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Some stochastic process without birth, linked to

the mean curvature flow

A.K. Coulibaly

Abstract

Using Huisken results about the mean curvature flow on a strictly con-

vex hypersurface, and Kendall-Cranston coupling, we will build a stochastic

process without birth, and show that there exists a unique law of such pro-

cess. This process has many similarities with the circular Brownian motions

studied by Émery, Schachermayer, and Arnaudon. In general, this process is

not a stationary process, it is linked with some differential equation without

initial condition. We will show that this differential equation has a unique

solution up to a multiplicative constant.

1 Tools and first properties

Let M be a Riemannian compact n-manifold without boundary, which is smoothly
embedded in Rn+1, and n ≥ 2. Denote by F0 the embedding function:

F0 : M →֒ Rn+1.

Consider the flow defined by:

{

∂tF (t, x) = −Hν(t, x)
→
ν (t, x)

F (0, x) = F0(x).
(1.1)

LetMt = F (t,M), we identifyM withM0 and F0 with Id. In the previous equation
(1.1), ν(t, x) is the outer unit normal at F (t, x) on Mt, and Hν(t, x) is the mean
curvature at F (t, x) on Mt in the direction ν(t, x), (i.e. Hν(x) = trace (Sν(x))
where Sν is the second fundamental form, for definition see [20]).

Remark : In this paper we take this point of view of the mean curvature
flow (see [14] for existence, and related result). Many other authors give a differ-
ent point of view for this equation. The viscosity solution (see [11],[9],[10],[12],[8])
generalizes the solution after the explosion time and gives a uniqueness solution
which is also contained in Brakke family of solutions and passes the singularity.
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We will just look at the smooth solution until the explosion time.

As usual we call Mt the motion by mean curvature. For self-completeness, we
include a proof of the next lemma, although it is well-known.

Lemma 1.1 Let (M, g) be a Riemannian manifold isometrically embedded in Rn+1.
Denote ι the isometry:

(M, g)
ι→֒ Rn+1.

then:
∀x ∈M, ∆ι(x) = −Hν(x)~ν(x). (1.2)

Where ∆ is the Laplace-Beltrami operator associated to the metric g.

proof : By the flatness of target manifold, we have

∆ι(x) =







∆ι1(x)
...

∆ιn+1(x)







and ∆ιj(x) =
∑n

i=1
d
dt2

∣

∣

t=0
ιj(γi(t)), where γi(t) is a geodesic in M such that

γi(0) = x and γ̇i(0) = Ai and Ai is a orthogonal basis of TxM . By definition of a
geodesic we obtain:

∆ι(x) ⊥ Tι(x)(ι(M)),

so there exists a function β such that ∆ι(x) = β(x)~ν(x). We compute β as follows:

β(x) = 〈∆ι(x), ~ν(x)〉
=

∑n
i=1〈 d

dt2

∣

∣

t=0
ι(γi(t)), ~ν(x)〉

=
∑n

i=1〈∇R
n

˙ι(γi(t))
˙ι(γi(t))

∣

∣

t=0
, ~ν(x)〉

=
∑n

i=1 −〈 ˙ι(γi(t)),∇R
n

˙ι(γi(t))
~ν〉
∣

∣

t=0
, metric connection

=
∑n

i=1 −〈 ˙ι(γi(t)), (∇R
n

˙ι(γi(t))
~ν)⊤〉

∣

∣

t=0

= − trace (Sν(x)).

To give a parabolic interpretation of this equation (1.1), let us define a family
of metrics g(t) on M which is the pull-back by F (t, .) of the induced metric on Mt.
Using the previous lemma we rewrite the equation as in ([14]):

{

∂tF (t, x) = ∆tF (t, x)
F (0, x) = F0(x)

(1.3)

where ∆t is the Laplace-Beltrami operator associated to the metric g(t).
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Remark : Sometimes we will use a probabilistic convention, consisting in
putting 1

2
before the Laplacian (which just changes the time and makes the calculus

more synthetic), sometimes we will use geometric convention.
We call Tc the explosion time of the mean curvature flow, let T < Tc, and g(t)

be the family of metrics defined above. Let (W i)1≤i≤n be a Rn-valued Brownian
motion. We recall from [4] the definition of the g(t)-Brownian motion in M started
at x, denoted by g(t)-BM(x):

Definition 1.2 Let us take a filtered probability space (Ω, (Ft)t≥0,F ,P) and a C1,2-
family g(t)t∈[0,T [ of metrics over M . A M-valued process X(x) defined on Ω× [0, T [
is called a g(t) Brownian motion in M started at x ∈ M if X(x) is continuous,
adapted and for every smooth function f ,

f(Xs(x)) − f(x) − 1

2

∫ s

0

∆tf(Xt(x))dt

is a local martingale vanishing at 0.

We give a proposition which yields a characterization of mean curvature flow
by the g(t) Brownian motion.

Proposition 1.3 Let M be an n-dimensional manifold isometrically embedded in
Rn+1. Consider the application:

F : [0, T [×M → Rn+1

such that F (t, .) are diffeomorphisms, and the family of metrics g(t) over M , which
is the pull-back by F (t, .) of the induced metric on Mt = F (t,M). Then the fol-
lowing items are equivalent:

i) F (t, .) is a solution of mean curvature flow

ii) ∀x0 ∈ M , ∀T ∈ [0, Tc[, let g̃Tt = 1
2
gT−t and XT (x0) be a (g̃Tt )t∈[0,T ]-BM(x0),

then:
Y T
t = F (T − t, XT

t (x0))

is a local martingale in Rn+1.

proof : By definition we have a sequence of isometries:

F (t, .) : (M, gt)→̃Mt →֒ Rn+1

Let x0 ∈M and T ∈ [0, Tc[ and XT (x0) a (g̃Tt )t∈[0,T ]-BM(x0). We just compute the
Itô differential of:

Y T,i
t = F i(T − t, XT

t (x0)),
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that is to say:

d(Y T,i
t ) = − ∂

∂t
F i(T − t, XT

t (x0))dt+ d(F i
T−t(X

T
t (x0))

≡
dM

− ∂
∂t
F i(T − t, XT

t (x0))dt+ 1
2
∆g̃t

F i
T−t(X

T
t (x0))dt

≡
dM

− ∂
∂t
F i(T − t, XT

t (x0))dt+ ∆gT−t
F i
T−t(X

T
t (x0))dt

≡
dM

0.

Therefore Y T
t is a local martingale.

Let us show the converse. Let x0 ∈ M and T ∈ [0, Tc[ andXT (x0) a (g̃Tt )t∈[0,T ]-BM(x0),

Y T,i
t is a local martingale so almost surely, for all t ∈ [0, T ]:

− ∂

∂t
F i(T − t, XT

t (x0))dt+ ∆gT−t
F i
T−t(X

T
t (x0))dt = 0

so that for all s ∈ [0, T ], by integrating we get

∫ s

0

− ∂

∂t
F i(T − t, XT

t (x0))dt+ ∆gT−t
F i
T−t(X

T
t (x0))dt = 0

the continuity of every g(t)-Brownian motion yields,

− ∂

∂t
F i(T, x0) + ∆gT

F i
T (x0) = 0.

In order to apply this proposition, we give an estimation of the explosion time. It
is also a consequence of a maximum principle, which is explicitly contained in the
g(t)-Brownian Motion.

The quadratic covariation of Y T
t is given by:

Proposition 1.4 Let Y T
t be defined as before, then the quadratic covariation of

Y T
t for the usual scalar product in Rn+1 is:

〈dY T
t , dY

T
t 〉 = 2n1[0,T ](t)dt

proof : Let //T0,t be the parallel transport above XT
t , it is shown in [4] that it is an

isometry :
//T0,t : (TX0M, g̃(0)) 7−→ (TXt

M, g̃(t)).

Let (ei)1≤i≤n be a orthonormal basis of (TX0M, g̃(0)), and (W i)1≤i≤n be the Rn-
valued Brownian motion such that (e.g. [4], [2]):

∗dWt = //T,−1
0,t ∗ dXT

t ,
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and in the Itô’s sense:
dXT

t = //T0,teidW
i
t .

Hence
〈dY T

t , dY
T
t 〉 = 〈d(FT−t(XT

t (x0))), d(FT−t(X
T
t (x0)))〉

= 〈d(XT
t (x0)), d(X

T
t (x0))〉gT−t

= 〈d(XT
t (x0)), d(X

T
t (x0))〉2g̃t

= 〈∑n
i=1 //

T
0,teidW

i,
∑n

j=1 //
T
0,tejdW

j〉2g̃t

=
∑n

i=1〈//T0,tei, //T0,tei〉2g̃t
dt

=
∑n

i=1 2dt
= 2ndt.

To go from the first to the second line, we have used the fact that FT−t is a isom-
etry, for the last step we used the isometry of the parallel transport.

Remark : Up to convention we recover the same martingale as in [21].
An immediate corollary of Proposition 1.4 is the following result, which appears in
[14] and [11].

Corollary 1.5 Let M be a compact Riemannian n-manifold and Tc the explosion

time of the mean curvature flow, then: Tc ≤ diam(M0)2

2n

proof : Recall that the mean curvature flow stays in a compact region, like the
smallest ball which contain M0, this result is clear in the strictly convex starting
manifold and can be found in a general setting using P.L Lions viscosity solution
(e.g. theorem 7.1 in [11]).
For all T ∈ [0, Tc[ take the previous notation. So by the above recall that:

‖ Y T
t ‖≤ diam(M0),

then Y T
t is a true martingale. And

‖ Y T
t ‖2 −〈Y T , Y T 〉t

is also a true martingale. Hence:

E[‖ Y T
0 ‖2] + 2nT ≤ diam(M0)

2,

we obtain

T ≤ diam(M0)
2

2n
.
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2 Tightness, and first example on the sphere

We now define (g̃Tc)t∈]0,Tc]-BM in a general setting. When the initial manifold M0

is a sphere we use the conformality of the metric, to show that after a deterministic
change of time such process is a ] − ∞, Tc] Brownian motion on the sphere (for
existence and definition see [6] and [1] ). In the next section, we will give a general
result of uniqueness when the initial manifold M0 is strictly convex.

Definition 2.1 Let M be an n-dimensional strictly convex manifold (i.e. with a
strictly positive definite second fundamental form), F (t, .) the smooth solution of
the mean curvature flow, (M, g(t)) the family of metrics constructed by pull-back
(as in 1.3) and Tc the explosion time. We define a family of processes as follow:
∀ǫ ∈]0, Tc]

Xǫ
t (x0) =







x0 if 0 < t ≤ ǫ

BM(ǫ, x0)t if ǫ ≤ t ≤ Tc

where BM(ǫ, x0)t denotes a 1
2
g(Tc − t) Brownian motion that starts at x0 at

time ǫ, and

Y ǫ
t (x0) =







F (Tc − ǫ, x0) if 0 ≤ t ≤ ǫ

F (Tc − t, Xǫ
t (x0)) if ǫ ≤ t ≤ Tc.

Remark : We proceed as before because, at the time Tc, there is no more metric.
Huisken shows in [14] that in this case:

∃D ∈ Rn+1, s.t. ∀x0 ∈M, lim
s→Tc

F (s, x0) = D

Proposition 2.2 With the same notation as the above definition, there exists at
least one martingale Y 1 in the adherence (for the weak convergence) of (Y ǫ

. (x0))ǫ>0

when ǫ goes to 0. Also, every adherence value is a martingale.

proof : We have:






dY ǫ
t (x0) = 0 if t ≤ ǫ

dY ǫ
t (x0) = dM if t ≥ ǫ.

Where dM is an Itô differential of some martingale. This defines a family of
martingales. With the same computation as in proposition 1.4, we get:

〈dY ǫ
t , dY

ǫ
t 〉Rn+1 = 2n1]ǫ,Tc](t)dt ≤ 2ndt.
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Also by the above remark Y ǫ
0 is tight, hence (Y ǫ

. (x0))ǫ>0 is tight. As usual,
Prokhorov’s theorem implies that one adherence value exists. We also use Huisken
[14] (for the strictly convex manifold) to yield:

‖ Y ǫ ‖≤ diam(M0). (2.1)

By proposition 1-1 in [16] page 481, and the fact that (Y ǫ) are martingales we
conclude that all adherence values of (Y ǫ) are martingales with respect to the fil-
tration that they generate.

Remark : The above proposition is also valid for arbitrary M that are isomet-
rically embedded in Rn+1. Just because the bound 2.1 is also a consequence of
theorem 7.1 in [11].
We will now derive the tightness of Xǫ

t from those of (Y ǫ). This purpose will be
completed by the next lemma 2.4.
Recall some results of [14], if M0 is a strictly convex manifold then Mt is also
strictly convex, and ∀0 ≤ t1 < t2 < Tc, Mt2 ⊂ int(Mt1), where int is the interior
of the bounded connected component. Hence there is a foliation on int(M0):

⊔

t∈[0,Tc[

Mt,

where
⊔

stand for the disjoint union.

Definition 2.3 We note:

Cf(]0, Tc],Rn+1) = {γ ∈ C(]0, Tc],R
n+1), s.t. γ(t) ∈MTc−t}.

Noted that Cf (]0, Tc],Rn) is a closed set of C(]0, Tc],Rn) for the Skorokhod topology.

Lemma 2.4 Let M an n-dimensional strictly convex manifold, F (t, .) the smooth
solution of the mean curvature flow and Tc the explosion time. Then

F : [0, Tc[×M −→ ⊔

t∈[0,Tc[
Mt ,

is a diffeomorphism in the sense of manifold with boundary. And,

Ψ : Cf(]0, Tc],Rn) −→ C(]0, Tc],M)
γ 7−→ t 7→ F−1(Tc − t, γ(t))

is continuous for the different Skorokhod topologies. To define the Skorokhod topol-
ogy in C(]0, Tc],M) we could use the initial metric g(0) on M .
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proof : It is clear that F is smooth as a solution of a parabolic equation [14],
and this result has been used above. Its differential is given at each point by:

∀(t, x) ∈ [0, Tc[×M, ∀v ∈ TxM

DF (t, x)(
∂

∂t
, v) =

∂

∂t
F (t, x) ⊕DFt(x)(v)

where ∂
∂t
F (t, x) = −H(t, x)−→ν (t, x), here ⊕ stands for + and means that we cannot

cancel the sum without cancelling each term. Since there is no ambiguity we write
H(t, x) for Hν(t, x). Recall that H(t, x) > 0.

For the second part of this lemma, we remark that for 0 ≤ δ < Tc

F−1 :
⊔

t∈[0,δ]

Mt −→ [0, δ] ×M

is Lipschitz (use the bound of the differential on a compact).
Recall also that a sequence converges to a continuous function for Skorokhod

topology if and only if it converges to this function locally uniformly. We will
now show the continuity of Ψ. Take a sequence αm in Cf(]0, Tc],Rn+1) and α ∈
Cf (]0, T ],Rn+1) such that αm −→ α for the Skorokhod topology.
Then for all A compact set in ]0, Tc], ‖ αm − α ‖A−→ 0, where ‖ f ‖A= supt∈A ‖
f(t) ‖.

Let A be a compact set in ]0, Tc], then there exists a Lipschitz constant CA of
F−1 in

⊔

t∈AMt, such that for all t in A,

dg(o)(F
−1(αm(t)), F−1(α(t))) ≤ CA ‖ αm(t) − α(t) ‖,

where dg(o)(x, y) is the distance in M beetwen x and y for the metric g(0). We also
define dg(o),A(f, g) = supt∈A dg(o)(f(t), g(t)), where f, g are M-valued function. We
get:

dg(o),A(Ψ(αm),Ψ(α) ≤ CA ‖ αm − α ‖A .
So Ψ(αm) −→ Ψ(α) uniformly in all compact, so for the Skorokhod topology in
C(]0, Tc],M).

Let:
Ỹ ǫ
t = (Y ǫ

t − Y ǫ
0 ) + (Y ǫ

0 1[ǫ,Tc](t) + 1[0,ǫ](t)F (Tc − t, xo)).

Proposition 2.2 gives the tightness of Y ǫ
t −Y ǫ

0 , and Y ǫ
0 1[ǫ,Tc](t)+1[0,ǫ](t)F (Tc−t, xo)

is a non-random sequence of functions that converges uniformly, hence Ỹ ǫ is tight.
For strictly positive time t,

Xǫ
t = F−1(Tc − t, Ỹ ǫ

t ).

The previous lemma 2.4 yields the tightness of Xǫ. Hence we have shown that:

∀ϕ = (ǫk)k → 0, ∃Xϕ

]0,Tc]
, Xǫk

]0,Tc]

L→ Xϕ

]0,Tc]
for an extracted sequence.
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Proposition 2.5 Let ϕ = (ǫk)k → 0, and Xϕ

]0,Tc]
, s.t. Xǫk

]0,Tc]

L→ Xϕ

]0,Tc]
. Then

Xϕ

]0,Tc]
is a 1

2
g(Tc − t)-BM in the following sense:

∀ǫ > 0 Xϕ

[ǫ,Tc]

L
= BM(ǫ,Xϕ

ǫ )

.

proof : Let ǫ > 0 then for large k:







Xǫk is a BM(ǫ,Xǫk
ǫ ) after time ǫ , by Markov property

and let X be a BM(ǫ,Xϕ
ǫ
) after time ǫ

We want to show that X = Xϕ after ǫ . So for sketch of the proof:

Xǫk
L−→

k→∞
Xϕ

so Xǫk
ǫ

L−→
k→∞

Xϕ
ǫ ,

we use the Skorokhod theorem, to have a L2-convergence in a larger probability
space:

X
′ǫk
ǫ

L2,a.s.−→
k→∞

X
′ϕ
ǫ ,

with X
′ǫk
ǫ

L
= Xǫk

ǫ and X
′ϕ
ǫ

L
= Xϕ

ǫ . We use convergence of solution of S.D.E with
initial conditions converging in L2 (e.g. in Stroock and Varadhan [22]), to get:

BM(ǫ,X
′ǫk
ǫ )

L−→
k→∞

BM(ǫ,X
′ϕ
ǫ ),

BM(ǫ,X
′ǫk
ǫ )

L
= Xǫk

[ǫ,Tc]
,

BM(X
′ϕ
ǫ )

L
= BM(ǫ,Xϕ

ǫ ).

We use that
Xǫk L−→

k→∞
Xϕ

to conclude, after identification of the limit:

X = BM(ǫ,Xϕ
ǫ )

L
= Xϕ

[ǫ,Tc]
.

Hence the process Xϕ is a 1
2
g(Tc − u)u∈]0,Tc]-BM in the above sense, we call it

”without birth” .

We now show that, in the sphere case, the 1
2
g(Tc − u)u∈]0,Tc]-BM is, after a

change of time, nothing else than a BM(g(0))]−∞,0], this will give uniqueness in
law of such process.
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Proposition 2.6 Let g(t) be a family of metrics which comes from a mean cur-
vature flow on the sphere. Then the g̃(u) = 1

2
g(Tc − u)u∈]0,Tc]-BM is unique in

law.

proof : Let R0 be the radius of the first sphere. Then Tc =
R2

0

2n
, and by direct

computation we obtain:

F (t, x) =

√

R2
0 − 2nt

R0
x,

g(t) =
R2

0 − 2nt

R2
0

g(0).

So for all f ∈ C∞(S) we have:

∆g(t)f =
R2

0

R2
0 − 2nt

∆g(0)f

and

∇g(s)df(Xi, Xj) = fij − Γkij(s, .)fk
= fij − Γkij(0, .)fk because the metrics are homothetic
= ∇g(0)df(Xi, Xj).

Let X be a 1
2
g(Tc − u)u∈]0,Tc]-BM. For all f ∈ C∞(S), u ∈]0, Tc] and for all

Tc > t ≥ u we have:

f(Xt) − f(Xu)
M≡ 1

2

∫ t

u
∆g̃(s)f(Xs)ds

M≡ 1
2

∫ t

u
∇g̃(s)df(∗dX, ∗dX)

M≡ 1
2

∫ t

u
∇g(0)df(∗dX, ∗dX)

df(X)]0,Tc]
dM≡ 1

2
∇g(0)df(∗dX, ∗dX),

hence X]0,Tc] is a g(0)- martingale. From [4]:

df(Xt(x)) = 〈∇g̃(t)f, //0,tvi〉g̃(t)dW i +
1

2
∆g̃(t)(f)(Xt(x))dt, (2.2)

with abusive notation (because we have no starting point, to get sense we have
to take the conditional expectation at a time before t).
It follows from (2.2):

df(Xt(x)) =‖ ∇g̃(t)f(Xt(x)) ‖g̃(t) dBt +
1

2
(

R2
0

R2
0 − 2n(Tc − t)

)∆0f(Xt(x))dt,

where Bt is some real-valued Brownian motion. With help of the first computation,

df(Xt) =

√

R2
0

nt
‖ ∇g(0)f(Xt) ‖g(0) dBt +

1

2
(
R2

0

nt
)∆0f(Xt)dt.
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Now consider the solution of:

ϕ′(t)R2
0 = n(ϕ(t)) such that ϕ(0) = Tc.

i.e. the function
ϕ(t) = Tce

t
2Tc .

We get that Xϕ(t) = (BMg(0))t. According to the usual characterization of a
Brownian motion [7].

So by this deterministic change of time, and by the uniqueness in law of a
(BMg(0))]−∞,0] on the sphere, we get the uniqueness in law of a 1

2
g(Tc−u)u∈]0,Tc]-BM

on a sphere.

We have essentially used the conformality of this family of metric, that does not
change the martingale family. Even if the beginning manifold is strictly convex,
this is not the case in general. But we will see, in the next section, that the result
is also true.

3 Kendall-Cranston Coupling

In this section the manifold M is compact and strictly convex. The goal in this
section is to prove the uniqueness in law of the g(Tc − t)-BM. This section will
be cut in two parts, the first will be a geometric result inspired by the work of
Huisken, the second will be an adaptation of the Kendall-Cranston coupling. We
will, by a deterministic change of time, transform a g(Tc− t)-BM (the existence of
which comes from proposition 2.5) into a g̃(t)]−∞,0]-BM which has good geometric
properties.

Remark : In the two last sections in [14], Huisken considers, like Hamilton
for the Ricci flow, the normalized mean curvature flow. That consists in dilating
the manifolds Mt by a coefficient to obtain constant volume manifolds. He obtains
a positive coefficient of dilation ψ(t) that satisfies the following property.

Theorem 3.1 [14]
For all t ∈ [0, Tc[, define F̃ (., t) = ψ(t)F (., t) such that

∫

M̃t
dµ̃t = |M0|, and

t̃(t) =
∫ t

0
ψ2(τ)dτ , then there exist several positive constants δ, C such that:

i) T̃c = ∞

ii) H̃max(t̃) − H̃min(t̃) ≤ Ce−δt̃

iii) | ∂
∂t̃
g̃ij(t̃)| ≤ Ce−δt̃

iv) g̃ij(t̃) → g̃ij(∞) when t̃ → ∞ uniformly, for the C∞ − topology, and the
convergence is exponentially fast.
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v) g̃(∞) is a metric such that (M, g̃(∞)) is a sphere.

We will now give the change of time propositions.

Proposition 3.2 Let ψ : [0, Tc[−→]0,∞[ as above, t̃ defined by:

t̃ : [0, Tc[ −→ [0,∞[

t 7−→
∫ t

0
ψ2(τ)dτ,

for all t ∈ [0,∞[, define

g̃(t) = ψ2(t̃−1(t))g(t̃−1(t)),

where g(t) is the family of metrics coming from a mean curvature flow, and Xt is
a g(t)-BM . Then:

t 7−→ Xt̃−1(t) is a g̃(t)-BM defined on [0,∞[.

proof :
Let f ∈ C∞(M):

f(Xt̃−1(t))
M≡ 1

2

∫ t̃−1(t)

0
∆g(s)f(Xs)ds

M≡ 1
2

∫ t

0
∆g(t̃−1(s))f(Xt̃−1(s))(t̃

−1)′(s)ds
M≡ 1

2

∫ t

0
∆ 1

(t̃−1)′(s)
g(t̃−1(s))f(Xt̃−1(s))ds.

Using
ψ2(t̃−1(s))(t̃−1)′(s) = 1,

we obtain:
1

(t̃−1)′(s)
g(t̃−1(s)) = g̃(s).

Proposition 3.3 Let XTc
t , with t ∈]0, Tc], be a g(Tc− t)-BM. Let τ be defined by:

τ :]0, Tc] −→ ] −∞, 0]
t 7−→ −t̃(T − t).

Let g̃(t) be defined by:

g̃(t) = ψ2(Tc − τ−1(t))g(Tc − τ−1(t)) ∀t ∈] −∞, 0].

Then:

t 7→ XTc

τ−1(t) is a g̃(t)-BM.

12



proof :
Let f ∈ C∞(M) and s < t,

f(XTc

τ−1(t)) − f(XTc

τ−1(s))
M≡ 1

2

∫ τ−1(t)

τ−1(s)
∆g(Tc−u)f(XTc

u )du
M≡ 1

2

∫ t

s
∆g(Tc−τ−1(u))f(XTc

τ−1(u))(τ
−1(u))′(s)du

M≡ 1
2

∫ t

s
∆ 1

(τ−1)′(u)
g(Tc−τ−1(u))f(XTc

τ−1(u))du.

We have −t̃(Tc − τ−1(u)) = u, and

(τ−1)′(u)ψ2(Tc − τ−1(u)) = 1.

We obtain

f(XTc

τ−1(t)) − f(XTc

τ−1(s))
M≡ 1

2

∫ t

s

∆ψ2(Tc−τ−1(u))g(Tc−τ−1(u))f(XTc

τ−1(u))du

i.e.

f(XTc

τ−1(t)) − f(XTc

τ−1(s))
M≡ 1

2

∫ t

s

∆g̃(u)f(XTc

τ−1(u))du.

Remark : By the above theorem 3.1, we know that g̃(t) tends to a sphere metric
as t goes to −∞. The above proposition transforms “two” g(Tc−t)-BM into “two”
g̃-BM so we will use the standardization of the metric into sphere metric and also
the large time interval to perform the coupling.

Let τx be a plane in TxM and g(t) be a metric over M , we denote by K(t, τx)
the sectional curvature of the plane τx according to the metric g(t). We will now
give a few geometric lemmas that will be used later, for simplicity we will take
positive times.

Lemma 3.4 Let g(t) be a family of metrics on a manifold M , and g(∞) a metric
that makes M into a sphere, suppose that:

i) g(t) −→ g(∞) uniformly, when t −→ ∞ for the C∞− topology exponentially
fast, i.e.: ∀n ∈ N, ∀ multi-indices (i1, ..., ik) such that

∑

ik = n, ∃Cn, δn >
0, such that:

| ∂n

∂Xi1 ..Xik

gij(t) −
∂n

∂Xi1 ..Xik

gij(∞)| ≤ Cne
−δnt

ii) ∃δ, C1 > 0 such that | ∂
∂t
gij(t)| ≤ C1e−δt

iii) volg(t)(M) = volg(0)(M)

13



Then:
for all ǫ > 0 , there exists T ∈ [0,∞[, ∃C, cst, cst1 ∈ R+ and cn(cst, V ) > 0

such that, ∀t ∈ [T,∞[ the following conditions are satisfied:

i) for all x in M and for all plane τx ⊂ TxM , | K(t, τx) − cst |≤ ǫ.

ii) |ρt − ρ∞|M×M ≤ cst1e
−δt.

iii) ρ′t(x, y) := d
dt
ρt(x, y) ≤ C in a compact CC of M ×M,

where the constant cst, comes from the radius of M with respect to g(∞), ρt(x, y)
is the distance between x and y for the metric g(t), and

CC = {(x, y) ∈M ×M, s.t. ρt(x, y) ≤ min(
π

2
√

(cst + ǫ)
, cn(cst, V )), ∀t > T}.

proof :
Let us prove i).

Curvatures are functions of second order derivatives of the metric tensor. We give
the definitions of curvatures tensors, to make this point clear. Conventions are
as in [20],[18],[17], in particular, we use Einstein’s summation convention.. For
a metric connection without torsion (Levi-Civita connection), we recall standard
definitions:
-the Christoffel symbols:

Γkij =
1

2
gkl(

∂

∂xi
gjl +

∂

∂xj
gil −

∂

∂xl
gij)

-the (3,1) Riemann tensor:

R(X, Y )Z = ∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z

-the (4,0) curvature tensor:

Rm(X, Y, Z,W ) = 〈R(X, Y )Z,W 〉

-the sectional curvature:

K(X, Y ) =
Rm(X, Y, Y,X)

|X|2|Y |2 − 〈X, Y 〉2

We see that the sectional curvature depends on the metric and its derivatives up
to order two, so ∀x ∈M, for all plane τx ⊂ TxM ,

lim
t→∞

K(t, τx) = cst.
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Also, for all ǫ > 0, there exists T such that ∀t > T , for all x in M and for all plane
τx ⊂ TxM ,

| K(t, τx) − cst |≤ ǫ.

For the third point iii):
for (x, y) ∈ CC, where CC is defined above, we will show that we have the unique-
ness of minimal g(t)-geodesic from x to y, for all time t > T , because we have
the well-known Klingenberg’s result (e.g. [13] page 158) about injectivity radius
of compact manifold whose sectional curvature is bounded above. To use Klin-
genberg’s lemma, we have to bound the shortest length of a closed geodesic. We
will use Cheeger’s theorem page 96 [3]. Since by the convergence of the metric, we
have the convergence of the Ricci curvature, we obtain that they are bounded by
the same constant. We obtain, using Myers’ theorem that all diameters are then
bounded above. The volumes are constant so bounded below, all sectional curva-
tures of M are bounded in absolute value from above. So by Cheeger’s theorem
there exists a constant cn(K, d, V ) > 0 that bounds the length of smooth closed
geodesics. Hence, for large time, using Klingenberg’s lemma, we get a uniform
bound , in time, of the injectivity radius (i.e min( π

2
√

(cst+ǫ)
, cn(cst, V ))).

So for all t > T , there exist only one g(t)-geodesic between x and y, we denote

it γt. Let E(γt) =
∫ 1

0
〈γ̇t(s), γ̇t(s)〉g(t)ds be the energy of the geodesic where γ̇t(s) =

∂
∂s
γt(s), ρ2

t (x, y) = E(γt). We compute:

2( ∂
∂t
|t=t0ρt(x, y))(ρt(x, y)) = ∂

∂t
|t=t0E(γt)

=
∫ 1

0
〈γ̇t0(s), γ̇t0(s)〉 ∂

∂t
|t=t0g(t)

ds

+ 2
∫ 1

0
〈Dt|t=t0 ∂

∂s
γt(s), ∂

∂s
γt0(s)〉g(t0)ds

=
∫ 1

0
〈γ̇t0(s), γ̇t0(s)〉 ∂

∂t
|t=t0g(t)

ds

+ 2
∫ 1

0
〈Ds

∂
∂t
|t=t0γt(s), ∂∂sγt0(s)〉g(t0)ds

Let X = ∂
∂t
|t=t0γt(s) be a vector field such that X(x) = 0TxM , X(y) = 0TyM ,

because we do not change the beginning and terminal point. The covariant deriva-
tive is computed with the Levi-Civita connection associated to g(t0). Hence we
obtain:

∫ 1

0

〈Ds

∂

∂t
|t=t0γt(s),

∂

∂s
γt0(s)〉g(t0)ds =

∫ 1

0

〈∇γ̇t0(s)X,
∂

∂s
γt0(s)〉g(t0)ds,

also:

〈∇γ̇t0(s)X,
∂

∂s
γt0(s)〉g(t0) =

∂

∂s
〈X, ∂

∂s
γt0(s)〉g(t0),

because the connection is metric and γt0 is a g(t0)-geodesic. Hence

∫ 1

0

∂

∂s
〈X, ∂

∂s
γt0(s)〉g(t0)ds = [〈X, ∂

∂s
γt0(s)〉g(t0)]

1
0 = 0.
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Finally, we obtain:

∂

∂t
|t=t0ρt(x, y) =

1

2ρt0(x, y)

∫ 1

0

〈γ̇t0(s), γ̇t0(s)〉 ∂
∂t

|t=t0g(t)
ds. (3.1)

We will now control the second term in the previous equation. By the exponential
convergence of the metric, we could assume that the time is in the compact interval
[0, 1]. The manifold is compact, so we have a finite family of charts (indeed, we
may assume that we have two charts, because the manifold has a metric which
turns it into a sphere). The support of this chart could be taken to be relatively
compact, and in this chart we can take the Euclidien metric i.e 〈∂i, ∂j〉E = δji . This
is not in general a metric on M . For the simplicity of expression, after taking the
minimum over all charts we may assume that we just have one chart. Let S1 be a
sphere in Rn with the Euclidean metric. The functional:

[0, 1] × S1 ×M −→ R
(t, v, x) 7−→ gij(t, x)vivj

reaches its minimum C > 0, so:

‖T‖E ≤ C−1‖T‖g(t), ∀t ∈ [0, 1], ∀T ∈ TM.

Hence, for the equation (3.1) we get the estimate:
∣

∣

∣

∂
∂t
|t=t0ρt(x, y)

∣

∣

∣
≤ 1

2ρt0 (x,y)
C1e−δt0

∫ 1

0

∣

∣

∣
〈γ̇t0(s), γ̇t0(s)〉E

∣

∣

∣
ds

≤ 1
2ρt0 (x,y)

C1(C)−1e−δt0
∫ 1

0

∣

∣

∣〈γ̇t0(s), γ̇t0(s)〉g(t0)

∣

∣

∣ds

≤ 1
2
C1(C)−1e−δt0 .

This expression is clearly bounded.
For the second point ii),

let x, y ∈ M take γ∞ be a g(∞)-geodesic that joins x to y. Then we have, on the
one hand,

ρ2
t (x, y) − ρ2

∞(x, y) ≤
∫ 1

0
〈γ̇∞(s), γ̇∞(s)〉g(t)−g(∞)ds

≤ Cste−δt
∫ 1

0
‖γ̇∞(s)‖2

g(∞)ds

≤ Cste−δtdiam2
g(∞)(M);

where the constant changes and depends on the previous constant. On the other
hand, we have:

ρ2
∞(x, y) − ρ2

t (x, y) ≤
∫ 1

0
〈γ̇t(s), γ̇t(s)〉g(∞)−g(t)ds

≤ Cste−δt
∫ 1

0
‖γ̇t(s)‖2

g(t)ds

≤ Cste−δtdiam2
g(t)(M)

≤ cst1e
−δt,
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for some constant cst1 , and we use Myers theorem for the last inequality to get
a uniform upper bound of the diameter (because all Ricci curvature are uniformly
bounded).
We get exponential convergence of the length.

We will now show uniqueness in law of a g(Tc− t)-BM. By proposition 3.3, this
uniqueness is equivalent to uniqueness in law of a g̃(t)]−∞,0]-BM. This family of
metrics, g̃(t), satisfies:

g̃(t) −→ g̃(−∞) for the C∞-topology.

Let Z1, Z2 be two g̃-BM]−∞,0] and N << T where T is the time of the lemma
3.4, i.e the time up to which all bounds of the lemma are under control. Geometry
before this time is similar to the geometry of the sphere. So the result of uniqueness
in law for Brownian motion defined in a product probability space, indexed by R
in a compact manifold (e.g. [6],[1]) could give the heuristics to our results. As
we can see in [4] the g(t)-stochastic development and the g(t)-horizontal lift of a
g(t)-BM is well defined.
We will consider a new process Z3

N,t equal in law to Z2 after N and equal to Z2

before. In the sequel we will note Z3
t for Z3

N,t. The construction, after time N , will
be given by localization in a stochastic interval.

Let TN0 = N, and for all t ≤ N , Z3
N,t = Z2

t .
1) we will let Z3

t evolve independently of Z1
t i.e. Z3

t is a g(TN0 + .)-BM which starts
at Z3

TN
0

and the Rn-valued Brownian motion that drives Z3
t will be independent

with the one that drives Z1
t .

Let TN1 = (N + 1
2
) ∧ inf{t > TN0 , ρt(Z

1
t , Z

3
t ) ≤

π√
cst+ǫ

∧Cn(d,K,cst−ǫ)
2

4
} ∧ T . The

constant ǫ is just taken to be small enough.
Let CN = inf{t > N, Z1

t = Z3
t }.

2) At time TN1 :

• if ρTN
1

(Z1
TN
1
, Z3

TN
1

) ≤
π√

cst+ǫ
∧Cn(d,K,cst−ǫ)

2

4
, these two points (Z3

TN
1

and Z1
TN
1

) are

close enough to make mirror coupling. The distance between these two points
is strictly less than the injectivity radius ig(t)(M), hence we have uniqueness
of the geodesic that joins these two points. After TN1 and before CN , we build
Z3
t as the g(TN1 + .)-BM that starts at Z3

TN
1

, and solves:

∗dZ3
t = U3

t ∗ d((U3
t )

−1mt
Z1

t ,Z
3
t
U1
t eidW

i
t )

and after CN ,
Z3
t = Z1

t , CN ≤ t,
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where U3
t is the horizontal lift of Z3

t , to be correct we have to express a system
of stochastic differential equations as in Kendall [19], U1

t is the horizontal lift
of Z1

t , and dW i
t are Brownian motion that drives Z1

t , the mirror map mt
x,y

consists in transporting a vector along the unique minimal g(t)-geodesic that
joins x to y and then reflecting it in the hyperplane of (TyM, g(t)) which is
perpendicular to the incoming geodesic.

By isometry property of the horizontal lift of the g(t)-BM (see [4]),

(U3
t )

−1mt
Z1

t ,Z
3
t
U1
t dW

i
t ,

is an Rn-valued Brownian motion.

Let TN2 = (TN1 + 1
2
)∧ inf{t > TN1 , ρt(Z

1
t , Z

3
t ) >

π√
cst+ǫ

∧Cn(d,K,cst−ǫ)
2

2
}∧T ∧CN .

• if ρTN
1

(Z1
TN
1
, Z3

TN
1

) >
π√

cst+ǫ
∧Cn(d,K,cst−ǫ)

2

4
then TN2 = TN1 .

Iterate step 1 and 2 successively (changing TN0 by TN2 and TN1 by TN3 in step 1,
changing TN1 by TN3 and TN2 by TN4 in step 2 ..., after time T if we have no coupling,
we let Z3 evolve independently of Z1

t until the end), we build by induction the
process Z3

t and a sequence of stopping times. We sketch it as:

• if CN < T

TN0
independent−→ TN1

coupling−→ TN2
independent−→ TN3

coupling−→ TN4 ... CN
Z3

t =Z1
t−→ 0

• if CN > T

TN0
independent−→ TN1

coupling−→ TN2
independent−→ TN3

coupling−→ TN4 ... T
independent−→ 0

Proposition 3.5 The two processes Z3 and Z2 are equal in law.

proof : It is clear that before N the two processes are equal so equal in law.
After:

Z3
N = Z2

N .







∗dZ3
t =

∑

i U
3
t ei ∗ dBi, when t ∈ [TN2k , T

N
2k+1] and TN2k+1 ≤ CN

∗dZ3
t =

∑

i U
3
t ∗ d((U3

t )
−1mt

Z1
t ,Z

3
t
U1
t )eidW

i
t , when t ∈ [TN2k+1, T

N
2k+2], and TN2k+2 ≤ CN

Z3
t = Z1

t , CN ≤ t

We write:
Z3
t =

∑∞
k=0 1[TN

k
,TN

k+1]
(t) ∗ dZ3

t

=
∑

k:even ....+
∑

k:odd
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Let f ∈ C∞(M) then we have:
for even k:

df(1[TN
k
,TN

k+1]
(t) ∗ dZ3

t )
dM≡ 1

2
1[TN

k
,TN

k+1]
(t)∆g̃(t)f(Z3

t )dt

for odd k:

df(1[TN
k
,TN

k+1]
(t) ∗ dZ3

t ) =
1

2
1[TN

k
,TN

k+1]
∆g̃(t)f(Z3

t )dt

So Z3 and Z2 are two diffusions with the same starting distribution and the
same generator, hence they are equal in law. For the gluing with Z1 after CN this
is just the strong Markov property for (t, Z).

Proposition 3.6 There exists α > 0 such that:

P(TN1 −N <
1

2
) > α

proof : By the C∞-convergence of the metric we get:

∀t < T, |∆g̃(t)f − ∆g̃(−∞)f | ≤ C̃eδt

where the constant comes from Theorem 3.1, and the derivative of f up to order
two. We also obtain, by lemma 3.4, for a constant ǫ2 that will be fixed below:

|ρt − ρ−∞| ≤ ǫ2.

Over the sphere (M, g̃(−∞)), we have by ordinary comparison theorem:

∆g̃(−∞)ρ−∞(x) ≤ (n)cot(ρ−∞(x)).

We can suppose after normalization that the radius of the sphere (M, g̃(−∞)) is
one, Radius−∞(M) = 1 (i.e. cst = 1) in 3.4. We deduce from above that:

∆g̃(t)ρ−∞(x) ≤ (n)cot(ρ−∞(x)) + C̃eδt.

In [N, TN1 [, we have ρt(Z
1
t , Z

3
t ) >

π√
1+ǫ

∧Cn(d,K,cst−ǫ)
2

4
so:

π√
1+ǫ

∧ Cn(d,K,cst−ǫ)
2

4
− ǫ2 ≤ ρt(Z

1
t , Z

3
t ) − ǫ2 ≤ ρ−∞(Z1

t , Z
3
t ) ≤ π
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We can choose ǫ, ǫ2 such that,
π√
1+ǫ

∧Cn(d,K,cst−ǫ)
2

4
− ǫ2 ≥ β > 0. We obtain:

cot(ρ−∞(Z1
t , Z

3
t )) ≤ cot(β),

and
∆g̃(t)ρ−∞(Z1

t , .)(Z
3
t ) ≤ (n)cot(β) + C̃eδT ,

(recall T << 0) The progression of Z3 and Z1 are independent between [N, TN1 ]
hence:

(Z1
t , Z

3
t ) is a diffusion with generator

1

2
(∆g̃(t),1 + ∆g̃(t),2)

i.e.

dρ−∞(Z1
t , Z

3
t ) = dMt +

1

2
(∆g̃(t)ρ−∞(Z1

t , .)(Z
3
t ) + ∆g̃(t)ρ−∞(., Z3

t )(Z
1
t ))dt

where Mt is a local martingale, so

dρ−∞(Z1
t , Z

3
t ) ≤ dMt + (cot(

π

8
) + C̃eδT )dt.

.
Let us compute the quadratic variation of this local martingale, i.e:

d〈M,M〉t = dρ−∞(Z1
t , Z

3
t )dρ−∞(Z1

t , Z
3
t ),

with:
dρ−∞(Z1

t , Z
3
t ) = dρ−∞(Z1

t , .) ∗ dZ3
t + dρ−∞(., Z3

t ) ∗ dZ1
t . (3.2)

Let γ−∞(Z3
t , Z

1
t )(s) be the minimal g̃(−∞)-geodesic beetwen Z3

t and Z1
t that exists

and is unique almost everywhere because Cut−∞(M) is a null measure subspace.
We denote:

v1
t =

γ̇−∞(Z3
t , Z

1
t )(0)

‖γ̇−∞(Z3
t , Z

1
t )(0)‖g̃(−∞)

.

We complete v1
t with vjt to get a g̃(−∞)-orthonormal basis. We rewrite ∗dZ3

t as:

∗dZ3
t =

∑

U3
t ei ∗ dBi

=
∑

i,j

〈U3
t ei, v

j
t 〉g̃(−∞)v

j
t ∗ dBi

Hence by Gauss lemma, we obtain:

dρ−∞(Z1
t , .) ∗ dZ3

t =
∑

dρ−∞(Z1
t , .)U

3
t ei ∗ dBi

=
∑

i,j

dρ−∞(Z1
t , .)〈U3

t ei, v
j
t 〉g̃(−∞)v

j
t ∗ dBi

=
∑

i

dρ−∞(Z1
t , .)〈U3

t ei, v
1
t 〉g̃(−∞)v

1
t ∗ dBi

=
∑

i

〈U3
t ei, v

1
t 〉g̃(−∞) ∗ dBi.
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It follows that:

(dρ−∞(Z1
t , .) ∗ dZ3

t )(dρ−∞(Z1
t , .) ∗ dZ3

t ) =
∑

i

〈U3
t ei, v

1
t 〉2g̃(−∞)dt.

By the exponential convergence of the metric,

〈U3
t ei, v

1
t 〉g̃(−∞) ≥ 〈U3

t ei, v
1
t 〉g̃(t) − C̃eδT ,

hence:
∑

i

〈Utei, v1
t 〉2g̃(−∞) ≥

∑

i

〈Utei, v1
t 〉2g̃(t) − 2C̃eδT

∑

i

〈Utei, v1
t 〉g̃(t) + n(C̃eδT )2

= ‖v1
t ‖2

g̃(t) − 2C̃eδT
∑

i

〈Utei, v1
t 〉g̃(t) + n(C̃eδT )2

≥ ‖v1
t ‖2

g̃(t) − 2C̃eδTn‖v1
t ‖g̃(t) + n(C̃eδT )2 Schwartz

≥ (‖v1
t ‖g̃(−∞) − C̃eδT )2 − 2C̃eδTn(‖v1

t ‖g̃(−∞) + C̃eδT )

+ n(C̃eδT )2

≥ 1 − C̃eδT (2 − C̃eδT + 2(n+ nC̃eδT ) − nC̃eδT )

≥ 1

2
for a small enough T.

The independence of Z1
t et Z3

t gives,

d〈Mt,Mt〉 = (dρ−∞(Z1
t , .) ∗ dZ3

t )(dρ−∞(Z1
t , .) ∗ dZ3

t )

+(dρ−∞(., Z3
t )) ∗ dZ1

t )(dρ−∞(., Z3
t )) ∗ dZ1

t )

hence
d〈Mt,Mt〉 ≥ 1dt.

For simplicity write θ =
π√
1+ǫ

∧Cn(d,K,cst−ǫ)
2

4
, it follows from (3.2) that:

P(TN1 −N <
1

2
)

= P(∃t ∈ [N,N + 1/2] s.t. ρt(Z
1
t , Z

3
t ) ≤ θ

≥ P(∃t ∈ [N,N + 1/2] s.t. ρ−∞(Z1
t , Z

3
t ) ≤ θ − ǫ2)

≥ P(∃t ∈ [N,N + 1/2] s.t. π +Mt + (cot(β) + C̃eδT )(t−N) ≤ θ − ǫ2)

≥ α > 0.

For the last step, we use the usual comparison theorem for stochastic processes
(e.g. Ikeda and Watanabe [15]).
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We will now show that the coupling can occur between [TN1 , T
N
2 ] in a time smaller

than 1
2
.

Proposition 3.7 There exists α̃ > 0 such that:

P(CN < (TN1 +
1

2
) ∧ TN2 ) > α̃.

proof : Between the two times TN1 and TN2 , we have mirror coupling between Z1
t

and Z3
t . As in [19, 5] we have:

dρt(Z
1
t , Z

3
t ) = ρ′t(Z

1
t , Z

3
t )dt+ 2dβt +

1

2

n
∑

i=2

I t(J ti , J
t
i )dt

∗dZ3
t = U3

t ∗ d((U3
t )

−1mt
Z1

t ,Z
3
t
U1
t eidW

i
t ),

Where:
-βt is a standard real Brownian motion.
-γt(Z

1
t , Z

3
t )(s) the minimal g̃(t) geodesic between Z1

t and Z3
t .

-(γ̇(Z1
t , Z

3
t )(0), ei(t)) a g̃(t)-orthonormal basis of TZ1

t
M .

- J ti (s) the Jacobi field along γt for the metric g̃(t), with initial condition J ti (0) =
ei(t) and J ti (ρt(Z

1
t , Z

3
t )) = //t,γt

ρt(Z1
t ,Z

3
t )
ei(t) i.e. the parallel transport for the metric

g̃(t) along γt, that is an orthogonal Jacobi field .
-I t is the index bilinear form for the metric g̃(t).
Between the times TN1 and TN2 , we have:

ρt(Z
1
t , Z

3
t ) ≤

π√
cst+ǫ

∧ Cn(d,K,cst−ǫ)
2

2

So by 3.4, there exists a constant C such that:

ρ′t(x, y) ≤ C.

We have to show that between the times TN1 and TN2 ,

n
∑

i=2

I t(J ti , J
t
i )

is bounded above. We note r = ρt(Z
1
t , Z

3
t ), and γ for γt. Let G(s) be a real-valued

function and Kt
i be the orthogonal vector field over γ defined by:

Kt
i (s) = G(s)(//γt

t ei(t))(s)
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where G(0) = G(r) = 1. We have:

‖∇t
∂
∂s

Kt
i (s)‖2

g̃(t) = (Ġ)2.

By the index lemma (e.g. [20]), we deduce:

I t(J ti , J
t
i ) ≤ I t(Kt

i , K
t
i ),

and

I t(Kt
i , K

t
i ) =

∫ r

0

〈DsK
t
i , DsK

t
i 〉g̃(t) − Rm,g̃(t)(K

t
i , γ̇, γ̇, K

t
i )dt,

where Rm,g̃(t) denote the (4, 0) curvature tensor associated to the metric g̃(t).
Hence:

n
∑

i=2

I t(Kt
i , K

t
i ) =

n
∑

i=2

∫ r

0

〈DsK
t
i , DsK

t
i 〉g̃(t) − Rm,g̃(t)(K

t
i , γ̇, γ̇, K

t
i )ds

=

n
∑

i=2

∫ r

0

‖∇t
∂
∂s

Ki(s)‖2
g̃(t) − Rm,g̃(t)(K

t
i , γ̇, γ̇, K

t
i )ds

=

∫ r

0

(n− 1)(Ġ)2 − (G)2Ricg̃(t)(γ̇, γ̇)ds

≤ (n− 1)

∫ r

0

((Ġ)2 − (G)2(
1 − ǫ

n− 1
))ds.

For performing the computation, we impose to G to satisfy the O.D.E:
{

G(0) = G(r) = 1
..

G+ ( 1−ǫ
n−1

)G = 0

We notice that:

(Ġ)2 − (G)2(
1 − ǫ

n− 1
)) = (GĠ)′,

and the solution of this O.D.E is given by the function:

G(s) = cos(

√

1 − ǫ

n− 1
s) +

1 − cos(
√

1−ǫ
n−1

r)

sin(
√

1−ǫ
n−1

r)
sin(

√

1 − ǫ

n− 1
s).

This function does not explode for r in [0, π

2
q

1−ǫ
n−1

], and,

(Ġ)(r) − (Ġ)(0) = −2

√

1 − ǫ

n− 1
tan(

√

1−ǫ
n−1

r

2
).
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Hence
n
∑

i=2

I t(J ti , J
t
i ) ≤ −2(n− 1)

√

1 − ǫ

n− 1
tan(

√

1−ǫ
n−1

r

2
) ≤ 0.

We get:
dρt(Z

1
t , Z

3
t ) ≤ Cdt+ 2dβt.

After conditioning by FTN
1

we get the following computation:

P(CN < (TN1 + 1
2
) ∧ TN2 )

= P(∃t ∈ [(TN1 , (T
N
1 + 1

2
) ∧ TN2 ] s.t. ρt(Z

1
t , Z

3
t ) = 0)

≥ P

(

∃t ∈ [0, 1
2
] s.t. Ct+ 2βt +

π√
1+ǫ

∧Cn(d,K,cst−ǫ)
2

4
= 0

and sup0≤s≤t(Cs+ 2βs +
π√
1+ǫ

∧Cn(d,K,cst−ǫ)
2

4
) <

π√
1+ǫ

∧Cn(d,K,cst−ǫ)
2

2

)

≥ α̃ > 0.

Remark : A better α̃ could be found with a martingale of the type eaβt− a2

2
t.

Theorem 3.8 Let (M, g) be a compact, strictly convex hypersurface isometrically
embedded in Rn+1, n ≥ 2, and (M, g(t)) the family of metrics constructed by the
mean curvature flow (as in 1.3). There exists a unique g(Tc − t)-BM in law.

proof : Let X1
t and X2

t two g(Tc − t)-BM , by a deterministic change of time
we get two g̃(t)-BM that we note Z1

t and Z2
t . Let N ≤ T << 0, as above we build

Z3
N,t, we obtain Z3

N,t = Z2
t in law. Let k̃ = E(T − N), where E(t) is the integer

part of t. We have by construction:

P(∃t ∈ [N, T ], s.t. Z3
N,t = Z1

t ) ≥ P(∃t ∈ [TN0 , T
N

2k̃
], s.t. Z3

N,t = Z1
t ).

Let F be the natural filtration generated by the two processes, by propositions 3.6,
3.7 and strong Markov property we obtain:

P(∃t ∈ [N, TN2 ] s.t. Z3
N,t = Z1

t )
≥ P(TN1 < 1

2
+N ;CN < (TN1 + 1

2
) ∧ TN2 )

= E[P(CN ≤ (TN1 + 1
2
) ∧ TN2 |FTN

1
)1TN

1 ≤ 1
2
+N ]

≥ α̃E[1TN
1 ≤ 1

2
+N ]

≥ αα̃ > 0.

By successive conditioning (by FT2k̃−2
, ... ) we get:

P(∄t ∈ [TN0 , T
N

2k̃
] s.t. Z3

N,t = Z1
t ) ≤ (1 − αα̃)k̃.
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Let f1...fm ∈ Bb(M) (bounded Borel functions ) and t < t1 < ... < tm ≤ 0,

|E[f1(Z
1
t1
)...fm(Z1

tm
) − f1(Z

2
t1
)...fm(Z2

tm
)]|

= |E[f1(Z
1
t1
)...fm(Z1

tm
) − f1(Z

3
N,t1

)...fm(Z3
N,tm

)]|
≤ E[|f1(Z

1
t1
)...fm(Z1

tm
) − f1(Z

3
N,t1

)...fm(Z3
N,tm

)|1Z1
t 6=Z3

N,t
]

≤ 2‖f1‖∞...‖fm‖∞P(Z1
t 6= Z3

N,t)

= 2‖f1‖∞...‖fm‖∞P(∄u ∈ [N, t], s.t. Z1
u = Z3

N,u)

≤ 2‖f‖∞...‖fm‖∞(1 − αα̃)E(t−N)

We get the result by sending N to −∞.

As application, we give uniqueness of a solution of a differential equation with-
out initial condition.

Corollary 3.9 Let (M, g) be a compact, strictly convex hypersurface isometrically
embedded in Rn+1, n ≥ 2, and (M, g(t)) the family of metrics constructed by the
mean curvature flow (as in 1.3). Then the following equation has a unique solution
in ]0, Tc], where Tc is the explosion time of the mean curvature flow.

{

∂
∂t
h(t, y) +H2(Tc − t, y)h(t, y) = 1

2
∆g(Tc−t)h(t, y)

∫

M
h(Tc, y)dµ0 = 1

(3.3)

proof : Existence: let XTc

]0,Tc]
be a g(Tc − t)-BM with law at time t, h(t, y)dµTc−t.

Then the law satisfies the equation (3.3), it is a consequence of a Green formula
(compare with the similar computation for the Ricci flow in [4] section 2).

Uniqueness: let h̃ be a solution of (3.3), and νk be a non-increasing sequence
in ]0..Tc] such that limk→∞ νk = 0. Take a M-valued random variable X̃νk ∼
h̃νk

dµTc−νk
, define the process:

X
νk

t =

{

X̃νk for t ∈]0..νk]

g(Tc − t)-BM(X̃νk) for t ∈ [νk..Tc]

By the similar argument as in section 2, we deduce the tightness of the sequence
X
νk , let X be a limit of a extracted sequence (also noted by νk). It is easy to see

(by uniqueness of a solution of S.D.E, and of P.D.E with starting function) that

X
νk′

(.)
L
= X

νk

(.) for times greater than νk and k′ ≥ k . Sending k′ to infinity, we obtain

X(.)
L
= X

νk

(.) for times greater than νk. Note also that for t ≥ νk

X
νk

(.)
L
= g(Tc − .)-BM(X

νk

t )
L
= g(Tc − .)-BM(X t).

Hence X is a g(Tc − t)]0,Tc] Brownian motion. For t ≥ νk we have

X t
L
= X

νk

t ∼ h̃tdµTc−t.
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By uniqueness in law of such process, we get the uniqueness of the solution, hence
h = h̃.
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