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CP 8888, Succ. Centre-Ville, H3C 3P8, Montréal (QC) - Canada
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vialette@lri.fr

Abstract. In this paper, we are interested in the algorithmic complexity
of computing (dis)similarity measures between two genomes when they
contain duplicated genes. In that case, there are usually two main ways
to compute a given (dis)similarity measure M between two genomes G1

and G2: the first model, that we will call the matching model, consists
in making a one-to-one correspondence between genes of G1 and genes
of G2, in such a way that M is optimized. The second model, called the
exemplar model, consists in keeping in G1 (resp. G2) exactly one copy
of each gene, thus deleting all the other copies, in such a way that M is
optimized. We present here different results concerning the algorithmic
complexity of computing three different similarity measures (number of
common intervals, MAD number and SAD number) in those two models,
basically showing that the problem becomes NP-complete for each of
them as soon as genomes contain duplicates. We show indeed that for
common intervals, MAD and SAD, the problem is NP-complete when
genes are duplicated in genomes, in both the exemplar and matching
models. In the case of MAD and SAD, we actually prove that, under
both models, both MAD and SAD problems are APX-hard.

1 Introduction

Phylogenetic trees between different species are usually constructed thanks to
a pairwise distance matrix, obtained by comparing species two by two. A way
to compare species is to compare their genomes, where comparing two genomes
G1 and G2 is very often realized by determining a measure of similarity (or dis-
similarity) between G1 and G2, say M . This measure M can then be seen as
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(or transformed into) a distance between the two genomes. For this, a genome is
usually represented by a signed sequence on the alphabet of gene families, where
every element in a genome is a gene (which will be represented either as letters or
integers). Any gene belongs to a gene family, and two genes belong to the same
gene family if they have the same label, regardless of the sign. A family f of genes
is said to be balanced between two genomes if the number of occurrences of genes
of f is the same in both genomes. Two genomes G1 and G2 are consequently
said to be balanced if all families of genes in G1 and G2 are balanced. Thus, in
that case, G2 is composed of a permutation of the elements of G1, regardless of
the signs of the genes. We note here that when two genomes are not balanced,
we need to modify them into balanced genomes before computing the similarity
measure M (because no insertions are allowed in the models we discuss in this
paper). We do it by removing, for each family f of genes, the extra number of
copies of genes of f that appear in one of the two genomes. This is done for
simplicity reasons, and also because M is usually not well defined otherwise. For
instance, if G1 = +a−c+b+e− i−h+d and G2 = −c+g+e− i−b+d, we then
modify them into G′

1 = −c+ b+ e− i+ d and G′
2 = −c+ e− i− b+ d in order to

be able to compute M between G′
1 and G′

2. When there are no duplicates in the
considered genomes, the computation of the measure M is usually polynomial-
time solvable (e.g. number of breakpoints, reversal distance for signed genomes,
number of conserved intervals, number of common intervals, MAD, SAD, etc.).
However, we now know that there are duplicates in genomes (roughly 15% in
human [LGWA01], 16% in yeast and 25% in Arabidopsis [Wol01]). Hence, we
need to be able to deal with those duplicates, and thus to redefine the similarity
measures under this new hypothesis. This has been done in two different ways,
called the matching model and the exemplar model. In the matching model, we
first ask for both genomes to be balanced, by removing the minimum number of
genes. Hence, for each family f having f1 occurrences in G1 and f2 occurrences
in G2, we end up with genomes G′

1 and G′
2 having both exactly min{f1, f2}

genes. Once this is done, for each family f of genes, we establish a one-to-one
correspondence (among genes from family f) between genes of G′

1 and genes of
G′

2. We then follow the parsimony criterion and ask that the balanced instance
together with the one-to-one correspondence optimizes the measure M . In the
exemplar model, introduced by Sankoff [San99], the idea is roughly the same,
except that we ask for a balanced instance that keeps only one copy of each
family in each gene. Consequently, we end up with a simple instance (that is, a
genome in which no gene appears strictly more than once). Once this is done,
the one-to-one correspondence is straightforward, since all duplicates have dis-
appeared, and thus G′

2 is a permutation of the elements of G′
1 (regardless of

the signs). In the same spirit as for the matching model, the exemplar model
follows the parsimony criterion, and asks that the balanced and exemplar (thus
simple) instance optimizes the measure M . Let occ(G, g) denote the maximum
number of occurrences of a gene g in genome G (regardless of the signs), and
let occ(G) be the maximum of occ(G, g) over all genes g in G. We note that if
occ(G1) = 1 (that is, if G1 contains no duplicates), then for any genome G2, both
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the matching and the exemplar models coincide. In this paper, we are interested
in studying the algorithmic complexity of computing different (dis)similarity
measures, when genomes contain duplicates. This study has already been un-
dertaken for measures such as number of breakpoints [Bry00,BCF04], number of
reversals [Bry00,CZF+05] and conserved intervals [BR05]. Basically, it has been
shown that, for each of the above mentioned measures, whatever the consid-
ered model (exemplar or matching), the problem becomes NP-complete as soon
as duplicates are present in genomes ; some inapproximability results are also
given in some cases [Tha05]. Here, we follow the same line by studying three
other similarity measures, namely: number of common intervals, Maximum Ad-
jacency Disruption number (MAD) and Summed Adjacency Disruption number
(SAD), which will be defined in Section 2. In order to simplify notations, and
since none of those three measures depends on the signs given to the genes, we
will consider only unsigned genomes in the following. We focus in Section 3 on
the problem of computing the number of common intervals in genomes contain-
ing duplicates, and show that the problem is NP-complete in both the matching
and exemplar models. In Sections 4 and 5, we prove that, under both models,
both the MAD and SAD problems are APX-hard when genomes contain dupli-
cates. Due to space constraints, most of the proofs are not given here. They will
appear in the journal version of the paper.

2 Preliminaries

In this section, we define the three similarity measures we are interested in. As
mentioned before, each of those measures asks that the genomes are balanced,
and that a one-to-one correspondence exists between any gene of G1 and a gene
of G2. Hence we will often conveniently rename genome G1 into the identity
permutation on n genes, Idn (that is, 1 2 3 . . . n) and G2 can be recomputed
accordingly into a new permutation. We now define those three measures.

Number of common intervals: a common interval between G1 and G2 is a sub-
string of G1 for which the exact same content can be found in a substring of G2.
For example, let G1 = Id5 and G2 = 1 5 3 4 2, then the interval [3, 5] of G1 is a
common interval.

Maximum Adjacency Disruption Number (MAD): this notion has been recently
introduced by Sankoff and Haque [SH05], where a genome is represented by a
string of integers. This number, say M, is defined as the maximum between
two values M1,2 and M2,1, where M1,2 (resp. M2,1) is the maximum difference
between two consecutive genes (i.e., integers) in G2 (resp. G1) , supposing that
G1 = Idn (resp. that G2 = Idn) and that G2 (resp. G1) has been renamed
accordingly. We need to compute both M1,2 and M2,1 in order to restore sym-
metry, since those two measures might differ.

Summed Adjacency Disruption Number (SAD): this notion has also been in-
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troduced by Sankoff and Haque [SH05], and can be seen as a global variant of
the MAD number. Similarly to the previous case, suppose Gi = Idn and Gj =

g
j
1 g

j
1 . . . gj

n has been renamed accordingly (i 6= j ∈ {1, 2}). The Summed Adja-

cency Disruption number is then defined as S =
∑n−1

i=1
|g1

i − g1
i+1|+

∑n−1

i=1
|g2

i −
g2

i+1|. In other words, we sum the differences between consecutive genes, and we
do that in both “directions” to avoid asymmetry.
Note that the two last measures are actually dissimilarity measures, which means
that the goal is to minimize them, while the first is a similarity measure that we
wish to maximize.

3 Number of Common Intervals

In this section, investigate the algorithmic complexity of computing the number
of common intervals between two genomes, in both the exemplar and match-
ing models. Let EComI (resp. MComI) denote the problem of computing the
maximum number of common intervals in the exemplar (resp. matching) model.
We show that both EComI and MComI are NP-complete, even for restricted
instances. The proof we give below is valid for both models, since it shows NP-
completeness in the case occ(G1) = 1. However, in order to simplify notations,
we will mention in the proof only the exemplar model (i.e., the EComI prob-
lem). The proof is made by reduction from VertexCover. Starting from any
instance of VertexCover (that is, a graph G = (V, E) with V = {v1, v2 . . . vn}
and E = {e1, e2 . . . em}), we will first describe a polynomial-time construction of
two genomes G1 and G2 such that occ(G1) = 1 and occ(G2) = 2. We first describe
G1: G1 = b1, b2 . . . bm, x, a1, C1, a2, C2 . . . an, Cn, y, bm+n, bm+n−1 . . . bm+1

The ais, the bis, x and y are genes, while Cis are sequences of genes. They
are defined as follows:

– for any 1 ≤ i ≤ n, ai = 2(i − 1)m + i ;
– for any 1 ≤ i ≤ n, Ci = (ai + 1), (ai + 2) . . . (ai + 2m) ;
– for any 1 ≤ i ≤ n + m, bi = an + 2m + i ;
– x = bn+m + 1 ;
– y = bn+m + 2.

It can be seen that no gene appears more than once in G1, thus occ(G1) = 1.
Now we describe the construction of G2:
G2 = y, a1, D′

1, bm+1, a2, D′
2, bm+2 . . . bm+n−1, an, D′

n, bm+n, x

The duplicated genes in G2 are b1, b2 . . . bn, and are spread within the D′
is.

Moreover, each bi, 1 ≤ i ≤ n will appear only twice in G2. We now describe the
contents of D′

i, 1 ≤ i ≤ n. Basically, D′
i is constructed in two steps: (1) we first

construct, for each i, a sequence of genes Di, which is a specific shuffle of the
contents of Ci = (ai + 1), (ai + 2) . . . (ai + 2m). More precisely, let min = ai + 1
and max = ai + 2m ; then Di = (ai + 3), (ai + 5) . . . (ai + 2m− 3), (ai + 2m−
1), min, max, (ai + 2), (ai + 4) . . . (ai + 2m − 4), (ai + 2m − 2) ; (2) For any
1 ≤ i ≤ n, we obtain D′

i by adding some bjs (1 ≤ j ≤ m) into Di, accordingly to
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the initial graph G we are given. More precisely, for any edge ej that is incident
to a vertex vi in G, we add the gene bj between the j-th and the (j + 1)-th gene
of Di. This process gives us the D′

is. Note that no two bjs (1 ≤ j ≤ m) can
appear contiguously in a D′

i, and that no D′
i starts or ends with a bj (all D′

is
start and end with a gene that only appears in Ci in G1). In the following, any
interval of size one (i.e., singletons), as well as the whole genome, will be called
a trivial interval.

Lemma 1. Let G be a graph and G1 and G2 be the two genomes obtained by the
construction described above. G admits a Vertex Cover V C such that |V C| ≤ k

iff there exists an exemplar genome GE
2 obtained from G2 having at least I =

2nm + 4n + m + 3 − 2k common intervals.

As a direct consequence of Lemma 1, we conclude that the EComI problem
is NP-complete. Moreover, as mentioned before, the proof and the result are
also valid for the MComI problem, since our construction implies occ(G1) = 1.
We thus have the following theorem.

Theorem 1. The EComI and MComI problems are both NP-complete, even
when occ(G1) = 1 and occ(G2) = 2.

We also consider, for the matching model, instances for which the constraints
do not rely on the maximum number of duplicates per family, but on the number
of families that contain duplicates. We obtain the following result.

Theorem 2. The MComI problem is NP-complete, even when f(G1) = f(G2) =
1, where f(G) denotes the number of different families of genes that contain du-
plicates in G.

4 Maximum Adjacency Disruption (MAD)

Let EMAD (resp. MMAD) denote the problem of computing the minimum
MAD number of in the exemplar (resp. matching) model. In this section, we
prove inapproximability results for both the EMAD and MMAD problems.
More precisely, we show that for no ε > 0, EMAD (resp. MMAD) admits a
(2 − ε)-approximation algorithm, unless P=NP. This inapproximability result
does not rely on the PCP theorem. We will also remark however, how, recon-
sidering the reduction proposed in view of APX-hardness results based on the
PCP theorem, one can replace the constant 2 above with a strictly bigger con-
stant. The proof is split into two: we first study the complexity of a restricted
form of SAT, which we call Uniform-SAT, and in particular we observe it is
NP-complete. Next, we show that a (2−ε)-approximation algorithm for EMAD

(resp. MMAD), for some ε > 0, would imply the existence of a polynomial time
algorithm for Uniform-SAT. Finally, we obtain the inapproximability result
for EMAD (resp. MMAD).

In the following, 3SAT will denote the restriction of SAT for which each
clause contains at most 3 literals. We introduce a restricted form of 3SAT
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called Uniform-SAT, as follows: an instance 〈X, C〉 of 3SAT is an instance
of Uniform-SAT when the following two conditions are met: (i) for each clause
C ∈ C, either all literals occurring in C are positive occurrences of variables from
X or all literals occurring in C are negated occurrences of variables from X and
(ii) for each variable x ∈ X , x has at most 3 positive and at most 2 negated
occurrences within C. A 3SAT formula F =

∧
C∈C

C is called 3-bounded if no
variable has more than 3 occurrences within C and is called (2, 2)-bounded if
no variable has more than 2 positive occurrences and no more than 2 negated
occurrences within C. The following two facts are known: (1) The decision prob-
lem 3SAT is NP-complete even when restricted to 3-bounded formulas and
(2) The optimization problem Max-3SAT is APX-hard even when restricted to
3-bounded formulas [GJ79]. Since both problems admit a trivial self-reduction
in case a variable has only positive (or only negated) occurrences, then the fol-
lowing two facts also hold: (1) 3SAT is NP-complete even when restricted to
(2, 2)-bounded formulas and (2) Max-3SAT is APX-hard even when restricted
to (2, 2)-bounded formulas. Notice that, of the above two results, only the second
is related to the PCP-theorem.

Theorem 3. Deciding whether a given Uniform-SAT formula is satisfiable is
NP-complete.

Theorem 3 here above does not need the PCP theorem and is all what is
required in the following for proving that, for no ε > 0, EMAD (resp. MMAD)
admits a (2 − ε)-approximation algorithm, unless P=NP. With dependence on
PCP, we have the following result, which, besides being of independent interest,
can be used to show that the right constant for the approximability of EMAD

(resp. MMAD) is not 2.

Theorem 4. Given a Uniform-SAT formula, the problem of finding a truth
assignment maximizing the number of satisfied clauses is APX-hard.

We now prove that both the EMAD and MMAD problems are APX-hard.
The result holds for both problems, since we prove it in the case where occ(G1) =
1, where they coincide. The result rests on a reduction form Uniform-SAT. As-
sume we are given an instance 〈X, C〉 of Uniform-SAT, where X = {x1, x2, . . . , xn}.
Here, C can be partitioned into the family P = {P1, P2, . . . , Pmp

} of clauses com-
prising only positive literals and the family N = {N1, N2, . . . , Nmn

} of clauses
comprising only negated literals. Let Mε be a sufficiently big positive integer that
we will fix later in order to force our conclusions. We propose to compare two
genomes G1 and G2. Here, G1 is the simple (that is, without repetitions) genome
G1 of length L1 = 2 Mε +mp +mn+n−1 defined as follows: G1 = 1 2 3 . . . L1. A
gene at position i in G1 with i ≤ mp or i ≥ L1−mn+1 is called a ∗-gene. Genome
G2 has length L2 = 2 Mε +6 n−1, and conforms to the following pattern, where
we have found it convenient and pertinent to spot out the displacement of the
∗-genes within genome G2.
G2 = mp + 1, . . . , mp + Mε, ∗, ∗, ∗, ∗, ∗, mp + Mε + 1, ∗, ∗, ∗, ∗, ∗, mp + Mε + 2, . . .

. . . , ∗, ∗, ∗, ∗, ∗, mp+Mε+n, mp+Mε+n+1, mp+Mε+n+2, . . . , mp+2 Mε+n−1
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We will specify later the precise identity of the ∗-genes within genome G2. For
now, notice that in G2 we have precisely n runs of 5 consecutive ∗-genes. We put
these runs into 1, 1-correspondence with the n variables in X , so that the i-th
run corresponds to variable xi, for i = 1, 2, . . . , n. For each i = 1, 2, . . . , n, let
Pi and Ni be the lists of index sets of the clauses from P and N which contain
variable xi. E.g., if xi appears in P3, in P7, and in N2, then Pi = (3, 7), whereas
Ni = (2). Notice that the lengths of the lists Pi and Ni are at most 3, and 2,
respectively. From the list Pi we obtain a list P ′

i of length precisely 3 by possibly
iterating the last element in Pi the required number of times (that is, 3 − |Pi|
times). A list N ′

i of length precisely 2 is similarly obtained from list Ni. Now, for
each i = 1, 2, . . . , n, the i-th run of 5 consecutive ∗-genes consists in the following
5 characters: (∗, ∗, ∗, ∗, ∗) → (P ′

i [1],P ′
i[2],P ′

i [3], L1−mn+N ′
i [1], L1−mn+N ′

i [2])
The above reduction leads us to the following result.

Theorem 5. For no ε > 0, EMAD (resp. MMAD) admits a (2−ε)-approximation
algorithm, unless P=NP.

Remark 1. There actually exists a constant c > 2 such that EMAD (resp.
MMAD) admits no c-approximation algorithm unless P=NP. We can get to
this stronger conclusion if in the proof of Theorem 5 here above we apply The-
orem 4 instead of Theorem 3.

5 Summed Adjacency Disruption (SAD)

Let ESAD (resp. MSAD) denote the problem of computing the minimum SAD
number of in the exemplar (resp. matching) model. In this section, we prove that
both problems ESAD and MSAD, expressed on two genomes G1 and G2 such
that |G1| ≤ |G2| can not be better than log(|G1|) approximated. This result
holds for both the exemplar and the matching models, since we prove it in the
case where occ(G1) = 1, for which the two problems coincide. The inapproxima-
bility of ESAD (resp. MSAD) is obtained starting from the inapproximability
of SetCover. This result will hence depend on the PCP theorem, but will de-
liver stronger SetCover-like inapproximability thresholds than for the EMAD

ans MMAD problems discussed in the previous section.
Let 〈V,S〉 be an instance of SetCover, where V = {1, 2, . . . , n}, and S =

{S1, S2, . . . , Sm} is a family of subsets of V . We can assume n is even, say n = 2k,
and each set Si contains precisely k = n

2
elements, say si

1, s
i
2, . . . , s

i
k. The well

known inapproximability results for SetCover hold also under these assump-
tions, since we can think of enlarging a groundset V , originally on k elements, by
adding a set V ′ of k new elements, adding V ′ to S, and enlarging the other sets
in S with elements from V ′ until their size rises up to k. Let M = m3n3 play the
role of a sufficiently big positive integer. We propose to compare two genomes
G1 and G2. Here, G1 is the simple genome G1 of length L1 = M +n+m defined
as follows: G1 = 1 2 n3 . . . L1. Genome G2 has length L2 = M + m(k + 1), and
is constructed as follows:
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G2 = n+1, n+2, . . . , n+M, s1
1, s

1
2, . . . , s

1
k, n+M+1, s2

1, s
2
2, . . . , s

2
k, n+M+2, . . .

. . . , sm−1

1 , sm−1

2 , . . . , sm−1

k , n + M + m − 1, sm
1 , sm

2 , . . . , sm
k , n + M + m

The above reduction leads us to the following result.

Theorem 6. There exists a constant c > 0 such that ESAD (resp. MSAD)
admits no (c log |G1|)-approximation algorithm, unless P=NP.

6 Conclusion

In this paper, we have investigated the algorithmic complexity of the problem
of computing similarity measures between genomes, in the case where genomes
contain duplicates. This has been done for three measures: common intervals,
MAD and SAD. We have shown that the three problems are NP-complete, for
both the exemplar and matching variants. Moreover, we have provided APX-
hardness results concerning MAD and SAD. Our results basically show that as
soon as duplicates are present, the problem becomes hard, even in very restricted
instances. Moreover, as can be seen, no APX-hardness result is known concerning
common intervals ; we are currently investigating those questions.
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