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In the context of metabolic network analysis, Lacroix et al.11 introduced the

problem of finding occurrences of motifs in vertex-colored graphs, where a motif

is a multiset of colors and an occurrence of a motif is a subset of connected

vertices which are colored by all colors of the motif. We consider in this paper

the above-mentioned problem in one of its natural optimization forms, referred

hereafter as the Min-CC problem: Find an occurrence of a motif in a vertex-

colored graph, called the target graph, that induces a minimum number of

connected components.

Our results can be summarized as follows. We prove the Min-CC problem

to be APX–hard even in the extremal case where the motif is a set and the

target graph is a path. We complement this result by giving a polynomial-time

algorithm in case the motif is built upon a fixed number of colors and the

target graph is a path. Also, extending recent research8 , we prove the Min-

CC problem to be fixed-parameter tractable when parameterized by the size

of the motif, and we give a faster algorithm in case the target graph is a tree.

Furthermore, we prove the Min-CC problem for trees not to be approximable

within ratio c log n for some constant c > 0, where n is the order of the target

graph, and to be W[2]–hard when parameterized by the number of connected

components in the occurrence of the motif. Finally, we give an exact efficient

exponential-time algorithm for the Min-CC problem in case the target graph

is a tree.
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1. Introduction

In the context of metabolic network analysis, Lacroix et al.11 introduced the

following vertex colored graph problem (referred hereafter as the Graph-

Motif problem): Given a vertex-colored graph G and a multiset of colors

M, decide whether G has a connected subset of vertices which are exactly

colored by M. There, vertices correspond to chemical compounds or re-

actions, and each edge (vi, vj) corresponds to an interaction between the

two compounds or reactions vi and vj . The vertex coloring is used to spec-

ify different chemical types or functionalities. In this scenario, connected

motifs correspond to interaction-related submodules of the network which

consist of a specific set of chemical compounds and reactions. A method for

a rational decomposition of a metabolic network into relatively independent

functional subsets is essential for a better understanding of the modularity

and organization principles in the network5,11 . Notice that Ideker consid-

ered a related relevant work10 .

Unfortunately, it turns out that the Graph-Motif problem is

NP–complete even if the graph is a tree and the motif is actually a set8,11 .

Moreover, the Graph-Motif problem is fixed-parameter tractable when pa-

rameterized by the size of the motif, but W[1]–hard when parameterized

by the number of distinct colors in M8 . Finally, Lacroix et al.11 gave an

exact algorithm dedicated to solve small instances.

For metabolic network analysis, the Graph-Motif problem appears,

however, to be too stringent. Indeed, due to measurement errors, it is often

not possible to find a connected component of the graph G which corre-

sponds exactly to the motif M. Hence one needs to relax the definition of an

occurrence of a motif in a metabolic network. Therefore, aiming at dealing

with inherent imprecise data, we consider in this paper the above-mentioned

problem in one of its natural optimization form, referred hereafter as the

Min-CC problem: Find an occurrence of a motif in a vertex-colored graph,

that induces a minimum number of connected components.

The paper is organized as follows. Section 2 provides basic notations and

definitions that we will use in the paper. In Section 3, we prove the Min-CC

problem to be APX–hard even if the motif is a set and the target graph is

a path. Extending recent research8 , we prove in Section 4 that the Min-CC

problem is fixed-parameter tractable when parameterized by the size of the

motif, and we give a faster algorithm in case the target graph is a tree. In

Section 5 we present a polynomial-time algorithm in case the motif is built

upon a fixed number of colors and the target graph is a path. Section 6

is devoted to hardness of approximation in case the target graph is a tree
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and we present in Section 7 an exact efficient exponential-time algorithm

for trees. Section 8 concludes our work and suggests future directions of

research.

2. Preliminaries

We assume readers have basic knowledge about graph theory6 and we shall

only recall basic notations here. Let G be a graph. We write V(G) for

the set of vertices and E(G) for the set of edges. For any V ′ ⊆ V(G),

we denote by G[V ′] the subgraph of G induced by the vertices V ′, that is

G[V ′] = (V ′, E′) and (u, v) ∈ E′ iff u, v ∈ V ′ and (u, v) ∈ E(G). Let M be

a multiset of colors, whose colors are taken from the set C = {c1, c2, . . . , cq}.

Let G be a connected graph, where every vertex u ∈ V (G) is assigned a

color λ(u) ∈ C. For any subset V ′ of V , let C(V ′) be the multiset of colors

assigned to the vertices in V ′. A subset of vertices V ′ ⊆ V(G) is said to

match a multiset of colors M if C(V ′) is equal to M. A color-preserving

injective mapping θ of M to G is an injective mapping θ : M → V(G),

such that λ(θ(c)) = c for every c ∈ M. The subgraph induced by a color-

preserving injective mapping θ : M → V(G) is the subgraph of G induced

by the images of θ in G.

We are now in position to formally define the Min-CC problem we are

interested in. Given a set of colors C, a multiset (motif) M of size k of

colors from C and a target graph G of order n together with a vertex-

coloring mapping λ : V(G) → C, find a color preserving injective mapping

θ : M → V(G), i.e., λ(θ(c)) = c for every c ∈ M that minimizes the

number of connected components in the subgraph induced by θ. In other

words, the Min-CC problem asks to find a subset V ′ ⊆ V(G) that matches

M, and that minimizes the number of connected components of G[V ′]. The

Min-CC problem was proved to be NP–complete even if the target graph is

a tree and the occurrence is required to be connected (the occurrence of M

in G results in one connected component) but fixed-parameter tractable in

this case when parameterized by the size of the given motif11 .

3. Hardness result for paths

In this section we show that the Min-CC problem is APX–hard (not ap-

proximable within a constant) even in the simple case where the motif M is

a set and the target graph is a path in which each color in C occurs exactly

twice. Our proof consists in a reduction from a restricted version of the

Paintshop-For-Words problem2,3,15 .
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First, we need some additional definitions. Define an isogram to be

a word in which no letter is used more than once. A pair isogram is a

word in which each letter occurs exactly twice. A cover of size k of a

word u is an ordered collection of words C = (v1, v2, . . . , vk) such that

u = w1v1w2v2 . . . wkvkwk+1 and v = v1v2 . . . vk is an isogram The cover is

called prefix (resp. suffix ) if w1 (resp. wk+1) is the empty word.

A proper 2-coloring of a pair isogram u is an assignment f of colors c1

and c2 to the letters of u such that every letter of u is colored with color

c1 once and colored with color c2 once. If two adjacent letters x and y are

colored with different colors we say that there is a color change between x

and y. For the sake of brevity, we denote a pair isogram u together with a

proper 2-coloring f of it as the pair (u, f).

The 1-Regular-2-Colors-Paint-Shop problem is defined as follows:

Given a pair isogram u, find a 2-coloring f of u that minimizes the number

of color changes in (u, f). Bonsma2 proved that the 1-Regular-2-Colors-

Paint-Shop problem is APX–hard. We show here how to reduce the 1-

Regular-2-Colors-Paint-Shop problem to the Min-CC problem for paths.

We need the following easy lemmas.

Lemma 3.1. Let u be a pair isogram and C be a minimum cardinality

cover of u. Then C cannot be both prefix and suffix.

Lemma 3.2. A pair isogram has a proper 2-coloring with at most k color

changes iff it has a cover of size at most
⌈

k
2

⌉

.

Combining Lemma 3.2 with the fact that the 1-Regular-2-Colors-

Paint-Shop problem is APX–hard, we state the following result.

Proposition 3.1. The following problem is APX–hard : Given a pair iso-

gram u, find a minimum cardinality cover of u.

Corollary 3.1. The Min-CC problem is APX–hard even if M is a set and

P is a path in which each color appears at most twice.

4. Fixed-parameter algorithms

Corollary 3.1 gives us a sharp hardness result for the Min-CC problem.

To complement this negative result, we first prove here that the Min-CC

problem is fixed-parameter tractable7,9 when parameterized by the size of

the pattern M. The algorithm is a straightforward extension of a recent

result8 and is based on the color-coding technique1 . Next, we give a faster

fixed-parameter algorithm in case the target graph is a tree.
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4.1. The Min-CC problem is fixed-parameter tractable

We only sketch the fixed-parameter tractability result. Let G be a graph

and k be a positive integer. Recall that a family F of functions from V(G)

to {1, 2, . . . , k} is perfect if for any subset V ⊆ V(G) of k vertices there

is a function f ∈ F which is injective on V 1 . Let (G,M) be an instance

of the Min-CC problem, where M is a motif of size k. Then there is an

occurrence of M in G, say V ⊆ V(G), that results in a minimum number

of connected components. Furthermore, suppose we are provided with a

perfect family F of functions from V(G) to {1, 2, . . . , k}. Since F is perfect,

we are guaranteed that at least one function in F assigns V with k distinct

labels. Let f ∈ F be such a function. We now turn to defining a dynamic

programming table T indexed by vertices of G and subsets of {1, 2, . . . , k}.

For any v ∈ V(G) and any L ⊆ {1, 2, . . . , k}, we define TL[v] to be the

family of all motifs M′ ⊆ M, |M′| = |L|, for which there exists an exact

occurrence of M′ in G, say V , such that v ∈ V and the set of (unique)

labels that f assigns to V is exactly L. We need the following lemma8 .

Lemma 4.1. For any labeling function f : V(G) → {1, 2, . . . , k}, there

exists a dynamic programming algorithm that computes the table T in

O(25kkn2) time.

Now, denote by P the set of all pairs (M′, L′) ∈ M × 2{1,2,...,k} with

|M′| = |L′| such that there exists an exact occurrence of M′ in G, say V ′,

such that v ∈ V ′ and the set of (unique) labels that f assigns to V ′ is exactly

L′. Clearly, |P| ≤ 22k. Furthermore, by resorting to any data structure for

searching and inserting that guarantees logarithmic time4 (and observing

that any two pairs (M′, L′) and (M′′, L′′) can be compared in O(k) time),

one can construct the set P in O(nk222k) time by running through the table

T . Our algorithm now exhaustively considers all subsets of P of size at most

k to find an occurrence of M in G that results in a minimum number of

connected components. The rationale of this approach is that two pairs

(M′, L′) and (M′′, L′′) with L′ ∩ L′′ = ∅ correspond to non-overlapping

occurrences in G. The total time of this latter procedure is certainly upper-

bounded by
∑k

i=1 k
(

22k

i

)

≤ k222k2

. Summing up and taking into account

the time for computing the table T , the running time for a given f ∈ F is

O(25kkn2 + nk222k + k222k2

).

According to Alon et al.1 , we need to use O(2O(k) log n) functions

f : V(G) → {1, 2, . . . , k}, and such a family F can be computed in

O(2O(k)n log n) time. For each f ∈ F we use the above procedure to de-

termine an occurrence of M in G that results in a minimum number of
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connected components. We have thus proved the following.

Proposition 4.1. The Min-CC problem is fixed-parameter tractable when

parameterized by the size of the motif.

4.2. A faster fixed-parameter algorithm for trees

We proved in Section 3 that the Min-CC problem is APX–hard even if

the target graph is a path. To complement Proposition 4.1, we give here a

dynamic programming algorithm for trees that does not rely on the color-

coding technique (approaches based on the color-coding technique usually

suffer from bad running time performances).

Let (G,M) be an instance of the Min-CC problem for trees where both

G and M are built upon a set of colors C. Let k = |M| and q = |C|.

Furthermore, for ease of exposition, write V(G) = {1, 2, . . . , n} and assume

G is rooted at some arbitrary vertex r(G).

Our dynamic programming algorithm is basically an exhaustive search

procedure. The basic idea is to store - in a bottom-up fashion - for each

vertex i of G and each submotif M′ ⊆ M that occurs in T (i), i.e., the

subtree rooted at i, the minimum number of connected components that

results in an occurrence of M′ in T (i). More precisely, for each vertex i

of G, we compute two dynamic programming tables X[i] and Y [i]. The

dynamic programming table X[i] stores all pairs (M′, c), where M′ ⊆ M

is a submotif and c is a positive integer, such that (1) there exists an

occurrence of M′ in T (i) that matches vertex i, (2) the minimum number

of connected components of an occurrence of M′ in T (i) that matches

vertex i is c. The dynamic programming table Y [i] stores all pairs (M′, c),

where M′ ⊆ M is a submotif and c is a positive integer, such that (1’)

there exists an occurrence of M′ in T (i) that does not match vertex i, (2’)

the minimum number of connected components of an occurrence of M′ in

T (i) that does not match vertex i is c.

We first claim that both X[i] and Y [i] contain at most kq+1 pairs.

Indeed, the number of submotifs M′ ⊆ M is upper-bounded by kq and

any occurrence of any submotif in any subtree of G results in at most k

connected components. We now describe how to compute - in a bottom-up

fashion - those two dynamic programming tables X and Y .

Let i be an internal vertex of G and suppose that vertex i has si sons in

the subtree T (i) rooted at i, say {i1, i2, . . . , isi
}. Notice that si ≥ 1 since i

is an internal vertex of G. The entries X[i] and Y [i] are computed with the

aid of two auxiliary tables Wi and Vi. Table Wi contains si entries, one for
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each son of vertex i in the subtree rooted at i, that are defined as follows:

∀ 1 ≤ j ≤ si,

Wi[ij ] = {(M′, c, 1) : (M′, c) ∈ X[ij ]} ∪ {(M′, c, 0) : (M′, c) ∈ Y [ij ]}.

In other words, we merge X[ij ] and Y [ij ] in Wi[ij ], differentiating the origin

of a pair by means of a third element (an integer that is equal to 1 for X[ij ]

and 0 for Y [ij ]). Clearly, each entry Wi[ij ] contains at most 2kq+1 triples,

and hence table Wi on the whole contains at most 2 si kq+1 ≤ 2 n kq+1

triples. Table Vi also contains si entries, one for each son of vertex i in the

subtree rooted at i, that are computed as follows: Vi[i1] = Wi[i1] and

∀ 2 ≤ j ≤ si,

Vi[ij ] = Wi[ij ] ∪ {(M′ ∪M′′, c′ + c′′, r′ + r′′) ⊆ M× k × k :

(M′, c′, r′) ∈ Wi[ij ] and (M′′, c′′, r′′) ∈ Vi[ij−1]}.

Each entry Vi[ij ] contains at most kq+2 triples, and hence table Vi on the

whole contains at most si kq+2 ≤ n kq+2 triples. All the needed information

is stored in Vi[isi
], and X[i] and Y [i] can be now computed as follows:

X[i] = {(M′, c − r + 1) : (M′, c, r) ∈ Vi[isi
] and r > 0}

Y [i] = {(M′, c) : (M′, c, 0) ∈ Vi[isi
]}.

The two entries X[i] and Y [i] are next filtered according to the following

procedure: for each submotif M′ ⊆ M that occurs in at least one pair

of X[i] (resp. Y [i]), we keep in X[i] (resp. Y [i]) the pair (M′, c) with the

minimum c.

The base cases, i.e., vertex i is a leaf, are defined as follows: X[i] =

{(λ(i), 1)} and Y [i] = ∅. In other words, X[i] contains exactly one pair

(M′, c), where M′ consists in one occurrence of the color associated to

vertex i, and Y [i] does not contain any pair. The solution for the Min-CC

problem consists in finding a pair (M, c) in X or Y with minimum c. If

such a pair cannot be found in any entry of both X and Y , then the motif

M does not occur in the tree G.

Proposition 4.2. The Min-CC problem for trees is solvable in

O(n2k(q+1)2+1) time, where n is the order of the target graph, k is the

size of the motif and q is the number of distinct colors.

The above result is particularly interesting in view of the fact that the

Min-CC problem for trees parameterized by q is W[1]–hard8 .



June 23, 2007 16:19 WSPC - Proceedings Trim Size: 9in x 6in article

8

5. A polynomial-time algorithm for paths with a bounded

number of colors

We complement here the results of the two preceding sections by showing

that the Min-CC problem for paths is polynomial-time solvable in case the

motif is built upon a fixed number of colors. Observe, however, that each

color may still have an unbounded number of occurrences in the motif.

In what follows we describe a dynamic programming algorithm for this

case. The basic idea of our approach is as follows. Suppose we are left

by the algorithm with the problem of finding an occurrence of a submotif

M′ ⊆ M in the subpath G′ of G induced by {i, i+1, . . . , j}, 1 ≤ i < j ≤ n.

Furthermore, suppose that any occurrence of M′ in G′ results in at least

k′ connected components. This minimum number of occurrences k′ can be

computed as follows. Assume that we have found one leftmost connected

component Cleft of the occurrence of M′ in G′ and let i2, i ≤ i2 < j, be the

rightmost (according to the natural order of the vertices) vertex of Cleft.

Let M′′ be the motif obtained from M′ by subtracting to each color cℓ ∈ C

the number of occurrences of color cℓ in the leftmost connected component

Cleft. Then the occurrence of M′ in G′ is given by Cleft plus the occurrence

of the motif M′′ in the subpath G′′ of G′ induced by {i2 + 1, i2 + 2, . . . , j},

which results in k′ − 1 connected components. From an optimization point

of view, the problem thus reduces to finding a subpath {i1, i1 + 1, . . . , i2},

i ≤ i1 ≤ i2 < j, such that the occurrence of the motif M′′ modified

according to the colors in {i1, i1 + 1, . . . , i2} in the subpath induced by

{i2+1, i2+2, . . . , j} results in a minimum number of connected components.

Let (G,M) be an instance of the Min-CC problem where G is a (vertex-

colored) path built upon the set of colors C. For ease of exposition, write

V(G) = {1, 2, . . . , n} and q = |C|. We denote by mi the number of occur-

rences of color ci ∈ C in M. Clearly,
∑

ci∈C mi = |M|. We now introduce our

dynamic programming table T . Define T [i, j; p1, p2, . . . , pq], 1 ≤ i ≤ j ≤ n

and 0 ≤ pℓ ≤ mℓ for 1 ≤ ℓ ≤ q, to be the minimum number of connected

components in the subpath of G that starts at node i, ends at node j and

that covers pℓ occurrences of color cℓ, 1 ≤ ℓ ≤ q. The base conditions are

as follows:

• for all 1 ≤ i ≤ j ≤ n, T [i, j; 0, 0, . . . , 0] = 0 and

T [i, i; p1, p2, . . . , pq] = ∞ if
∑

1≤ℓ≤q pℓ > 1,

• for all 1 ≤ i ≤ n, T [i, i; p1, p2, . . . , pq] = ∞ if
∑

1≤ℓ≤q pℓ =

1 and λ(i) 6= cℓ and pℓ = 1, and T [i, i; p1, p2, . . . , pq] = 1 if
∑

1≤ℓ≤q pℓ = 1 and λ(i) = cℓ and pℓ = 1.
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The entry T [i, j; p1, p2, . . . , pq] of the dynamic programming table T can

be computed by the following recurrence

T [i, j; p1, p2, . . . , pq] = min
i≤i1≤i2<j

T [i2 + 1, j; p′1, p
′
2, . . . , p

′
q] + 1 (1)

where each p′ℓ ≥ 0 is equal to pℓ minus the number of occurrences of color cℓ

in the subpath of G induced by the vertices {i1, i1 +1, . . . , i2}. The optimal

solution is clearly stored in T [1, n; p1, p2, . . . , pq].

We claim that our dynamic programming table T contains O(nq+2)

entries. Indeed, there are q colors in M, each color ci ∈ C has at most n

occurrences in G and we have O(n2) subpaths in G to consider. We now

turn to evaluating the time complexity for computing T [i, j; p1, p2, . . . , pq].

Assuming each entry T [i′, j′; p′1, p
′
2, . . . , p

′
q] with i ≤ i′ ≤ j′ ≤ j and |j′ −

i′| < |j − i| has already been computed, T [i, j; p1, p2, . . . , pq] is obtained by

taking a minimum number among O(|j − i + 1|2) = O(n2) numbers, and

hence is O(n2) time. We have thus proved the following.

Proposition 5.1. The Min-CC problem for paths is solvable in O(nq+4)

time, where n is the number of vertices and q is the number of colors in C.

As an immediate consequence of the above proposition, the Min-CC

problem is polynomial-time solvable in case the motif M is built upon a

fixed number of colors and the target graph G is a path.

6. Hardness of approximation for trees

We investigate in this section approximation issues for restricted instances

of the MIN-CC problem. Unfortunately, as we shall now prove, it turns out

that, even if M is a set and G is a tree, the Min-CC problem cannot be

approximated within ratio c log n for some constant c > 0, where n is the

size of the target graph G. As a side result, we prove that the Min-CC

problem is W[2]–hard when parameterized by the number of connected

components of the occurrence of M in the target graph G.

At the core of our proof is an L-reduction12 from the Set-Cover prob-

lem. Let I be an arbitrary instance of the Set-Cover problem consist-

ing of a universe set X(I) = {x1, x2, . . . , xn} and a collection of sets

S(I) = S1, S2, . . . , Sm, each over X(I). For each 1 ≤ i ≤ m, write ti = |Si|

and denote by ej(Si), 1 ≤ j ≤ ti, the j-th element of Si. For ease of ex-

position, we present the corresponding instance of the Min-CC problem

as a rooted tree G. We construct the tree G as follows (see Fig. 1). De-

fine a root r and vertices S′
1, S

′
2, . . . , S

′
m such that each vertex S′

i is con-

nected to the root r. For each S′
i define the subtree G(S′

i) rooted at S′
i
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r

S
′
1

S1

e1(S1)e2(S1) et1(S1)

S
′
2

S2

e1(S2)e2(S2) et2(S2)

S
′
m

Sm

e1(Sm)e2(Sm) etm
(Sm)

Figure 1. Construction of the corresponding instance of the Min-CC problem.

as follows: each vertex S′
i has a unique child Si and each vertex Si has

children e1(Si), e2(Si), . . . , eti
(Si). The set of colors C is defined as follows:

C = {c(Si) : 1 ≤ i ≤ m} ∪ {c(xj) : 1 ≤ j ≤ n} ∪ {c(r)}. The coloring

mapping λ : V(G) → C is defined by: λ(Si) = λ(S′
i) = c(Si) for 1 ≤ i ≤ m,

λ(xj) = c(xj) for 1 ≤ j ≤ n and λ(r) = c(r). The motif M is the set

defined as follows: M = {c(Si) : 1 ≤ i ≤ m} ∪ {c(xi) : 1 ≤ i ≤ n} ∪ {c(r)}.

Proposition 6.1. For any instance I of the Set-Cover problem, there

exists a solution of size h for I, i.e., a subset S ⊆ S(I), |S| = h, such that
⋃

Si∈S Si = X, if and only if then there exists an occurrence of M in G

that results in h + 1 connected components.

It is easily seen that the above reduction is an L-reduction12 . It is

known that Set-Cover cannot be approximated within ratio c log n for

some constant c > 014 . Then it follows that there exists a constant c′ > 0

such that the Min-CC for trees cannot be approximated within performance

ratio c′ log n, where n is the number of vertices in the target graph.

As a side result, we also observe that the above reduction is a parame-

terized reduction. Since the Set-Cover is W[2]–hard when parameterized

by the size of the solution13 , the following result holds.

Corollary 6.1. The MIN-CC problem for trees is W[2]–hard when param-

eterized by the number of connected components of the occurrence of the

motif in the graph.
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7. An exact algorithm for trees

We proved in Section 4 that the Min-CC for trees is solvable in

O(n2k(q+1)2+1) time, where n is the order of the target tree, k is the size

of the motif and q is the number of distinct colors. We propose here a new

algorithm for this special case, which turns out not to be a fixed-parameter

algorithm but has a better running time in case the motif k is not that small

compared to the order n of the target graph. More precisely, we give an al-

gorithm for solving the Min-CC problem for trees that runs in O(n22
2n

3 ),

where n is the order of the target tree. Due to space constraints, we skip

the proof details.

Let T be the target tree. For any vertex x of T , denote by T (x) the

subtree of T rooted at x. The first step of our algorithm splits the target

tree in a balanced way, so that T is rooted at a vertex r having children,

r1, r2, . . . , rh such that none of the trees T (ri), 1 ≤ i ≤ h, has order greater

than ⌈n
2 ⌉. Such a vertex r can be found in O(n2) time. We then construct

two disjoint subsets R1 and R2 of r1, ... , rh with the property that

1

3
|T | ≤

∑

ri∈R1

|T (ri)| ≤ ⌈
1

2
|T |⌉ and ⌈

1

2
|T |⌉ ≤

∑

ri∈R2

|T (ri)| =
2

3
|T |

Given V ′ a subset of nodes of V , we say that V ′ does not violate M if

the multiset of colors C(V ′) is a subset of M. Given a subtree T ′ of T ,

we define a partial solution F of Min-CC over instance (T ′, M) as a set of

connected components of T ′ that does not violate the multiset M.

The algorithm computes an optimal solution for Min-CC by first com-

puting all the partial solutions S1 over instance (R1, M) and all the partial

solutions S2 over instance (R2, M) and then merging a partial solution

F1 of S1 and a partial solution F2 of S2 into a feasible solution for the

Min-CC over instance (T , M). Since there are 2
n

2 and 2
2n

3 possible subsets

of vertices of R1 and R2 respectively, it follows that the set of partial so-

lutions over instance (R1, M), (R2, M) can be computed in time O(2
n

2 )

and O(2
2n

3 ) respectively. Then set S1 is ordered and by binary search we

can find in time O(n log 2
n

2 ) = O(n2) a solution F1 of S1 that, merged to a

solution F2 of S2, produces a feasible solution of Min-CC over instance (T ,

M). Since |S2| = O(2
2n

3 ), it follows that the overall time complexity of the

algorithm is O(n22
2n

3 ).

8. Conclusion

We mention here some possible directions for future works. First, approxi-

mation issues of the Min-CC problem are widely unexplored. In particular,
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is the Min-CC problem for paths approximable within a constant ? Also,

most parameterized complexity issues are to be discovered. Of particular

importance: is the Min-CC problem for paths W[1]–hard when parameter-

ized by the number of connected components in the occurrence of the motif

in the target graph ?
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