
Common Structured Patterns in Linear Graphs:

Approximation and Combinatorics

Guillaume Fertin1 ⋆, Danny Hermelin2 ⋆⋆,
Romeo Rizzi3 ⋆, and Stéphane Vialette4 ⋆

1 LINA, Univ. Nantes, 2 rue de la Houssinière, Nantes, France
Guillaume.Fertin@lina.univ-nantes.fr

2 Dpt. Computer Science, Univ. Haifa, Mount Carmel, Haifa, Israel
danny@cri.haifa.ac.il

3 DIMI, Univ. Udine, Udine, Italy
Romeo.Rizzi@dimi.uniud.it

4 LRI, UMR 8623, Univ. Paris-Sud, Orsay, France
Stephane.Vialette@lri.fr

Abstract. A linear graph is a graph whose vertices are linearly ordered.
This linear ordering allows pairs of disjoint edges to be either preceding
(<), nesting (⊏) or crossing (≬). Given a family of linear graphs, and a
non-empty subset R ⊆ {<, ⊏, ≬}, we are interested in the MCSP prob-
lem: Find a maximum size edge-disjoint graph, with edge-pairs all compa-
rable by one of the relations inR, that occurs as a subgraph in each of the
linear graphs of the family. In this paper, we generalize the framework
of Davydov and Batzoglou by considering patterns comparable by all
possible subsets R ⊆ {<, ⊏, ≬}. This is motivated by the fact that many
biological applications require considering crossing structures, and by the
fact that different combinations of the relations above give rise to differ-
ent generalizations of natural combinatorial problems. Our results can
be summarized as follows: We give tight hardness results for the MCSP

problem for {<, ≬}-structured patterns and {⊏, ≬}-structured patterns.
Furthermore, we prove that the problem is approximable within ratios:
(i) 2H (k) for {<, ≬}-structured patterns, (ii) k1/2 for {⊏, ≬}-structured
patterns, and (iii) O(

√
k lg k) for {<, ⊏, ≬}-structured patterns, where

k is the size of the optimal solution and H (k) =
Pk

i=1
1/i is the k-th

harmonic number.

1 Introduction

Many biological molecules such as RNA and proteins exhibit a three-dimensional
structure that determines most of their functionality. This three dimensional
structure can be modeled in two dimensions by an edge-disjoint linear graph, i.e.,
a graph with linearly ordered vertices that are incident to exactly one edge. The

⋆ Partially supported by the French-Italian Galileo Project PAI 08484VH.
⋆⋆ Partially supported by the Caesarea Edmond Benjamin de Rothschild Foundation

Institute (CRI).

corresponding structure-similarity or structure-prediction problems that arise in
such contexts usually translate to finding common edge-disjoint subgraphs, or
common structured patterns, that occur in a family of general linear graphs. Ex-
amples of such problems are Longest Common Subsequence [19, 20], Max-

imum Common Ordered Tree Inclusion [2, 8, 21], Arc-Preserving Sub-

sequence [4, 14, 17], and Maximum Contact Map Overlap [15]. In this
paper, we study a general framework for such problems which we call Maximum

Common Structured Pattern (MCSP).

The MCSP problem was introduced by Davydov and Batzoglou [10] in the
context of (non-coding) RNA secondary structure prediction via multiple struc-
tural alignment. There, an RNA sequence of n nucleotides is represented by a
linear graph with n vertices, and an edge connects two vertices if and only if
their corresponding nucleotides are complementary. A family of linear graphs is
then used to represent a family of functionally-related RNAs, and a common
structured pattern in such a family is considered to be a probably common sec-
ondary structure element of the family. The ordering amongst the vertices of a
linear graph allows a pair of disjoint edges in the graph to be either preceding
(<), nesting (⊏), or crossing (≬). Since most RNA secondary structures translate
to linear graphs with non-crossing edges, Davydov and Batzoglou [10] focused
on the variant of MCSP where the common structured pattern is required to
be non-crossing. However, there are known RNAs which have secondary struc-
tures that translate to linear graphs with a few edge-crossings (pseudo-knotted
RNA secondary structures). Also, when predicting proteins rather than RNA
structures, the non-crossing restriction becomes an even bigger limitation since
the folding structures of proteins are often more complex than those of RNAs.
In [16], it is argued that many important protein secondary structure elements
like alpha helices and anti-parallel beta sheets exhibit {<, ≬}-structured patterns,
i.e. patterns which are non-nesting rather than non-crossing.

In this sequel, we present a framework which extends the work of [10] by
considering different types of common structured patterns. Following [31], we
consider structured patterns that are allowed to have crossing edges, and which
might also be restricted to be non-nesting or non-preceding. More specifically,
the MCSP problem receives as input a family of linear graphs and a non-empty
subset R ⊆ {<, ⊏, ≬}, and the goal is to find a maximum common R-structured
pattern. We study the combinatorics behind the structures of these different
types of patterns, with a focus on approximation algorithms for MCSP.

The paper is organized as follows. In the remaining part of this section we
briefly review related work and notations that will be used throughout the paper.
In Section 2, we discuss simple structured patterns (i.e. R-structured patterns,
where R ∈ {<, ⊏, ≬}) and {<, ⊏}-structured patterns. Following this, we discuss
the more complex {<, ≬}-structured patterns and {⊏, ≬}-structured patterns in
Section 3 and Section 4 respectively. In Section 5, we deal with general structured
patterns, i.e. {<, ⊏, ≬}-structured patterns. An overview of the paper, along with
some open problems, is given in Section 6.

a
d

b
c

Fig. 1. Four linear graphs and a {<, ⊏, ≬}-common structured pattern. The occurrence
of the structured pattern in each graph is emphasized in bold. Edges b,c, and d, are
nesting in edge a. Edge b precedes edge d, and they both cross edge c.

1.1 Related Work

There are many structural comparison problems that are closely related to
MCSP. First, as mentioned previously, MCSP for {<, ⊏}-structured patterns
has been studied by Davydov and Batzoglou in [10] under the name Maximum

Common Nested Subgraph. Recently, new results concerning this problem
appeared in [25]. We discuss the results of both these works in Section 2.

Closely related to MCSP are Arc-Preserving Subsequence [4, 14, 17],
and Maximum Contact Map Overlap [15]. Both are concerned with finding
maximum common subgraphs in a pair of linear graphs, except that in Arc-

Preserving Subsequence the vertices of the linear graphs are assigned letters
from some given alphabet, and an occurrence of a common subgraph in each of
the linear graphs is required to preserve the letters, as well as their arc struc-
ture. Another closely related problem is Pattern Matching over 2-Interval

Set [31], where one asks whether a structured pattern occurs in a given 2-interval
set, which is a generalization of a linear graph. The 2-Interval Pattern prob-
lem [5, 9, 31] asks to find the maximum R-structured pattern, for some given
R ⊆ {<, ⊏, ≬}, in a single family of 2-interval sets.

There is a well-known bijective correspondence between {<, ⊏}-structured
patterns and ordered forests – the nesting relation corresponds to the ances-
tor/predecessor relationship between the nodes, and the precedence relation
corresponds to their order. Hence, MCSP for {<, ⊏}-structured patterns can
be viewed as the problem of finding a tree which is included in all trees of a
given tree family, the Maximum Common Ordered Tree Inclusion prob-
lem. Determining whether a tree is included in another is studied in [2, 8, 21].
Finding the maximum common tree included in a pair of trees can be done us-
ing the algorithms given in [22, 29]. The MCSP problem for {<, ⊏}-structured
patterns has been studied in [10, 25]. We discuss the results there in Section 2.

Like {<, ⊏}-structured patterns, {⊏, ≬}-structured patterns also correspond
to natural combinatorial objects, namely permutations (see Section 4). In [6],
the authors studied the problem of determining whether a permutation-pattern
occurs in a given permutation, the so called Pattern Matching for Permu-

tations problem. This problem corresponds to determining whether a {⊏, ≬}-
structured pattern is a subpattern of another {⊏, ≬}-structured pattern. Bose,
Buss, and Lubiw proved that Pattern Matching for Permutations is NP-
complete [6].

Determining whether a given {<, ≬}-structured pattern occurs in a general
linear graph has been studied in [16, 26]. Gramm [16] gave a polynomial-time
algorithm for this problem. Recently, Li and Li [26] proved that this algorithm
was incorrect and showed the problem was in fact NP-complete. Prior to this,
Blin et al. [5] proved that a generalization of this problem, where the linear
graph is replaced by a 2-interval set, is NP-complete. Finally, probably the
oldest and most famous problem related to MCSP is the Longest Common

Subsequence (LCS) [19, 20] problem, where one wishes to find the longest
common subsequence in two or more sequences. Important developments of the
initial algorithms of [19, 20] can be found in [3, 12, 28]. Maier [27] proved that
the LCS problem for multiple sequences is NP-hard.

1.2 Terminology and basic definitions

For a graph G, we denote V (G) as the set of vertices and E(G) as the set of
edges. The order and the size of G stand for |V (G)| and |E(G)|, respectively. A
linear graph of order n is a vertex-labeled graph where each vertex is labeled by a
distinct label from {1, 2, . . . , n}. Thus, it can be viewed as a graph with vertices
embedded on the integral line, yielding a total order amongst them. In case of
linear graphs, we write an edge between vertices i and j, i < j, as the pair (i, j).
Two edges of a linear graph are disjoint if they do not share a common vertex.
A linear graph G is said to be edge-disjoint if it is composed of disjoint edges,
i.e. if G is a matching. Of particular interest are the relations between pairs of
disjoint edges [31]: Let e = (i, j) and e′ = (i′, j′) be two disjoint edges in a linear
graph G; we write (i) e < e′ (e precedes e′) if i < j < i′ < j′, (ii) e ⊏ e′ (e is
nested in e′) if i′ < i < j < j′ and (iii) e ≬ e′ (e and e′ cross) if i < i′ < j < j′.

Two edges e and e′ are R-comparable, for some R ∈ {<, ⊏, ≬}, if eRe′ or
e′Re. For a subset R ⊆ {<, ⊏, ≬}, R 6= ∅, e and e′ are said to be R-comparable if
e and e′ are R-comparable for some R ∈ R. A set of edges E (or a linear graph
G with E(G) = E) is R-comparable if any pair of distinct edges e, e′ ∈ E are
R-comparable. A subgraph of a linear graph G is a linear graph H which can
be obtained from G by a series of vertex and edge deletions, where a deletion
of vertex i results in removing vertex i and all edges incident to it from the
graph, and then relabeling all vertices j with j > i to j − 1. An edge-disjoint
subgraph of a linear graph is called a structured-pattern. For a family of linear
graphs G = G1, . . . , Gn, a common structured pattern of G is an edge-disjoint
linear graph H that is a subgraph of Gi, for all 1 ≤ i ≤ n. Following the above
notation, H is called an R-structured pattern, for some non-empty R ⊆ {<, ⊏, ≬},
if E(H) is R-comparable.

Definition 1. Given a family of linear graphs G = G1, . . . , Gn and a subset R ⊆
{<, ⊏, ≬}, R 6= ∅, the Maximum Common Structured Pattern (MCSP)
problem asks to find a maximum-size common R-structured pattern of G.

We will use the following terminology to describe special edge-disjoint linear
graphs. A linear graph is called a sequence if it is {<}-comparable, a tower if
it is {⊏}-comparable, and a staircase if it is {≬}-comparable. We define the

width (resp. height and depth) of a linear graph to be the size of the maximum
cardinality sequence (resp. tower and staircase) subgraph of the graph. A {<, ⊏}-
comparable linear graph with the additional property that any two maximal
towers in it do not share an edge is called a sequence of towers. Similarly, a
{<, ≬}-comparable linear graph is a sequence of staircases if any two maximal
staircases do not share an edge. A tower of staircases is a {⊏, ≬}-comparable
linear graph where any pair of maximal staircases do not share an edge, and
a staircase of towers is a {⊏, ≬}-comparable linear graph where any pair of
maximal towers do not share an edge. A sequence of towers (resp. sequence
of staircases, tower of staircases, and staircase of towers) is balanced if all of
its maximal towers (resp. staircases, staircases, and towers) are of equal size.
Figure 2 illustrates an example of the above types of linear graphs.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 2. Examples of restricted edge-disjoint linear graphs: (a) a tower of height 6, (b)
a staircase of depth 6, (c) a sequence of towers of width 4 and height 2, (d) a balanced
sequence of staircases of width 2 and depth 3, (e) a tower of staircases of height 3 and
depth 3 and (f) a balanced staircase of towers of height 2 and depth 3.

2 Simple and {<, ⊏}-Structured Patterns

A structured pattern is simple if it is an R-structured pattern for a single relation
R ∈ {<, ⊏, ≬}. We begin our study by considering the MCSP problem for simple
structured patterns, and for {<, ⊏}-structured patterns. We first discuss the
analogy between the relations we defined for disjoint edges in a linear graph,
and well-studied relations defined for families of intervals. We show that known
algorithms on interval families can be used to solve MCSP for simple structured
patterns in polynomial-time. Following this, we discuss results presented in [10,
25] for MCSP for {<, ⊏}-structured patterns.

For a given linear graph G of size m, let I(G) = {[i, j] | (i, j) ∈ E(G)} be the
family of intervals obtained by considering each edge of G as an interval of the
line, closed between both its endpoints. A pair of {<}-comparable edges in E(G)
correspond to a pair of disjoint intervals in I(G), a pair of {⊏}-comparable edges
correspond to a pair of nesting intervals, and a pair of {≬}-comparable edges

correspond to a pair of overlapping intervals. Note that this correspondence is
bi-directional only if G is edge-disjoint, since a pair of edges sharing a vertex can
correspond to a pair of nesting or overlapping intervals. Nevertheless, we can
always modify I(G) in such a way, so that all intervals have unique endpoints,
and so that any pair of intervals who shared an endpoint now become non-nesting
(resp. non-overlapping). A maximum pairwise disjoint subset of intervals can be
computed in linear time using standard dynamic-programming, assuming the
interval family is given in a sorted manner [18] (which we can provide in linear
time in our case using bucket sorting). A maximum pairwise nesting subset can
be computed in O(m lg lg m) in an interval family of m intervals (see for example
the algorithm in [7]), and a maximum pairwise overlapping subset in O(m1.5)
time [30].

Lemma 1. Let G be a linear graph of size m. Then there exists a O(m) (resp.
O(m lg lg m) and O(m1.5)) time algorithm for finding the largest {<}-comparable
(resp. {⊏}-comparable and {≬}-comparable) subgraph of G.

Theorem 1. The MCSP problem for {<}-structured patterns (resp. {⊏}-structured
patterns and {≬}-structured patterns) is solvable in O(nm) (resp. O(nm lg lg m)
and O(nm1.5)) time, where n = |G| and m = maxG∈G |E(G)|.

We next consider {<, ⊏}-structured patterns. The MCSP problem for this
type of patterns was considered by [10, 25], in the context of multiple RNA
structural alignment.

Theorem 2 ([25]). The MCSP problem for {<, ⊏}-structured patterns is NP-
hard even if each input linear graph is a sequence of towers of height at most 2.

Note, however, that the problem MCSP is polynomial-time solvable in case
the number of input linear graphs is a constant [25]. Also, it is proven in [25]
that MCSP for {<, ⊏}-structured patterns is approximable with ratio lg k + 1,
where k is the size of the optimal solution.

Theorem 3 ([25]). The MCSP problem for {<, ⊏}-structured patterns is ap-
proximable within ratio O(lg k) in O(nm2) time, where k is the size of an optimal
solution, n = |G|, and m is the maximum size of any graph in G.

3 {<, ≬}-Structured Patterns

We now turn to consider MCSP for {<, ≬}-structured patterns. We begin by
proving a tight hardness result for the problem. Following this, we present
an approximation algorithm for the problem which achieves a ratio of 2H (k)
in O(nm3 log2 m) time, where k is the size of an optimal solution, H (k) =
∑k

i=1 1/i, n = |G|, and m is the maximum size of any graph in G.

Theorem 4. The MCSP problem for {<, ≬}-structured patterns is NP-hard
even if each input linear graph is a sequence of staircases of depth at most 2.

A recent result [26] implies that MCSP for {<, ≬}-structured patterns is
hard even if G consists of only two graphs of unlimited structure. We next show
that one can approximate the maximum common {<, ≬}-structured pattern of G
within ratio 2H (k). The first ingredient of our proof is to observe that every {<
, ≬}-structured pattern contains a sequence of staircases of substantial size. The
second ingredient consists in showing that any sequence of staircases contains a
balanced subgraph of substantial size.

Lemma 2. Let H be a {<, ≬}-comparable linear graph. There exists a partition
E(H) = ERED ∪ EBLUE such that both H [ERED] and H [EBLUE] are sequences of
staircases.

Lemma 3. Let H be a sequence of staircases of size k. Then H contains a
balanced sequence of staircases with at least k

H (k) edges.

As a direct corollary of Lemmas 2 and 3, we obtain:

Corollary 1. Any {<, ≬}-comparable linear graph of size k contains as a sub-
graph a balanced sequence of staircases of size at least k

2H (k) .

What is left is to show that, given a set of linear graphs, one can find in
polynomial-time the size of the largest balanced sequence of staircases that oc-
curs in each input linear graph. For this particular purpose, we present Algorithm
Bal-Seq-Staircase in Figure 3.

Algorithm Bal-Seq-Staircase(G, w, d).

Data : A linear graph G of size m, and two positive integers d and w.
Result : true iff G contains a balanced sequence of staircases of width w and

depth d.
begin

1. E′ ← ∅
2. for i = 1, 2, . . . , m− 1 do

(a) Let j be the smallest integer such that G[i, . . . , j] contains as a
subgraph a staircase of size d (set j =∞ if no such integer exists).
(b) if j 6=∞ then E′ ← E′ ∪ {(i, j)}.

end
3. Compute H , the maximum {<}-comparable subgraph of
G′ = (V (G), E′).
4. if |E(H)| ≥ w then return true else return false.

end

Fig. 3. Algorithm Bal-Seq-Staircase for finding a balanced sequence of staircases of
width w and depth d in a linear graph. For a linear graph G ∈ G, and two integers i
and j with 1 ≤ i < j ≤ |V (G)|, G[i, . . . , j] stands for the subgraph of G obtained by
deleting all vertices labeled k with k < i or j < k.

Lemma 4. Algorithm Bal-Seq-Staircase(G, w, d) runs in O(m2.5 log m) time and
returns true if and only if G contains a balanced sequence of staircases of width
w and depth d.

Theorem 5. The MCSP problem for {<, ≬}-structured patterns is approximable
within ratio 2H (k) in O(nm2.5 log2 m) time, where k is the size of an optimal
solution, n = |G|, and m is the maximum size of any graph in G.

4 {⊏, ≬}-Structured Patterns

We next consider {⊏, ≬}-structured patterns. We begin by proving a hardness
result, analogous to Theorem 4, which states that MCSP for {⊏, ≬}-structured
patterns is NP-hard even if the input consists of towers of staircases of depth
at most 2. However, unlike the approach we used for {<, ≬}-structured pat-
terns, we cannot use towers of staircases to obtain very good approximations
of maximum common {⊏, ≬}-structured patterns. We show that there exists a
{⊏, ≬}-comparable linear graph of size k which does not contain a tower of stair-
cases of size ε

√
k for some constant ε. On the other hand, such a graph must

contain either a tower or a staircase with at least
√

k edges.

Theorem 6. The MCSP problem for {⊏, ≬}-structured patterns is NP-hard
even if each input linear graph is a tower of staircases of depth at most 2.

We now turn to approximating MCSP for {⊏, ≬}-structured patterns. First,
let us observe the one-to-one correspondence between {⊏, ≬}-structured patterns
and permutations. Let H be a {⊏, ≬}-comparable linear graph of size k. Then the
vertices in H which are left endpoints of edges are labeled {1, . . . , k} and the right
endpoints are labeled {k+1, . . . , 2k}. The permutation πH corresponding to H is
defined by πH(i) = j− k ⇐⇒ (i, j) ∈ E(H). Clearly, all {⊏, ≬}-comparable lin-
ear graphs have corresponding permutations, and vice versa. It follows from this
bijective correspondence, that the number of different {⊏, ≬}-comparable linear
graphs of size k is exactly k!. Moreover, notice that increasing subsequences in πH

correspond to {≬}-comparable subgraphs of H , while decreasing subsequences
correspond to {⊏}-comparable subgraphs. The well known Erdős-Szekeres The-
orem [13] states that any permutation on 1, . . . , k contains either an increasing
or a decreasing subsequence of size at least

√
k (see also Lemma 6). Hence, using

the algorithms in Lemma 1 for finding the maximum common {⊏}-structured
{≬}-structured patterns, we obtain the following theorem:

Theorem 7. The MCSP problem for model M = {⊏, ≬} is approximable within
ratio k1/2 in O(nm1.5) time, where k is the size of an optimal solution n = |G|,
and m = maxG∈G |E(G)|.

Alon [1] recently showed that towers of staircases cannot be used to obtain a
much better approximation algorithm than the one proposed above. To see this,
let us count the number of different towers of staircases with k edges. Note that
the number of towers of staircases of size k and of height h, is exactly the number

of different partitions of {1, . . . , k} into h consecutive intervals, i.e.
(

k
h−1

)

. Hence

the total number of towers of staircases of size k equals
∑k

h=1

(

k
h−1

)

= 2k−1 < 2k.
Using this simple observation, the following lemma can be proved.

Lemma 5 ([1]). There exists a {⊏, ≬}-comparable linear graph of size K =
Ω(k2) which does not contain a tower of staircases of size k.

5 General Structured Patterns

In this section we consider MCSP for general, i.e., {<, ⊏, ≬}, structured pat-
terns. Since {<, ⊏, ≬}-structured patterns generalize all other types of patterns,
all hardness results presented in previous sections apply for general structured
patterns as well. We present three approximation algorithms with increasing
time complexities and decreasing approximation ratios.

Observe that both < and ⊏ induce partial orders on the edges of a given linear
graph. Recall now that a chain (resp. anti-chain) in a partial order is a subset
of pairwise comparable (resp. incomparable) elements. Dilworth’s Theorem [11]
states that in any partial order, the size of the maximum chain equals the size
of the minimum anti-chain partitioning. Therefore, in any partial order on k
elements, the size of the maximum chain multiplied by the size of the maximum
anti-chain is at least k. The following lemma states this property in our terms.

Lemma 6. Let H be a {<, ⊏, ≬}-comparable linear graph of size k, width w(H),
and height h(H). Also, let hd(H) and wd(H) be the sizes of the maximum {⊏, ≬}-
comparable and {<, ≬}-comparable subsets of E(H). Then k ≤ w(H) ·hd(H) and
k ≤ h(H) · wd(H).

An immediate consequence of Lemma 6 is as follows.

Lemma 7. Let H be a {<, ⊏, ≬}-comparable linear graph of size k. Then H
contains a simple structured pattern of size at least k1/3.

Combining the lemma above with the fact that a maximum common simple
structured pattern of G can be found in O(nm1.5) time (Theorem 1), we obtain
our first approximation algorithm for general structured patterns.

Theorem 8. The MCSP problem for {<, ⊏, ≬}-structured patterns is approx-
imable within ratio O(k2/3) in O(nm1.5) time, where k is the size of an optimal
solution, n = |G|, and m = maxG∈G |E(G)|.

It is easily seen that Lemma 7 is tight. One way to obtain an extremal
example of this is as follows: Take k1/3 balanced towers of staircases, each one
of depth k1/3 and height k1/3, and concatenate them one next to the other into
one supergraph of size k, reassigning labels accordingly.

Lemma 8. Let k be an integer such that k1/3 is also integer. Then there exists
an {<, ⊏, ≬}-comparable linear graph of size k that does not contain a simple
structured pattern of size ε k1/3 for any ε > 1.

Dilworth’s theorem does not apply on the crossing relation since it is not
transitive. However, an analogous result proven in [23] (see also [24]) implies that
for any {<, ⊏, ≬}-comparable linear graph H , |E(H)| = O(d · wh lg wh), where
d and wh are sizes of the maximum {≬}-comparable and {<, ⊏}-comparable
subsets of E(H). This yields the following analogous of Lemma 6.

Lemma 9. Let H be a {<, ⊏, ≬}-comparable linear graph of size k. Then H
contains a subgraph of size Ω(

√

k/ lg k) which is either {<, ⊏}-comparable or
{≬}-comparable.

Using Lemma 9, the algorithm for finding a maximum structured pattern
given in Theorem 1, and the O(lg k)-approximation algorithm for {<, ⊏}-structured
patterns given in Theorem 3, we obtain our second approximation algorithm.

Theorem 9. The MCSP problem for {<, ⊏, ≬}-structured patterns is approx-

imable within ratio O(
√

k lg3 k) in O(nm2) time.

For our third algorithm, we show that any {<, ⊏, ≬}-comparable linear graph
contains a subgraph of sufficient size that is either a tower or a balanced sequence
of staircases.

Lemma 10. Let H be a {<, ⊏, ≬}-comparable linear graph of size k. Then H
contains either a tower or a balanced sequence of staircases of size Ω(

√

k/ lg k).

Applying Lemma 3 and the algorithms for finding the maximum common
tower and balanced sequence of staircases in G given in Theorems 1 and 5,
respectively, we obtain the following theorem.

Theorem 10. The MCSP problem for {<, ⊏, ≬}-structured patterns is approx-
imable within ratio O(

√
k lg k) in O(nm2.5 lg2 m) time.

We next consider subgraphs of {<, ⊏, ≬}-comparable linear graphs that are
comparable by pairs of relations. We show that any {<, ⊏, ≬}-comparable linear
graph of size k contains such a subgraph of size at least m2/3, and that this
lower bound is relatively tight. Unfortunately, this result can not be applied
for approximation purposes (approximating MCSP for {⊏, ≬}-patterns remains
the bottleneck). Nevertheless, we present this result on account of independent
interest.

Lemma 11. Let H be a {<, ⊏, ≬}-comparable graph of size k. Then H has a

subgraph of size ε k2/3, where ε =
√

17−1
8 , which is either {<, ⊏}-comparable,

{<, ≬}-comparable, or {⊏, ≬}-comparable.

We believe the bound of Lemma 11 to be not the best possible. However,
combining Lemmas 6 and 8, we show that the above lemma is relatively tight.

Lemma 12. Let k be an integer such that k1/3 is integer. Then there exists
a {<, ⊏, ≬}-comparable linear graph of size k that contains neither a {<, ⊏}-
comparable subgraph, nor a {<, ≬}-comparable subgraph, nor a {⊏, ≬}-comparable
subgraph of size least ε k2/3 for any ε > 1.

6 Discussion and Open Problems

In this paper we introduced MCSP as a general framework for many structure-
comparison and structure-prediction problems, that occur mainly in compu-
tational molecular biology. Our framework followed the approach in [31] by
analyzing all types of R-structured patterns, R ⊆ {<, ⊏, ≬}. We gave tight
hardness results for finding maximum common {<, ≬}-structured patterns and
maximum common {<, ≬}-structured patterns. We also proved that MCSP is
approximable within ratio: (i) 2H (k) for {<, ≬}-structured patterns, (ii) k1/2

for {⊏, ≬}-structured patterns, and (iii) O(
√

k lg k) for {<, ⊏, ≬}-structured pat-
terns.

There are many questions left open by our study. Below we list some of them.
According to Lemma 11, we could improve in terms of approximation ratio on
all the algorithms suggested for general structured patterns, if we had a better
approximation algorithm for {⊏, ≬}-structured patterns. Is there an approxi-
mation algorithm which achieves a better ratio then the simple

√
k algorithm?

On the same note, can lower bounds on the approximation factor of MCSP

for {<, ⊏, ≬}-structured patterns or {⊏, ≬}-structured patterns be proven? How
about {<, ⊏}-structured patterns or {<, ≬}-structured patterns?

References

1. N. Alon. Private communication, 2006.
2. L. Alonso and R. Schott. On the tree inclusion problem. In Proc. 18th Mathematical

Foundations of Computer Science (MFCS), volume 711 of LNCS, pages 211–221,
1993.

3. A. Apostolico and C. Guerra. The longest common subsequence problem revisited.
Algorithmica, 2:315–336, 1987.

4. G. Blin, G. Fertin, R. Rizzi, and S. Vialette. What makes the arc-preserving sub-
sequence problem hard ? In Proc. 5th International Conference on Computational
Science (ICCS), volume 3515 of LNCS, pages 860–868, 2005.

5. G. Blin, G. Fertin, and S. Vialette. New results for the 2-interval pattern problem.
In Proc. 15th Combinatorial Pattern Matching (CPM), volume 3109, 2004.

6. P. Bose, J.F. Buss, and A. Lubiw. Pattern matching for permutations. IPL,
65(5):277–283, 1998.

7. M.-S. Chang and F.-G. Wang. Efficient algorithms for the maximum weight clique
and maximum weight independent set problems on permutation graphs. IPL,
43(6):293–295, 1992.

8. W. Chen. More efficient algorithm for ordered tree inclusion. J. Algorithms,
26(2):370–385, 1998.

9. M. Crochemore, D. Hermelin, G.M. Landau, and S. Vialette. Approximating the
2-interval pattern problem. In Proc. 13th European Symposium on Algorithms
(ESA), volume 3669 of LNCS, pages 426–437, 2005.

10. E. Davydov and S. Batzoglou. A computational model for RNA multiple structural
alignment. In Proc. 15th Combinatorial Pattern Matching (CPM), volume 3109 of
LNCS, pages 254–269, 2004.

11. R.P. Dilworth. A decomposition theorem for partially ordered sets. Annals of
Mathematics Series 2, 51:161–166, 1950.

12. D. Eppstein, Z. Galil, R. Giancarlo, and G.F. Italiano. Sparse dynamic program-
ming I: Linear cost functions. J. ACM, 39(3):519–545, 1992.

13. P. Erdős and G. Szekeres. A combinatorial problem in geometry. Compositio
Mathematica, 2:463–470, 1935.

14. P.A. Evans. Algorithms and complexity for annotated sequence analysis. PhD
thesis, University of Alberta, 1999.

15. D. Goldman, S. Istrail, and C.H. Papadimitriou. Algorithmic aspects of protein
structure similarity. In Proc. 40th Foundations of Computer Science (FOCS), pages
512–522, 1999.

16. J. Gramm. A polynomial-time algorithm for the matching of crossing contact-map
patterns. IEEE/ACM Trans. Comp. Biol. and Bioinfo., 1(4):171–180, 2004.

17. J. Gramm, J. Guo, and R. Niedermeier. Pattern matching for arc-annotated se-
quences. In Proc. 22nd Foundations of Software Technology and Theoretical Com-
puter Science (FSTTCS), LNCS, pages 182–193, 2002.

18. U.I. Gupta, D.T. Lee, and J.Y-T. Leung. Efficient algorithms for interval graph
and circular-arc graphs. Networks, 12:459–467, 1982.

19. D.S. Hirschberg. Algorithms for the longest common subsequence problem. J.
ACM, 24(4):664–675, 1977.

20. J.W. Hunt and T.G. Szymanski. A fast algorithm for computing longest common
subsequences. Communications of the ACM, 20:350–353, 1977.

21. P. Kilpeläinen and H. Mannila. Ordered and unordered tree inclusion. SIAM J.
Comp., 24(2):340–356, 1995.

22. P.N. Klein. Computing the edit-distance between unrooted ordered trees. In Proc.
6th European Symposium on Algorithms (ESA), volume 1461 of LNCS, pages 91–
102, 1998.

23. A. Kostochka. On upper bounds on the chromatic numbers of graphs. Transactions
of the Institute of Mathematics (Siberian Branch of the Academy of Sciences in
USSR), 10:204–226, 1988.

24. A. Kostochka and J. Kratochvil. Covering and coloring polygon-circle graphs.
Discrete Mathematics, 163:299–305, 1997.

25. M. Kubica, R. Rizzi, S. Vialette, and T. Waleń. Approximation of RNA multi-
ple structural alignment. In Proc. 17th Combinatorial Pattern Matching (CPM),
volume 4009 of LNCS, pages 211–222, 2006.

26. S.C. Li and M. Li. On the complexity of the crossing contact map pattern matching
problem. In Proc. 6th Workshop on Algorithms in Bioinformatics (WABI), volume
4175, pages 231–241, 2006.

27. D. Maier. The complexity of some problems on subsequences and supersequences.
J. ACM, 25(2):322–336, 1978.

28. W.J. Masek and M.S. Paterson. A faster algorithm computing string edit distances.
J. Comp. and Syst. Sc., 20(1):18–31, 1980.

29. D. Shasha and K. Zhang. Simple fast algorithms for the editing distance between
trees and related problems. SIAM J. Comp., 18(6):1245–1262, 1989.

30. A. Tiskin. Longest common subsequences in permutations and maximum cliques
in circle graphs. In Proc. 17th Combinatorial Pattern Matching (CPM), volume
4009 of LNCS, pages 270–281, 2006.

31. S. Vialette. On the computational complexity of 2-interval pattern matching prob-
lems. Theoretical Computer Science, 312(2-3):223–249, 2004.

