -z } , D n def = {z ∈ C | x n -z, x 0 -x n ≥ 0} , x n+1 = P (Cn∩Dn) x 0 .
The link between the two algorithms is described by the following lemma.

Lemma 1 The sequence generated by Algorithm 2 coincides with the sequence given by

x n+1 = Q C (x 0 , x n , T n x n ) with T n def = (R n + Id)/2.
Proof : Following [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF], the proof easily follows from the equality

4 z -T x, x -T x = Rx -z 2 -x -z 2 .
The convergence of Algorithm 1 and therefore of Algorithm 2 when C = H is studied in [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF]. It relies on two requested properties of the sequence (T n ) n≥0 . First, the sequence (T n ) n≥0 must belong the T -class which means that for all n ∈ N we must have T n ∈ T where T is defined as follows :

Definition 2 A mapping T : C → H belongs to the T C -class if it is an element of the set T C : T C def = {T : C → C | dom(T ) = C and (∀x ∈ C) Fix(T ) ⊂ H(x, T x)} .
When C = H, we use the notation T = T H . Second, the sequence (T n ) n≥0 must be coherent as defined below.

Definition 3 [1] A sequence (T n ) n≥0 such that T n ∈ T C is coherent if for every bounded sequence {z n } n≥0 ∈ C the following holds : n≥0 z n+1 -z n 2 < ∞ n≥0 z n -T n z n 2 < ∞ ⇒ M(z n ) n≥0 ⊂ n≥0 Fix(T n ) ( 3 
)
where M(z n ) n≥0 is the set of weak cluster points of the sequence (z n ) n≥0 .

Theorem 4 [1, Theorem 4.2] Suppose that C = H and the T C -class sequence (T n ) n≥0 is coherent. Then, for an arbitrary orbit of Algorithm 1, exactly one of the following alternatives holds :

(a) F = ∅ and x n → n P F x 0 ; (b) F = ∅ and x n → n +∞ ; (c) F = ∅ and the algorithm terminates,
where the set F is defined by

F def = n≥0 Fix(T n ). Remark 5 In the previous proof, it is supposed that C = H. If C is a nonempty closed convex subset of H, Theorem 4 (a) remains valid.
In [START_REF] Takahashi | Strong convergence theorems by hybrid methods for families of nonexpansive mappings in hilbert spaces[END_REF] another iterative algorithm called the shrinking projection method is studied. Using our notation it can be rephrased as follows :

Algorithm 3 Given x 0 ∈ C and C 0 def = C, we consider the sequence (x n ) n≥0
(when it exists) generated by the following algorithm :

C n+1 def = C n ∩ H(x n , T n x n ) with T n def = (R n + Id)/2 , x n+1 = P C n+1 x 0 .
The previous algorithm is stopped once C n = ∅. One of the results of this paper is the proof that the convergence of Algorithm 3 is governed by the same rules as for the convergence of Algorithm 1.

Theorem 6 Suppose that the T C -class sequence (T n ) n∈N is coherent and let

F def = n∈N Fix(T n ) .
Then, if F = ∅ the sequence (x n ) n≥0 produced by Algorithm 3 and Algorithm 1 converges to P F x 0 .

Proof : As pointed out in the introduction the case of Algorithm 1 when C = H is proved in Theorem 4. The extension to the case of a closed nonempty subset C of H is straightforward and we will not give an explicit proof. The proof of the case of Algorithm 3 is postponed to Section 4.

Remark 7

The first condition for the convergence is the fact that the sequence (T n ) n≥0 must belong to the T C -class. Note that by [ Thus, if T n def = (R n + Id)/2, a necessary and sufficient condition for the sequence (T n ) n≥0 to belong to the T C -class is that the sequence (R n ) n≥0 is a sequence of quasi nonexpansive mappings.

Remark 8 Moreover, it is a well known fact [START_REF] Goebel | Topics in Metric Fixed Point Theory[END_REF]Theorem 12.1] that 2T -Id is nonexpansive iff T is firmly nonexpansive. Thus, a sufficient condition for the mapping T to belong to the T C -class is that T is a firmly nonexpansive mapping, i.e :

T x -T y 2 ≤ x -y, T x -T y ∀(x, y) ∈ C 2 (4)
or equivalently

T x -T y 2 ≤ x -y 2 -(T -Id)x -(T -Id)y 2 ∀(x, y) ∈ C 2 . ( 5 
)
We recall here the definition of the NST-condition (I) [START_REF] Nakajo | Strong convergence to common fixed points of families of nonexpansive mappings in banach spaces[END_REF]. Let (T n ) n≥0 and F be two families of nonexpansive mappings of C into itself such that

∅ = Fix(F) def = n∈N Fix(T n ) ,
where Fix(F) is the set of all common fixed points of mappings from the family F.

Definition 9

The sequence (T n ) n≥0 of mappings is said to satisfy the NSTcondition (I) with F if, for each bounded sequence (z n ) n≥0 ⊂ C, we have that lim n →∞ z n -T n z n = 0 implies that lim n →∞ z n -T z n = 0 for all T ∈ F.

Remark 10 Suppose that F is a family of nonexpansive mappings. It is easy to see that a sequence (T n ) n≥0 of mappings satisfying a NST-condition (I) with F is coherent. Indeed, from a demi-closed principle or using [START_REF] Takahashi | Strong convergence theorems by hybrid methods for families of nonexpansive mappings in hilbert spaces[END_REF]Lemma 3.1] 

if x n -T x n → 0 for all T ∈ T then M(x n ) n≥0 ⊂ Fix ({T } T ∈T ).

Coherent sequences of mappings

We consider here Algorithms 1 and 3 for a sequence of mappings (R n ) n≥0 built by N level iterations. Our aim is to give conditions under which the sequence (R n ) n≥0 or equivalently (T n ) n≥0 def = (R n +Id)/2 is coherent 1 and apply Theorem 6 to get convergence results.

Let N ≥ 1 and (T

n ) n≥0 : C → H for 1 ≤ j ≤ N be a finite set of sequences of nonexpansive mappings. Given also a family of sequences of real parameters (α

(j) n ) n≥0 for 1 ≤ j ≤ N , we define new sequences (Γ (j) n ) n≥0 : C → H by the recursive equations : Γ (j) n x def = α (j) n x + (1 -α (j) n )T (j) n Γ (j+1) n x and Γ (N +1) n x def = x (6) 
H α : We will assume that the sequences of real parameters (α

(j)
n ) n≥0 satisfy the following condition : for 2 ≤ j ≤ N and for all n ∈ N we have α n in Algorithms 1 and 3 gives N level algorithms. We will consider the following specific examples :

H 1 Each sequence (T (j) n ) n≥0 is constant, i.e T (j) n = T (j) for 1 ≤ j ≤ N and F def = Fix T (j) , 1 ≤ j ≤ N is nonempty. H 2 The (T (j) n ) n≥0 sequences for 1 ≤ j ≤ N are given by T (j) n = T (j) (t n ),
where T (j) (t) : t ≥ 0 is a finite set of given semigrougs and (t n ) n≥0 is a sequence of real numbers such that lim inf n t n = 0, lim sup n t n > 0 and lim n (t n+1 -t n ) = 0. We assume that

F def = Fix T (j) (t), 1 ≤ j ≤ N, t ≥ 0 is nonempty. H 3 The (T (j) n ) n≥0 sequences for 1 ≤ j ≤ N are given by T (j) n x = 1 t n tn 0 T (j) (s)xds , (7) 
where T (j) (t) : t ≥ 0 is a finite set of given semigrougs and (t n ) n≥0 is a positive divergent sequence of real numbers. We assume that

F def = Fix T (j) (t), 1 ≤ j ≤ N, t ≥ 0 is nonempty. 1 By [1, Proposition 4.5] if (Tn) n≥0 ∈ T and T ′ n def = Id + λn(Tn -Id) with λn ∈ [δ, 1] and δ ∈]0, 1]. Then (Tn) n≥0 is coherent iff (T ′ n ) n≥0 is coherent.
Theorem 11 Given a finite set of N nonexpansive sequences (T Proof : The proof is obtained by showing that the sequence of mappings (T n ) n≥0 is coherent in each given case and by applying Theorem 6 to conclude. The coherence is proved in the sequel in Proposition 15 for the case H 1 , in Proposition 17 for the case H 2 and in Proposition 19 for the case H 3 .

(j) n ) n≥0 sa- tisfying H 1 , H 2 ,
We start here by a set of lemmata which are common to all cases.

Lemma 12 Let T be a F -quasi nonexpansive mapping and for β ∈ (0, 1) the mapping T β def = βId + (1β)T . For p ∈ F and all x ∈ H we have :

β(1 -β) x -T x 2 ≤ 2( x -p -T β x -p ) x -p (8) 
Proof : For p ∈ F and all x ∈ H we have :

T β x -p 2 = β(x -p) + (1 -β)(T x -p) 2 = β x -p 2 + (1 -β) T x -p 2 -β(1 -β) T x -x 2 ≤ x -p 2 -β(1 -β) T x -x 2 .
We thus obtain

β(1 -β) T x -x 2 ≤ ( x -p -T β x -p )( x -p + T β x -p ) ≤ 2( x -p -T β x -p ) x -p .
Lemma 13 Let T a F -quasi nonexpansive mapping. For β ∈ (0, 1) we define the mapping T

β def = βId + (1 -β)T . For p ∈ F , all
x ∈ H and S a F -quasi nonexpansive mapping, we have :

β(1 -β) x -T x 2 ≤ 2 x -ST β x x -p . ( 9 
)
If moreover S is nonexpansive we also have :

x -Sx ≤ x -ST β x + T x -x . ( 10 
)
Proof : For p ∈ F and all x ∈ H we have :

x -p ≤ x -ST β x + ST β x -p ≤ x -ST β x + T β x -p .
We thus have xp -T β xp ≤ x -ST β x which combined with Lemma 12 gives equation ( 9). Now if S is nonexpansive,

x -Sx ≤ x -ST β x + ST β x -Sx ≤ x -ST β x + T β x -x ≤ x -ST β x + (1 -β) T x -x ≤ x -ST β x + T x -x .
Lemma 14 Suppose that

F def = {n∈N;1≤j≤N } Fix(T (j)
n ) is not empty suppose that for a bounded sequence (x n ) n≥0 and a fixed value of j we have

x n -T (j) n Γ (j+1) n
x n → 0. Moreover, suppose that for 2 ≤ j ≤ N and all n ∈ N we have α

(j) n ∈ (a, b) with 0 < a < b < 1. Then for all k ≥ j we have x n -T (k) n x n → 0.
Proof : Note first that the sequences (T (j) ) 1≤j≤N and (Γ (j) ) 1≤j≤N +1 are composed of nonexpansive mappings. Indeed the composition of nonexpansive mappings is nonexpansive and for β ∈ (0, 1) βId + (1β)S is nonexpansive when S is nonexpansive. The sequences are also F -quasi nonexpansive since it is straightforward that F ⊂ Fix(Γ (j) n ) for all j ∈ [1, N ] and n ∈ N and if S is nonexpansive it is also Fix(S)-quasi nonexpansive.

The proof then follows by backward induction on j. Assume that the result is true for j + 1 then we will prove that it is true for j. Using the definition of Γ (j+1) n and using equation ( 9) for p ∈ F , S = T ) we obtain :

α (j+1) n (1 -α (j+1) n ) x n -T (j+1) n Γ (j+2) n x n 2 ≤ 2 x n -T (j) n Γ (j+1) n x n x n -p (11) We thus obtain that x n -T (j+1) n Γ (j+2) n
x n → 0 and by induction hypothesis we obtain

x n -T (k) n x n → 0 for k ≥ j + 1. Now using equation (10) with S def = T (j) n , T def = T (j+1) n Γ (j+2) n and β = α (j+1) n
we get :

x n -T (j) n x n ≤ x n -T (j) n Γ (j+1) n x n + T (j+1) n Γ (j+2) n x n -x n (12) 
and the result follows for j. 

: We have x n -R n x n = x n -T (1) n Γ (2) n x n (1-α (1) n ). Thus, if for each bounded sequence (x n ) n≥0 x n -R n x n → 0 we also have x n -T (1) n Γ (2) n x n → 0 since (1-α (1)
n ) is bounded from zero. Using Lemma 14 we have x n -T (j) x n → 0 for 1 ≤ j ≤ N which gives use the NST-condition(I) with F. Now we consider the sequence (T n ) n≥0 . The sequence belongs to the T C -class since 2T n -Id = R n is nonexpansive and thus quasi nonexpansive. Now if x n -T n x n → 0 we also have x n -R n x n → 0 and thus using the NST-condition(I) we have x n -T (j) x n → 0 for 1 ≤ j ≤ N . Since the T (j) are nonexpansive they are also demi-closed [2, Lemma 4] and thus we must have M(x n ) n≥0 ⊂ Fix({T (j) , 1 ≤ j ≤ N }) = Fix({T n } n∈N ). The sequence (T n ) n≥0 is thus in the T C -class and coherent.

Remark 16 For N = 1 we recover [START_REF] Takahashi | Strong convergence theorems by hybrid methods for families of nonexpansive mappings in hilbert spaces[END_REF]Theorem 1.1] and [START_REF] Takahashi | Strong convergence theorems by hybrid methods for families of nonexpansive mappings in hilbert spaces[END_REF]Theorem 4.1].

The case H 2

Let {T (t) : t ≥ 0} be a family of mappings from a subset C of H into itself. We call it a nonexpansive semigroup on C if the following conditions are satisfied :

(i) T (0)x = x for all x ∈ C ; (ii) T (s + t) = T (s)T (t) for all s, t ≥ 0 ;

(iii) for each x ∈ C the mapping t → T (t)x is continuous ;

(iv) T (t)x -T (t)y ≤ xy for all x, y ∈ C and t ≥ 0.

Proposition 17 In the case H 2 , the sequence (R n ) n≥0 , defined by R n def = Γ

(1) n

with parameters satisfying H α , satisfy the NST-condition(I) with F def = Fix {T (j) (t) 1≤j≤N,t≥0 } and the sequence T n = (R n + Id)/2 is a T C -class and coherent sequence.

Proof : As in the proof of Proposition 15 we obtain that for each bounded sequence (x n ) n≥0 such that x n -R n x n → 0 we also have x n -T (j) (t n )x n → 0 for 1 ≤ j ≤ N . Now it is easy to prove that the weak cluster points of the sequence (x n ) n≥0 are in F . The proof for each fixed j is the same as in [7, Theorem 2.2, page 6]. We thus obtain the coherence of the sequence (T n ) n≥0 .

Remark 18 For N = 1 we recover [START_REF] Saejung | Strong convergence theorems for nonexpansive semigroups without bochner integrals[END_REF]Theorem 2.1] for Algorithm 3 and [7,Theorem 2.2] for Algorithm 1.

The case H 3

Proposition 19 In the case H 3 , the sequence (R n ) n≥0 , defined by R n def = Γ

(1) n with parameters satisfying H α , satisfy the NST-condition(I) with F def = Fix {T (j) (t) 1≤j≤N,t≥0 } and the sequence T n = (R n + Id)/2 is a T C -class and coherent sequence.

We have

x n+1 = x n = • • • = x 0 ⇐⇒      x 0 ∈ ∪ n-1 k=0 Fix(T k ) x 0 = x n+1 = P C∩ T n k=0 H(x k ,T k x k ) = P C∩H(x 0 ,Tnx 0 ) = T n x 0 .
(iii) follows from (i). (iv) : The algorithm is defined if Proof : (i) follows from Proposition 21 (i). (ii) : If F = ∅ then by Proposition 21 (iv) the sequence is defined. We have F ⊂ C ∩ n∈N H(x n , T n x n ) and thus F ⊂ C n . Now, from P F (x 0 ) ∈ C n and x n = P Cn x 0 we obtain x nx 0 ≤ x 0 -P F (x 0 ) and (ii) follows. (iii) follows from (i), (ii) and the previous inequality. (iv) : The forward implication is trivial. For the reverse implication, the proof exactly follows (iv) of [1, Theorem 3.5] since it does not involve C. (v) : From x n = P Cn x 0 and x n+1 ∈ C n we obtain :

C n = ∅ for all n ∈ N. Thus it is enough to prove that C ∩ n∈N H(x n , T n x n ) = ∅.
x 0x n , x nx n+1 ≥ 0 .

We thus have :

x n+1 -x n 2 ≤ x n+1 -x n 2 + 2 x n+1 -x n , x n -x 0 ≤ x 0 -x n+1 2 -x 0 -x n 2 . ( 14 
)
Hence n≥0 x n+1x n 2 ≤ sup n∈N x 0x n 2 < +∞ since (x n ) n≥0 is bounded. For all n ∈ N we have x n+1 ∈ H(x n , T n x n ), which implies,

x n+1 -x n 2 = x n+1 -T n x n 2 -2 x n+1 -T n x n , x n -T n x n + x n -T n x n 2 ≥ x n -T n x n 2 , (15) 
and we therefore obtain n≥0 x n -T n x n 2 < +∞.

  1, Proposition 2.3] T ∈ T iff the mapping 2T -Id is quasi nonexpansive and dom(T ) = H. The equivalence remains true for T C -class if dom(T ) = H is replaced by dom(T ) = C.

n

  ∈ (a, b) with 0 < a < b < 1 and α (1) n ∈ [0, b). Using the sequence of mappings R n

or H 3 .

 3 The sequence (x n ) n≥0 produced by Algorithm 1 and Algorithm 3 with R n def = Γ (1) n and (T n ) n≥0 def = (R n + Id)/2 converges to P F x 0 . The mappings Γ (j) n being defined by equation (6) with parameters α (j) n satisfying H α .

  have T β = Γ (j+1) n

3. 1 1 Proposition 15

 1115 The case H In the case H 1 , the sequence (R n ) n≥0 , defined by R n with parameters satisfying H α , satisfy the NST-condition(I) with F def = Fix {T(j) 1≤j≤N } and the sequence T n = (R n + Id)/2 is a T C -class and coherent sequence.

Proof

  

  By definition of the T C class we have Fix(T n ) ⊂ C ∩ H(x n , T n x n ) and the result follows. Theorem 22 ([1, Theorem 3.5]) Let (x n ) n≥0 be an arbitrary orbit of Algorithm 3 and letF def = n∈N Fix(T n ). Then (i) If (x n ) n≥0 is defined then : (x n ) n≥0 is bounded ⇐⇒ ( x 0x n ) n∈N converges. (ii) If F = ∅, then (x n ) n≥0 is bounded and (∀n ∈ N)x n ∈ F ⇐⇒ x n = P F (x 0 ). (iii) If F = ∅, then ( x 0x n ) n∈N converges and lim n x 0x n ≤ x 0 -P F x 0 . (iv) If F = ∅, then : lim n x n = P F (x 0 ) ⇐⇒ M(x n ) n∈N ⊂ F . (v) If (x n ) n≥0is defined and bounded then n≥0 x n+1x n 2 < +∞ and n≥0 x n -T n x n 2 < +∞.

Proof : As in the proof of Proposition 15 we obtain that for each bounded sequence (x n ) n≥0 such that x n -R n x n → 0 we also have x n -T (j) (t n )x n → 0 for 1 ≤ j ≤ N . Now it is easy to prove that the weak cluster points of the sequence (x n ) n≥0 are in F . The proof for each fixed j is the same as in [START_REF] Nakajo | Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups[END_REF]Theorem 4.1]. For each fixed j, it is a consequence of the inequality [6, Equation ( 8)] :

for every 0 ≤ s < +∞ and n ∈ N with T (j)

n and the fact that the right hand side of the above inequality goes to zero as n goes to infinity for a bounded sequence (x n ) n≥0 using [6, Lemma 2.1]. We thus obtain the coherence of the sequence (T n ) n≥0 .

Remark 20 For N = 1 we recover [START_REF] Nakajo | Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups[END_REF]Theorem 4.1] for Algorithm 1 and [START_REF] Takahashi | Strong convergence theorems by hybrid methods for families of nonexpansive mappings in hilbert spaces[END_REF]Theorem 4.4] for Algorithm 3.

Proof of Theorem 6

We prove here the strong convergence of Algorithm 3 for a T C -class sequence of coherent mappings. The proof follows the same steps as the proof of the convergence of Algorithm 1 in [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF], we therefore give references to the original propositions.

The proof results from the next proposition and theorem in the following way. Let (x n ) n≥0 be an arbitrary orbit of Algorithm 3 and let F def = Fix({T n } n∈N ). If F = ∅, then by Proposition 21 (iv) the sequence is defined. By Theorem 22 (ii) the sequence is bounded. Thus (v) is fulfilled and by the coherence property we have M(x n ) n≥0 ⊂ F . Then, by Theorem 22 (iv), the sequence strongly converges to P F (x 0 ).

Proposition 21 [START_REF] Bauschke | A weak-to-strong convergence principle for fejér-monotone methods in hilbert spaces[END_REF]Proposition 3.4] Let (x n ) n≥0 be an arbitrary orbit of Algorithm 3. Then :

Proof : (i) : If x n+1 is defined we have x n+1 = P C n+1 x 0 and thus x n+1 ∈ C n+1 ⊂ C n and since x n = P Cn x 0 we have x 0x n ≤ x 0x n+1 . (ii) : The fist equivalence follows from (i). The second one is proved by induction. Note first that H is such that y = P H(x,y) x. Now for y ∈ C, we obtain also that y = P C∩H(x,y) x. for n = 1, we have x 1 = P C∩H(x 0 ,T 0 x 0 ) x 0 = T 0 x 0 and thus x 1 = x 0 ⇐⇒ x 0 ∈ Fix(T 0 ). Now assume that the equivalence if fulfilled for n.