
HAL Id: hal-00418258
https://hal.science/hal-00418258v1

Submitted on 17 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

How Pseudo-Boolean Programming can help Genome
Rearrangement Distance Computation

Sébastien Angibaud, Guillaume Fertin, Irena Rusu, Stéphane Vialette

To cite this version:
Sébastien Angibaud, Guillaume Fertin, Irena Rusu, Stéphane Vialette. How Pseudo-Boolean Program-
ming can help Genome Rearrangement Distance Computation. 4th RECOMB Comparative Genomics
Satellite Workshop (RECOMB-CG 2006), 2007, Montréal, Canada. pp.75-86. �hal-00418258�

https://hal.science/hal-00418258v1
https://hal.archives-ouvertes.fr


How Pseudo-Boolean Programming can help
Genome Rearrangement Distance Computation
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Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 - France

{angibaud,fertin,rusu}@lina.univ-nantes.fr
2 Laboratoire de Recherche en Informatique (LRI), UMR CNRS 8623

Faculté des Sciences d’Orsay - Université Paris-Sud, 91405 Orsay - France
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Abstract. Computing genomic distances between whole genomes is a
fundamental problem in comparative genomics. Recent researches have
resulted in different genomic distance definitions: number of breakpoints,
number of common intervals, number of conserved intervals, Maximum
Adjacency Disruption number (MAD), etc. Unfortunately, it turns out
that, in presence of duplications, most problems are NP–hard, and hence
several heuristics have been recently proposed. However, while it is rel-
atively easy to compare heuristics between them, until now very little is
known about the absolute accuracy of these heuristics. Therefore, there
is a great need for algorithmic approaches that compute exact solutions
for these genomic distances. In this paper, we present a novel generic
pseudo-boolean approach for computing the exact genomic distance be-
tween two whole genomes in presence of duplications, and put strong
emphasis on common intervals under the maximum matching model. Of
particular importance, we show very strong evidence that the simple LCS
heuristic provides very good results on a well-known public benchmark
dataset of γ-Proteobacteria.

1 Introduction

Due to the increasing amount of completely sequenced genomes, the comparison
of gene order to find conserved gene clusters is becoming a standard approach
in comparative genomics. A natural way to compare species is to compare their
whole genomes, where comparing two genomes is very often realized by deter-
mining a measure of similarity (or dissimilarity) between them.

Several similarity (or dissimilarity) measures between two whole genomes
have been recently proposed, such as the number of breakpoints [12,6,2], the
number of reversals [6,9], the number of conserved intervals [4], the number of
common intervals [5], the Maximum Adjacency Disruption Number (MAD) [13],
etc. However, in the presence of duplications and for each of the above mea-
sures, one has first to disambiguate the data by inferring homologs, i.e., a non-
ambiguous mapping between the genes of the two genomes. Up to now, two
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extremal approaches have been considered : the exemplar model and the maxi-
mum matching model. In the exemplar model [12], for all gene families, all but
one occurrence in each genome is deleted. In the maximum matching model [2,8],
the goal is to map as many genes as possible. These two models can be considered
as the extremal cases of the same generic homolog assignment approach.

Unfortunately, it has been shown that, for each of the above mentioned mea-
sures, whatever the considered model (exemplar or matching), the problem be-
comes NP–complete as soon as duplicates are present in genomes [6,2,4,8]; a
few inapproximability results are known for some special cases. Therefore, sev-
eral heuristic methods have been recently devised to obtain (hopefully) good
solutions in a reasonable amount of time [3,5]. However, while it is relatively
easy to compare heuristics between them, until now very little is known about
the absolute accuracy of these heuristics. Therefore, there is a great need for al-
gorithmic approaches that compute exact solutions for these genomic distances.

In the present paper, we introduce a novel generic pseudo-boolean program-
ming approach for computing exact solutions. In this first attempt, we focus on
the problem of finding the maximum number of common intervals between two
genomes under the maximum matching model. For one, from a computational
point of view, this problem (together with MAD) is one of the hardest in our
pseudo-boolean framework. For another, this allows us to present with a single
example the main idea of our approach: a pseudo-boolean program together with
reduction rules. Our approach is in fact more ambitious. Our long term goal is
indeed to develop a generic pseudo-boolean approach for the exact computa-
tion of various genome distances (number of breakpoints, number of common
intervals, number of conserved intervals, MAD, etc.) under both the exemplar
and the maximum matching models, and use this generic approach on different
datasets. The rationale of this approach is threefold:

1. There is a crucial need for new algorithmic solutions providing exact genome
distances under both the exemplar and the maximum matching model in or-
der to estimate the accuracy of existing heuristics and to design new efficient
biologically relevant heuristics.

2. Very little is known about the relations between the various genome distances
that have been defined so far (number of breakpoints, number of common
intervals, number of conserved intervals, MAD, etc.). We thus propose to
extensively compared all these genome distances under both models with a
generic pseudo-boolean framework on several datasets.

3. We also plan to further investigate the relations between the exemplar and
the maximum matching models. We strongly believe here that, in the light
of these comparisons, some biologically relevant intermediate model between
these two extrema could be defined.

This paper is organised as follows. In Section 2, we present some preliminaries
and definitions. We focus in Section 3 on the problem of finding the maximum
number of common intervals under the maximum matching model and give a
pseudo-boolean programming approach together with some reduction rules. Sec-
tion 4 is devoted to experimental results on a dataset of γ-Proteobacteria. Of
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particular importance, we show strong evidence that the simple LCS heuristic
provides very good results on our dataset.

2 Preliminaries

Genomes with duplications are usually represented by signed sequences over the
alphabet of gene families, where every element in a genome is a gene. However,
in order to simplify notations, and since common intervals do not depend on the
sign given to the genes, we will consider only unsigned genomes. Any gene belongs
to a gene family, and two genes belong to the same gene family if they have the
same label, regardless of the sign. In the sequel, we will be extensively concerned
with pairs of genomes. Let G1 and G2 be two genomes, and let a ∈ {0, 1}. The
number of genes in genome Ga is always written na. We denote the i-th gene
of genome Ga by Ga[i]. For any 1 ≤ i ≤ j ≤ na, we write Ga(i, j) for the set
{Ga[i], Ga[i + 1], . . . , Ga[j]} and we let Ga stand for Ga(1, na). In other words,
Ga(i, j) is the set of all distinct genes between positions i and j in genome Ga,
while Ga is the set of all distinct genes in the whole genome Ga. For any gene
g ∈ Ga and any 1 ≤ i ≤ j ≤ na, we denote by occa(g, i, j) the number of
occurrences of gene g in the sequence (Ga[i], Ga[i + 1], . . . , Ga[j]). To simplify
notations, we abbreviate occa(g, 1, na) to occa(g).

A matching M between genomes G1 and G2 is a set of pairwise disjoint
pairs (G1[i], G2[j]), where G1[i] and G2[j] belong to the same gene family, i.e.,
G1[i] = G2[j]. Genes of G1 and G2 that do not belong to any pair of the matching
M are said to be unmatched for M. A matching M between G1 and G2 is said
to be maximum if for any gene family, there are no two genes of this family that
are unmatched for M and belong to G1 and G2, respectively. A matching M
between G1 and G2 can be seen as a way to describe a putative assignment of
orthologous pairs of genes between G1 and G2 (see for example [9]).

Let M be any matching between G1 and G2. By first deleting unmatched
genes and next renaming genes in G1 and G2 according to the matching M,
we may now assume that both G1 and G2 are duplication free, i.e., G2 is a
permutation of G1. A common interval between G1 and G2 is a substring of G1,
i.e., a sequence of consecutive genes of G1, for which the exact same content
can be found in a substring of G2. It is easily seen that, by first resorting to
a renaming procedure, we can always assume that one of the two genomes,
say G1, is the identity permutation, i.e., G1 = 1 2 . . . n1. For example, let
G = 1 2 3 4 5 and G2 = 1 5 3 4 2 then the interval [3 : 5] of G1 is a common
interval (because 5 3 4 occurs as a substring in G2). Notice that there exist at
least n + 1 (n = n1 = n2) common intervals between G1 and G2 since each
individual gene is always a common interval and G1 itself is also a common
interval. This lower bound is tight as shown by G1 = 1 2 3 4 and G2 = 2 4 1 3.
Furthermore, if G1 = G2 the number of common intervals between G1 and G2

is n(n+1)
2 , where n = n1 = n2, i.e., each possible substring of G1 is a common

interval.
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3 An exact algorithm for maximising the number of
common intervals

3.1 Pseudo-boolean models

A Linear Pseudo-boolean (LPB) program is a linear program [14] where all
variables are restricted to take values of either 0 or 1. For one, LPB programs
are viewed by the linear programming community as just a domain restriction
on general linear programming. For another, from a satisfiability (Sat) point
of view, pseudo-boolean constraints can be seen as a generalisation of clauses
providing a significant extension of purely propositional constraints [7,10].

Conventionally, LPB problems are handled by generic Integer Linear Pro-
gramming (ILP) solvers. The drawback of such an approach is that generic ILP
solvers typically ignore the boolean nature of the variables. Alternatively, LPB
decision problems could be encoded as Sat instances in pure CNF (Conjunctive
Normal Form), i.e., conjunction of disjunctions of boolean literals, which are
then solved by any of the highly specialised Sat approaches. However the num-
ber of clauses required for expressing the LPB constraints is prohibitively large.
Moreover a pure CNF encoding may prevent the solver from pruning the search
space effectively [7]. Boolean satisfiability solvers available today are the result of
decades of research and are deemed to be among the faster NP–complete prob-
lem specific solvers. The latest generation of Sat solver generally have three
key features (randomisation of variable selection, backtracking search and some
form of clause learning) and usually run in reasonable time (even for very large
instances).

A number of generalisations of Sat solvers to LPB solvers have been proposed
(Pueblo [15], Galena [7], OPBDP [1] and more). We decided to use for our tests
the minisat+ LPB solver [10] because of its good results during PB evaluation
2005 (special track of the Sat Competition 2005).

3.2 Common intervals

We propose in Figure 1 a pseudo-boolean program for computing the maximum
number of common intervals between two genomes under the maximum matching
model in the presence of duplications (we assume here that each gene g ∈ G1∪G2

occurs both in G1 and in G2).
Program Common-Intervals-Matching is clearly a pseudo-boolean program,

i.e., a (0, 1)-linear program. Roughly speaking, the boolean variables are divided
in two sets: true setting of variables in C denote possible common intervals
between G1 and G2, while true setting of variables in X denote the mapping,
i.e., matching, between G1 and G2. We now turn to describing the constraints.
Constraints in (C.01) and in (C.02) deal with consistency of the mapping: each
gene of G1 is mapped to at most one gene of G2, and conversely (some genes
need indeed to be deleted in case of unbalanced families). Constraints in (C.03)
ensure that each common interval is counted exactly once. The key idea here is
to impose an “active border” property, i.e., if variable ci,j

k,` is set to 1 then genes
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Program Common-Intervals-Matching

objective:

maximize
P

c
i,j
k,`
∈A

ci,j
k,`

variables:

C = {ci,j
k,` : 1 ≤ i ≤ j ≤ n1 ∧ 1 ≤ k ≤ ` ≤ n2}

X = {xi
k : 1 ≤ i ≤ n1 ∧ 1 ≤ k ≤ n2 ∧G1[i] = G2[k]}

subject to:

(C.01) ∀i = 1, 2, . . . , n1,
P

1≤k≤n2
G1[i]=G2[k]

xi
k ≤ 1

(C.02) ∀k = 1, 2, . . . , n2,
P

1≤i≤n1
G1[i]=G2[k]

xi
k ≤ 1

(C.03) ∀ci,j
k,` ∈ C, 4 ci,j

k,` −
P

k≤r≤`

G1[i]=G2[r]

xi
r −

P
k≤s≤`

G1[j]=G2[s]

xj
s −

P
i≤p≤j

G1[p]=G2[k]

xp
k −

P
i≤q≤j

G1[q]=G2[`]

xq
` ≤ 0

(C.04) ∀ci,j
k,` ∈ C, ∀i < p < j, ∀1 ≤ r < k, G1[p] = G2[r], ci,j

k,` + xp
r ≤ 1

(C.05) ∀ci,j
k,` ∈ C, ∀i < p < j, ∀` < r ≤ n2, G1[p] = G2[r], ci,j

k,` + xp
r ≤ 1

(C.06) ∀ci,j
k,` ∈ C, ∀k < r < `, ∀1 ≤ p < i, G1[p] = G2[r], ci,j

k,` + xp
r ≤ 1

(C.07) ∀ci,j
k,` ∈ C, ∀k < r < `, ∀j < p ≤ n1, G1[p] = G2[r], ci,j

k,` + xp
r ≤ 1

(C.08) ∀g ∈ G1 ∪ G2,
P

1≤i≤n1
G1[i]=g

P
1≤k≤n2
G2[k]=g

xi
k = min{occ1(g), occ2(g)}

domains:

∀xi
k ∈ X, xi

k ∈ {0, 1}
∀ci,j

k,` ∈ C, ci,j
k,` ∈ {0, 1}

Fig. 1. Program Common-Intervals-Matching for finding the maximum number of
common intervals between two genomes under the maximum matching model.

G1[i] and G1[j] must match some distinct genes between positions k and ` in G2,
and genes G2[k] and G2[`] must match some distinct genes between positions i
and j in G1. Constraints in (C.04) to (C.07) ensure that if ci,j

k,` = 1 then the
interval [i : j] of G1 and the interval [k : `] of G2 is a common interval according
to the mapping induced by the true setting of X. For example, constraints in
(C.04) ensure that each gene in the interval [i : j] of G1 is either not mapped
or is mapped to a gene in the interval [k : `] of G2 (thanks to constraints in
(C.01), (C.02) and (C.03), genes at position i and j in G1 are actually mapped
to distinct genes in G2 if i < j and ci,j

k` = 1). Finally, constraints in (C.08) forces
the mapping to be a maximum matching between G1 and G2.
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Proposition 1. Program Common-Intervals-Matching correctly computes the
maximum number of common intervals between G1 and G2 under the maximum
matching model.

We briefly discuss here space issues of Program Common-Intervals-Matching.
First, it is easily seen that #C = Θ(n2

1 n2
2) and hence that (C.03) is composed

of Θ(n2
1 n2

2) constraints. The number of constraints in (C.04) to (C.07) how-
ever does depend on the number of duplications in the two genomes. Second,
#X = O(n1 n2). Clearly, the size of the set X determines the number of con-
straints in (C.01) and (C.02) and of course strongly depends on the number
of duplications in G1 and G2. Not surprisingly, the set X turns out to be of
moderate size in practice. Finally, the number of constraints in (C.07) is clearly
linear in the size of the two genomes. We shall soon describe (section 3.3) how
to speed-up the program by reducing the number of variables and constraints.

We observe that replacing constraints in (C.08) by a new set of constraints
(C.08’) – see below – in Program Common-Intervals-Matching results in the
pseudo-boolean program Common-Intervals-Exemplar that computes the max-
imum number of common intervals between genomes G1 and G2 under the ex-
emplar model.

(C.08’) ∀g ∈ G1 ∪ G2,
P

1≤i≤n1
G1[i]=g

P
1≤k≤n2
G2[k]=g

xi
k = 1

Interestingly enough, substituting now the constraints in (C.08) by a new set
of constraints (C.08’’) – see below – in Program Common-Intervals-Matching
results in a pseudo-boolean program that computes the maximum number of
common intervals between genomes G1 and G2 under the following intermediate
model: at least one gene in each gene family is mapped. Observe that this model
contains both the exemplar model and the maximum matching model as special
cases.

(C.08’’) ∀g ∈ G1 ∪ G2,
P

1≤i≤n1
G1[i]=g

P
1≤k≤n2
G2[k]=g

xi
k ≥ 1

3.3 Speeding-up the program

We give in this section four rules for speeding-up Program Common-Intervals-
Matching. In theory, a very large instance may be easy to solve and a small
instance hard. However, very often, small hard instances turn out be artificial,
e.g., the pigeonhole problem, and hence, in case of practical instances, the run-
ning time of a pseudo-boolean solver is most of the time related to the size of the
instances. The main idea here is thus to reduce the number of variables and con-
straints in the program (for ease of exposition we describe our rules as filters on
C). More precisely, we give rules that avoid introducing useless variables ci,j

k,` in
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C in such a way that the correctness of Program Common-Intervals-Matching
is maintained by repeated applications of the rules; two of these filters however
do modify the correct maximum number of common intervals between the two
genomes and thus ask for subsequent modifications in order to obtain the correct
solution.

[Rule 1] Delete from C all variables ci,i
k,k, 1 ≤ i ≤ n1 and 1 ≤ k ≤ n2.

[Rule 1] does modify the correct number of common intervals between G1

and G2, and hence application of this rule asks for subsequent modifications of
the number of common intervals. The key idea of [Rule 1] is simply to discard
common intervals of size 1 from the program. Indeed, we can compute in a pre-
processing step the numbers d1 and d2 of genes that need to be deleted in G1 and
G2 for obtaining a maximum matching between the two genomes. Therefore, we
know that the resulting genomes will consist in L = n1 − d1 = n2 − d2 genes,
where

L =
∑
g∈G

min{occ1(g), occ2(g)}.

But each of these genes will contribute for 1 to the number of common intervals
between G1 and G2, for any maximum matching. We thus simply delete all
these variables and add L to the number of common intervals between G1 and
G2 found by Program Common-Intervals-Matching.

[Rule 2] Delete from C all variables ci,j
k,` for which any of the following conditions

holds true:

1. (#{r : k ≤ r ≤ `∧G1[i] = G2[r]} = 0)∨(#{s : k ≤ s ≤ `∧G1[j] = G2[s]} = 0),
2. (#{r : k ≤ r ≤ ` ∧G1[i] = G2[r]} < 2) ∧ (G1[i] = G1[j]),
3. (#{p : i ≤ p ≤ j∧G2[k] = G1[p]} = 0)∨(#{q : i ≤ q ≤ j∧G2[`] = G1[q]} = 0),
4. (#{p : i ≤ p ≤ j ∧G2[k] = G1[p]} < 2) ∧ (G2[k] = G2[`]).

[Rule 2] is a quickening for constraints in (C.03). Indeed, these constraints
ensure that each common interval is counted exactly once by the program by
forcing the border of each common interval to be active in the computed solution,
i.e., genes G1[i] and G1[j] match some distinct genes between positions k and `
in G2, and genes G2[k] and G2[`] match some distinct genes between positions
i and j in G1. Correctness of [Rule 2] thus follows from the fact that Program
Common-Intervals-Matching will always set a variable ci,j

k,` to 0 if the border
property cannot be satisfied (it is assumed here that i < j and k < `).

[Rule 3] Delete from C all variables ci,j
k,` for which there exists at least one gene

g ∈ G such that |occ1(g, i, j)− occ2(g, k, `)| > |occ1(g)− occ2(g)|.

Roughly speaking, [Rule 3] avoids us to kill too many genes in a common
interval. Indeed, for one, for any g ∈ G, |occ1(g, i, j)−occ2(g, k, `)| is clearly the
minimum number of occurrences of gene g that need to be deleted if ci,j

k,` = 1,
i.e., [i : j] and [k : `] form a common interval between the two genomes. For
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another, for any g ∈ G, |occ1(g)− occ2(g)| is the number of occurrences of gene
g that need to be deleted in G1 and G2 for finding any maximum matching
between the two genomes. Correctness of [Rule 3] thus follows from the fact
that we can certainly not delete more than |occ1(g) − occ2(g)| occurrences of
gene g.

[Rule 4] Delete from C all variables ci,j
k,` for which the four following conditions

hold true:

1. ∀g ∈ G1(i, j), #occ1(g, 1, i− 1) + #occ1(g, j + 1, n1) = 0,
2. ∀g ∈ G2(k, `), #occ2(g, 1, k − 1) + #occ2(g, ` + 1, n2) = 0,
3. #occ1(G1[i]) ≤ #occ2(G1[i]) and #occ1(G1[j]) ≤ #occ2(G1[j]),
4. #occ2(G2[k]) ≤ #occ1(G2[k]) and #occ2(G2[`]) ≤ #occ1(G2[`]).

We first observe that [Rule 4] does modify the correct number of common
intervals between G1 and G2, and hence application of this rule asks for subse-
quent modifications of the number of common intervals. The rationale of [Rule
4] is that, if the four conditions hold true, then ci,j

k,` will always be set to 1
by Program Common-Intervals-Matching. In other words, for any maximum
matching between G1 and G2, [i : j] and [k : `] will form a common intervals.
We thus simply delete from C all these variables ci,j

k,` and add the number of
deleted variables by [Rule 4] to the number of common intervals between G1

and G2 found by Program Common-Intervals-Matching. This rule will prove
extremely useful for highly conserved regions with localised duplications.

4 Experimental results

As mentioned earlier, the generic pseudo-boolean approach we propose in this
paper can be useful for estimating the accuracy of an heuristic. In that sense,
it is necessary to compute the exact results for different datasets, that could be
later used as benchmarks to which confront any given heuristic algorithm.

Computing exact results for different datasets and different (dis)similarity
measures is a long task, because the problem is NP–hard (see for instance [6,2,8]),
which implies that there is no guarantee that a computer (even a very power-
ful one) will ever provide an exact result ; however, the main interest of the
pseudo-boolean approach is that, due to several decades of research intended
in speeding-up the computation process, this specific problem can be solved in
reasonable time, even for very large instances.

We started the computation of exact results concerning common intervals in
the maximum matching model by studying the dataset used in [3]. This dataset is
composed of 12 complete genomes from the 13 γ-Proteobacteria originally stud-
ied in [11]. The thirteenth genome (V.cholerae) has not been considered, since
it is composed of two chromosomes, and hence does not fit in the model we con-
sidered here for representing genomes. More precisely, this dataset is composed
of the genomes of the following species: Buchnera aphidicola APS (Genbank ac-
cession number NC 002528), Escherichia coli K12 (NC 000913), Haemophilus
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influenzae Rd (NC 000907), Pasteurella multocida Pm70 (NC 002663), Pseu-
domonas aeruginosa PA01 (NC 002516), Salmonella typhimurium LT2 (NC 003197),
Xanthomonas axonopodis pv. citri 306 (NC 003919), Xanthomonas campestris
(NC 0 03902), Xylella fastidiosa 9a5c (NC 002488), Yersinia pestis CO 92 (NC 003143),
Yersinia pestis KIM5 P12 (NC 004088), Wigglesworthia glossinidia brevipalpis
(NC 004344). The computation of a partition of the complete set of genes into
gene families, where each family is supposed to represent a group of homologous
genes, is taken from [3].

The results we have obtained are given in Table 1. Out of the 66 possible
pairwise genome comparisons, 38 results have been obtained so far. Despite the
fact that the variant and the measure we study is one of the most time consuming
(as mentioned in Section 1), the results look promising, since more than half of
the results have been computed until now. Moreover, among those 38 values,
only 2 of them took several days to be computed, while the others took no more
than a few minutes.

Baphi Ecoli Haein Paeru Pmult Salty Wglos Xanon Xcamp Xfast Ypest-co92

Ecoli 2882
Haein 1109 2784
Paeru 1524 2036
Pmult 1224 3342 3936
Salty 2849 2820 3376
Wglos 1275 2328 1085 1558 1214 2335
Xanon 1183 1471 1225
Xcamp 1183 1458 1223
Xfast 979 1877 1295 1981 994

Ypest-co92 2585 2694 3298 2318 1949
Ypest-kim 2141 2500 3092 2093 1891

Table 1. Number of common intervals in the maximum matching model: exact results
obtained by our pseudo-boolean transformation (38 out of 66)

In addition to being promising because they were obtained in a reasonable
amount of time, these results, though still partial, allow us to go further. In-
deed, they will allow us (i) to discuss the heuristic used in [3] (that we will
denote ILCS), (ii) to discuss an improvement we suggest for ILCS (that we will
denote IILCS), and (iii) to compare the results of IILCS to the exact results
we have obtained via our pseudo-boolean approach. We first start by describ-
ing the heuristic used in [3], that we will call ILCS (Iterative Longest Common
Substring). This heuristic is greedy, and works as follows:

1. Compute the Longest Common Substring (i.e., the longest contiguous word)
S of the two genomes, up to a complete reversal. If there are several candi-
dates, pick one arbitrarily

2. Match all the genes of S accordingly
3. Iterate the process until all possible genes have been matched (i.e., we have

obtained a maximum matching)
4. Remove, in each genome, all the genes that have not been matched
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5. Compute the number of common intervals that have been obtained in this
solution

The simple idea behind this heuristic algorithm is that an LCS (up to com-
plete reversal) of length k contains k(k+1)

2 common intervals. Hence, finding
such exact copies in both genomes intuitively helps to increase the total num-
ber of common intervals. The results obtained by the heuristic ILCS in [3]
are summarised in Table 2. Since the results are not symmetric (i.e., running
ILCS(G1, G2) on genomes G1 and G2 does not necessarily produce the same
number of common intervals than running ILCS(G2, G1) on the same genomes
taken in the other order), we took, for each genome comparison, the best result.

Baphi Ecoli Haein Paeru Pmult Salty Wglos Xanon Xcamp Xfast Ypest-co92

Ecoli 2605
Haein 1104 2758
Paeru 1494 3862 1981
Pmult 1219 3297 3901 2278
Salty 2641 65634 2794 3826 3327
Wglos 1267 2102 1078 1496 1204 2083
Xanon 1147 2485 1446 3788 1626 2613 1175
Xcamp 1153 2459 1441 3746 1603 2603 1168 106681
Xfast 975 1828 1285 2332 1457 1956 963 6797 6647

Ypest-co92 2414 13818 2668 3887 3237 15007 2037 2395 2358 1810
Ypest-kim 1943 13762 2460 3757 3027 14770 1846 2471 2446 1854 242963

Table 2. Number of common intervals in the maximum matching model: results ob-
tained by the ILCS heuristic from [3]

A deeper study of the ILCS heuristic led us to suggest an improvement to it,
in the form of a new heuristic, that we call IILCS (Improved Iterative Longest
Common Substring). The only difference between IILCS and ILCS is that, be-
fore searching for a Longest Common Substring (up to a complete reversal), we
“tidy” the two genomes, in the sense that we remove, in each genome and at
each iteration, the genes for which we know they will not be matched in the final
solution (this is simply done by counting, at each iteration, the number of un-
matched genes of each gene family). This actually allows to possibly find longer
Longest Common Substrings at each iteration, and always gives better results
on the studied dataset (except in one case where the result is the same for both
heuristics, see Table 3). On average, over the 66 pairwise genome comparisons,
IILCS improves by 2.6% the number of common intervals that are found. The
results for IILCS are summarised in Table 3. Similarly to ILCS, the results are
not symmetric, thus we took, for each genome comparison, the best result.

The most interesting and surprising result, which we were able to point
thanks to our pseudo-boolean transformation and the exact results obtained
from it, is that heuristic IILCS appears to be very good on the dataset we
studied. Indeed, out of the 38 instances for which we have computed the exact
results, IILCS returns the optimal result in 7 cases, and returns a number of
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Baphi Ecoli Haein Paeru Pmult Salty Wglos Xanon Xcamp Xfast Ypest-co92

Ecoli 2869
Haein 1109 2775
Paeru 1518 3976 2018
Pmult 1224 3329 3887 2321
Salty 2849 66025 2809 3956 3350
Wglos 1267 2186 1085 1508 1211 2274
Xanon 1183 2540 1468 3952 1644 2685 1198
Xcamp 1183 2524 1455 3898 1621 2675 1196 108347
Xfast 979 1849 1293 2365 1464 1974 973 6890 6732

Ypest-co92 2541 14364 2686 3989 3268 15192 2307 2482 2433 1816
Ypest-kim 2124 14126 2487 3859 3037 15451 2091 2557 2509 1863 261345

Table 3. Number of common intervals in the maximum matching model: results ob-
tained by the IILCS heuristic

common intervals that is more than 99% of the optimal number for 18 other
cases. The “worse” result that IILCS provides is 93.17% away from the optimal
(Ypest-co92/Xfast). On average, over the 38 pairwise comparisons for which we
have exact results, IILCS performs very well, since it gives a number of common
intervals that is 98.91% of the optimal number.

This result comes as a surprise, because, despite being extremely simple
and fast, IILCS appears to be very good on this dataset. Hence, this strongly
suggests that computing common intervals in the maximum matching model can
simply be undertaken using IILCS while remaining accurate, thus validating this
heuristic.

5 Conclusion

In this paper, we have introduced a novel and original method that helps speeding-
up computations of exact results for comparing whole genomes containing dupli-
cates. This method makes use of pseudo-boolean programming. Our approach
is very general, and can handle several (dis)similarity measures (breakpoints,
common intervals, conserved intervals, MAD, etc.) under several possible mod-
els (exemplar model, maximum matching model, but also most variants within
those two extrema). An example of such an approach (common intervals un-
der the maximum matching model) has been developed, in order to illustrate
the main ideas of the pseudo-boolean transformation framework that we sug-
gest. Experiments have also been undertaken on a dataset of γ-Proteobacteria,
showing the validity of our approach, since already 38 results (out of 66) have
been obtained in a limited amount of time. Moreover, those preliminary results
have allowed us to state that the new IILCS heuristic provides excellent results
on this dataset, hence showing its validity and robustness. On the whole, those
preliminary results are very encouraging.

There is still a great amount of work to be done, and some of it is being
undertaken by the authors at the moment. Among other things, one can cite:
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– Implementing and testing all the possible above mentioned variants, for all
the possible above mentioned (dis)similarity measures,

– For each case, determine strong and relevant rules for speeding-up the pro-
cess by avoiding the generation of too many clauses and variables (a pre-
processing step that should not be underestimated),

– Obtaining exact results for each of those variants and measures, for different
datasets, that could be later used as benchmarks for validating (or not)
possible heuristics, but also the measures themselves, or even the models.
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