Riccardo Dondi
email: riccardo.dondi@unibg.it

Guillaume Fertin
email: guillaume.fertin@lina.univ-nantes.fr

Stéphane Vialette
email: stephane.vialette@lri.fr

Weak pattern matching in colored graphs: Minimizing the number of connected components

In the context of metabolic network analysis, Lacroix et al. [START_REF] Lacroix | Motif search in graphs: application to metabolic networks[END_REF] introduced the problem of finding occurrences of motifs in vertex-colored graphs, where a motif is a multiset of colors and an occurrence of a motif is a subset of connected vertices which are colored by all colors of the motif. We consider in this paper the above-mentioned problem in one of its natural optimization forms, referred hereafter as the Min-CC problem: Find an occurrence of a motif in a vertexcolored graph, called the target graph, that induces a minimum number of connected components.

Our results can be summarized as follows. We prove the Min-CC problem to be APX-hard even in the extremal case where the motif is a set and the target graph is a path. We complement this result by giving a polynomial-time algorithm in case the motif is built upon a fixed number of colors and the target graph is a path. Also, extending recent research 8 , we prove the Min-CC problem to be fixed-parameter tractable when parameterized by the size of the motif, and we give a faster algorithm in case the target graph is a tree. Furthermore, we prove the Min-CC problem for trees not to be approximable within ratio c log n for some constant c > 0, where n is the order of the target graph, and to be W [2]-hard when parameterized by the number of connected components in the occurrence of the motif. Finally, we give an exact efficient exponential-time algorithm for the Min-CC problem in case the target graph is a tree.

Introduction

In the context of metabolic network analysis, Lacroix et al. [START_REF] Lacroix | Motif search in graphs: application to metabolic networks[END_REF] introduced the following vertex colored graph problem (referred hereafter as the Graph- Motif problem): Given a vertex-colored graph G and a multiset of colors M, decide whether G has a connected subset of vertices which are exactly colored by M. There, vertices correspond to chemical compounds or reactions, and each edge (v i , v j) corresponds to an interaction between the two compounds or reactions v i and v j . The vertex coloring is used to specify different chemical types or functionalities. In this scenario, connected motifs correspond to interaction-related submodules of the network which consist of a specific set of chemical compounds and reactions. A method for a rational decomposition of a metabolic network into relatively independent functional subsets is essential for a better understanding of the modularity and organization principles in the network [START_REF] Deville | An overview of data models for the analysis of biochemical pathways[END_REF][START_REF] Lacroix | Motif search in graphs: application to metabolic networks[END_REF] . Notice that Ideker considered a related relevant work [START_REF] Ideker | Efficient algorithms for detecting signaling pathways in protein interaction networks[END_REF] .

Unfortunately, it turns out that the Graph-Motif problem is NP-complete even if the graph is a tree and the motif is actually a set [START_REF] Fellows | Sharp tractability borderlines for finding connected motifs in vertex-colored graphs[END_REF][START_REF] Lacroix | Motif search in graphs: application to metabolic networks[END_REF] . Moreover, the Graph-Motif problem is fixed-parameter tractable when parameterized by the size of the motif, but W[1]-hard when parameterized by the number of distinct colors in M 8 . Finally, Lacroix et al. [START_REF] Lacroix | Motif search in graphs: application to metabolic networks[END_REF] gave an exact algorithm dedicated to solve small instances.

For metabolic network analysis, the Graph-Motif problem appears, however, to be too stringent. Indeed, due to measurement errors, it is often not possible to find a connected component of the graph G which corresponds exactly to the motif M. Hence one needs to relax the definition of an occurrence of a motif in a metabolic network. Therefore, aiming at dealing with inherent imprecise data, we consider in this paper the above-mentioned problem in one of its natural optimization form, referred hereafter as the Min-CC problem: Find an occurrence of a motif in a vertex-colored graph, that induces a minimum number of connected components.

The paper is organized as follows. Section 2 provides basic notations and definitions that we will use in the paper. In Section 3, we prove the Min-CC problem to be APX-hard even if the motif is a set and the target graph is a path. Extending recent research 8 , we prove in Section 4 that the Min-CC problem is fixed-parameter tractable when parameterized by the size of the motif, and we give a faster algorithm in case the target graph is a tree. In Section 5 we present a polynomial-time algorithm in case the motif is built upon a fixed number of colors and the target graph is a path. Section 6 is devoted to hardness of approximation in case the target graph is a tree and we present in Section 7 an exact efficient exponential-time algorithm for trees. Section 8 concludes our work and suggests future directions of research.

Preliminaries

We assume readers have basic knowledge about graph theory [START_REF] Diestel | Graph Theory[END_REF] and we shall only recall basic notations here. Let G be a graph. We write V(G) for the set of vertices and E(G) for the set of edges. For any

V ′ ⊆ V(G), we denote by G[V ′] the subgraph of G induced by the vertices V ′ , that is G[V ′] = (V ′ , E ′) and (u, v) ∈ E ′ iff u, v ∈ V ′ and (u, v) ∈ E(G).
Let M be a multiset of colors, whose colors are taken from the set C = {c 1 , c 2 , . . . , c q }. Let G be a connected graph, where every vertex u ∈ V (G) is assigned a color λ(u) ∈ C. For any subset V ′ of V , let C(V ′) be the multiset of colors assigned to the vertices in V ′ . A subset of vertices

V ′ ⊆ V(G) is said to match a multiset of colors M if C(V ′) is equal to M. A color-preserving injective mapping θ of M to G is an injective mapping θ : M → V(G), such that λ(θ(c)) = c for every c ∈ M.
The subgraph induced by a colorpreserving injective mapping θ : M → V(G) is the subgraph of G induced by the images of θ in G.

We are now in position to formally define the Min-CC problem we are interested in. Given a set of colors C, a multiset (motif) M of size k of colors from C and a target graph G of order n together with a vertexcoloring mapping λ : V(G) → C, find a color preserving injective mapping θ : M → V(G), i.e., λ(θ(c)) = c for every c ∈ M that minimizes the number of connected components in the subgraph induced by θ. In other words, the Min-CC problem asks to find a subset V ′ ⊆ V(G) that matches M, and that minimizes the number of connected components of G[V ′]. The Min-CC problem was proved to be NP-complete even if the target graph is a tree and the occurrence is required to be connected (the occurrence of M in G results in one connected component) but fixed-parameter tractable in this case when parameterized by the size of the given motif 11 .

Hardness result for paths

In this section we show that the Min-CC problem is APX-hard (not approximable within a constant) even in the simple case where the motif M is a set and the target graph is a path in which each color in C occurs exactly twice. Our proof consists in a reduction from a restricted version of the Paintshop-For-Words problem [START_REF] Bonsma | Complexity results for restricted instances of a paint shop problem[END_REF][START_REF] Bonsma | Complexity results on restricted instances of a paint shop problem for words[END_REF][START_REF] Hochstättler | Complexity results on a paint shop problem[END_REF] .

First, we need some additional definitions. Define an isogram to be a word in which no letter is used more than once. A pair isogram is a word in which each letter occurs exactly twice. A cover of size k of a word u is an ordered collection of words

C = (v 1 , v 2 , . . . , v k) such that u = w 1 v 1 w 2 v 2 . . . w k v k w k+1 and v = v 1 v 2 . . . v k is an isogram The cover is called prefix (resp. suffix) if w 1 (resp. w k+1) is the empty word.
A proper 2-coloring of a pair isogram u is an assignment f of colors c 1 and c 2 to the letters of u such that every letter of u is colored with color c 1 once and colored with color c 2 once. If two adjacent letters x and y are colored with different colors we say that there is a color change between x and y. For the sake of brevity, we denote a pair isogram u together with a proper 2-coloring f of it as the pair (u, f).

The 1-Regular-2-Colors-Paint-Shop problem is defined as follows: Given a pair isogram u, find a 2-coloring f of u that minimizes the number of color changes in (u, f). Bonsma 2 proved that the 1-Regular-2-Colors-Paint-Shop problem is APX-hard. We show here how to reduce the 1-Regular-2-Colors-Paint-Shop problem to the Min-CC problem for paths. We need the following easy lemmas. Lemma 3.1. Let u be a pair isogram and C be a minimum cardinality cover of u. Then C cannot be both prefix and suffix. Lemma 3.2. A pair isogram has a proper 2-coloring with at most k color changes iff it has a cover of size at most k 2 . Combining Lemma 3.2 with the fact that the 1-Regular-2-Colors- Paint-Shop problem is APX-hard, we state the following result.

Proposition 3.1. The following problem is APX-hard : Given a pair isogram u, find a minimum cardinality cover of u.

Corollary 3.1. The Min-CC problem is APX-hard even if M is a set and P is a path in which each color appears at most twice.

Fixed-parameter algorithms

Corollary 3.1 gives us a sharp hardness result for the Min-CC problem. To complement this negative result, we first prove here that the Min-CC problem is fixed-parameter tractable [START_REF] Downey | Parameterized Complexity[END_REF][START_REF] Flum | Parameterized Complexity Theory[END_REF] when parameterized by the size of the pattern M. The algorithm is a straightforward extension of a recent result [START_REF] Fellows | Sharp tractability borderlines for finding connected motifs in vertex-colored graphs[END_REF] and is based on the color-coding technique 1 . Next, we give a faster fixed-parameter algorithm in case the target graph is a tree.

The Min-CC problem is fixed-parameter tractable

We only sketch the fixed-parameter tractability result. Let G be a graph and k be a positive integer. Recall that a family F of functions from V(G) to {1, 2, . . . , k} is perfect if for any subset V ⊆ V(G) of k vertices there is a function f ∈ F which is injective on V 1 . Let (G, M) be an instance of the Min-CC problem, where M is a motif of size k. Then there is an occurrence of M in G, say V ⊆ V(G), that results in a minimum number of connected components. Furthermore, suppose we are provided with a perfect family F of functions from V(G) to {1, 2, . . . , k}. Since F is perfect, we are guaranteed that at least one function in F assigns V with k distinct labels. Let f ∈ F be such a function. We now turn to defining a dynamic programming table T indexed by vertices of G and subsets of {1, 2, . . . , k}. For any v ∈ V(G) and any L ⊆ {1, 2, . . . , k}, we define T L [v] to be the family of all motifs M ′ ⊆ M, |M ′ | = |L|, for which there exists an exact occurrence of M ′ in G, say V , such that v ∈ V and the set of (unique) labels that f assigns to V is exactly L. We need the following lemma 8 . Lemma 4.1. For any labeling function f : V(G) → {1, 2, . . . , k}, there exists a dynamic programming algorithm that computes the table T in O(2 5k kn 2) time. Now, denote by P the set of all pairs (M ′ , L ′) ∈ M × 2 {1,2,...,k} with |M ′ | = |L ′ | such that there exists an exact occurrence of M ′ in G, say V ′ , such that v ∈ V ′ and the set of (unique) labels that f assigns to V ′ is exactly L ′ . Clearly, |P| ≤ 2 2k . Furthermore, by resorting to any data structure for searching and inserting that guarantees logarithmic time [START_REF] Cormen | Introduction to algorithms[END_REF] (and observing that any two pairs (M ′ , L ′) and (M ′′ , L ′′) can be compared in O(k) time), one can construct the set P in O(nk 2 2 2k) time by running through the table T . Our algorithm now exhaustively considers all subsets of P of size at most k to find an occurrence of M in G that results in a minimum number of connected components. The rationale of this approach is that two pairs (M ′ , L ′) and (M ′′ , L ′′) with L ′ ∩ L ′′ = ∅ correspond to non-overlapping occurrences in G. The total time of this latter procedure is certainly upperbounded by

k i=1 k 2 2k i ≤ k 2 2 2k 2 .
Summing up and taking into account the time for computing the table T , the running time for a given

f ∈ F is O(2 5k kn 2 + nk 2 2 2k + k 2 2 2k 2).
According to Alon et al. [START_REF] Alon | Color coding[END_REF] , we need to use O(2 O(k) log n) functions f : V(G) → {1, 2, . . . , k}, and such a family F can be computed in O(2 O(k) n log n) time. For each f ∈ F we use the above procedure to determine an occurrence of M in G that results in a minimum number of connected components. We have thus proved the following.

Proposition 4.1. The Min-CC problem is fixed-parameter tractable when parameterized by the size of the motif.

A faster fixed-parameter algorithm for trees

We proved in Section 3 that the Min-CC problem is APX-hard even if the target graph is a path. To complement Proposition 4.1, we give here a dynamic programming algorithm for trees that does not rely on the colorcoding technique (approaches based on the color-coding technique usually suffer from bad running time performances).

Let (G, M) be an instance of the Min-CC problem for trees where both G and M are built upon a set of colors C. Let k = |M| and q = |C|. Furthermore, for ease of exposition, write V(G) = {1, 2, . . . , n} and assume G is rooted at some arbitrary vertex r(G).

Our dynamic programming algorithm is basically an exhaustive search procedure. The basic idea is to store -in a bottom-up fashion -for each vertex i of G and each submotif M ′ ⊆ M that occurs in T (i), i.e., the subtree rooted at i, the minimum number of connected components that results in an occurrence of M ′ in T (i). More precisely, for each vertex i of G, we compute two dynamic programming tables X[i] and Y [i]. The dynamic programming table X[i] stores all pairs (M ′ , c), where M ′ ⊆ M is a submotif and c is a positive integer, such that (1) there exists an occurrence of M ′ in T (i) that matches vertex i, (2) the minimum number of connected components of an occurrence of M ′ in T (i) that matches vertex i is c. The dynamic programming table Y [i] stores all pairs (M ′ , c), where M ′ ⊆ M is a submotif and c is a positive integer, such that (1') there exists an occurrence of M ′ in T (i) that does not match vertex i, (2') the minimum number of connected components of an occurrence of M ′ in T (i) that does not match vertex i is c.

We first claim that both X[i] and Y [i] contain at most k q+1 pairs. Indeed, the number of submotifs M ′ ⊆ M is upper-bounded by k q and any occurrence of any submotif in any subtree of G results in at most k connected components. We now describe how to compute -in a bottom-up fashion -those two dynamic programming tables X and Y .

Let i be an internal vertex of G and suppose that vertex i has s i sons in the subtree T (i) rooted at i, say {i 1 , i 2 , . . . , i si }. Notice that s i ≥ 1 since i is an internal vertex of G. The entries X[i] and Y [i] are computed with the aid of two auxiliary tables W i and V i . Table W i contains s i entries, one for each son of vertex i in the subtree rooted at i, that are defined as follows:

∀ 1 ≤ j ≤ s i , W i [i j] = {(M ′ , c, 1) : (M ′ , c) ∈ X[i j]} ∪ {(M ′ , c, 0) : (M ′ , c) ∈ Y [i j]}.
In other words, we merge X[i j] and

Y [i j] in W i [i j],
differentiating the origin of a pair by means of a third element (an integer that is equal to 1 for X[i j] and 0 for Y [i j]). Clearly, each entry W i [i j] contains at most 2k q+1 triples, and hence table W i on the whole contains at most 2 s i k q+1 ≤ 2 n k q+1 triples. Table V i also contains s i entries, one for each son of vertex i in the subtree rooted at i, that are computed as follows:

V i [i 1] = W i [i 1] and ∀ 2 ≤ j ≤ s i , V i [i j] = W i [i j] ∪ {(M ′ ∪ M ′′ , c ′ + c ′′ , r ′ + r ′′) ⊆ M × k × k : (M ′ , c ′ , r ′) ∈ W i [i j] and (M ′′ , c ′′ , r ′′) ∈ V i [i j-1]}.
Each entry V i [i j] contains at most k q+2 triples, and hence table V i on the whole contains at most s i k q+2 ≤ n k q+2 triples. All the needed information is stored in V i [i si], and X[i] and Y [i] can be now computed as follows:

X[i] = {(M ′ , c -r + 1) : (M ′ , c, r) ∈ V i [i si] and r > 0} Y [i] = {(M ′ , c) : (M ′ , c, 0) ∈ V i [i si]}.
The two entries X[i] and Y [i] are next filtered according to the following procedure: for each submotif M ′ ⊆ M that occurs in at least one pair of

X[i] (resp. Y [i]), we keep in X[i] (resp. Y [i]) the pair (M ′ , c) with the minimum c.
The base cases, i.e., vertex i is a leaf, are defined as follows:

X[i] = {(λ(i), 1)} and Y [i] = ∅.
In other words, X[i] contains exactly one pair (M ′ , c), where M ′ consists in one occurrence of the color associated to vertex i, and Y [i] does not contain any pair. The solution for the Min-CC problem consists in finding a pair (M, c) in X or Y with minimum c. If such a pair cannot be found in any entry of both X and Y , then the motif M does not occur in the tree G.

Proposition 4.2. The Min-CC problem for trees is solvable in O(n 2 k (q+1) 2 +1) time, where n is the order of the target graph, k is the size of the motif and q is the number of distinct colors.

The above result is particularly interesting in view of the fact that the Min-CC problem for trees parameterized by q is W[1]-hard 8 .

A polynomial-time algorithm for paths with a bounded number of colors

We complement here the results of the two preceding sections by showing that the Min-CC problem for paths is polynomial-time solvable in case the motif is built upon a fixed number of colors. Observe, however, that each color may still have an unbounded number of occurrences in the motif.

In what follows we describe a dynamic programming algorithm for this case. The basic idea of our approach is as follows. Suppose we are left by the algorithm with the problem of finding an occurrence of a submotif

M ′ ⊆ M in the subpath G ′ of G induced by {i, i + 1, . . . , j}, 1 ≤ i < j ≤ n.
Furthermore, suppose that any occurrence of M ′ in G ′ results in at least k ′ connected components. This minimum number of occurrences k ′ can be computed as follows. Assume that we have found one leftmost connected component C left of the occurrence of M ′ in G ′ and let i 2 , i ≤ i 2 < j, be the rightmost (according to the natural order of the vertices) vertex of C left . Let M ′′ be the motif obtained from M ′ by subtracting to each color c ℓ ∈ C the number of occurrences of color c ℓ in the leftmost connected component C left . Then the occurrence of M ′ in G ′ is given by C left plus the occurrence of the motif M ′′ in the subpath G ′′ of G ′ induced by {i 2 + 1, i 2 + 2, . . . , j}, which results in k ′ -1 connected components. From an optimization point of view, the problem thus reduces to finding a subpath {i 1 , i 1 + 1, . . . , i 2 }, i ≤ i 1 ≤ i 2 < j, such that the occurrence of the motif M ′′ modified according to the colors in {i 1 , i 1 + 1, . . . , i 2 } in the subpath induced by {i 2 +1, i 2 +2, . . . , j} results in a minimum number of connected components.

Let (G, M) be an instance of the Min-CC problem where G is a (vertexcolored) path built upon the set of colors C. For ease of exposition, write V(G) = {1, 2, . . . , n} and q = |C|. We denote by m i the number of occurrences of color c i ∈ C in M. Clearly, ci∈C m i = |M|. We now introduce our dynamic programming table T . Define T [i, j; p 1 , p 2 , . . . , p q], 1 ≤ i ≤ j ≤ n and 0 ≤ p ℓ ≤ m ℓ for 1 ≤ ℓ ≤ q, to be the minimum number of connected components in the subpath of G that starts at node i, ends at node j and that covers p ℓ occurrences of color c ℓ , 1 ≤ ℓ ≤ q. The base conditions are as follows:

• for all 1 ≤ i ≤ j ≤ n, T [i, j; 0, 0, . . . , 0] = 0 and T [i, i; p 1 , p 2 , . . . , p q] = ∞ if 1≤ℓ≤q p ℓ > 1, • for all 1 ≤ i ≤ n, T [i, i; p 1 , p 2 , . . . , p q] = ∞ if 1≤ℓ≤q p ℓ = 1 and λ(i) = c ℓ and p ℓ = 1, and T [i, i; p 1 , p 2 , . . . , p q] = 1 if 1≤ℓ≤q p ℓ = 1 and λ(i) = c ℓ and p ℓ = 1.

The entry T [i, j; p 1 , p 2 , . . . , p q] of the dynamic programming table T can be computed by the following recurrence

T [i, j; p 1 , p 2 , . . . , p q] = min i≤i1≤i2<j T [i 2 + 1, j; p ′ 1 , p ′ 2 , . . . , p ′ q] + 1 (1)
where each p ′ ℓ ≥ 0 is equal to p ℓ minus the number of occurrences of color c ℓ in the subpath of G induced by the vertices {i 1 , i 1 + 1, . . . , i 2 }. The optimal solution is clearly stored in T [1, n; p 1 , p 2 , . . . , p q].

We claim that our dynamic programming table T contains O(n q+2) entries. Indeed, there are q colors in M, each color c i ∈ C has at most n occurrences in G and we have O(n 2) subpaths in G to consider. We now turn to evaluating the time complexity for computing T [i, j; p 1 , p 2 , . . . , p q]. Assuming each entry T [i ′ , j ′ ; p ′ 1 , p ′ 2 , . . . , p ′ q] with i ≤ i ′ ≤ j ′ ≤ j and |j ′i ′ | < |j -i| has already been computed, T [i, j; p 1 , p 2 , . . . , p q] is obtained by taking a minimum number among O(|ji + 1| 2) = O(n 2) numbers, and hence is O(n 2) time. We have thus proved the following.

Proposition 5.1. The Min-CC problem for paths is solvable in O(n q+4) time, where n is the number of vertices and q is the number of colors in C.

As an immediate consequence of the above proposition, the Min-CC problem is polynomial-time solvable in case the motif M is built upon a fixed number of colors and the target graph G is a path.

Hardness of approximation for trees

We investigate in this section approximation issues for restricted instances of the MIN-CC problem. Unfortunately, as we shall now prove, it turns out that, even if M is a set and G is a tree, the Min-CC problem cannot be approximated within ratio c log n for some constant c > 0, where n is the size of the target graph G. As a side result, we prove that the Min-CC problem is W[2]-hard when parameterized by the number of connected components of the occurrence of M in the target graph G.

At the core of our proof is an L-reduction 12 from the Set-Cover problem. Let I be an arbitrary instance of the Set-Cover problem consisting of a universe set X(I) = {x 1 , x 2 , . . . , x n } and a collection of sets S(I) = S 1 , S 2 , . . . , S m , each over X(I). For each 1 ≤ i ≤ m, write t i = |S i | and denote by e j (S i), 1 ≤ j ≤ t i , the j-th element of S i . For ease of exposition, we present the corresponding instance of the Min-CC problem as a rooted tree G. We construct the tree G as follows (see Fig. 1). Define a root r and vertices S ′ 1 , S ′ 2 , . . . , S ′ m such that each vertex S ′ i is connected to the root r. For each S ′ i define the subtree G(S ′ i) rooted at S ′ as follows: each vertex S ′ i has a unique child S i and each vertex S i has children e 1 (S i), e 2 (S i), . . . , e ti (S i). The set of colors C is defined as follows: C = {c(S i) : 1 ≤ i ≤ m} ∪ {c(x j) : 1 ≤ j ≤ n} ∪ {c(r)}. The coloring mapping λ : V(G) → C is defined by: λ(S i) = λ(S ′ i) = c(S i) for 1 ≤ i ≤ m, λ(x j) = c(x j) for 1 ≤ j ≤ n and λ(r) = c(r). The motif M is the set defined as follows: M = {c(S i) : 1 ≤ i ≤ m} ∪ {c(x i) : 1 ≤ i ≤ n} ∪ {c(r)}. Proposition 6.1. For any instance I of the Set-Cover problem, there exists a solution of size h for I, i.e., a subset S ⊆ S(I), |S| = h, such that Si∈S S i = X, if and only if then there exists an occurrence of M in G that results in h + 1 connected components.

It is easily seen that the above reduction is an L-reduction [START_REF] Papadimitriou | Optimization, approximation and complexity classes[END_REF] . It is known that Set-Cover cannot be approximated within ratio c log n for some constant c > 0 14 . Then it follows that there exists a constant c ′ > 0 such that the Min-CC for trees cannot be approximated within performance ratio c ′ log n, where n is the number of vertices in the target graph.

As a side result, we also observe that the above reduction is a parameterized reduction. Since the Set-Cover is W[2]-hard when parameterized by the size of the solution [START_REF] Paz | Non deterministic polynomial optimization problems and their approximations[END_REF] , the following result holds. is the Min-CC problem for paths approximable within a constant ? Also, most parameterized complexity issues are to be discovered. Of particular importance: is the Min-CC problem for paths W[1]-hard when parameterized by the number of connected components in the occurrence of the motif in the target graph ? Bibliography

1 S 1 e 1 (′ 2 S 2 e 1 (1 (Figure 1 .

 11122111 Figure 1. Construction of the corresponding instance of the Min-CC problem.

Corollary 6 . 1 .

 61 The MIN-CC problem for trees is W[2]-hard when parameterized by the number of connected components of the occurrence of the motif in the graph.

An exact algorithm for trees

We proved in Section 4 that the Min-CC for trees is solvable in O(n 2 k (q+1) 2 +1) time, where n is the order of the target tree, k is the size of the motif and q is the number of distinct colors. We propose here a new algorithm for this special case, which turns out not to be a fixed-parameter algorithm but has a better running time in case the motif k is not that small compared to the order n of the target graph. More precisely, we give an algorithm for solving the Min-CC problem for trees that runs in O(n 2 2 2n 3), where n is the order of the target tree. Due to space constraints, we skip the proof details.

Let T be the target tree. For any vertex x of T , denote by T (x) the subtree of T rooted at x. The first step of our algorithm splits the target tree in a balanced way, so that T is rooted at a vertex r having children, r 1 , r 2 , . . . , r h such that none of the trees T (r i), 1 ≤ i ≤ h, has order greater than ⌈ n 2 ⌉. Such a vertex r can be found in O(n 2) time. We then construct two disjoint subsets R 1 and R 2 of r 1 , ... , r h with the property that

Given V ′ a subset of nodes of V , we say that V ′ does not violate M if the multiset of colors C(V ′) is a subset of M. Given a subtree T ′ of T , we define a partial solution F of Min-CC over instance (T ′ , M) as a set of connected components of T ′ that does not violate the multiset M.

The algorithm computes an optimal solution for Min-CC by first computing all the partial solutions S 1 over instance (R 1 , M) and all the partial solutions S 2 over instance (R 2 , M) and then merging a partial solution F 1 of S 1 and a partial solution F 2 of S 2 into a feasible solution for the Min-CC over instance (T , M). Since there are 2

Conclusion

We mention here some possible directions for future works. First, approximation issues of the Min-CC problem are widely unexplored. In particular,