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Genomes containing Duplicates are Hard to compare (Extended Abstract)

In this paper, we are interested in the algorithmic complexity of computing (dis)similarity measures between two genomes when they contain duplicated genes. In that case, there are usually two main ways to compute a given (dis)similarity measure M between two genomes G1 and G2: the first model, that we will call the matching model, consists in making a one-to-one correspondence between genes of G1 and genes of G2, in such a way that M is optimized. The second model, called the exemplar model, consists in keeping in G1 (resp. G2) exactly one copy of each gene, thus deleting all the other copies, in such a way that M is optimized. We present here different results concerning the algorithmic complexity of computing three different similarity measures (number of common intervals, MAD number and SAD number) in those two models, basically showing that the problem becomes NP-complete for each of them as soon as genomes contain duplicates. We show indeed that for common intervals, MAD and SAD, the problem is NP-complete when genes are duplicated in genomes, in both the exemplar and matching models. In the case of MAD and SAD, we actually prove that, under both models, both MAD and SAD problems are APX-hard.

Introduction

Phylogenetic trees between different species are usually constructed thanks to a pairwise distance matrix, obtained by comparing species two by two. A way to compare species is to compare their genomes, where comparing two genomes G 1 and G 2 is very often realized by determining a measure of similarity (or dissimilarity) between G 1 and G 2 , say M . This measure M can then be seen as (or transformed into) a distance between the two genomes. For this, a genome is usually represented by a signed sequence on the alphabet of gene families, where every element in a genome is a gene (which will be represented either as letters or integers). Any gene belongs to a gene family, and two genes belong to the same gene family if they have the same label, regardless of the sign. A family f of genes is said to be balanced between two genomes if the number of occurrences of genes of f is the same in both genomes. Two genomes G 1 and G 2 are consequently said to be balanced if all families of genes in G 1 and G 2 are balanced. Thus, in that case, G 2 is composed of a permutation of the elements of G 1 , regardless of the signs of the genes. We note here that when two genomes are not balanced, we need to modify them into balanced genomes before computing the similarity measure M (because no insertions are allowed in the models we discuss in this paper). We do it by removing, for each family f of genes, the extra number of copies of genes of f that appear in one of the two genomes. This is done for simplicity reasons, and also because M is usually not well defined otherwise. For instance, if

G 1 = +a -c + b + e -i -h + d and G 2 = -c + g + e -i -b + d, we then modify them into G 1 = -c + b + e -i + d and G 2 = -c + e -i -b + d in
order to be able to compute M between G 1 and G 2 . When there are no duplicates in the considered genomes, the computation of the measure M is usually polynomialtime solvable (e.g. number of breakpoints, reversal distance for signed genomes, number of conserved intervals, number of common intervals, MAD, SAD, etc.). However, we now know that there are duplicates in genomes (roughly 15% in human [START_REF] Li | Evolutionary analyses of the human genome[END_REF], 16% in yeast and 25% in Arabidopsis [START_REF] Wolfe | Yesterday's polyploids and the mystery of diploidization[END_REF]). Hence, we need to be able to deal with those duplicates, and thus to redefine the similarity measures under this new hypothesis. This has been done in two different ways, called the matching model and the exemplar model. In the matching model, we first ask for both genomes to be balanced, by removing the minimum number of genes. Hence, for each family f having f 1 occurrences in G 1 and f 2 occurrences in G 2 , we end up with genomes G 1 and G 2 having both exactly min{f 1 , f 2 } genes. Once this is done, for each family f of genes, we establish a one-to-one correspondence (among genes from family f ) between genes of G 1 and genes of G 2 . We then follow the parsimony criterion and ask that the balanced instance together with the one-to-one correspondence optimizes the measure M . In the exemplar model, introduced by Sankoff [San99], the idea is roughly the same, except that we ask for a balanced instance that keeps only one copy of each family in each gene. Consequently, we end up with a simple instance (that is, a genome in which no gene appears strictly more than once). Once this is done, the one-to-one correspondence is straightforward, since all duplicates have disappeared, and thus G 2 is a permutation of the elements of G 1 (regardless of the signs). In the same spirit as for the matching model, the exemplar model follows the parsimony criterion, and asks that the balanced and exemplar (thus simple) instance optimizes the measure M . Let occ(G, g) denote the maximum number of occurrences of a gene g in genome G (regardless of the signs), and let occ(G) be the maximum of occ(G, g) over all genes g in G. We note that if occ(G 1 ) = 1 (that is, if G 1 contains no duplicates), then for any genome G 2 , both the matching and the exemplar models coincide. In this paper, we are interested in studying the algorithmic complexity of computing different (dis)similarity measures, when genomes contain duplicates. This study has already been undertaken for measures such as number of breakpoints [START_REF] Bryant | The complexity of calculating exemplar distances, Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families[END_REF][START_REF] Blin | The breakpoint distance for signed sequences, 1st Int. Conference on Algorithms and Computational Methods for Biochemical and Evolutionary Networks[END_REF], number of reversals [Bry00,CZF + 05] and conserved intervals [START_REF] Blin | Conserved interval distance computation between non-trivial genomes[END_REF]. Basically, it has been shown that, for each of the above mentioned measures, whatever the considered model (exemplar or matching), the problem becomes NP-complete as soon as duplicates are present in genomes ; some inapproximability results are also given in some cases [START_REF] Thach | Algorithms for calculating exemplar distances[END_REF]. Here, we follow the same line by studying three other similarity measures, namely: number of common intervals, Maximum Adjacency Disruption number (MAD) and Summed Adjacency Disruption number (SAD), which will be defined in Section 2. In order to simplify notations, and since none of those three measures depends on the signs given to the genes, we will consider only unsigned genomes in the following. We focus in Section 3 on the problem of computing the number of common intervals in genomes containing duplicates, and show that the problem is NP-complete in both the matching and exemplar models. In Sections 4 and 5, we prove that, under both models, both the MAD and SAD problems are APX-hard when genomes contain duplicates. Due to space constraints, most of the proofs are not given here. They will appear in the journal version of the paper.

Preliminaries

In this section, we define the three similarity measures we are interested in. As mentioned before, each of those measures asks that the genomes are balanced, and that a one-to-one correspondence exists between any gene of G 1 and a gene of G 2 . Hence we will often conveniently rename genome G 1 into the identity permutation on n genes, Id n (that is, 1 2 3 . . . n) and G 2 can be recomputed accordingly into a new permutation. We now define those three measures.

Number of common intervals: a common interval between G 1 and G 2 is a substring of G 1 for which the exact same content can be found in a substring of G 2 . For example, let G 1 = Id 5 and G 2 = 1 5 3 4 2, then the interval [3, 5] of G 1 is a common interval. [START_REF] Sankoff | Power boosts for cluster tests[END_REF], where a genome is represented by a string of integers. This number, say M, is defined as the maximum between two values M 1,2 and M 2,1 , where M 1,2 (resp. M 2,1 ) is the maximum difference between two consecutive genes (i.e., integers) in G 2 (resp. G 1 ) , supposing that G 1 = Id n (resp. that G 2 = Id n ) and that G 2 (resp. G 1 ) has been renamed accordingly. We need to compute both M 1,2 and M 2,1 in order to restore symmetry, since those two measures might differ.

Maximum Adjacency Disruption Number (MAD): this notion has been recently introduced by Sankoff and Haque

Summed Adjacency Disruption Number (SAD): this notion has also been in-troduced by Sankoff and Haque [START_REF] Sankoff | Power boosts for cluster tests[END_REF], and can be seen as a global variant of the MAD number. Similarly to the previous case, suppose G i = Id n and G j = g j 1 g j 1 . . . g j n has been renamed accordingly (i = j ∈ {1, 2}). The Summed Adjacency Disruption number is then defined as

S = n-1 i=1 |g 1 i -g 1 i+1 | + n-1 i=1 |g 2 i - g 2 i+1 |.
In other words, we sum the differences between consecutive genes, and we do that in both "directions" to avoid asymmetry. Note that the two last measures are actually dissimilarity measures, which means that the goal is to minimize them, while the first is a similarity measure that we wish to maximize.

Number of Common Intervals

In this section, investigate the algorithmic complexity of computing the number of common intervals between two genomes, in both the exemplar and matching models. Let EComI (resp. MComI) denote the problem of computing the maximum number of common intervals in the exemplar (resp. matching) model. We show that both EComI and MComI are NP-complete, even for restricted instances. The proof we give below is valid for both models, since it shows NPcompleteness in the case occ(G 1 ) = 1. However, in order to simplify notations, we will mention in the proof only the exemplar model (i.e., the EComI problem). The proof is made by reduction from VertexCover. Starting from any instance of VertexCover (that is, a graph

G = (V, E) with V = {v 1 , v 2 . . . v n } and E = {e 1 , e 2 .
. . e m }), we will first describe a polynomial-time construction of two genomes G 1 and G 2 such that occ(G 1 ) = 1 and occ(G 2 ) = 2. We first describe

G 1 : G 1 = b 1 , b 2 . . . b m , x, a 1 , C 1 , a 2 , C 2 . . . a n , C n , y, b m+n , b m+n-1 . . . b m+1
The a i s, the b i s, x and y are genes, while C i s are sequences of genes. They are defined as follows:

for any 1 ≤ i ≤ n, a i = 2(i -1)m + i ; -for any 1 ≤ i ≤ n, C i = (a i + 1), (a i + 2) . . . (a i + 2m) ; -for any 1

≤ i ≤ n + m, b i = a n + 2m + i ; -x = b n+m + 1 ; -y = b n+m + 2.
It can be seen that no gene appears more than once in G 1 , thus occ(G 1 ) = 1. Now we describe the construction of G 2 :

G 2 = y, a 1 , D 1 , b m+1 , a 2 , D 2 , b m+2 . . . b m+n-1 , a n , D n , b m+n , x
The duplicated genes in G 2 are b 1 , b 2 . . . b n , and are spread within the D i s. Moreover, each b i , 1 ≤ i ≤ n will appear only twice in G 2 . We now describe the contents of D i , 1 ≤ i ≤ n. Basically, D i is constructed in two steps: (1) we first construct, for each i, a sequence of genes D i , which is a specific shuffle of the contents of C i = (a i + 1), (a i + 2) . . . (a i + 2m). More precisely, let min = a i + 1 and max = a i + 2m ; then D i = (a i + 3), (a i + 5) . . . (a i + 2m -3), (a i + 2m -1), min, max, (a i + 2), (a i + 4) . . . (a i + 2m -4), (a i + 2m -2) ; (2) For any 1 ≤ i ≤ n, we obtain D i by adding some b j s (1 ≤ j ≤ m) into D i , accordingly to the initial graph G we are given. More precisely, for any edge e j that is incident to a vertex v i in G, we add the gene b j between the j-th and the (j + 1)-th gene of D i . This process gives us the D i s. Note that no two b j s (1 ≤ j ≤ m) can appear contiguously in a D i , and that no D i starts or ends with a b j (all D i s start and end with a gene that only appears in C i in G 1 ). In the following, any interval of size one (i.e., singletons), as well as the whole genome, will be called a trivial interval.

Lemma 1. Let G be a graph and G 1 and G 2 be the two genomes obtained by the construction described above. G admits a Vertex Cover V C such that |V C| ≤ k iff there exists an exemplar genome G E 2 obtained from G 2 having at least I = 2nm + 4n + m + 3 -2k common intervals.

As a direct consequence of Lemma 1, we conclude that the EComI problem is NP-complete. Moreover, as mentioned before, the proof and the result are also valid for the MComI problem, since our construction implies occ(G 1 ) = 1. We thus have the following theorem.

Theorem 1. The EComI and MComI problems are both NP-complete, even when occ(G 1 ) = 1 and occ(G 2 ) = 2.

We also consider, for the matching model, instances for which the constraints do not rely on the maximum number of duplicates per family, but on the number of families that contain duplicates. We obtain the following result.

Theorem 2. The MComI problem is NP-complete, even when f (G 1 ) = f (G 2 ) = 1, where f (G) denotes the number of different families of genes that contain duplicates in G.

Maximum Adjacency Disruption (MAD)

Let EMAD (resp. MMAD) denote the problem of computing the minimum MAD number of in the exemplar (resp. matching) model. In this section, we prove inapproximability results for both the EMAD and MMAD problems. More precisely, we show that for no ε > 0, EMAD (resp. MMAD) admits a (2ε)-approximation algorithm, unless P=NP. This inapproximability result does not rely on the PCP theorem. We will also remark however, how, reconsidering the reduction proposed in view of APX-hardness results based on the PCP theorem, one can replace the constant 2 above with a strictly bigger constant. The proof is split into two: we first study the complexity of a restricted form of SAT, which we call Uniform-SAT, and in particular we observe it is NP-complete. Next, we show that a (2-ε)-approximation algorithm for EMAD (resp. MMAD), for some ε > 0, would imply the existence of a polynomial time algorithm for Uniform-SAT. Finally, we obtain the inapproximability result for EMAD (resp. MMAD).

In the following, 3SAT will denote the restriction of SAT for which each clause contains at most 3 literals. We introduce a restricted form of 3SAT called Uniform-SAT, as follows: an instance X, C of 3SAT is an instance of Uniform-SAT when the following two conditions are met: (i) for each clause C ∈ C, either all literals occurring in C are positive occurrences of variables from X or all literals occurring in C are negated occurrences of variables from X and (ii) for each variable x ∈ X, x has at most 3 positive and at most 2 negated occurrences within C. A 3SAT formula F = C∈C C is called 3-bounded if no variable has more than 3 occurrences within C and is called (2, 2)-bounded if no variable has more than 2 positive occurrences and no more than 2 negated occurrences within C. The following two facts are known: (1) The decision problem 3SAT is NP-complete even when restricted to 3-bounded formulas and (2) The optimization problem Max-3SAT is APX-hard even when restricted to 3-bounded formulas [START_REF] Garey | Computers and intractability: a guide to the theory of NP-completeness[END_REF]. Since both problems admit a trivial self-reduction in case a variable has only positive (or only negated) occurrences, then the following two facts also hold: (1) 3SAT is NP-complete even when restricted to (2, 2)-bounded formulas and (2) Max-3SAT is APX-hard even when restricted to (2, 2)-bounded formulas. Notice that, of the above two results, only the second is related to the PCP-theorem.

Theorem 3. Deciding whether a given Uniform-SAT formula is satisfiable is NP-complete.

Theorem 3 here above does not need the PCP theorem and is all what is required in the following for proving that, for no ε > 0, EMAD (resp. MMAD) admits a (2ε)-approximation algorithm, unless P=NP. With dependence on PCP, we have the following result, which, besides being of independent interest, can be used to show that the right constant for the approximability of EMAD (resp. MMAD) is not 2.

Theorem 4. Given a Uniform-SAT formula, the problem of finding a truth assignment maximizing the number of satisfied clauses is APX-hard.

We now prove that both the EMAD and MMAD problems are APX-hard. The result holds for both problems, since we prove it in the case where occ(G 1 ) = 1, where they coincide. The result rests on a reduction form Uniform-SAT. Assume we are given an instance X, C of Uniform-SAT, where X = {x 1 , x 2 , . . . , x n }.

Here, C can be partitioned into the family P = {P 1 , P 2 , . . . , P mp } of clauses comprising only positive literals and the family N = {N 1 , N 2 , . . . , N mn } of clauses comprising only negated literals. Let M ε be a sufficiently big positive integer that we will fix later in order to force our conclusions. We propose to compare two genomes G 1 and G 2 . Here, G 1 is the simple (that is, without repetitions) genome G 1 of length L 1 = 2 M ε +m p +m n +n-1 defined as follows: We will specify later the precise identity of the * -genes within genome G 2 . For now, notice that in G 2 we have precisely n runs of 5 consecutive * -genes. We put these runs into 1, 1-correspondence with the n variables in X, so that the i-th run corresponds to variable x i , for i = 1, 2, . . . , n. For each i = 1, 2, . . . , n, let P i and N i be the lists of index sets of the clauses from P and N which contain variable x i . E.g., if x i appears in P 3 , in P 7 , and in N 2 , then P i = (3, 7), whereas N i = (2). Notice that the lengths of the lists P i and N i are at most 3, and 2, respectively. From the list P i we obtain a list P i of length precisely 3 by possibly iterating the last element in P i the required number of times (that is, 3 -|P i | times). A list N i of length precisely 2 is similarly obtained from list N i . Now, for each i = 1, 2, . . . , n, the i-th run of 5 consecutive * -genes consists in the following 5 characters: ( * , * , * , * , * ) →

G 1 = 1 2 3 . . . L 1 . A gene at position i in G 1 with i ≤ m p or i ≥ L 1 -m n +1 is called a * -gene. Genome G 2 has length L 2 = 2 M ε + 6 n -1,
(P i [1], P i [2], P i [3], L 1 -m n +N i [1], L 1 -m n +N i [2])
The above reduction leads us to the following result.

Theorem 5. For no ε > 0, EMAD (resp. MMAD) admits a (2-ε)-approximation algorithm, unless P=NP.

Remark 1. There actually exists a constant c > 2 such that EMAD (resp. MMAD) admits no c-approximation algorithm unless P=NP. We can get to this stronger conclusion if in the proof of Theorem 5 here above we apply Theorem 4 instead of Theorem 3.

Summed Adjacency Disruption (SAD)

Let ESAD (resp. MSAD) denote the problem of computing the minimum SAD number of in the exemplar (resp. matching) model. In this section, we prove that both problems ESAD and MSAD, expressed on two genomes G 1 and G 2 such that |G 1 | ≤ |G 2 | can not be better than log(|G 1 |) approximated. This result holds for both the exemplar and the matching models, since we prove it in the case where occ(G 1 ) = 1, for which the two problems coincide. The inapproximability of ESAD (resp. MSAD) is obtained starting from the inapproximability of SetCover. This result will hence depend on the PCP theorem, but will deliver stronger SetCover-like inapproximability thresholds than for the EMAD ans MMAD problems discussed in the previous section. Let V, S be an instance of SetCover, where V = {1, 2, . . . , n}, and S = {S 1 , S 2 , . . . , S m } is a family of subsets of V . We can assume n is even, say n = 2k, and each set S i contains precisely k = n 2 elements, say s i 1 , s i 2 , . . . , s i k . The well known inapproximability results for SetCover hold also under these assumptions, since we can think of enlarging a groundset V , originally on k elements, by adding a set V of k new elements, adding V to S, and enlarging the other sets in S with elements from V until their size rises up to k. Let M = m 3 n 3 play the role of a sufficiently big positive integer. We propose to compare two genomes G 1 and G 2 . Here, G 1 is the simple genome G 1 of length L 1 = M + n + m defined as follows: G 1 = 1 2 n3 . . . L 1 . Genome G 2 has length L 2 = M + m(k + 1), and is constructed as follows:

G 2 = n+1, n+2, . . . , n+M, s 1 1 , s 1 2 , . . . , s 1 k , n+M +1, s 2 1 , s 2 2 , . . . , s 2 k , n+M +2, . . . . . . , s m-1 1 , s m-1 2 , . . . , s m-1 k , n + M + m -1, s m 1 , s m 2 , . . . , s m k , n + M + m The above reduction leads us to the following result. Theorem 6. There exists a constant c > 0 such that ESAD (resp. MSAD) admits no (c log |G 1 |)-approximation algorithm, unless P=NP.

Conclusion

In this paper, we have investigated the algorithmic complexity of the problem of computing similarity measures between genomes, in the case where genomes contain duplicates. This has been done for three measures: common intervals, MAD and SAD. We have shown that the three problems are NP-complete, for both the exemplar and matching variants. Moreover, we have provided APXhardness results concerning MAD and SAD. Our results basically show that as soon as duplicates are present, the problem becomes hard, even in very restricted instances. Moreover, as can be seen, no APX-hardness result is known concerning common intervals ; we are currently investigating those questions.

  and conforms to the following pattern, where we have found it convenient and pertinent to spot out the displacement of the * -genes within genome G 2 . G 2 = m p + 1, . . . , m p + M ε , * , * , * , * , * , m p + M ε + 1, * , * , * , * , * , m p + M ε + 2, . . . . . . , * , * , * , * , * , m p +M ε +n, m p +M ε +n+1, m p +M ε +n+2, . . . , m p +2 M ε +n-1
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