
HAL Id: hal-00417928
https://hal.science/hal-00417928

Submitted on 17 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sharp Tractability Borderlines for Finding Connected
Motifs in Vertex-Colored Graphs

Michael R. Fellows, Guillaume Fertin, Danny Hermelin, Stéphane Vialette

To cite this version:
Michael R. Fellows, Guillaume Fertin, Danny Hermelin, Stéphane Vialette. Sharp Tractability Bor-
derlines for Finding Connected Motifs in Vertex-Colored Graphs. 34th International Colloquium on
Automata, Languages and Programming (ICALP 2007), 2007, Wroclaw, Poland. pp.340-351. �hal-
00417928�

https://hal.science/hal-00417928
https://hal.archives-ouvertes.fr

Sharp Tractability Borderlines for Finding
Connected Motifs in Vertex-Colored Graphs

Michael R. Fellows1, Guillaume Fertin2, Danny Hermelin?3, and Stéphane Vialette4

1 School of Electrical Engineering and Computer Science,
The University of Newcastle, Calaghan NSW 2308 - Australia

mike.fellows@cs.newcastle.edu.au
2 Laboratoire d’Informatique de Nantes-Atlantique (LINA), FRE CNRS 2729
Université de Nantes, 2 rue de la Houssinière, 44322 Nantes Cedex 3 - France

fertin@lina.univ-nantes.fr
3 Department of Computer Science, University of Haifa,

Mount Carmel, Haifa 31905 - Israel
danny@cri.haifa.ac.il

4 Laboratoire de Recherche en Informatique (LRI), UMR CNRS 8623
Faculté des Sciences d’Orsay - Université Paris-Sud, 91405 Orsay - France

vialette@lri.fr

Abstract. We study the problem of finding occurrences of motifs in vertex-colored graphs, where a
motif is a multiset of colors, and an occurrence of a motif is a subset of connected vertices with a
bijection between its colors and the colors of the motif. This problem has applications in metabolic
network analysis, an important area in bioinformatics. We give two positive results and three negative
results that together draw sharp borderlines between tractable and intractable instances of the problem.

1 Introduction

Vertex-colored graph problems have numerous applications in bioinformatics: Sandwich problems
have applications in DNA physical mapping [9, 16, 18] and in perfect phylogeny [11, 21], while vertex-
recoloring problems arise in protein-protein interaction networks and phylogenetic analysis [10, 12,
22]. In this paper, we consider another natural vertex-colored graph problem with an interesting
application in bioinformatics:

Graph Motif:
Input: A vertex-colored graph G and a multiset of colors M .
Question: Does G have a connected subset of vertices with a bijection between its colors

and M?

The Graph Motif problem was introduced in a slightly more general form by Lacroix, Fer-
nandes, and Sagot (who allowed multiple colors per vertex) in the context of metabolic network
analysis, an important area in bioinformatics [20]. There, vertices correspond to chemical com-
pounds or reactions, and edges correspond to interactions between these compounds and reactions.
The vertex coloring is used to specify different chemical types or functionality. In this scenario,
connected motifs correspond to interaction-related sub-modules of the network which consist of a
specific set of chemical compounds and reactions. It is argued in [20] that a method for a rational
decomposition of a metabolic network into relatively independent functional subsets is essential for
a better understanding of the modularity and organization principles in the network. We refer the
reader to [14, 20] for more biological background of the problem. We also refer to [19] for related
relevant work.
? Partially supported by the Caesarea Rothschild Institute.

Graph Motif can also be viewed as a generic pattern-matching problem in graphs. Indeed, if
G is a path, then the problem reduces to finding unordered occurrences of a given pattern in a given
text. Unordered pattern-matching is recently receiving a lot of attention in the pattern-matching
community [3–5], and as far as we know, this is the only paper which considers this scenario in
trees, not to mention graphs.

In [20], Graph Motif is proved to be NP-complete even if the given vertex-colored graph is a
tree, but fixed-parameter tractable in this case when parameterized by the size of the given motif
(i.e. |M |). However, as observed by [20], their fixed-parameter does not apply when the vertex-
colored graph is a general graph. For this case they only provided a heuristic algorithm which
works well in practice. This motivates us to further investigate the tractability landscape of Graph
Motif, and in particular, to investigate it under different parameters which govern the structure of
its input. We give an extensive analysis for Graph Motif, applying techniques from both classical
and parameterized complexity, that unravels sharp borderlines between tractable and intractable
instances of the problem. More specifically, we give two algorithms and three hardness results that
together imply:

1. For motifs of unbounded size, Graph Motif is NP-complete already for trees of maximum
degree 3, even if the motif is a set of colors rather than a multiset. For motifs of logarithmic
size (in the number of vertices of G), the problem is polynomial-time solvable in any general
graph.

2. Graph Motif is NP-complete for motifs with 2 colors, even if G is bipartite with maximum
degree 4. However, it is polynomial-time solvable in constant treewidth graphs for motifs con-
sisting of any constant number of colors (and arbitrary size). When the number of colors in the
motif is taken as a parameter, Graph Motif is W[1]-hard even in case G is a tree.

The rest of the paper is organized as follows. In the reminder of this section we discuss
notations that will be used throughout the paper. In Section 2, we give two NP-hardness results
that will motive the rest of our discussion. Following this, in Section 3 we present a fixed-parameter
algorithm (parameterized by |M |) that that applies for any general graph. In Section 4 we discuss
the case when G has bounded treewidth. Finally, in Section 5, we show that Graph Motif is
W[1]-hard on trees when parameterized by the number of colors in M .

Basic notation and terminology: Throughout the paper, we use G = (V (G), E(G)) to denote
our given vertex-colored graph, and n = |V (G)| to denote its order. For a vertex v ∈ V (G), we use
χ(v) to denote the color of v, and for a vertex subset V ⊆ V (G), we let χ(V) denote the multiset of
colors

⋃
v∈V χ(v). For any vertex subset V ⊆ V (G), we let G[V] denote the subgraph of G induced

by V , i.e. the subgraph on V along with all edges of G that connect vertices in V . We assume
w.l.o.g. that G is connected.

A motif M is a multiset of colors. If M is in fact a set rather than a multiset, we say that M
is colorful. Given a subset of vertices V ⊆ V (G), |V | = |M |, we say that V is colored by the colors
of M , if χ(V) = M . For V to be an occurrence of M , we require not only for V to be colored
by the colors of M , but also for G[V] to be connected. If this is in fact the case, we say that M
occurs at v for any vertex v ∈ V . In these terms, the Graph Motif problem is the problem of
determining whether a given motif M occurs at any vertex of a given vertex-colored graph G. We
assume w.l.o.g. that χ(v) ∈ M for any v ∈ V (G).

Our analysis is based both on the classical and parameterized complexity frameworks. Readers
unfamiliar with these subjects are referred to [15, 17].

2 Tight NP-Hardness Results

As mentioned previously in Section 1, Graph Motif is already known to be NP-complete for trees
in [20]. Our aim in this section is to tighten this result by showing that Graph Motif remains
hard for highly restrictive graph classes, even if we restrict ourselves to motifs which are sets rather
than multisets, or to motifs which consist of a small number of colors.

We first consider colorful motifs. Recall that a motif M is colorful if it consists of |M | distinct
colors. At first sight, it might seem that occurrences of colorful motifs should be easier to find, at
least for certain types of graphs. Unfortunately, the following theorem proves that this is apparently
not the case.

Theorem 1. Graph Motif is NP-complete, even if M is colorful and G is a tree of maximum
degree three.

Proof. Graph Motif is clearly in NP. To prove NP-hardness, we present a reduction from the well
known NP-complete problem 3-SAT [17]. Recall that 3-SAT asks to determine whether a given
3-CNF formula is satisfiable, that is, whether there is a truth assignment to the boolean variables
of the formula, such that the value of the formula under this assignment is 1. The problem remains
hard even if each variable appears in at most three clauses and each literal (i.e. variable with or
without negation) appears in at most two clauses [17]. Hence, we restrict ourselves in our proof to
formulas of this type.

Let an instance of 3-SAT be given in the form of a 3-CNF formula Φ = c1 ∧ · · · ∧ cm over
variables x1, . . . , xn such that |{cj | xi ∈ cj}| ≤ 2 and |{cj | x̄i ∈ cj}| ≤ 2 for all 1 ≤ i ≤ n. We
construct an instance for Graph Motif as follows. The colored graph G initially consists of a
path of n vertices, each colored by a distinct color in 1, . . . , n. To a vertex colored i in this path,
1 ≤ i ≤ n, we connect a new vertex colored i′. To a vertex colored i′, 1 ≤ i ≤ n, we connect a pair
of new non-adjacent vertices, both colored xi. Conceptually, each vertex in this pair corresponds
to a different truth assignment for xi. If a truth assignment to variable xi satisfies clause cj , we
connect a new vertex colored cj to the vertex colored xi which corresponds to this assignment. This
is done for every xi ∈ {x1, . . . , xn} and every cj ∈ {c1, . . . , cm}. We conclude our construction by
specifying M to be the set of colors {1, . . . , n, 1′, . . . , n′, x1, . . . , xn, c1, . . . , cm}. A simple example
of this construction is given in Fig. 1. Note that G and M are as required by the theorem.

1 2 3

1’ 2’ 3’

x1 x1
x2 x2

x3 x3

c1 c1 c1c3 c3 c3c2 c2 c2

Fig. 1: An example of the construction of G out of a 3-CNF formula which consists of three clauses: c1 = (x1∨x2∨x3),
c2 = (x̄1 ∨ x2 ∨ x̄3), and c3 = (x1 ∨ x̄2 ∨ x̄3).

The construction above is clearly polynomial. Hence, to complete the proof, we are left to show
that M occurs in G if and only if Φ is satisfiable. For the first direction, assume that there exists a
truth assignment φ which satisfies Φ. Let N ⊆ V (G) be the subset of vertices in G which are colored
by the colors in {1, . . . , n, 1′, . . . , n′}, and let X ⊆ V (G) be the subset of vertices which correspond
to assignment φ. Hence, X consists of n vertices which are colored by the colors in {x1, . . . , xn},

and N ∪ X induces a connected subgraph. Since φ satisfies every clause in Φ, by construction of
G there is a vertex colored cj in the neighborhood of X for every 1 ≤ j ≤ m. In other words, there
exists C ⊆ N(X) which is colored by the colors in {c1, . . . , cm}. It follows that V = N ∪ X ∪ C
is connected and is colored by the colors of M , and therefore is an occurrence of M in G.

For the converse direction, assume there exists an occurrence V of M in G. Let X ⊆ V be
the vertices colored by the colors in {x1, . . . , xn}, C ⊆ V be the vertices colored by the colors in
{c1, . . . , cm}, and φ the truth assignment corresponding to X. By construction, a vertex colored cj

is connected in G to a vertex colored xi if and only if the truth assignment corresponding to this
vertex satisfies clause cj . Since C contains all colors in {c1, . . . , cm}, and since vertices in C are
connected only to vertices in X, it follows that φ satisfies every clause in Φ, and so it satisfies Φ
itself. ut

Theorem 1 implies that for motifs of unbounded cardinality, there are not many interesting
special cases of Graph Motif left that become polynomial-time solvable. Note that if G is a tree
of maximum degree two, then G is actually a path, and Graph Motif becomes trivial (simply
search through all subpaths of length k). Other cases where G is restricted to special subclasses
of trees (e.g. caterpillars) become easily polynomial-time solvable as well. However, the motif in
the construction above is not only of unbounded size, it also consists of an unbounded number
of colors. One might hope that for motifs which consist of only a small number of colors, Graph
Motif would become polynomial-time solvable. The following theorem shows that this is not the
case in a very sharp sense.

Theorem 2. Graph Motif is NP-complete, even if M consists of two colors, and G is bipartite
with maximum degree four.

Proof. We reduce from the Exact Cover by 3-Sets (X3C) problem, which is known to be NP-
complete [17]. Recall that, given a set X = {x1, x2, . . . , x3q} and a collection S = {s1, s2, . . . , sn} of
3-element subsets of X, the X3C problem asks to determine whether there exists an exact cover of
X in S, i.e. a sub-collection C ⊆ S such that every element of X is included in exactly one subset
si ∈ C. The problem is hard even if each element of X appears in at most three sets of S [17], so
we restrict ourselves in the proof to instances of this type.

Let 〈X, S〉 be an arbitrary instance of the X3C problem with |{sj ∈ S |xi ∈ sj}| ≤ 3 for all
xi ∈ X. We show how to construct a motif M and a colored graph G in such a way that there
exists an exact cover of X in S if and only if M occurs in G. First, we define M so as it contains
2n+3q white elements and q black elements. Then, we define G by V (G) = X ∪ S ∪ S′ ∪ S′′ and
E(G) = E1 ∪ E2 ∪ E3 ∪ E4, where S′ = {s′1, s′2, . . . , s′n} and S′′ = {s′′1, s′′2, . . . , s′′n} are dummy
copies of S, and E1, E2, E3, E4 are defined by: E1 = {{xi, sj} |xi ∈ sj}, E2 = {{si, s

′
i} | 1 ≤ i ≤ n},

E3 = {{s′i, s′′i } | 1 ≤ i ≤ n}, and E4 = {{s′′i , s′i+1} | 1 ≤ i ≤ n− 1}. The vertices of X ∪ S′ ∪ S′′ are
colored white and the vertices of S are colored black. It is easily seen that G and M are as required
by the theorem, and that our construction can be carried out in polynomial time.

Let us now argue that there exists an exact cover C ⊆ S of X if and only if M occurs in G.
For the first direction, suppose that there exists an exact cover C ⊆ S of X. Consider the subset
of vertices V = X ∪ C ∪ S′ ∪ S′′. First note that V consists of q = |C| black vertices and
2n + 3q = |X ∪ S′ ∪ S′′| white vertices. Second, since C is a cover of X, every vertex of X is
connected to some vertex in C, and C is connected to S′ ∪ S′′, so V itself is connected. It follows
that V is an occurrence of M , and M occurs in G.

Conversely, suppose that there exists an occurrence V ⊆ V (G) of M in G. Observe that M
contains 2n + 3q white elements, and since exactly 2n + 3q vertices of G are colored white, we

s’1

s’2

s1

s2

s3

s4

x1

x2

x3

x4

x5

x6

s’’1

s’’2

s’’3

s’’4

s’3

s’4

Fig. 2: The construction of G out of an instance for X3C: X = {x1, . . . , x6} and S = {s1, . . . , s4}. The 3-sets are
s1 = {x1, x2, x4}, s2 = {x1, x3, x4}, s3 = {x2, x5, x6}, and s4 = {x3, x4, x6}.

must have X ∪ S′ ∪ S′′ ⊂ V . The remaining q vertices in V are q black vertices from S. By
construction, we do not have an edge between two vertices of X, nor between a vertex of X and a
vertex of S′ ∪ S′′. Therefore, since V is connected, each vertex of X has to be adjacent to at least
one vertex in V ∩ S. But |X| = 3q and each vertex in S is connected to exactly 3 vertices in X.
Then it follows that no two vertices of V ∩ S share a common neighbor in X, and C = V ∩ S is an
exact cover of X in S. ut

3 A General Fixed-Parameter Algorithm

We now turn to show that Graph Motif is fixed-parameter tractable for parameter k = |M |
on any general graph. More specifically, we present an O(2O(k)n2 lg n) algorithm for the problem,
which implies that Graph Motif for motifs of O(lg n) size is polynomial-time solvable. This is in
striking contrast to the sharp hardness results given in the previous section. Our algorithm is based
on the color-coding technique introduced by Alon et al. [2], whose derandomized version crucially
relies on the notion of perfect hash families:

Definition 1 (Perfect Hash Family). A family F of functions from V (G) to {1, . . . , k} is perfect
if for any subset V ⊆ V (G) of k vertices there is a function f ∈ F which is one-to-one on V .

Suppose M has an occurrence V in G, and suppose we are provided with a perfect family F of
functions from V (G) to {1, . . . , k}. Since F is perfect, we are guaranteed that at least one function
in F assigns V with k distinct labels. Let f ∈ F be such a function. For a given L ⊆ {1, . . . , k},
we define ML(v) to be the family of all motifs M ′ ⊆ M , |M ′| = |L|, for which there exists an
occurrence V ′ with v ∈ V ′, such that the set of (unique) labels that f assigns to V ′ is exactly L.
Since M occurs in G, we know that M ∈ M{1,...,k}(v) for some v ∈ V (G). Hence, to determine
whether M occurs in G, we apply dynamic programming to compute ML(v) for all v ∈ V (G) and
L ⊆ {1 . . . , k}.

Fix L to be some subset of {1, . . . , k}, and let v be any vertex of G. Our goal is to computeML(v)
assumingML′(u) has been previously computed for every vertex u ∈ V (G) and any L′ ⊆ L\{f(v)}.
The straightforward approach is to consider small motifs occurring at neighbors of v. However, a
motif occurring at v might be the union of motifs occurring at any number of neighbors of v, and
so this approach might require exponential running time in n. We therefore present an alternative
method for computing ML(v), which we call the batch procedure, that uses an even more naive
approach, but one that requires exponential-time only with respect to k. Notice that while the
motifs computed by the batch procedure are in general multisets of colors, the batch procedure
always considers sets of distinct labels.

Batch Procedure(L, v):

– Define M to be the family of all pairs (M ′, L′) such that M ′ ⊆ M \ {χ(v)}, L′ ⊆ L \ {f(v)},
and M ′ ∈ML′(u) for some u ∈ N(v).

– Run through all pairs of (M ′, L′), (M ′′, L′′) ∈M and determine whether M ′∪M ′′ ⊆ M \{χ(v)},
and whether L′ ∩ L′′ = ∅. If there is such a pair, add (M ′ ∪M ′′, L′ ∪ L′′) to M and repeat this
step. Otherwise, continue to the next step.

– Set ML(v) to be all motifs M ′ ∪ {χ(v)} where (M ′, L′) ∈M and L′ = L \ {f(v)}.
Lemma 1. For any v ∈ V (G) and L ⊆ {1, . . . , k}, the batch procedure correctly computes ML(v)
assuming ML′(u) is given for every neighbor u of v and every subset of labels L′ ⊆ L \ {f(v)}.
Proof. LetM be the family of pairs computed by the batch procedure. Consider any pair (M ′, L′) ∈
M with L′ = L\{f(v)}. By construction, M ′ ⊆ M\{χ(v)} and can be written as M ′ = M ′

1∪· · ·∪M ′
`,

where each M ′
i , 1 ≤ i ≤ `, is a motif that has an occurrence V ′

i which includes a neighbor of v.
Furthermore, each V ′

i is labeled by a unique set of labels L′i such that L′i ∩L′j = ∅ for all 1 ≤ j ≤ `,
j 6= i. It follows that all the V ′

i s are pairwise disjoint, and that {v}∪V ′
1∪· · ·∪V ′

` is connected. Hence,
M ′∪{χ(v)} has an occurrence in G which is labeled by L′∪{f(v)} = L, and so M ′∪{χ(v)} ∈ ML(v).

On the other hand, consider a motif M ′ ∪ {χ(v)} ∈ ML(v). Then by definition, M ′ ∪ {χ(v)}
has an occurrence V ′∪{v} such that the set of labels that f assigns V ′∪{v} is L. Let V ′

1 , . . . , V
′
` be

the connected components of the induced subgraph G[V ′]. Since V ′ ∪ {v} is connected, every V ′
i ,

1 ≤ i ≤ `, includes a neighbor of v. Furthermore, letting L′i denote the set of labels that f assigns
V ′

i for every 1 ≤ i ≤ `, we have L′ ⊆ L\{f(v)} and L′i∩L′j = ∅ for all 1 ≤ i, j ≤ `. It is now easy to
see that the batch procedure will eventually compute the pair (M ′, L \ {f(v)}) in its second step,
and hence M ′ ∪ {χ(v)} will be added to ML(v) in its final step. ut
Lemma 2. Given a labeling function f : V (G) → {1, . . . , k}, one can use the batch procedure
iteratively in order to determine in O(25kkn2) time whether there is an occurrence of M which is
distinctly labeled by f .

Proof. To prove the lemma, let us first analyze the complexity of a single invocation of the batch
procedure. In its first step, the batch procedure searches through at most 2kn motifs families,
each consisting of at most 2k motifs. Hence, this step requires O(22kkn) time. For the second
step, notice that number of distinct motif and label-subset pairs is bounded by 22k, and so the
number of times the second step is repeated is also bounded by this term. Since each iteration
of this step can be computed in O(22kk) time, it follows that the second step requires O(24kk)
time. Accounting also for the third step, the total time of one invocation of the batch procedure is
therefore O(24kk + 22kkn) = O(24kkn).

It now can easily be seen that due to Lemma 1, one needs to invoke the batch procedure at most
2kn times in order to obtainML(v) for every vertex v ∈ V (G) and every label subset L ⊆ {1, . . . , k}.
It follows that in O(25kkn2) time one can obtain all necessary information to determine whether
M has an occurrence which is distinctly labeled by f , and so the lemma follows. ut

Note that in case M is colorful, the vertex-coloring of G distinctly colors any occurrence of M ,
and therefore, in this case we can determine whether M occurs in G within the time complexity
given in Lemma 2. For general multiset motifs, we use the result of Alon et al. [2] who show how
to efficiently construct a family F of O(2O(k) lg n) functions from V (G) to {1, . . . , k} which is
perfect. This construction builds on an earlier slightly less efficient construction of [23] and requires
O(2O(k)n lg n) time. Using this and Lemma 2, we obtain a O(2O(k)n2 lg n) algorithm for Graph
Motif.

Theorem 3. Graph Motif can be solved in O(2O(k)n2 lg n) time.

Proof. The algorithm uses a perfect family F of O(2O(k) lg n) functions from V (G) to {1, . . . , k}.
Such a family exists, and can be constructed in O(2O(k)n lg n) time. Given any f ∈ F , we can
use the batch procedure to to determine whether there is any occurrence of M which is distinctly
labeled by f in O(2O(k)n2) time (Lemma 2). Since F is perfect, any occurrence of M in G is
guaranteed to be distinctly labeled by at least one labeling function f ∈ F , and so by exhaustively
searching through all functions in F , our algorithm can determine whether M occurs in G within
the time bound promised above. ut

4 Bounded Treewidth Graphs

The treewidth parameter of graphs [24] plays a central role in designing exact algorithms for many
NP-hard graph problems [6–8, 13]. Among numerous frameworks developed over the years, we adopt
the parsing mechanism developed for bounded treewidth graphs in [1]. For motifs which consist of a
constant number of colors c and graphs with treewidth smaller than some constant ω, we present a
polynomial-time algorithm with running time O(n2cω+2). This should be compared with the sharp
hardness result of Theorem 2. Moreover, our algorithm is also a fixed-parameter algorithm for
parameters ω and k which outperforms the algorithm of the previous section when the treewidth
of G is sufficiently small. Due to space limitations, we only present a sketch of our result.

Theorem 4. Let ω be any positive constant. Then Graph Motif can be solved in O(n2cω+2) time,
when G has treewidth less than ω and M consists of c colors.

Proof (sketch). The proof is sketched as follows. We employ the parsing operator point of view on
bounded treewidth. In particular, we use the notion of ω-boundaried graphs, where an ω-boundaried
graph is no more than a graph with ω distinguished vertices, each distinctly labeled by a label in
{1, . . . , ω}, which are referred to as boundary vertices. The boundary vertices, together with ω-
operators, allow the construction of ω-boundaried graphs from smaller ω-boundaried graphs. The
ω-operators are:

1. The null operator ∅ which creates the trivial boundaried graph with isolated vertices.
2. The binary operator ⊕ that takes the disjoint union of two ω-boundaried graphs and then

identifies the ith boundary vertex of the first graph with the ith boundary vertex of the second
graph.

3. The unary operator that introduces a new isolated vertex and makes this the new vertex 1 of
the boundary. The old vertex 1 is removed from the boundary but not from the graph.

4. The unary operator that adds an edge between vertex 1 and vertex 2 of the boundary.
5. Unary operators that permute the labels of the boundary vertices.

A parse tree is an at-most binary rooted tree with labels corresponding to ω-operators. The leaves
are labeled with ∅, the internal unary nodes are labeled with unary operators, and the internal binary
nodes are labeled with the binary operator ⊗. Each rooted subtree of a parse tree corresponds to
an ω-boundaried graph, where the graph at each parent is obtained by applying the corresponding
operator of the parent on the ω-boundaried graph(s) of its child(ren). We say that a parse tree
parses an ω-boundaried graph H, if H corresponds to the ω-boundaried graph of the root. We
extend this definition to any graph, by simply assuming that the final parsing operator removes all
vertices from the boundary. Any graph of treewidth less than ω can be parsed by a parse tree with
O(ωn) nodes [1].

Define a checklist item for a w-boundaried graph to consist of the following information: (1)
A partition π of the set of boundary vertices. Let X denote the set of boundary vertices, and
write π = (X1, . . . , Xr) where r ≤ ω, and the Xi denote the sets of the partition π. (2) A motif
family Mπ = (M0, M1, . . . , Mr) of length r + 1, where each Mi is non-empty except maybe M0

and Mi ⊆ M . (Note that the number of distinct checklist items is at most ωω(nc)ω = wwncω,
where a better bound is given by replacing ww with Bell(ω), the number of distinct partitions of
an ω-element set.)

We say that a checklist item α as above is positive for a ω-boundaried graph A if there is a set
of r + 1 vertex-disjoint subsets V0, . . . , Vr ⊆ V (A) satisfying the following conditions:

1. V0 ∩X = ∅.
2. For i = 1, . . . , r, Vi ∩X = Xi.
3. For i = 0, . . . , r, Vi is an occurrence of Mi in A

Define the inventory inv(A) of the w-boundaried graph A to be the set of all checklist items that
are positive for A.

Claim 1. Whether a motif occurs in a ω-boundaried graph A can be determined from inv(A) in
time linear in the size of the inventory.

Our algorithm proceeds as follows. It first computes a parse tree of G, and then computes, from
the leaves up to the root, the inventories of the ω-boundaried graphs corresponding to the nodes of
the ω parse tree. Let A be the trivial boundary graph obtained by the null operator ∅. In this base
case, inv(A) consists of single checklist item with a partition π = (X1, . . . , Xr) that partitions the
boundary vertices into singletons, and motif family Mπ = (∅,M1, . . . , Mr) where Mi consists of the
color of the single boundary vertex in Xi ∈ π, for all i = 1, . . . , r. For boundary graphs obtained
by unary operations, computing the inventory is almost equally easy.

Claim 2. One can compute inv(op(A)) from inv(A).

We proceed to describe the computation for the ⊗ operator. Let A and B be two boundaried
graphs over the same boundary vertex set X. If α ∈ inv(A) and β ∈ inv(B) then we define the
checklist item α ⊕ β as follows. As per the definition of a checklist item, we must give two pieces
of information to describe α⊕ β: (1) a partition πα⊕β of X, and (2) a motif family Mπα⊕β

for this
partition. Let πα (πβ) denote the partition of X for the checklist item α (β). Let ≡α (≡β) be the
equivalence relation on X defined by πα (πβ). The partition πα⊕β corresponds to the reflexive and
transitive closure of the relation ≡α ∪ ≡β. The motif family Mπα⊕β

is obtained by adding and
subtracting colors of the motifs of Mπα and Mπβ

in the natural way.

Claim 3. We can compute inv(A⊕B) as {α, β, α⊕ β |α ∈ inv(A), β ∈ inv(B)}.
Hence given a parse tree of G, we have to perform at most ωn such “multiplications of inven-

tories”. Since each inventory has size bounded by ωωncω, and since a single multiplication between
two inventories requires O(n) time, this gives a running time of O(n2cω+2) for all inventory multi-
plications. Since the computation on the ⊗ operator requires more time then the computation on
any other operator, the entire algorithm runs within this time bound. ut

Showing that our algorithm is a fixed-parameter algorithm for parameters ω and k involves
pretty much the same analysis. The only difference is that here we bound the total number of
distinct checklist items by ωω(2k)ω = ww2kω.

5 On Trees and Motifs With Bounded Number of Colors

Although Theorem 4 gives a nice complementary result to the sharp hardness result of Theorem 2,
it still leaves a certain gap. In the following section we aim to close this gap, by proving that
Graph Motif, parameterized by the number of colors c in M , is W[1]-hard for trees. Essentially,
this means that unless unlikely collapses occur in parameterized complexity theory, there is no
fixed-parameter algorithm for parameter c, even in the restricted case of trees. We refer readers
unfamiliar with the concept of parameterized reductions to [15].

Theorem 5. The Graph Motif problem, parameterized by the number of colors c in the motif,
is W[1]-hard for trees.

Proof. We present a reduction from Clique which is known to be W[1]-hard [15]. Recall that in
Clique we are given a simple graph H and an integer κ, the parameter, and we are asked to
determine whether H has a subset of κ vertices which are pairwise adjacent. Given an instance
〈H, κ〉 of Clique, we describe a rooted tree G = T colored with 1 + κ + 2κ(κ− 1) +

(
κ
2

)
colors. We

let m denote the number of edges of H, i.e. m = |E(H)|.
– The root of T is colored a.
– The root has κ · |V (H)| children organized into κ groups S(1) . . . S(κ). The group of |V (H)|

children S(i) consists of the nodes s(i, u), where u ∈ V (H). The color of each node in S(i) is
b(i).

– From each node s(i, u) hang κ − 1 groups of paths. The groups are P (i, u, j) for every j ∈
{1 . . . , κ} \ {i}. There is one path p(i, u, j, v) ∈ P (i, u, j) for each edge {u, v} ∈ E(H) that is
incident to u in H.

The path p(i, u, j, v) begins with a vertex colored c(i, j) and ends with a vertex colored d(i, j),
and otherwise consists of some number m(i, u, j, v) of internal vertices colored by e(i, j) = e(j, i).
There is an important detail to note here. If i < j, then c(i, j) and c(j, i) are different colors,
whereas e(i, j) and e(j, i) are the same color. We call the colors e(i, j) the edge colors. The number
m(i, u, j, v) is calculated as follows. Number the edges in E(H) from 1 to m, letting l(uv) denote
the number assigned to the edge {u, v} ∈ E(H). We define:

m(i, u, j, v) =

{
l(uv) i < j

3m− l(uv) i > j.

The motif M consists of one of each of every color other than the edge colors, and 3m elements
colored by each edge color. Thus, M consists of c = 1 + κ + 2κ(κ − 1) +

(
κ
2

)
different colors, and

|M | = 1 + κ + 2κ(κ− 1) + 3m
(
κ
2

)
. This completes the construction of our instance 〈(G,M), c〉 for

Graph Motif.
We claim that H has a subset of κ pairwise adjacent vertices if and only if T has a subtree T ′

which is an occurrence of M . Suppose that the vertices v1, ..., vκ are pairwise adjacent in H. The
subtree T ′ consists of:

– The root which is colored a.
– The κ children of the root s(i, vi) for all 1 ≤ i ≤ κ, where s(i, vi) is colored b(i).
– The κ(κ − 1) paths p(i, vi, j, vj). The path p(i, vi, j, vj) begins with a node colored c(i, j) and

ends with a node colored d(i, j) for all 1 ≤ i, j ≤ κ, i 6= j. Note that the path p(i, vi, j, vj) is
pendant from s(i, vi) since vi and vj are adjacent in H. Together, the two complementary paths
p(i, vi, j, vj) and p(j, vj , i, vi) contain 3m nodes colored e(i, j).

S(1)

..
S(i) S(κ)

...
........................

|V(H)|
.

s(i,v)

P(i,v,1) P(i,v,2) P(i,v,κ)P(i,v,j)

p(i,v,j,u1) p(i,v,j,u2) p(i,v,j,ui)

m(i, v, j, u1)

.

Fig. 3: A schematic description of the tree constructed in the reduction. On the left, the first two levels of the tree
are depicted. On the right, the group of paths which hang from the node s(i, v) ∈ S(i).

In the other direction, suppose that the subtree T ′ of T is an occurrence of M . Then T ′ must
include the root of T , since it is the only node colored a. Furthermore, T ′ must contain exactly one
node in each of the groups S(i), 1 ≤ i ≤ κ, since nodes in each S(i) are all colored b(i). Suppose
these nodes are s(1, v1), . . . , s(κ, vκ). We argue that the vertices v1, ..., vκ are pairwise adjacent in
H.

In order for T ′ to be an occurrence of M in T , T ′ must contain exactly one pendant path in
each of the groups of paths P (i, vi, j) for any 1 ≤ i, j ≤ κ, i 6= j, and nothing further. To see this,
note that T ′ must contain at least one path in each of the groups of paths P (i, vi, j) in order for
T ′ to contain a node colored d(i, j). But containing one such path prevents T ′ from including any
nodes of other paths in P (i, vi, j), else T ′ would contain too many nodes of color c(i, j).

It follows that for any pair of indices i, j with 1 ≤ i < j ≤ κ, T ′ includes exactly two paths
p(i, vi, j, x) and p(j, vj , i, y) that contain nodes of color e(i, j) = e(j, i). Since M contains exactly
3m elements colored by e(i, j), it follows that x = vj and y = vi, since p(i, vi, j, vj) and p(j, vj , i, vi)
are the only two paths in T with nodes colored e(i, j) that together have exactly 3m nodes of this
color. But then, by the construction of T , vi and vj must be adjacent in H. ut

References

1. K.R. Abrahamson and M.R. Fellows. Finite automata, bounded treewidth, and well-quasiordering. In Graph
Structure Theory (ed. N. Robertson and P. Seymour), pages 539–564, 1993.

2. N. Alon, R. Yuster, and U. Zwick. Color coding. Journal of the ACM, 42(4):844–856, 1995.

3. A. Amir. Asynchronous pattern matching. In Proceedings of the 17th annual symposium on Combinatorial
Pattern Matching (CPM), pages 1–10, 2006.

4. A. Amir, A. Apostolico, G.M. Landau, and G. Satta. Efficient text fingerprinting via parikh mapping. Journal
of Discrete Algorithms, pages 409–421, 2003.

5. A. Amir, Y. Aumann, G. Benson, A. Levy, O. Lipsky, E. Porat, S. Skiena, and U. Vishne. Pattern matching with
address errors: rearrangement distances. In Proceedings of the 17th annual ACM/SIAM Symposium On Discrete
Algorithms(SODA), pages 1221–1229, 2006.

6. S. Arnborg. Efficient algorithms for combinatorial problems on graphs with bounded decomposability. A survey.
BIT Numerical Mathematics, 25(1):2–23, 1985.

7. S. Arnborg and A. Proskurowski. Linear time algorithms for NP-hard problems restricted to partial k-trees.
Discrete Applied Mathematics, 23:11–24, 1989.

8. H.L. Bodlaender. A tourist guide through treewidth. Acta Cybernetica, 11:1–23, 1993.

9. H.L. Bodlaender and L.E. de Fluiter. Intervalizing k-colored graphs. In Proceedings of the 22nd International
Colloquium on Automata, Languages and Programming (ICALP), pages 87–98, 1995.

10. H.L. Bodlaender, M.R. Fellows, M.A. Langston, M.A. Ragan, F.A. Rosamond, and M. Weyer. Kernelization for
convex recoloring. In Proceedings of the 2nd workshop on Algorithms and Complexity in Durham (ACiD), pages
23–35, 2006.

11. H.L. Bodlaender, M.R. Fellows, and T. Warnow. Two strikes against perfect phylogeny. In Proceedings of the
19th International Colloquium on Automata, Languages and Programming (ICALP), pages 273–283, 1992.

12. B. Chor, M.R. Fellows, M.A. Ragan, F.A. Rosamond, and S. Snir. Connected coloring completion for general
graphs: Algorithms and complexity – Manuscript. 2007.

13. D.G. Corneil and J.M. Keil. A dynamic programming approach to the dominating set problem on k-trees. SIAM
Journal on Algebraic and Discrete Methods, 8(4):535–543, 1987.

14. Y. Deville, D. Gilbert, J. Van Helden, and S.J. Wodak. An overview of data models for the analysis of biochemical
pathways. Briefings in Bioinformatics, 4(3):246–259, 2003.

15. R. Downey and M. Fellows. Parameterized Complexity. Springer-Verlag, 1999.
16. M.R. Fellows, M.T. Hallett, and H.T. Wareham. DNA physical mapping: Three ways difficult. In Proceedings of

the 1st annual European Symposium on Algorithms (ESA), pages 157–168, 1993.
17. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness.

Freeman, New York, 1979.
18. M. Golumbic, H. Kaplan, and R. Shamir. On the complexity of DNA physical mapping. Advances in Applied

Mathematics, 15:251–261, 1994.
19. T. Ideker, R.M. Karp, J. Scott, and R. Sharan. Efficient algorithms for detecting signaling pathways in protein

interaction networks. Journal of Computational Biology, 13(2):133–144, 2006.
20. V. Lacroix, C.G. Fernandes, and M.-F. Sagot. Reaction motifs in metabolic networks. In Proceedings of the 5th

international Workshop on Algorithms in BioInformatics (WABI), pages 178–191, 2005.
21. F.R. McMorris, T.J. Warnow, and T. Wimer. Triangulating vertex-colored graphs. SIAM Journal on Discrete

Mathematics, 7(2):296–306, 1994.
22. S. Moran and S. Snir. Convex recolorings of strings and trees: Definitions, hardness results and algorithms. In

Proceedings of the 9th international Workshop on Algorithms and Data Structures (WADS), pages 218–232, 2005.
23. J. Naor and M. Naor. Small-bias probability spaces: Efficient constructions and applications. In Proceedings of

the 25th annual ACM Symposium on Theory Of Computing (STOC), pages 213–223, 1990.
24. N. Robertson and P. D. Seymour. Graph minors. II. Algorithmic aspects of tree-width. SIAM Journal of

Algorithms, 7:309–322, 1986.

