
INVOLUTIVE UPGRADES OF NAVIER-STOKES SOLVERS

BIJAN MOHAMMADI AND JUKKA TUOMELA

Abstract. We use ideas related to involutive completion of a system of PDEs to for-
mulate computational problems of fluid mechanics. As for the solution of differential
algebraic equations the approach requires solution of extra equations for derivative
consequences. The extra calculation cost is negligible while the discrete form becomes
much simpler to handle. We show that in this way we can quite easily improve the
performance of existing solvers. Another interest in this paper is the derivation of
special solutions of the Navier-Stokes system under incompressibility constraint in
cylindrical domains.

1. Introduction

The formal theory of PDEs brings in an important concept, the involutive form of a
given system [18, 16, 19, 17]. This is not very well known in the CFD community and
we would like to bring it into light through this paper.

The bottom line with this approach is that numerics for an involutive form is simpler
than for the original system because no compatibility relation is necessary between
discretization spaces. This permits on one hand the use of generic commercial tools
and on the other hand it makes easier to reach higher accuracy by increasing the order
of finite elements for a particular variable. And this without being limited by possible
compatibility issues for discretization between variables. For instance, one interesting
consequence is that inf-sup or LBB condition (Ladyzhenskaya-Babuska-Brezzi [2, 3, 11])
for the Stokes problem disappears: the system stays stable even with higher order
discretizations for the pressure than velocity [13].

From a mathematical point of view involutivity is important because it turns out that
determining the properties of a given system is in general possible only if the system
is involutive. For example some systems may not be elliptic (resp. parabolic) initially,
but their involutive forms are elliptic (resp. parabolic) [8, 10]. The construction of the
involutive form essentially means that one has to find all the integrability conditions
of the given system. This may be easy in some cases, but in general it requires the use
of symbolic computation [8, 9, 12, 17]. We will argue that the involutive form is also
important from the point of view of numerical computations and illustrate this issue
through examples in fluid dynamics computation.

The approach by formal theory is helpful especially in situations where the physical
models have constraints or conserved quantities which make the system essentially
overdetermined. This is a very frequent situation. However, usually in numerical
computations one uses square models (as many equations as unknowns). But then if one
“forces” the system to be square by dropping some relevant equations/constraints one
may encounter great difficulties in designing appropriate numerical methods because
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the methods should then take into account the properties of the system which are only
implicitly represented in the system. We propose to use the involutive form, i.e. all
relevant information is explicitly available.

Our aim here is to show that our approach can also improve existing solvers with
light implementation effort. This is illustrated for an existing stabilized Navier-Stokes
solver based on the Chorin projection algorithm [4] with boundaries treated by a level
set method. We also exhibit some exact solution of the Stokes and Navier-Stokes
systems useful for the validation of numerical solvers for rotating flows in cylindrical
domains.

2. Involutive systems

2.1. Basic idea. Let us recall what we mean by involutive systems [6, 12, 16, 17, 18,
19, 13]. To make things easier, we consider a simple system

∇× y + y = 0

Taking the divergence we see that if y is a solution, then it must also satisfy ∇ · y = 0.
This new equation is called a differential consequence or integrability condition of the
initial system. Hence we have two systems:

(2.1) S : ∇× y + y = 0 S ′ :

{

∇× y + y = 0

∇ · y = 0

We say that S ′ is the involutive form of S because no more new first order differential
consequences can be found. Now, S is not elliptic while S ′ is elliptic (or injective, which
guarantees uniqueness of solutions). But, the completed system S ′ is not square, i.e. it
has more equations than unknowns. And, general numerical methods are designed for
square systems. Below, we described how to transform an involutive system into square
finding a compatibility operator in order to keep the augmented system injective.

2.2. From Involutive to Augmented systems . This section introduces the math-
ematical background describing how to obtain an augmented system from an involutive
or completed one (where all integrability conditions have been added as in the example
above).

Let us consider our problem in a general form

(2.2) A0y = f

and let us suppose that A0 is already in completed form. For definiteness let us also
suppose that A0 is an elliptic operator. We refer to [6, 8, 9] for more information on
overdetermined elliptic operators as well as relevant boundary conditions for them.

Now since A0 is in general overdetermined, there are typically no solutions for ar-
bitrary f ; hence there are some compatibility conditions for f . These conditions are
given by an operator A1 such that A1A0 = 0 and (2.2) has a solution only if A1f = 0.
Such an operator A1 is called the compatibility operator ; for more technical definition
we refer to [6].

Let us now introduce some function spaces Vi such that Ai : Vi → Vi+1. It is
convenient to represent these spaces and operators with help of some diagrams. Let us
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consider the sequence of such operators:

. . . // Vi
Ai

// Vi+1

Ai+1
// Vi+2

// . . .

Such a sequence is a complex, if Ai+1Ai = 0 for all i. The complex is exact at Vi+1, if
image

(

Ai

)

= ker
(

Ai+1

)

. It is exact, if it is exact at all Vi. For example the exactness
of the complexes

0 // VA
A

// WA , VB
B

// WB
// 0 ,

mean that A is injective and B is surjective.
Let us now suppose that the following complex is exact1:

0 // V0
A0

// V1
A1

// V2
// 0

This suggests that we can decompose V1 as follows:

image
(

A0) ⊕ image
(

AT
1 ) ≃ V1

where AT
1 is the formal transpose of A1. Of course to be able to write equality instead of

≃ we should specify carefully the relevant vector spaces. However, this decomposition
is obviously valid if Vi are finite dimensional vector spaces and Ai are linear maps.
Anyway, proceeding formally, this decomposition suggests that it is indeed possible to
find some functional framework such that the combined operator (A0, A

T
1 ) would be

bijective or Fredholm. Hence reasonable discretizations of these operators should yield
a well-posed numerical problem.

So instead of trying to solve the original system (2.2) in some least square sense, we
introduce an auxiliary variable z and solve

(2.3) A0y + AT
1 z = f

We call this system the augmented system. This formulation is reasonable because
the augmented system is square, hence standard software is readily available. Also
all the relevant information about the original system is contained in the completed
operator A0 which means that the results will be reliable. The drawback is that we
have introduced an extra variable z which increases the computational cost. However,
we can use z in error indicator, also useful for mesh adaptation, and the work done for
computing z will not be in vain.

Applying the above ideas to our example (2.1) we obtain the following augmented
system:

(2.4) S ′′ :

{

∇× y + y −∇z = 0

∇ · y − z = 0

In this case A1 =
(

∇· , −1
)

. Now we have as many equations than variables. This
system is elliptic, and could be solved in a straightforward manner. On the other hand
a proper discretization of the original system S would be difficult because the principal

1From our application point of view, spaces Vi are functional spaces for the solution and right-
hand-side in the augmented Stokes or Navier-Stokes systems 5.2. Space V0 (resp. V1 and V2) is
the function space for u and p (resp. f and z). In the same way, in discrete form with any finite
element discretization for variables (u, p, z) the space V0 (resp. V1 and V2) will be generated by the
corresponding finite element basis for u and p (resp. f and z) on the chosen mesh.
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part of the operator has an infinite dimensional kernel. Hence in the numerical solution
there may appear components which are approximately in this kernel; these are called
spurious solutions [7].

So in this example we first pass to the completed form which eliminates the infinite
dimensional kernel of the principal part, and then pass to the augmented system which
provides a numerically convenient way to do the computations. Precisely the same idea
applies in the general case: a completed system has better properties than the original
system, and augmented system is used in the computations.

3. Rotating flow in cylinder

The domain of application we consider is centrifugation for which we will exhibit
some non trivial analytical solution for the Stokes and Navier-Stokes systems. These
are useful to validate general numerical simulation tools for such flows.

3.1. Geometry and boundary conditions. Let us now first consider finite and
infinite cylinder with radius one:

Ω =
{

(r, θ, z) | 0 ≤ r < 1
}

ΩL =
{

(r, θ, z) | 0 ≤ r < 1 , |z| < L
}

Their boundaries are denoted by

Γ = Γ1 ∪ Γ2 where

Γ1 =
{

(r, θ, z) | r = 1 , z > 0
}

Γ2 =
{

(r, θ, z) | r = 1 , z < 0
}

and

ΓL = Γ1
L ∪ Γ2

L ∪ Γ3
L ∪ Γ4

L where

Γ1
L =

{

(r, θ, z) | r = 1 , 0 < z ≤ L
}

Γ2
L =

{

(r, θ, z) | r = 1 , −L ≤ z < 0
}

Γ3
L =

{

(r, θ, z) | 0 ≤ r ≤ 1 , z = L
}

Γ4
L =

{

(r, θ, z) | 0 ≤ r ≤ 1 , z = −L
}

We consider the fluid flow in the cylinder and express the velocity field in cylindrical
coordinates: u =

(

ur, uθ, uz
)

. Let us consider the following boundary conditions on the
finite cylinder ΩL:

(3.1)

ur = uz = 0 on all ΓL

uθ = 1 on Γ1
L

uθ = 0 on Γ2
L and Γ4

L

uθ = r on Γ3
L

In other words we rotate the upper part of the cylinder while the lower part remains
fixed.
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3.2. Special solutions. Now, we will use some elementary properties of Bessel func-
tions [1] to exhibit analytical solutions for the Stokes and Navier-Stokes systems for
the geometry and boundary conditions above. The Bessel functions (resp. modified
Bessel functions) of order n which are bounded at origin are denoted by Jn (resp. In).

Writing the Stokes system in R
3 in cylindrical coordinates we obtain

(3.2)



































−ur
rr −

1
r2 ur

θθ − ur
zz −

1
r
ur

r + 2
r2 uθ

θ + 1
r2 ur + pr = 0

−uθ
rr −

1
r2 uθ

θθ − uθ
zz −

2
r2 ur

θ −
1
r
uθ

r + 1
r2 uθ + 1

r
pθ = 0

−uz
rr −

1
r2 uz

θθ − uz
zz −

1
r
uz

r + pz = 0

ur
r + 1

r
uθ

θ + uz
z + 1

r
ur = 0

prr + 1
r2 pθθ + pzz + 1

r
pr = 0

Looking for some solutions with separation of variables we find two cases.

3.2.1. first case. We consider first the case where only the uθ component is nontrivial,
and assume that this component does not depend on θ. Hence if we put uθ = br(r)bz(z)
we find two families of solutions:

(3.3)



















ur = 0

uθ = (a0 + b0z)r +
∑∞

k=1

(

ake
µkz + bke

−µkz
)

J1(µkr)

uz = 0

p = constant

(3.4)



















ur = 0

uθ = (a0 + b0z)r +
∑∞

k=1

(

ak cos(γkz) + bk sin(γkz)
)

I1(γkr)

uz = 0

p = constant

3.2.2. pressure. For the pressure we always have ∆p = 0. Looking again for the solu-
tions which do not depend on θ we get two cases

(3.5) p =
(

c1e
µz + c2e

−µz
)

J0(µr)

(3.6) p =
(

c1 cos(µz) + c2 sin(µz)
)

I0(µr)

When we allow the dependence on θ we get

(3.7) p =
(

c1e
µz + c2e

−µz
)(

c3 cos(nθ) + c4 sin(nθ)
)

Jn(µr)

and

(3.8) p =
(

c1 cos(µz) + c2 sin(µz)
)(

c3 cos(nθ) + c4 sin(nθ)
)

In(µr)

where n is an integer.
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3.2.3. 2nd case. Let us now try solutions of the form

u(r, z) =
(

ar(r)az(z), 0, cr(r)cz(z)
)

Let the pressure be given by (3.5).

(3.9)























ur = J1(µr)
(

(

− c1 + c4 − 2c1µz
)

eµz +
(

− c2 − c3 + 2c2µz
)

e−µz
)

uθ = 0

uz = J0(µr)
(

(

− c1 − c4 + 2c1µz
)

eµz +
(

c2 − c3 + 2c2µz
)

e−µz
)

p = 4µ
(

c1e
µz + c2e

−µz
)

J0(µr)

Then if the pressure is given by (3.6):

(3.10)























ur = I1(µr)
(

(

− c1 + c4 − c2µz
)

cos(µz) +
(

− c3 + c1µz
)

sin(µz)
)

uθ = 0

uz = I0(µr)
(

(

c2 − c3 + c1µz
)

cos(µz) +
(

− c4 + c2µz
)

sin(µz)
)

p = 2µ
(

c1 cos(µz) + c2 sin(µz)
)

I0(µr)

Hence we have four families of solutions.
Of course linear combinations of 1st and 2nd cases are also solutions.

3.3. Application to (3.1). We can solve the problem in finite cylinder with boundary
condition (3.1) by combining solutions of the form (3.3) and (3.4). Let us denote by
µk the zeros of J1 and let γk = kπ/L. Let us consider functions

fI(r, z) =a0r +
∞

∑

k=0

a2k+1 sin(γ2k+1z)I1(γ2k+1r)

fJ(r, z) =b0r +
∞

∑

k=1

bk sinh(µkz)J1(µkr)

Now let us choose a0 = b0 = 1/2 and

a2k+1 =
2

Lγ2k+1I1(γ2k+1)

bk = −
1

µk sinh(µkL)J0(µk)

Then one can verify that

(3.11) u =
(

ur, uθ, uz
)

=
(

0, fI + fJ , 0
)

, p = constant

is a solution of the problem (3.2) with boundary conditions (3.1) as shown in figures
5.1 and 5.2.
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Figure 3.1. The solution component uθ in (3.11) with L = 2 as a
function of x3 for r = 0.1, r = 0.5 and r = 0.9.

4. Level set

In our solver boundaries have been accounted for through a level set representation
which is an established technique to represent fixed or moving interfaces on cartesian
grids. Immersed boundary, fictitious domain methods as well as penalizing techniques
are methods to impose boundary conditions on surfaces which are not unions of edges
and faces of elements of the (non-body fitted) computational mesh [5, 14, 15].

A parametrization of a boundary Γ by the level set method is based on the zero-level
curve of a function ψ:

Γ = {x ∈ Ω : ψ(x) = 0}

The function ψ could be the signed Euclidean distance to Γ:

ψ(x) = ± inf
y∈Γ

|x − y|

with the convention of a plus sign if x ∈ Ω and minus sign otherwise. Hence

(4.1) ψ|Γ = 0, ψ|IRd\Ω < 0, ψΩ > 0

The definition can be extended to open shapes by using Γ± instead of Ω.
For a given shape given by (4.1) the normal to Γ is n = ∇ψ/|∇ψ| at ψ = 0.
A relaxed signed characteristic function of Ω and its set-complement is

(4.2) χ = ψ/(|ψ| + εopt(h))

where εopt(h) is a “relaxation function” strictly positive tending to zero with the back-
ground mesh sizeh. It is defined solving minimization problems for a sampling in h:

εopt(h) = argminε(h)>0‖uh(χ(ψh(ε(h)))) − Πh uref‖

where Πh is the restriction operator to mesh h and uh the discrete state. The numerical
results given below have been computed with εopt(h) = ch for some constant c > 0.
This choice guarantees the consistency of the scheme. The coefficient c is fitted, once
for all, in order to minimize the error ‖uref −uε

h‖ for a reference solution uref which can
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be either a solution obtained with a body fitted mesh or, when available, an analytical
solution.

Once ψh is known, we take into account the boundary conditions for a generic state
equation Fh(uh) = 0 using the equation

Fh(uh)χ(ψh) + FΓh
(uh)δψh

= 0

Here FΓh
is the extension of the boundary condition for Fh on Γh over the domain and

δψ is a relaxed Dirac measure which is constructed using χ(ψh) and whose support
approximates the boundary.

5. Involutive and augmented forms of Navier-Stokes system

In the past we have shown how involutive completion improves numerical solution
of constrained PDE systems [13]. Our aim is to show that the approach can improve
existing solvers with very low implementation effort. Hence, we would like to test
our formulation on an existing stabilized Navier-Stokes solver based on the Chorin
projection algorithm [4] and using level set function to account for complex geometries
on cartesian meshes.

Consider the time dependent Stokes system

(5.1)

{

ut − ∆u + ∇p = f

∇ · u = 0

Putting y = (u, p) we can write it as A0y = 0. The compatibility operator for A0 is

A1 =
(

∇·, 1, ∂t − ∆
)

and hence the augmented system is

(5.2) A0y + AT
1 z =











ut − ∆u + ∇p −∇z = 0

−∆p + z = 0

zt −∇ · u − ∆z = 0

Semidiscretizing in time we see that at each step we have to solve

(5.3) A0y
n + AT

1 zn =











αun − ∆un + ∇pn −∇zn = αun−1

−∆pn + zn = 0

−∇ · un + (αI − ∆)zn = 0

Here α = 1/δt (δt is the time step). The involutive approach can be extended to Navier-
Stokes equations using the method of characteristics. Let us introduce the Lagrangian
derivative of the velocity: Du/Dt = ∂u/∂t + u∇u and denote the characteristic vector
field by X . Then we semidiscretize along the characteristics by

Du

Dt
(x) = α(un(x) − un−1(X n−1(x)))

where we consider the characteristic issued from x, i.e. the solution of the ODE below
with boundary conditions at the end of the interval:

d

dτ
X (τ) = un−1(τ,X (τ)), X (tn) = x, τ ∈ [tn−1, tn],
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and call X n−1(x) = X (tn−1). The augmented system becomes then

(5.4) A0y + AT
1 z =











Du
Dt

− 1
Re

∆u + ∇p −∇z = 0

−∆p + z = −∇ · (Du
Dt

)

−∇ · u +
(

D
Dt

− 1
Re

∆
)

z = 0

One sees that the approach does not remove the need for upwinding as a total derivative
formulation needs to be considered. In practice, any upwinding technique can be
applied.

5.1. Numerical implementation. The Navier-Stokes solver we consider is based on
the classical widely used Chorin projection iterations [4] (un

h, p
n
h given):

(5.5)















Dhun

h

Dt
− 1

Re
∆hu

n
h = 0 → u

n+1/2
h

−∆hp
n+1
h + 1

δt
∇h · u

n+1/2
h = 0 → pn+1

h

un+1
h = u

n+1/2
h − δt∇hp

n+1
h → un+1

h

This algorithm treats separately the pressure and the advection/diffusion terms in

the Navier-Stokes equations. We use an intermediate velocity field u
n+1/2
h (in general

∇h ·u
n+1/2
h 6= 0 ) to take into account advection and diffusion, and then use the Poisson

equation for pressure to enforce ∇h · u
n+1
h = 0.

Of course, the new augmented system 5.4 can be solved simultaneously and does not
need a projection step. But, here we would like to update this solver in order to keep
its structure and its other features. This is of practical importance as often solvers
have special ingredients to account for various physical phenomenon (turbulence, com-
bustion, ...) and it is interesting to be able to keep those.

un
h, p

n
h, z

n
h given:

(5.6)























Dhun

h

Dt
− 1

Re
∆hu

n
h −∇hp

n
h = 0 → u

n+1/2
h

−∆hz
n+1
h = −∆hp

n
h + 1

δt
∇h · u

n+1/2
h = 0 → zn+1

h

−∆hp
n+1
h = −∆hz

n+1
h → pn+1

h

un+1
h = u

n+1/2
h − δt∇hz

n+1
h → un+1

h

z0
h is initialized as uniformly zero. The boundary conditions for z need be compatible

with the target solution which is with z vanishing. Then either homogeneous Dirichlet
or Neuman conditions are valid. We imposed the former on the cylinder and the later
on the two extremities. In this algorithm, the projection step uses z and not p anymore.
In term of programming this does not need development of new coding ingredients.

It is interesting to notice that the constant pressure solution is also a solution for
the Navier-Stokes system and is suitable for the validation of such flow solvers. Figure
5.3 shows the effect of the algorithm on the results for the constant pressure solution
case. One sees that the calculated solution is closer to the exact solution and this
also on coarse meshes. As expected solving Navier-Stokes directly results in some
problems with pressure at z = 0, especially near r = 1. While our method gives
a much smoother approximation to constant pressure. Note that the above problem
is essentially a scalar problem because of the special coordinate system used in the
analysis. However, numerical computations ignore that information and are done in
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cartesian coordinates (on cartesian meshes with boundaries expressed through level
sets).

Figure 5.1. Analytical velocity solution of (3.2) with boundary condi-
tions (3.1) (cross-section at z = −L, 0, L). Pressure is constant.

Figure 5.2. Velocity fields (cross-section at z = −L, 0, L). Left: initial
Chorin 5.5, right: augmented 5.6. As expected, not much differences can
be seen on the primal variable.

It is interesting to see how much could have been gained if considering the full
augmented system 5.4 in discrete form instead of the update 5.6:

un
h, p

n
h, z

n
h , (z0

h = 0) given:

(5.7)



















Dhun+1

h

Dt
− 1

Re
∆hu

n+1
h + ∇hp

n+1
h −∇hz

n+1
h = 0

−∆hp
n+1
h + zn+1

h + ∇ · (
Dhun+1

h

Dt
) = 0

(

Dh

Dt
− 1

Re
∆h

)

zn+1
h −∇h · u

n+1
h = 0

Figure 5.4 indicates that the augmented system preserves the exact solution and
over-perform the involutive upgrade which did improve the original Chorin projection
prediction shown in figure 5.3. But the full implicit treatment required in 5.4 is costly.
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Figure 5.3. Impact of upgrading Navier-Stokes solvers to involutive
on the pressure. Top: pressure on three meshes (11*11*21, 21*21*41,
41*41*81). Exact pressure is constant. Mesh independency is almost
achieved for the intermediate mesh. Lower-left: initial Chorin 5.5, lower-
right: augmented 5.6 (21*21*41 mesh).

Note that the equation for z in (5.4) is not used in (5.6). This suggests that if we set

εn
h = −∇h · u

n
h +

(Dh

Dt
−

1

Re
∆h

)

zn
h

then we could use εn
h as an error indicator. Using this indicator we can see the effect

of inadequate coordinate system on the numerical solution in figure 5.5. Hence most
of the error in our method is due to the treatment of boundary conditions by the level
set method. This is a common situation in practice. The error would have been lower,
if curvilinear elements had been used to represent the boundary, but this is rarely the
case in simulation solvers.
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Figure 5.4. Left: pressure with 5.4 at x3 = −L , 0 , L. Right: pressure
comparison with and 5.6.

Figure 5.5. Left: indicator ε on the 21×21×41 mesh at x3 = −L , 0 , L.
Right: same with pressure and third velocity component set to their
exact values.

Of course, another error indicator is z itself. Figure 5.6 shows iso-surfaces for z
for calculations with the Chorin algorithm for the involutive system 5.6 and with the
full augmented system 5.4. The results are clearly superior when considering the full
system.

6. CONCLUDING REMARKS

We have applied the involutive formulation of overdertermined systems of PDEs to
the numerical solution of Navier-Stokes equations in 3D. After the derivation of some
analytic solutions featuring discontinuities on the boundary, these have been used to
evaluate the performance of a classical Navier-Stokes solver compared to the same
solver upgraded with some of the features of involutive formulation of the equations.
The results show that the updated version, staying close to the original formulation
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Figure 5.6. z on the 21×21×41 mesh at x3 = −L , 0 , L with system
5.6 (left) and the full augmented system 5.4.

produces superior results at virtually no extra computational cost. Finally using full
involutive formulation we get still better results, but this time the extra computational
cost is not negligible.
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