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Abstract. In this paper, we propose to focus on the segmentation of vectorial
features (e.g. vector fields or color intensity) using region-based active contours. We
search for a domain that minimizes a criterion based on homogeneity measures of
the vectorial features. We choose to evaluate, within each region to be segmented,
the average quantity of information carried out by the vectorial features, namely
the joint entropy of vector components. We do not make any assumption on the
underlying distribution of joint probability density functions of vector components,
and so we evaluate the entropy using non parametric probability density functions.
A local shape minimizer is then obtained through the evolution of a deformable
domain in the direction of the shape gradient.
The first contribution of this paper lies in the methodological approach used to
differentiate such a criterion. This approach is mainly based on shape optimization
tools. The second one is the extension of this method to vectorial data. We apply this
segmentation method on color images for the segmentation of color homogeneous
regions. We then focus on the segmentation of synthetic vector fields and show
interesting results where motion vector fields may be separated using both their
length and their direction. Then, optical flow is estimated in real video sequences
and segmented using the proposed technique. This leads to promising results for the
segmentation of moving video objects.
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1. Introduction

The notion of entropy has first been introduced by Shannon (Shannon,
1948) and further developed in the information theory framework whose
principles can be found in (Cover and Thomas, 1991). Information
measures such as entropy or mutual information can be efficiently
managed for image and video segmentation (Herbulot et al., 2004a)
or medical image registration (Wells et al., 1996; Maes et al., 1997).
As far as segmentation is concerned, a region may be characterized
using the average quantity of information, namely the entropy, carried
out by the intensity. We propose here to focus on the segmentation
of vectorial images features. We can for example consider the color
intensity or motion vectors. Our goal is to segment homogeneous fields
of vectors by considering not only their length but also their direction.
We then propose to minimize the joint entropy of vector components.
We do not make any assumption on the underlying distribution of joint
probability density functions (pdfs) of vector components, and so we
evaluate the entropy using non parametric pdfs.

These information measures are embedded into a variational frame-
work. We search for an optimal domain with regards to a global cri-
terion including both region-based and boundary-based terms. A local
shape minimizer of this criterion may be reached using deformable do-
mains, namely region-based active contours. The basic idea is to obtain,
from the derivation of the criterion, a Partial Differential Equation
(PDE) that drives an initial region towards a local shape minimum of
the error criterion. Classically, we propose to make it evolve in the direc-
tion of a gradient. However, since the set of image regions, i.e. the set of
regular open domains in Rn, does not have a structure of vector space,
we cannot apply gradient descent methods in a straightforward fashion.
We propose to use shape gradients coming from shape optimization
theory (Delfour and Zolésio, 2001) to bear on the problem. Such an
approach has been detailed in (Jehan-Besson et al., 2003; Aubert et al.,
2003) and is here further developed for the minimization of information
measures using non parametric probability distribution functions (pdfs)
of image features following the work in (Herbulot et al., 2004a).

These theoretical results are then applied to the segmentation of
homogeneous color regions such as the face in video sequences and
to segmentation of motion vectors. In this second part, the goal is to
segment different motions in a sequence of images notably the mo-
tion of objects from the global background motion. There are many
practical applications for this type of problem, e.g. the cinematic post-
production, video monitoring, tracking of objects or human beings,
video coding and indexation e.g. MPEG-4 or MPEG-7. Variational
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Shape gradients for segmentation of vectorial image features 3

approaches and region-based active contours have proven to be efficient
for motion segmentation. Some authors choose to minimize the image
differences (Jehan-Besson et al., 2002), while other consider parametric
models for each region (Cremers and Soatto, 2003). Another approach
consists in using the length of the motion vectors (Ranchin and Dibos,
2004) or the dominant direction (Roy et al., 2006). In this paper we are
able to consider both the length and the direction of motion vectors by
using the joint entropy.

In the following section, we recall shape derivation principles that
will then be applied to the derivation of region-dependent descriptors
involving non parametric pdfs of image features. Such a derivation will
be used to deduce the evolution equation of an active contour that will
minimize information measures such as the entropy of a region. These
theoretical tools will then be applied to segment coherent regions of
color intensity. They will then be developed for the segmentation of
motion vectors in both synthetical images and real images.

2. Region-based Active Contours using Shape derivation

tools

In this chapter we address the problem of optimisation of region and
boundary functionals by means of active contours. Having introduced
the basic idea of active contours and the different approaches that exist
so far, we then describe how to calculate the evolution equation using
shape derivation tools and finally explain some implementation details,
notably the level set method.

2.1. Problem Statement

Active contours are based on the idea of evolving an initial contour on
an image towards the boundary of the object(s) of interest. Formally,
for a 2D image, the evolution of a curve can be described as follows:

∂Γ(s, τ)

∂τ
= FN = v with Γ(τ = 0) = Γ0. (1)

Γ0 is the initial curve, s the arc length, τ the evolution parameter
and N the inward normal vector of Γ(s, τ). For τ → ∞ the curve
should converge to the object boundary. The term F represents the
velocity function of the curve and is usually derived from an energy
functional J . The energy functionals that appeared first in literature
were boundary-based. A classical example is J(Γ) =

∫

Γ k(b) ds where
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k(b) can depend on the gradient of the image (Kichenassamy et al.,
1996; Caselles et al., 1997).
Following the pioneer works of (Cohen et al., 1993; Ronfard, 1994),
region based functionals have then been added in order to incorporate
global information on the region to segment:

J(Ω) =

∫

Ω
k(x,Ω)dx (2)

where the vector x represents the location of the pixel and k(x, Ω) the
descriptor of the region Ω. This descriptor can depend on the region
itself and is then called region-dependent. An example of such region-
dependent descriptor is k(x, Ω) = (I(x) − µ)2, where µ represents the
mean of the intensity over the region Ω. This descriptor has been used
by (Chan and Vese, 2001; Debreuve et al., 2001) for the segmentation
of homogeneous regions.

Generally one uses a linear combination of region-based and contour-
based terms in order to perform a segmentation task. A simple example
is the segmentation into two regions Ωin and Ωout, which basically cor-
respond to objects and background. An appropriate energy functional
for this task would be:

J(Ωin, Ωout, Γ) =

∫

Ωin

kin(x, Ωin) dx+

∫

Ωout

kout(x, Ωout) dx+

∫

Γ
kb(x) ds

(3)
where kin is the descriptor for the object region, kout for the background
region and kb the descriptor for the contour.

The choice of the descriptors is dependent on the application. In
this article we propose to focus on information measures such as the
joint entropy of vector components. Once this choice is made the terms
have to be differentiated with respect to the geometry in order to
calculate a velocity function that drives an initial contour towards a
minimum. A detailed state of the art on region-based active contours
can be found in (Jehan-Besson et al., 2003). Let us briefly note that
some authors do not compute the theoretical expression of the velocity
field but choose a deformation of the curve that will make the crite-
rion decrease (Chesnaud et al., 1999). Other authors (Zhu and Yuille,
1996; Chan and Vese, 2001; Paragios and Deriche, 2002) compute the
theoretical expression of the velocity vector from the Euler-Lagrange
equations. The computation is performed in two main steps. First,
region integrals representing region functionals are transformed into
boundary integrals using the Green-Riemann theorem. Second, the
corresponding Euler-Lagrange equations are derived, and used to define
a dynamic scheme in order to make evolve the initial region. Another
alternative is to keep the region formulation to compute the gradient
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of the energy criterion with respect to the region instead of reducing
region integrals to boundary integrals. In (Debreuve et al., 2001), the
authors propose to compute the derivative of the criterion while taking
into account the discontinuities across the contour. In (Jehan-Besson
et al., 2001; Jehan-Besson et al., 2003) the computation of the evolution
equation is achieved through shape derivation principles.

This computation becomes more difficult for region-dependent de-
scriptors. It happens when statistical features of a region such as,
for example, the mean or the variance of the intensity, are involved
in the minimization. This case has been studied in (Chan and Vese,
2001; Debreuve et al., 2001; Jehan-Besson et al., 2001; Kim et al.,
2002; Yezzi et al., 1999). In (Jehan-Besson et al., 2001; Jehan-Besson
et al., 2003) the authors show that the minimization of functionals
involving region-dependent features can induce additional terms in the
evolution equation of the active contour that are important in practice.
These additional terms are easily computed thanks to shape deriva-
tion tools. In the following, we present shape derivation tools for the
computation of the evolution equation.

2.2. Computation of the evolution equation using shape

derivation tools

In order to obtain the evolution equation of the active contour ∂Γ(τ)
∂τ

that will lead to a minimum of the energy criterion J , it is necessary to
differentiate the criterion. The criterion can contain contour-based and
region-based terms as mentioned in equation (3). When calculating the
evolution equation there are certain problems to solve. Firstly: with
respect to which variable do we have to differentiate the criterion?
As we are dealing with regular open domains in R

n that do not have
the structure of vector spaces, it is difficult to compute the derivative
and so the evolution equation. This problem can be tackled by the
use of shape derivation tools (Delfour and Zolésio, 2001) as detailed in
(Aubert et al., 2003; Jehan-Besson et al., 2001; Jehan-Besson et al.,
2003). Secondly the region-based terms show a double dependence,
because the descriptor as well as the integration domain depend on
the region. This has to be taken into account when calculating the
evolution equation. To obtain the evolution equation three principal
steps are performed:

1. Introduction of transformations

2. Derivation of the criterion using shape optimisation theorems

3. Computation of the evolution equation from the derivative
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2.2.1. Introduction of transformations
The optimisation of the region functional (2) is difficult and the vari-
ations of a domain must be clearly defined. Formally we introduce
a mapping Tτ that transforms the initial domain Ω into the current
domain Ω(τ). For a point x ∈ Ω, we denote:

x(τ) = T (τ,x) with T (0,x) = x

Ω(τ) = T (τ, Ω) with T (0,Ω) = Ω.

Let us now define the velocity vector field V corresponding to T (τ) as

V(τ,x) =
∂T

∂τ
(τ,x) ∀x ∈ Ω ∀τ ≥ 0.

2.2.2. Shape derivation tools
We now introduce two main definitions:

DEFINITION 1. The Eulerian derivative of Jr(Ω) =
∫

Ω k(x, Ω)dx in
the direction of V, noted dJr(Ω,V), is equal to:

dJr(Ω,V) = lim
τ→0

Jr(Ω(τ)) − Jr(Ω)

τ

if the limits exists.

DEFINITION 2. The shape derivative of k(x, Ω), noted ks(x,Ω, V ),
is equal to:

ks(x, Ω,V) = lim
τ→0

k(x, Ω(τ)) − k(x,Ω)

τ

if the limits exists.

The following theorem gives a general relation between the Eulerian
derivative and the shape derivative for region-based terms.

THEOREM 1. Let Ω be a C1 domain in R
n and V a C1 vector

field. Let k be a function C1. The functional Jr(Ω) =
∫

Ω
k(x, Ω) dx is

differentiable and its Eulerian derivative in the direction of V is the
following:

dJr(Ω,V) =

∫

Ω

ks(x, Ω,V)dx −
∫

∂Ω

k(x, Ω)(V · N)da

where N is the unit inward normal to ∂Ω and da its area element.
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The proof can be found in (Sokolowski and Zolésio, 1992; Delfour and
Zolésio, 2001).

2.2.3. Computation of the evolution equation for region-based terms
Let us now consider the derivative of region-based terms. As we differ-
entiate with respect to the region Ω, we have to distinguish the cases
where the descriptors depend and do not depend on the region.

2.2.3.1. Region-independent descriptors: If a descriptor of a region-
based term is not dependent on the region, the derivation is straigthfor-
ward. Let Jr(Ω) =

∫

Ω k(x, Ω)dx be the criterion. Obviously k(x, Ω) =
k(x) and so ks = 0. Consequently the Eulerian derivative of Theorem
1 is reduced to:

dJr(Ω,V) = −
∫

∂Ω
k(x)(V · N) da (4)

and the evolution equation, respectively the velocity, can be calculated
using the gradient descent method:

∂Γ(p, τ)

∂τ
= k(x)N = v (5)

Γ(p, 0) = Γ0(p).

2.2.3.2. Region-dependent descriptors: Region-dependent descriptors
of the form Jr(Ω) =

∫

Ω k(x, Ω)dx are more complicated to differentiate.
Using Theorem 1 one obtains a derivative of the following form:

dJr(Ω,V) = −
∫

∂Ω

(

k(x, Ω) + A(x, Ω)
)

(V · N) da. (6)

A(x, Ω) is a term that comes from the region-dependence and so from
the evaluation of the shape derivative ks. Jehan-Besson et al. (Jehan-
Besson et al., 2003; Aubert et al., 2003) describe a general framework
for deriving some region-dependent descriptors based on statistical
parameters.

2.2.3.3. Example: Let us consider a descriptor involving the mean of
the intensity of the region:

k(x, Ω) = ϕ(I(x) − µ(Ω)) (7)

with ϕ a positive function of class C1 (Charbonnier et al., 1997). The
criterion J is then given by:

J(Ω) =

∫

Ω
ϕ (I(x) − µ(Ω)) dx.
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The Eulerian derivative of the criterion J(Ω) can be expressed as
follows:

dJr(Ω,V) =

∫

Ω
−dµ

dτ
ϕ′ (I(x) − µ(Ω)) dx −

∫

∂Ω
ϕ(I(x) − µ(Ω))(V · N)da

with ϕ′(r) = dϕ
dr .

The mean can be written using domain integrals :

µ(Ω) =
1

|Ω|

∫

Ω
I(x)dx =

∫

Ω I(x)dx
∫

Ω dx
,

and so, by applying again the shape derivative theorem, we get:

dµ

dτ
=

1

|Ω|2
(

−
∫

∂Ω
I(x)(V · N)da.

∫

Ω
dx +

∫

Ω
I(x)dx.

∫

∂Ω
(V · N)da

)

=
1

|Ω|

∫

∂Ω
(I(x) − µ(Ω))(V · N)da.

In this expression, we no longer have domain integrals. By replacing
the derivative of µ in eq.(8), we obtain the following formulation:

dJr(Ω,V) =

∫

Ω
ϕ′(I(x) − µ(Ω))

∫

∂Ω

I(x) − µ(Ω)

|Ω| (V · N)da

−
∫

∂Ω
ϕ(I(x) − µ(Ω))(V · N)da.

The term A(x, Ω) from eq.(6) is given by:

A(x, Ω) = ϕ′(I(x) − µ(Ω))

∫

∂Ω

I(x) − µ(Ω)

|Ω| .

By changing the order of integration in the derivative, we can compute
the evolution equation of the active contour :

∂Γ(p, τ)

∂τ
=

(

ϕ(I(x) − µ(Ω)) − I(x) − µ(Ω)

|Ω|

∫

Ω
ϕ′(I(x) − µ(Ω))dx

)

N.

(8)
This example illustrates the derivation of a simple region-dependent

descriptor involving parametric probability distribution functions (pdfs).
In this report we get further interested in nonparametric pdfs as de-
tailed in section 3.
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2.2.4. Computation of the evolution equation for contour-based terms
Contour based terms have the form Jb(Ω) =

∫

∂Ω kb(x) da. Their Eule-
rian derivative in the direction vn = (V · N) is (Delfour and Zolésio,
2001):

dJb(Γ, vn) =

∫

∂Ω

(

∇kb(x) · N − kb(x)κ
)

(V · N) da. (9)

with N the unit inward normal of Γ, κ the mean curvature of Γ and
da its area element. The evolution equation is consequently:

∂Γ(p, τ)

∂τ
=

(

kb(x)κ −∇kb(x) · N
)

N

Γ(p, 0) = Γ0(p). (10)

This result is the classical result found in (Caselles et al., 1997) using
calculus of variations.

2.3. Implementation Using the Level Set Method

There are basically two approaches to implement active contours. The
explicit approach uses an explicit parameterization of the contour, e.g.
by B-splines (Precioso et al., 2005) or polygons, and the implicit ap-
proach represents the curve by means of a function of higher dimension,
e.g. the level set method (Osher and Sethian, 1988). In the following
we are going to concentrate on the level set method, because among
other advantages it implies the ability to change the topology.

The idea is to express the curve by means of a higher dimensional
function U(x, τ) in such a way that the zero level of U(x, τ) represents
the curve Γ(p, τ). More formally we look for a function U : R

2×R
+ → R

such that:
Γ(p, τ) = {x |U(x, τ) = 0}. (11)

An equivalent expression is:

U(Γ(p, τ), τ) = 0, ∀p ∈ [a, b], ∀τ ≥ 0. (12)

U can be chosen as the signed distance function, i.e. the value U(x, τ)
represents the signed distance of the point x to the contour. We choose
negative values inside the curve (region containing the objects) and
positive values outside.

The normal vector N and the curvature κ can be directly derived
from the level set function:

N = − ∇U

|∇U | and κ = div

( ∇U

|∇U |

)

.
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This leads to the evolution equation:

∂U(τ)

∂τ
= F |∇U |. (13)

The equation is only valid for U = 0 but it can be extended to the
whole image domain ΩI if F is defined over the entire image. However
the signed distance function is not a solution to the extended PDE (13),
see Gomes and Faugeras (Gomes and Faugeras, 2000). Therefore the
function U has to be reinitialised so that it remains a distance function.

When implementing the level set method it is useful to perform the
calculations only over a narrow band enclosing the contour instead of
the entire image. This reduces the time complexity of O(N2) to O(kN)
where N is the grid size.

Additionally a multiresolution technique can be applied in order to
decrease calculation time, i.e. the contour evolution is performed on
different resolutions starting from an image of reduced size and ending
at the original image size. When passing to a higher resolution the final
contour of the previous resolution serves as the initial contour of the
current resolution.

3. Introduction of Descriptors based on information theory

measures

We aim for a segmentation into regions with approximately homoge-
neous statistical features. Many approaches use statistical measures like
the mean or the variance of some feature(s) inside a region to formulate
descriptors. Another approach based on information theory, notably on
the entropy has been presented in (Kim et al., 2002; Herbulot et al.,
2004a; Herbulot et al., 2004b). Indeed, the entropy concept designates
the average quantity of information carried out by a feature. Intuitively
the entropy represents some kind of diversity of a given feature. In this
report we get further interested in computing the entropy without any
assumption on the underlying distribution, i.e. using nonparametric
pdfs. We first present general results for the minimization of func-
tions of non parametric pdfs and we then apply these results for the
minimization of the entropy and the conditional entropy.

3.1. Derivation of descriptors based on non parametric

probability density functions

Let f(x) be the feature of interest and q(f(x),Ω) be the probability to
have feature f(x) with x ∈ Ω. A general criterion can be defined as
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follows:

J(Ω) =

∫

Ω
ϕ

(

q(f(x), Ω)
)

dx (14)

where ϕ is a function: R
+ → R

+ of the probability, e.g. the entropy or
the conditional entropy.

The probability distribution is estimated using the Parzen window
method:

q(f(x), Ω) =
1

|Ω|

∫

Ω
K(f(x) − f(x̂)) dx̂ (15)

where K is the Gaussian kernel of the estimation with 0-mean and
Σ-covariance matrix and |Ω| the shape area. The kernel of a vector
f = [f1, f2, .., fn]T is:

K(f) =
1

(2π)n/2|Σ|1/2
exp

(

− 1

2
fT Σ−1f

)

.

In general, the covariance Σ depends on the number of samples, but in
our case, the number of pixels in a region does not change a lot during
the segmentation process. The computation is done for a fixed variance.
See Appendix(B) for the computation with a variance depending on the
number of pixels of the region Ω.

This criterion defined in (14) is now differentiated using the shape
gradient theorem (Theorem 1). The Eulerian derivative of (14) in the
direction V is then given by :

dJr(Ω,V) =

∫

Ω
ϕs

(

q(f(x), Ω),V
)

dx−
∫

∂Ω
ϕ

(

q(f(s), Ω)
)

(V·N) ds (16)

where N is the unit inward normal of the curve and ϕs is the shape
derivative of ϕ in the direction V.

ϕs
(

q(f(x), Ω),V
)

= ϕ′(q(f(x), Ω))qs(f(x), Ω,V)

with qs the Eulerian derivative of q in the direction V. We apply the
shape gradient theorem on q:

qs(f(x),Ω,V) =
1

|Ω|2
∫

∂Ω
(V · N) ds

∫

Ω
K(f(x) − f(x̂)) dx̂

− 1

|Ω|

∫

∂Ω
K(f(x) − f(s))(V · N) ds.

So the shape derivative of ϕ is:

ϕs
(

q(f(x),Ω),V
)

=
1

|Ω|

∫

∂Ω
ϕ′(q(f(x),Ω)

)

[

q(f(x), Ω) − K
(

f(x) − f(s)
)

]

(V · N) ds
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12 A. Herbulot, S. Jehan-Besson, S. Duffner, M. Barlaud, G. Aubert

where ϕ′(q) represents the derivative of ϕ with respect to q. We can
then deduce the evolution equation of the active contour that leads J
to a minimum:

∂Γ(s, τ)

∂τ
= ϕ

(

q(f(x̂), Ω)
)

N (17)

− 1

|Ω|

[∫

Ω

(

q(f(x),Ω) − K
(

f(x) − f(x̂)
))

ϕ′(q(f(x),Ω)
)

dx

]

N

with x̂ = Γ(s, τ).

3.2. Minimization of the joint entropy for vectorial image

features

The entropy represents the average quantity of information carried out
by a feature, we may then minimize such a quantity for the segmen-
tation of homogeneous regions. In this article, we are more particu-
larly interested by the joint entropy of vectorial image features f(x) =
[f1(x), f2(x)..., fn(x)]T . We treat f as an observation of a random vector
denoted by F. The continuous joint entropy can be expressed by:

H(F, Ω) =
1

|Ω|

∫

Ω
− ln q(f(x),Ω)dx (18)

=
1

|Ω|

∫

Ω
− ln q(f1(x), f2(x), .., fn(x), Ω)dx

where q(f(x), Ω) represents the joint probability density function of the
components of the vectorial feature f(x).

This energy can be written by:

H(F, Ω) =
1

|Ω|

∫

Ω
ϕ(q(f(x̂),Ω)) dx (19)

with ϕ(q) = − ln q. Using the derivation scheme presented above, we
can calculate the evolution equation:

∂Γ(s, τ)

∂τ
= − 1

|Ω| ln q(f(x̂), Ω)N

− 1

|Ω|

[

H(F,Ω) +
1

|Ω|

∫

Ω

K(f(x) − f(x̂))

q(f(x), Ω)
dx − 1

]

N.
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Shape gradients for segmentation of vectorial image features 13

3.3. Application to region competition

In the experiments, we use a competition between the object region
Ωin and the background region Ωout. These regions share the same
boundary Γ and we look for the regions that minimize the following
criterion:

J(Ωin,Ωout, Γ) = H(F, Ωin) + H(F,Ωout) +

∫

Γ
λds (20)

where λ is a regularization parameter.
Let us rewrite the definition (18) for the regions Ωin and Ωout:

H(F, Ωin) =
1

|Ωin|

∫

Ωin

− ln q(f(x),Ωin)dx

H(F, Ωout) =
1

|Ωout|

∫

Ωout

− ln q(f(x), Ωout)dx.

By using the derivation tool presented in the previous section, we obtain
the evolution equation of the active contour:

∂Γ(s, τ)

∂τ
=

[

− 1

|Ωin|
ln q(f(x̂), Ωin) (21)

− 1

|Ωin|

[

H(F,Ωin) +
1

|Ωin|

∫

Ωin

K(f(x) − f(x̂))

q(f(x), Ωin)
dx − 1

]

+
1

|Ωout|
ln q(f(x̂), Ωout)

+
1

|Ωout|

[

H(F,Ωout) +
1

|Ωout|

∫

Ωout

K(f(x) − f(x̂))

q(f(x), Ωout)
dx − 1

]

+ λ.κ

]

N

where κ is the curvature of the curve Γ.

3.4. Minimization of the conditional entropy

When working with two regions Ωin and Ωout one can also use the
following criterion :

HC(Ωin, Ωout) = H(F, Ωin) · |Ωin| + H(F, Ωout) · |Ωout|. (22)

This criterion is based on a maximization of the mutual information
between the feature f(x) and the label L(x) (Herbulot et al., 2004b;
Kim et al., 2002), where L(x) maps a point x either to the object or
the background label. It corresponds to the conditional entropy between
the feature f(x) and the label L(x).
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14 A. Herbulot, S. Jehan-Besson, S. Duffner, M. Barlaud, G. Aubert

By performing the same procedure as in the last section we can cal-
culate the Eulerian derivative in the direction V of J(Ω) = H(F, Ω) |Ω|:

dJr(Ω,V) =

∫

∂Ω

[

−1 +
1

|Ω|

∫

Ω

K(f(x) − f(x̂)

q(f(x),Ω)
dx + ln q(f(x), Ω)

]

(V · N) ds.

This gives us the following evolution equation for the criterion (22):

∂Γ(s, τ)

∂τ
=

[

− 1

|Ωin|

∫

Ωin

K(f(x) − f(x̂)

q(f(x), Ωin)
dx − ln q(f(x), Ωin)

+
1

|Ωout|

∫

Ωout

K(f(x) − f(x̂)

q(f(x), Ωout)
dx + ln q(f(x),Ωout)

]

N.

This gives an alternative proof to the result found in (Kim et al.,
2002). However, the framework proposed in this paper allow us to
consider any descriptor that can be written as a function of a non
parametric pdf (e.g. distance functions). Derivation can also be easily
performed for a kernel depending on the region Ω (see Appendix B).
Note that a comparison between our method and calculus of variations
has been given in (Aubert et al., 2003).

4. Segmentation of Color Images

Until now the feature(s) f(x) which can be used in our entropy-based
energy criteria have not been specified. We can first choose f(x) to be
two or more components of the intensity for the segmentation of color
homogeneous regions, i.e. f(x) = [I1(x), .., In(x)]T .

In these experiments we consider two components of the intensity,
i.e. f(x) = [I1(x), I2(x)]T and we use the joint entropy between the two
components I1 and I2, H(Ω) = 1

|Ω|

∫

Ω − ln q(I1(x), I2(x),Ω) dx. We test

our algorithm on the video sequence Erik for the face segmentation.
The Figure 1 shows the evolution of the curve, the histogram of the
object and the Figure 2 the histogram of the background during the
segmentation algorithm on a frame while the Figure 3 the evolution
of the segmented region through a sequence. These results show the
accuracy of the method for segmentation of homogeneous regions using
intensity-based criterion.
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5. Segmentation of Motion Vectors

We can also consider the motion vector coordinates as image features:
f(x) = [u, v]T . Therefore we here consider a combination of two features
and thus the probability q represents a joint probability and the entropy
is a joint entropy, H(F, Ω) = 1

|Ω|

∫

Ω − ln q(u(x), v(x),Ω)dx. Using such

an approach, we consider not only the length of the motion but also the
motion direction as can be shown in the following synthetical examples.

5.1. Results on synthetic images

In the following some segmentation examples on synthetic motion fields
are shown using region-based active contours and descriptors based on
the conditional entropy. In order to incorporate not only the length
of the motion but also the motion direction in the descriptors the 2-
dimensional vector coordinates (u, v) are used.

The following diagrams show only every 10th vector of the motion
fields. For the sake of clarity they have also been lengthened by factor
8. Note that the start point of the arrow is plotted over the point to
which the velocity vector is related to.

The first example shows a rectangle moving rightwards on a back-
ground moving leftwards (Fig. 4.a). The vectors of the rectangle and
the background have the same length, so the vector length would not
gives us a discriminative feature in this case. As we take into account
the direction as well the rectangle can be segmented correctly from the
background. Figure 4 shows the segmentation result of this example.

In the second example three rectangles of different size and motion
are placed over a moving background (Fig. 5.a). Figure 5 illustrates
the segmentation result. A small rectangle traversing the three different
motion fields is chosen as initial contour so it has to extend at some
locations and to shrink at other locations. Also at some point of time it
changes its topology, i.e. it has to split. The evolution of the respective
histograms is illustrated in Figure 6. In the left column three samples of
the background histogram and in the right column three corresponding
samples of the object histogram are depicted. Clearly the peak at (0, 1)
corresponding to the background motion disappears gradually in the
object histograms whereas in the background histogram it remains the
only peak. This shows that our approach manages also to segment
several objects with a completely different motion provided that the
background motion is homogeneous.

The last example shows an enlarging disc over a background moving
rightwards (Fig. 7.a). Here the motion vectors of the object point in
nearly every direction. The length of the vectors is also not homoge-
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16 A. Herbulot, S. Jehan-Besson, S. Duffner, M. Barlaud, G. Aubert

neous inside the object. Nevertheless our method is able to segment
properly the disc from the background because background motion is
homogeneous. Figure 7 illustrates the result.

5.2. Motion Estimation on real sequences

So far we have only been investigating synthetic examples of motion
fields. In order to segment real world image sequences we now have
to estimate the motion between consecutive images. To this end we
calculate the optical flow between consecutive pairs of images. Note
that we can use any other accurate method of motion estimation as
input of our segmentation algorithm.

5.2.1. Optical Flow
In the following an image sequence is denoted as I(x, y, t) where (x, y)
represents the location in an image domain Ω and t the time. One
way of estimating the motion in an image sequence is to calculate the
optical flow, i.e. to calculate for each pixel a motion vector (u, v)T . The
basic assumption for this calculation is that corresponding features
maintain their intensity over time. This can be expressed in the optic
flow constraint (OFC) equation:

∂I

∂x
u +

∂I

∂y
v +

∂I

∂t
= 0 (23)

Solving this equation represents an ill-posed problem and requires a
second constraint which ensures that the optical flow varies smoothly
in space. We search for the optical flow (u, v) which minimizes the
following functional:

E(u, v) :=

∫

Ω

(

(

∂I

∂x
u +

∂I

∂y
v +

∂I

∂t

)2

+ α Ψ
(

|∇u|2 + |∇v|2
)

)

dxdy

(24)
where Ψ is an increasing differentiable function, ∇ := (∂x, ∂y)

T the
2D nabla operator and α is a regularization parameter. It satisfies
necessarily the Euler equations:

0 = ∇ ·
(

Ψ′(|∇u|2 + |∇v|2)∇u
)

− 1

α

∂I

∂x

(

∂I

∂x
u +

∂I

∂y
v +

∂I

∂t

)

(25)

0 = ∇ ·
(

Ψ′(|∇u|2 + |∇v|2)∇v
)

− 1

α

∂I

∂y

(

∂I

∂x
u +

∂I

∂y
v +

∂I

∂t

)

(26)

where Ψ′ denotes the derivative of Ψ and ∇ ·
(a
b

)

:= ∂xa + ∂yb
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A solution to this can be obtained by calculating the steady-state
of the diffusion-reaction process:

uk = ∇ ·
(

Ψ′(|∇u|2 + |∇v|2)∇u
)

− 1

α

∂I

∂x

(

∂I

∂x
u +

∂I

∂y
v +

∂I

∂t

)

(27)

vk = ∇ ·
(

Ψ′(|∇u|2 + |∇v|2)∇v
)

− 1

α

∂I

∂y

(

∂I

∂x
u +

∂I

∂y
v +

∂I

∂t

)

(28)

where k is the diffusion time and for k → ∞, the solution (u, v)
represents a minimum of E(u, v).

The choice of the function Ψ influences substantially the regulariza-
tion process and therefore the results of the motion estimation. We
choose the function that has been considered by Schnörr (Schnörr,
1994) and Weickert (Weickert, 1998):

Ψ(s2) = λ2
√

1 + s2/λ2 (29)

The parameter λ is a positive constant which serves as a contrast
parameter see (Weickert, 1998).

The optical flow calculation can be implemented by an iterative
approach using the equations (27) and (28). This gives the following
for u and v at the iteration k + 1 at any position:

uk+1 = uk + ∆k

[

∇ ·
(

Ψ′(s)∇uk

)

− 1

α

∂I

∂x

(

∂I

∂x
uk +

∂I

∂y
vk +

∂I

∂t

)]

vk+1 = vk + ∆k

[

∇ ·
(

Ψ′(s)∇vk

)

− 1

α

∂I

∂y

(

∂I

∂x
uk +

∂I

∂y
vk +

∂I

∂t

)]

where s = |∇uk|2+|∇vk|2 and ∆k is the step size. We simply start with
a flow field of zero-vectors and iteratively adjust the motion vectors for
every pixel of the image until a certain convergence criterion has been
reached. The convergence criterion is usually based on the difference of
the energy functional to minimize between two iterations.

One practical problem that arises when estimating the optical flow
is that larger movements were not sufficiently approximated, i.e. the
algorithm gets stuck in local minima. In fact this happens when move-
ments are larger than the size of the mask used for the approximation
of the gradient. To overcome this a multiresolution procedure according
to Mémin and Pérez (Mémin and Pérez, 1998) was implemented. That
means that optical flow calculation is started on an image with coarser
(downsampled) resolution Ij and continued by increasing (doubling)
the resolution step by step until the size of the original image I0 (j
ranges from J to 0 where J represents the coarsest and 0 the finest
resolution). At each resolution the motion vectors of the previous step
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uj−1 are projected onto the new resolution (uj) and only the differ-
ences duj are calculated, i.e. the existing estimation is refined. The
projection (subsequently denoted T ) can be a duplication or a bilinear
interpolation.

Consequently the energy functional (24) becomes the following:

E(u, v) :=

∫

Ω

((

∇Ĩj · duj +
˜
Ij
t

)2

+ αΨ
(

|∇(Tuj+1 + duj)|2 + |∇(Tvj+1 + dvj)|2
)

)

dx dy (30)

where Ĩj = Ij(x − Tuj+1, t) and
˜
Ij
t = Ij(x, t + 1) − Ij(x − Tuj+1, t).

The Multiresolution approach can also help to avoid holes in the mo-
tion field of homogeneous zones, i.e. where |∇I| is low. That means mo-
tion fields of moving objects containing homogeneous zones are better
filled while also rendering their boundaries more blurry.

Object motion in image sequences is difficult to estimate if the se-
quences come from a mobile camera. Much better results are achieved
by compensating the camera motion, i.e. by estimating the global mo-
tion. See Annexe.(A) for details.

5.3. Results on Real Sequences

Let us now apply the active contour segmentation method on the op-
tical flow motion fields. The following results are all obtained using
descriptors based on the conditional entropy (see eqn. 22). We used
two competitive regions Ωin (object) and Ωout (background) in such a
way that the entropy of both regions will be minimized. Moreover a
contour-based descriptor is used for regularisation to obtain smoother
contours.

The optical flow as well as the active contour are calculated on two
different resolutions. The features that have been used are the vector
length |u| and the vector coordinates (u, v). The feature pair of vector
length and direction did not lead to satisfying results. The estimation
of the angle of the direction is prone to errors.

Figure 10 shows the final active contour of the ’tennis player’ se-
quence using the motion vector length as the segmentation feature
(f(x) = |u|). It can be remarked that one foot of the tennis player
has not been segmented properly. This is simply because it does not
move with respect to the two consecutive images that have been used.
Clearly, as only features that are based on the optical flow have been
used in the descriptors, objects that don’t move are not segmented.
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The irregularities in the curve are mainly due to inconsistencies in
the optical flow estimation. It would probably be useful to apply a
vectorial regularization in order to take into account that the data
are vectors and not scalar data. Moreover the little gap between the
curve and the right border of the object is caused by erroneous motion
detection of the optical flow method at zones that have been hidden
(occlusion problem).

Figure 11 shows the final contour when using the entropy of the
motion vector coordinates (u, v) instead of their length. Figure 12 shows
the evolution of the respective histograms. The values are quantized
using a 20 by 20 grid, however only the significant parts are displayed
for the sake of clarity. These results are similar to those using the vector
length.

Figure 14 shows the segmentation results of the ’taxi’ sequence.
Figure 13 illustrates the respective motion field. Here only taking the
length of vectors does not lead to satisfying results especially with the
car at the bottom left whereas taking (u, v) as segmentation feature
yields much better contours for the respective objects.

6. Conclusion

In this article, we propose a method of images and video segmentation
based on the minimization of a criterion. This criterion includes func-
tions of images features such as the entropy or the conditional entropy.
We relax the assumption of parametric distributions for these images
features by using a Parzen estimation.
Our first contribution is to use the methodological approach of the
shape gradient to derive the criterion. Second, we extend the method to
vectorial data. Third we can easily take into account a kernel depending
on the region in the Parzen estimator.
Experimental results show the accuracy of the presented method both
on segmentation of color images and on segmentation of optical flow
for moving objects in video sequences.
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Appendix

A. Compensation of Camera Motion

Global motion estimation is often based on a parametric model. In our
case this is a 6 parameter affine model and it is estimated using two
consecutive images of a sequence (Odobez and Bouthemy, 1995; Jehan-
Besson et al., 2002). The basic assumption we make is that the camera
motion is dominant in these images, i.e. we assume that the size of
the moving objects in the sequence is not too large with respect to the
background.
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The apparent motion wn(x) of a point x = [x, y]T in the 2D plane
between two images In−1 and In is thus modeled by:

wn(x) = Anx + tn =

(

an
11 an

12

an
21 an

22

) (

x
y

)

+

(

tn1
tn2

)

. (31)

In order to estimate the parameters of the model the ”Block Match-
ing” technique is applied. The principle of this method is to partition
the current image into blocks and for each block to find the motion
vector un = [dxn, dyn]T so that it corresponds to the respective block
in the preceding (or subsequent) image.

Using this estimation of movement we seek for the 6 parameters that
minimize the following criterion:

G(An, tn) =
∑

x∈ΩI

ϕ(|un(x) − Anx − tn|). (32)

The function ϕ eliminates outliers mainly due to object movement
and is chosen as the estimator of Geman and McLure (Geman and
Mc Lure, 1985).

Using the half-quadratic theorem (Charbonnier et al., 1997; Geman
and Mc Lure, 1985) the minimization problem can be equivalently
formulated as:

(An, tn) = arg min
(An,tn)

∑

ΩI

wrr
2 (33)

where r = |un − Anx − tn| and wr = ϕ′(r)
2r .

The objective is to estimate the 6 affine model parameters with
respect to two consecutive images, In−1 and In, and then to apply the
corresponding affine transformation on image In−1. This will create a
compensated image Icomp in such a way that the background remains
more or less fix between Icomp and In. Figure B illustrates this by
means of an example. The grey level represents the difference of the
pixel intensity.

Figure 9 shows the effect of camera motion compensation in context
with optical flow estimation. Without camera motion compensation it
seems impossible to segment the tennis player from the background.
This is due to the fact that the motion of homogeneous zones like the
green tennis court are not estimated correctly.
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B. Computation of the derivative of the pdf when the

variance of the kernel depends on the number of pixels

of the region

Now, we rather consider the following estimator:

q(f(x),Ω) =
1

h1

√

|Ω|

∫

Ω
K

(

(f(x) − f(x̂))
√

|Ω|
)

)dx̂. (34)

In this case, the domain derivative of q is the following:

q′r(f(x),Ω,V) =
1

2|Ω|

∫

∂Ω

q(f(x),Ω)(V · N)ds

+
1

h1

√

|Ω|

∫

∂Ω

M(f(x), Ω) − K

(

(f(x) − f(s))
√

|Ω|
)

(V · N)ds

where:

M(f(x), Ω) =

∫

Ω

−(f(x) − f(x̂))

2
√

|Ω|
K ′

(

(f(x) − f(x̂))
√

|Ω|
)

dx̂. (35)

Proof :
Let us denote:

G(Ω) =
1

h1

√

|Ω|
with h1 a normalization parameter. We can easily find that :

dGr(Ω,V) =
1

2 h1|Ω|3/2

∫

∂Ω

(V · N)ds.

Let us now denote:

H(f(x), Ω) =

∫

Ω
K

(

(f(x) − f(x̂))
√

|Ω|
)

)dx̂, (36)

we find that :

H ′
r(f(x), Ω,V) =

∫

Ω

−(f(x) − f(x̂))

2
√

|Ω|





∫

∂Ω

(V · N)ds



 K ′
(

(f(x) − f(x̂))
√

Ω
)

dx̂

−
∫

∂Ω

K

(

(f(x) − f(s))
√

|Ω|
)

(V · N)ds.

This leads to:

H ′
r(f(x), Ω,V) =

∫

∂Ω

(

M(f(x), Ω) − K

(

(f(x) − f(s))
√

|Ω|
))

(V · N)ds,
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where we note:

M(f(x), Ω) =

∫

Ω

−(f(x) − f(x̂))

2
√

|Ω|
K ′

(

(f(x) − f(x̂))
√

|Ω|
)

dx̂. (37)

Let us now compute the shape derivative of q, we have :

q′r(f(x), Ω,V) = H ′
r(F, Ω,V)G(Ω) + H(F), Ω) dGr(Ω,V). (38)

And so :

q′r(f(x),Ω,V) =
1

2|Ω|

∫

∂Ω

q(f(x),Ω)(V · N)ds

+
1

h1

√

|Ω|

∫

∂Ω

M(f(x), Ω) − K

(

(f(x) − f(s))
√

|Ω|
)

(V · N)ds.
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a. Initial curve b. Initial object’s histogram

c. Iteration 100 d. object’s histogram It. 100

c. Final curve d. Final object’s histogram

Figure 1. Joint evolution of the curve and its associated object’s histogram
(histogram of the region inside the curve)
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a. Initial curve b. Initial background’s histogram

c. Iteration 100 d. Background’s histogram It. 100

c. Final curve d. Final background’s histogram

Figure 2. Joint evolution of the curve and its associated background’s histogram
(histogram of the region outside the curve)
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Figure 3. Segmentation of the face in the video ‘Erik’ using color features
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b. Initial contour c. Final Contour

Figure 4. Moving rectangle: Segmentation
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a. Moving rectangles
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b. Initial contour c. Iteration 40
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d. Iteration 80 e. Final Contour

Figure 5. Moving rectangles: Segmentation
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a. Initial background’s histogram b. Initial object’s histogram
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c. Background’s histogram iteration 80 d. Object’s histogram iteration 80
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a. Final bacground’s histogram b. Final object’s histogram

Figure 6. Moving rectangles: Evolution of the histograms
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a. Enlarging disc
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b. Initial contour c. Final Contour

Figure 7. Enlarging disc: Segmentation

a. no camera b. with camera

motion compensation motion compensation

Figure 8. Difference of pixel intensity between In−1 and In (left) and between Icomp

and In (right)
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a. no camera compensation b. camera compensation

Figure 9. Optical flow with and without camera compensation

a. Initial Contour (small resolution) b. Iteration 680 (small resolution)

c. Final Contour

Figure 10. Active contour evolution using the vector length
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a. Initial Contour (small resolution) b. Intermediate contour

c. Final contour

Figure 11. Segmentation result using (u, v)
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a. Initial background’s histogram b. Initial Object’s histogram
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c. Background’s histogram (It. 120) d. Object’s histogram (It. 120)
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e. Final bacground’s histogram f. Final object’s histogram

Figure 12. Evolution of the histograms using (u, v)
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Figure 13. Optical flow of the ’taxi’ sequence
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a. Initial contour (small resolution)

b. Final contour using the vector length c. Final contour using (u, v)

Figure 14. Segmentation results of the ’taxi’ sequence
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