Sébastien Angibaud
email: angibaud@lina.univ-nantes.fr

Guillaume Fertin
email: fertin@lina.univ-nantes.fr

Irena Rusu
email: rusu@lina.univ-nantes.fr

Annelyse Thévenin
email: thevenin@lri.fr

Stéphane Vialette
email: vialette@lri.fr

A Pseudo-Boolean programming approach for computing the breakpoint distance between two genomes with duplicate genes

Keywords: genome rearrangement, duplication, breakpoint distance, heuristic, pseudo-boolean programming

Comparing genomes of different species has become a crucial problem in comparative genomics. Recent research have resulted in different genomic distance definitions: number of breakpoints, number of common intervals, number of conserved intervals, Maximum Adjacency Disruption number (MAD), etc. Classical methods (usually based on permutations of gene order) for computing genomic distances between whole genomes are however seriously compromised for genomes where several copies of the same gene may be scattered across the genome. Most approaches to overcoming this difficulty are based on the exemplar method (keep exactly one copy in each genome of each duplicated gene) and the maximum matching method (keep as many copies as possible in each genome of each duplicated gene). Unfortunately, it turns out that, in presence of duplications, most problems are NP-hard, and hence several heuristics have been recently proposed. Extending research initiated in [2], we propose in this paper a novel generic pseudo-boolean approach for computing the exact breakpoint distance between two genomes in presence of duplications for both the exemplar and maximum matching methods. We illustrate the application of this methodology on a well-known public benchmark dataset of γ-Proteobacteria.

Introduction

The order of genes in the genomes of species can change during evolution and can provide information about their phylogenetic relationship. Two main approaches are possible. The first one consists in using different types of rearrangement operations and to find possible rearrangement scenarios using these operations (one of the most common rearrangement operations is reversals, which reverse the order of a subset of neighboring genes) [START_REF] Chen | Assignment of orthologous genes via genome rearrangement[END_REF]. The second one consists in computing a (dis-)similarity measure based on the gene order and most common rearrangement operations [START_REF] Sankoff | Genome rearrangement with gene families[END_REF][START_REF] Bryant | The complexity of calculating exemplar distances[END_REF][START_REF] Blin | The breakpoint distance for signed sequences[END_REF][START_REF] Angibaud | How pseudo-boolean programming can help genome rearrangement distance computation[END_REF]. We focus in this paper on the latter approach.

Several similarity (or dissimilarity) measures between two whole genomes have been recently proposed, such as the number of breakpoints [START_REF] Sankoff | Genome rearrangement with gene families[END_REF][START_REF] Bryant | The complexity of calculating exemplar distances[END_REF][START_REF] Blin | The breakpoint distance for signed sequences[END_REF], the number of reversals [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF][START_REF] Chen | Assignment of orthologous genes via genome rearrangement[END_REF], the number of conserved intervals [START_REF] Blin | Conserved intervals distance computation between non-trivial genomes[END_REF], the number of common intervals [START_REF] Bourque | Maximizing synteny blocks to identify ancestral homologs[END_REF], the Maximum Adjacency Disruption Number (MAD) [START_REF] Sankoff | Power boosts for cluster tests[END_REF], etc. However, in the presence of duplications and for each of the above measures, one has first to disambiguate the data by inferring orthologs, i.e., a nonambiguous mapping between the genes of the two genomes. Up to now, two extremal approaches have been considered : the exemplar model and the maximum matching model. In the exemplar model [START_REF] Sankoff | Genome rearrangement with gene families[END_REF], for all gene families, all but one occurrence in each genome is deleted. In the maximum matching model [START_REF] Blin | The breakpoint distance for signed sequences[END_REF][START_REF] Chauve | Genomes containing duplicates are hard to compare[END_REF], the goal is to map as many genes as possible. These two models can be considered as the extremal cases of the same generic homolog assignment approach.

Unfortunately, it has been shown that, for each of the above mentioned measures, whatever the considered model (exemplar or maximum matching), the problem becomes NP-complete as soon as duplicates are present in genomes [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF][START_REF] Blin | The breakpoint distance for signed sequences[END_REF][START_REF] Blin | Conserved intervals distance computation between non-trivial genomes[END_REF][START_REF] Chauve | Genomes containing duplicates are hard to compare[END_REF] ; a few inapproximability results are known for some special cases. Therefore, several heuristic methods have been recently devised to obtain (hopefully) good solutions in a reasonable amount of time [START_REF] Blin | Genes order and phylogenetic reconstruction: Application to γ-proteobacteria[END_REF][START_REF] Bourque | Maximizing synteny blocks to identify ancestral homologs[END_REF]. However, while it is relatively easy to compare heuristics between them, until now very little is known about the absolute accuracy of these heuristics. Therefore, there is a great need for algorithmic approaches that compute exact solutions for these genomic distances.

Extending research initiated in [START_REF] Angibaud | A general framework for computing rearrangement distances between genomes with duplicates[END_REF], we propose in this paper a novel generic pseudo-boolean approach for computing the exact breakpoint distance between two genomes in presence of duplications for both the exemplar and maximum matching methods. Furthermore, we show strong evidence that a fast and simple heuristic based on iteratively finding longest common subsequences provides very good results on our dataset of γ-Proteobacteria.

This paper is organized as follows. In Section 2, we present some preliminaries and definitions. We focus in Section 3 on the problem of finding the minimum number of breakpoints under the two models and we give a pseudo-boolean program together with some reduction rules. Section 4 is devoted to experimental results on a dataset of γ-Proteobacteria.

Preliminaries

From an algorithmic perspective, a unichromosomal genome is a signed sequence over a finite alphabet, referred hereafter as the alphabet of gene families. Each element of the sequence is called a gene. DNA has two strands, and genes on a genome have an orientation that reflects the strand of the genes. We represent the order and directions of the genes on each genome as a sequence of signed elements, i.e., elements with signs "+" and "-". Let G 0 and G 1 be two genomes. For each x ∈ {0, 1}, we denote the label at position i in G x by G x [i], 1 ≤ i ≤ n x , and we write n x for the number of genes in genome G x and occ x (g, i, j) for the number of genes g (and -g) in G x between positions i and j, 1 ≤ i ≤ j ≤ n x . To simplify notations, we abbreviate occ x (g, 1, n x) to occ x (g).

In order to deal with the inherent ambiguity of duplicated genes, we now precisely define what is a matching between two genomes. Roughly speaking, a matching between two genomes can be seen as a way to describe a putative assignment of orthologous pairs of genes between the two genomes (see for example [START_REF] Chen | Assignment of orthologous genes via genome rearrangement[END_REF]). A matching M between genomes G 0 and G 1 is a set of pairwise disjoint pairs (G

0 [i], G 1 [j]
), where G 0 [i] and G 1 [j] belong to the same gene family regardless of the sign, i.e., |G 0

[i]| = |G 1 [j]|.
Genes of G 0 and G 1 that belong to a pair of the matching M are said to be saturated by M, or M-saturated for short. A matching M between G 0 and G 1 is said to be maximum if for any gene family, there are no two genes of this family that are unmatched for M and belong to G 0 and G 1 , respectively.

The above definition allows us a large degree of freedom in the choice of the matching between two genomes. Two types of matching are usually considered and specify the underlying model to focus on for computing the desired genomic distance. In the exemplar model, the matching M is required to saturate exactly one gene of each gene family, i.e., the size of the matching is the number of gene families. In the maximum matching model, the matching M is required to saturate as many genes of any gene family as possible, i.e., M is a matching of maximum cardinality. Let M be any matching between G 0 and G 1 that fulfills the requirements of a given model (exemplar or maximum matching). By first deleting non-saturated genes and next renaming genes in G 0 and G 1 according to the matching M, we may now assume that both G 0 and G 1 are duplication-free, i.e. G 1 is a signed permutation of G 0 . We call the resulting genomes M-pruned.

Let G 0 and G 1 be two duplication-free genomes of size n. Without loss of generality, we may assume that G 0 is the identity permutation, i.e., G 0 = 1 2 . . . n. We say that there is a breakpoint after gene G 0

[i], 1 ≤ i < n, in G 0 if neither G 0 [i] and G 0 [i + 1] nor -G 0 [i + 1]
and -G 0 [i] are consecutive genes in G 1 , otherwise we say that there is an adjacency after gene G 0 [i]. For example, if G 0 = 1 2 3 4 5 and G 1 = 1 -3 -2 4 5, then we have a breakpoint in G 0 after genes 1 and 3 (and hence we have an adjacency in G 0 after genes 2 and 4).

Let G 0 and G 1 be two genomes and M be a matching under any model (exemplar or maximum matching) between G 0 and G 1 . We define A M (G 0 , G 1) and B M (G 0 , G 1) to be the number of adjacencies and the number of breakpoints between the two M-pruned genomes.

We are now in position to formally define the optimization problem we are interested in. Given two genomes G 0 and G 1 and a model (exemplar or maximum matching), find a matching M between G 0 and G 1 that fulfills the requirements of the model such that the number of breakpoints between the two M-pruned genomes is as small as possible.

3 An exact algorithm

Pseudo-boolean problem

Minimizing the number of breakpoints between two genomes with duplications is an NP-hard problem under the exemplar model even when occ 0 (g) = 1 for all genes g in G 0 and occ 1 (g) ≤ 2 for all genes g in G 1 [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF]. Consequently, the NP-hardness also holds under the maximum matching model.

The exact algorithms we define in this section attempt to take advantage of the existing solvers, and more precisely of the linear pseudo-boolean solvers, which are a generalization of the SAT solvers. To this end, we have to express our problem (with its two variants, according to the exemplar or maximum matching model) as a linear pseudo-boolean problem (or LPB problem), i.e. as a linear program [START_REF] Schrijver | Theory of Linear and Integer Programming[END_REF] whose variables take 0 or 1 values. A number of generalizations of Sat solvers to LPB solvers have been proposed (Pueblo [START_REF] Sheini | Pueblo: A hybrid pseudo-boolean SAT solver[END_REF], Galena [START_REF] Chai | A fast pseudo-boolean constraint solver[END_REF], OPBDP [3] and more). We decided to use for our tests the minisat+ LPB solver [START_REF] Eén | Translating pseudo-boolean constraints into SAT. Journal on Satisfiability[END_REF] because of its good results during PB evaluation 2005 (special track of the Sat Competition 2005).

Instead of directly writing a program that minimizes the number of breakpoints, we chose to write the complementary program which consists in maximizing the number of adjacencies between the two given genomes. There are two reasons for this choice. First, the constraints are simpler and less numerous in this latter case ; moreover, experimental tests moreover showed that the running time of our program is noticeably better by focusing on adjacencies. Second, it is easy to notice that minimizing the number of breakpoints and maximizing the number of adjacencies are equivalent problems under both the exemplar and maximum matching models. Indeed, according to the above notations, given a matching M between two genomes G 0 and G 1 we have:

B M (G 0 , G 1) + A M (G 0 , G 1) = |M| -1. (1)
For the exemplar and maximum matching models, all the matchings M satisfying the model have the same size, and hence

B M (G 0 , G 1) + A M (G 0 , G 1) is a constant. Therefore, maximizing A M (G 0 , G 1) is equivalent to minimizing B M (G 0 , G 1).

Maximizing the number of adjacencies

The LPB program we propose considers two genomes with duplications and performs an M-pruning which maximizes the number of adjacencies according to a specified model (exemplar or maximum matching). As discussed above, the resulting matching also minimizes the number of breakpoints between the two genomes. The LPB program, Program Breakpoint-Maximum-Matching, for the maximum matching model is given in Figure 1. The exemplar variant is easily obtained by performing only a few changes that are discussed subsequently.

Program Breakpoint-Maximum-Matching

Objective :

Maximize P 0≤i<n 0 P i<j≤n 0 P 0≤k<n 1 P k<ℓ≤n 1 d(i, j, k, ℓ)
Constraints : Program Breakpoint-Maximum-Matching considers two genomes G 0 and G 1 of respective lengths n 0 and n 1 . The objective function, the variables and the constraints are briefly discussed hereafter.

(C.01) ∀ 1 ≤ i ≤ n0, P 1≤k≤n 1 |G 0 [i]|=|G 1 [k]| a(i, k) = b0(i) ∀ 1 ≤ k ≤ n1, P 1≤i≤n 0 |G 0 [i]|=|G 1 [k]| a(i, k) = b1(k) (C.02) ∀ 0 ≤ x ≤ 1, ∀ g ∈ G, P 1≤i≤nx |Gx[i]|=|g| bx(i) = min(occ0(g), occ1(g)) (C.03) ∀ 0 ≤ x ≤ 1, ∀ 1 ≤ i ≤ j -1 < nx, cx(i, j) + P i<p<j bx(p) ≥ 1 (C.04) ∀ 0 ≤ x ≤ 1, ∀ 1 ≤ i < p < j ≤ nx, cx(i, j) + bx(p) ≤ 1 (C.05) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1, such that G0[i] = G1[k] and G0[j] = G1[ℓ], a(i, k) + a(j, ℓ) + c0(i, j) + c1(k, ℓ) -d(i, j, k, ℓ) ≤ 3 (C.06) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1, such that G0[i] = G1[k] and G0[j] = G1[ℓ], a(i, k) -d(i, j, k, ℓ) ≥ 0 a(j, ℓ) -d(i, j, k, ℓ) ≥ 0 c0(i, j) -d(i, j, k, ℓ) ≥ 0 c1(k, ℓ) -d(i, j, k, ℓ) ≥ 0 (C.07) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1, such that G0[i] = -G1[ℓ] and G0[j] = -G1[k], a(i, ℓ) + a(j, k) + c0(i, j) + c1(k, ℓ) -d(i, j, k, ℓ) ≤ 3 (C.08) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1, such that G0[i] = -G1[ℓ] and G0[j] = -G1[k], a(i, ℓ) -d(i, j, k, ℓ) ≥ 0 a(j, k) -d(i, j, k, ℓ) ≥ 0 c0(i, j) -d(i, j, k, ℓ) ≥ 0 c1(k, ℓ) -d(i, j, k, ℓ) ≥ 0 (C.09) ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1, such that {|G0[i]|, |G0[j]|} = {|G1[k]|, |G1[ℓ]|} or G0[i] -G0[j] = G1[k] - G1[ℓ], d(i, j, k, ℓ) = 0 (C.10) ∀ 1 ≤ i < j ≤ n0, P 1≤k<n 1 P k<ℓ≤n 1 d(i, j, k, ℓ) ≤ 1 Domains : ∀ x ∈ {0, 1}, ∀ 1 ≤ i < j ≤ n0, ∀ 1 ≤ k < ℓ ≤ n1, a(i, k), bx(i), cx(i, k), d(i, j, k, ℓ) ∈ {0, 1}
Variables:

• Variables a(i, k), 1 ≤ i ≤ n 0 and 1 ≤ k ≤ n 1 , define a matching M: a i,k = 1
if and only if the gene at position i in G 0 is matched with the gene at position

k in G 1 in M. • Variables b x (i), x ∈ {0, 1} and 1 ≤ i ≤ n x , represent the M-saturated genes: b x (i) = 1 if and only if the gene at position i in G x is saturated by the matching M. Clearly, 1≤i≤n0 b 0 (i) = 1≤k≤n1 b 1 (k)
, and this is precisely the size of the matching M. • Variables c x (i, j), x ∈ {0, 1} and 1 ≤ i < j ≤ n x , represent consecutive genes according to the matching M: c x (i, j) = 1 if and only if the genes at positions i, j in G x are saturated by M and no gene at position p, i < p < j, is saturated by

M. • Variables d(i, j, k, ℓ), 1 ≤ i < j ≤ n 0 and 1 ≤ k < ℓ ≤ n 1 , represent
adjacencies according to the matching M:

d(i, j, k, ℓ) = 1 if and only if (i) either (G 0 [i], G 1 [k]) and (G 0 [j], G 1 [ℓ]) are two edges of M, or (G 0 [i], G 1 [ℓ]) and (G 0 [j], G 1 [k]) are two edges of M, (ii) G 0 [i] and G 0 [j] are consecutive in G 0 according to M, (iii) G 1 [k] and G 1 [ℓ] are consecutive in G 1 according to M.

Objective function:

The objective of Program Breakpoint-Maximum-Matching is to maximize the number of adjacencies between the two considered genomes. This objective reduces in our model to maximizing the sum of all variables d(i, j, k, ℓ).

Constraints:

Assume x ∈ {0, 1}, 1 ≤ i < j ≤ n 0 and 1 ≤ k < ℓ ≤ n 1 .

• Constraint (C.01) ensures that each gene of G 0 and of G 1 is matched at most once, i.e., b 0 (i) = 1 (resp. b 1 (k) = 1) if an only if gene i (resp. k) is matched in G 0 (resp. G 1) ; see Figure 2 for an illustration. Moreover, the matching is possible only between genes in the same family. It is worth noticing here that we do not specifically ask that a(i, k) = 0 when i and k concern genes belonging to different families. This is simply not necessary. • Constraint (C.02) defines the model (i.e. the maximum matching model, in this case). For each gene family g, one must have a single matched gene for the exemplar model and min(occ 0 (g), occ 1 (g)) matched genes for the maximum matching model (see Figure 2). • Constraints in (C.03) and (C.04) express the definition of consecutive genes, thus fixing the values of the variables c x . The variable c x (i, j) is equal to 1 if and only if there exists no p such that i < p < j and b x (p) = 1. Again, it is worth noticing that the constraints do not force the variables c x (i, j) to have exactly the values we intuitively wish according to the abovementioned interpretation. Here, we accept that c x (i, j) = 1 even if the gene at position i or j is not matched. However, this will pose no problem in the sequel.

• Constraints in (C.05) to (C.10) define variables d. In the case where G 0

[i] = G 1 [k] and G 0 [j] = G 1 [ℓ]
, constraints (C.05) and (C.06) ensure that we have d(i, j, k, ℓ) = 1 if and only if all variables a(i, k), a(j, ℓ), c 0 (i, j) and c 1 (k, ℓ) are equal to 1. In the case where G 0

[i] = -G 1 [ℓ] and G 0 [j] = -G 1 [k]
, constraints (C.07) and (C.08) ensure that we have d(i, j, k, ℓ) = 1 if and only if all variables a(i, ℓ), a(j, k), c 0 (i, j) and c 1 (k, ℓ) are equal to 1. Constraint (C.09) fixes the variable d(i, j, k, ℓ) to 0 if none of the two cases above holds. Constraint (C.10) requires to have at most one adjacency for every pair (i, j). See Figure 3 for a simple illustration. Fig. 2. Illustration of the constraints on variable b0(i), 1 ≤ i ≤ n0. If gene G0[i] appears in positions k1 < k2 < . . . < kp in G1 and gene G0[i] is mapped to gene G1[kj] in the solution mapping, then (i) a(i, kj) = 1, i.e., gene G0[i] is mapped to gene G1[kj], (ii) a(i, kq) = 0 for 1 ≤ q ≤ p and q = j, i.e., gene G0[i] is mapped to only one gene in G1, (iii) b0(i) = 1, i.e., gene G0[i] is mapped to a gene of G1 and (iv) b1(kj) = 1, i.e., gene G1[kj] is mapped to a gene of G0. Observe that one may have in addition b1(kq) = 1 for some 1 ≤ q ≤ p and q = j if min(occ0(|G0[i]|), occ1(|G0[i]|) ≥ 1 (this observation is however no longer valid for the exemplar model).

Genome G0 G0[1] G0[2] G0[i -1] G0[i] G0[i + 1] G0[n0] Genome G1 G1[1] G1[2] G1[k1] G1[kj] G1[kp] G1[n1] |G0[i]| = |G1[k1]| |G0[i]| = |G1[kj]| |G0[i]| = |G1[kp]| a(i, k1) = 0 a(i, kj) = 1 a(i, kp) = 0 b0(i) = 1 b1(k1) ∈ {0, 1} b1(kj) = 1 b1(kp) ∈ {0, 1} b1
Program Breakpoint-Maximum-Matching has O((n 0 n 1) 2) constraints and O((n 0 n 1) 2) variables, which could result in a time-consuming computation. Several simple rules have been used in order to speed-up the execution, some of which help to reduce the number of variables and constraints. They are discussed in the next subsection.

d(i, j, k, ℓ) = 1 Genome G0 G0[1] G0[i -1] G0[i] G0[i + 1] G0[j -1] G0[j] G0[j + 1] G0[n0] Genome G1 G1[1] G1[k -1] G1[k] G1[k + 1] G1[ℓ -1] G1[ℓ] G1[ℓ + 1] G1[n1] G0[i] = G1[k] a(i, k) = 1 G0[j] = G1[ℓ] a(j, ℓ) = 1 b0(p) = 0 ∀ i < p < j b0(i) = 1 b0(j) = 1 b1(q) = 0 ∀ k < q < ℓ b0(k) = 1 b0(ℓ) = 1 c0(i, j) = 1 c1(k, ℓ) = 1
Fig. 3. Illustration of the constraints on variable d(i, j, k, ℓ),

1 ≤ i < j ≤ n0 and 1 ≤ k < ℓ ≤ n1, for G0[i] = G1[k] and G0[j] = G1[ℓ]
. The two genes G0[i] and G [j] are adjacent according to a solution mapping if there exist two genes G1[k] and

G1[ℓ], G0[i] = G1[k] and G0[j] = G1[ℓ], such that (i) G0[i] is mapped to G1[k], i.e., a(i, k) = 1, (ii) G0[j] is mapped to G1[ℓ],
i.e., a(j, ℓ) = 1, (iii) no gene between G0[i] and G0[j] is mapped to a gene of G1, i.e., c0(i, j) = 1 and (iv) no gene between G1[k] and G1[ℓ] is mapped to a gene of G1, i.e., c1(k, ℓ) = 1. The above situation reduces in our modelization to d(i, j, k, ℓ) = 1.

Speeding-up the program

We briefly describe in this section some rules for speeding-up the pseudo-boolean program.

Pre-processing the genomes. The genomes are pairwise pre-processed to delete all genes that do not appear in both genomes. For the exemplar model, consecutive occurrences of a gene (with the same sign) are reduced to only one occurrence to this gene. For the γ-proteobacteria benchmark set, the average size of a genome reduces from 3000 to 1300.

Reducing the number of variables and constraints. Due to space constraints we only list few easy reduction rules. For non-duplicated genes, i.e., occ 0 (g) = occ 1 (g) = 1, the corresponding variable a i,k is set directly to 1, as well as the two variables b 0 (i) and b 1 (k). Also, if two non-duplicated genes occur consecutively or in reverse order with opposite signs, the corresponding variable d() is set directly to 1 and the related constraints are discarded. For the exemplar model, we must have exactly one occurrence of each gene in each genome, and hence if the same gene occurs, say in G 0 , at positions i and j, then the corresponding variable d() is set directly to 0 and the related constraints are discarded. If for two genes, say occurring at positions i and j in G 0 and k and ℓ in G 1 , at least one gene occurring between position i and j in G 0 or k and ℓ in G 1 must be saturated in any matching M, then the corresponding variable d(i, j, k, ℓ) is set directly to 0 and the related constraints are discarded (details omitted).

Adding redundancy. While adding redundancy to a pseudo-boolean program is certainly useless from a correctness point of view, it can however have a major impact on the practical performance of the programs. For example, Program Breakpoint-Maximum-Matching contains some redundant constraints ((C.06), (C.08) and (C.10)) that significantly improved the running time of the program.

Experimental results

Thanks to the LPB program discussed previously, as well as formula (1), we are now able to determine the minimum number of breakpoints between pairs of genomes that contain duplicates. This minimum number of breakpoints will be computed according to the two above mentioned models, i.e. the exemplar and maximum matching models.

To this end, we used a dataset of γ-proteobacteria genomes, originally studied in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF], and exploited several times since then. This dataset is composed of twelve complete linear genomes of γ-Proteobacteria out of the thirteen originally studied in [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF]. Indeed, the thirteenth genome (V.cholerae) was not considered, since it is composed of two chromosomes, and hence does not fit in the model we considered here for representing genomes. More precisely, the dataset is composed of the genomes of the following species:

-Buchnera aphidicola APS (Baphi, Genbank accession number NC 002528), -Escherichia coli K12 (Ecoli, NC 000913), -Haemophilus influenzae Rd (Haein, NC 000907), -Pseudomonas aeruginosa PA01 (Paeru, NC 002516), -Pasteurella multocida Pm70 (Pmult, NC 002663), -Salmonella typhimurium LT2 (Salty, NC 003197), -Xanthomonas axonopodis pv. citri 306 (Xaxon, NC 003919), -Xanthomonas campestris (Xcamp, NC 0 03902), -Xylella fastidiosa 9a5c (Xfast, NC 002488), -Yersinia pestis CO 92 (Ypest-CO92, NC 003143), -Yersinia pestis KIM5 P12 (Ypest-KIM, NC 004088) and -Wigglesworthia glossinidia brevipalpis (Wglos, NC 004344).

The computation of a partition of the complete set of genes into gene families, where each family is supposed to represent a group of homologous genes, is taken from [START_REF] Blin | Genes order and phylogenetic reconstruction: Application to γ-proteobacteria[END_REF] (this partition was actually provided to these authors by Lerat [START_REF] Lerat | From gene tree to organismal phylogeny in prokaryotes: the case of γ-proteobacteria[END_REF]). It should be noted that in average, 11% of duplicated genes are present in these genomes.

The LPB engine is powered by minisat+ [START_REF] Eén | Translating pseudo-boolean constraints into SAT. Journal on Satisfiability[END_REF]. Computations were carried out on a Quadri Intel(R) Xeon(TM) CPU 3.00 GHz with 16Gb of memory running under Linux. Under the maximum matching model, minisat+ runs our program Breakpoint-Maximum-Matching (implemented using the speeding-up rules described in Section 3.3) in less than 10s for 56 out of the 66 possible pairs of genomes, and in several minutes for the remaining 10 pairs. The results are provided in Table 1.

The first conclusion that can be drawn from these results is the following: the pseudo-boolean approach we have considered here is a good approach for computing the minimum number of breakpoints for the maximum matching model, since all the results have been obtained within a few minutes. However, as already observed in [START_REF] Angibaud | How pseudo-boolean programming can help genome rearrangement distance computation[END_REF] for maximizing the number of common intervals between two genomes, we notice that the exemplar model is the main bottleneck of our approach. Indeed, for the exemplar model, only 49 out of 66 (that is about 74%) results have been obtained within a few minutes (we stopped the computation of the 17 remaining cases after a few days). We still have no formal explanation for this surprising and counter-intuitive fact. The 49 results we have obtained are given in Table 2.

Besides the fact that computing the minimum number of breakpoints under the maximum matching model proves to be feasible under our pseudo-boolean approach, we find interesting to note that we have a sufficient number of results in both the maximum matching and the exemplar models to test the absolute accuracy of possible heuristics for these two problems. Indeed, if one wishes to obtain fast (though not optimal) results by using a given heuristic, it is relevant to know how tight this heuristic is. We carried out this study, focusing on two heuristics (one for the maximum matching model, the other for the exemplar model), that are both based on iteratively choosing a Longest Common Substring (LCS).

Maximum Matching Model. In [START_REF] Marron | Genomic distances under deletions and insertions[END_REF], the authors introduced an heuristic that aimed at computing a matching between two genomes. This heuristic is a greedy algorithm based on the notion of LCS. Let G 0 and G 1 be two genomes: an LCS of (G 0 , G 1) is a longest common word S of G 0 and G 1 , up to a complete reversal. The idea of the greedy algorithm is to match, at each iteration, all the genes that are in an LCS. If there are several LCS, one is chosen arbitrarily. In [START_REF] Angibaud | How pseudo-boolean programming can help genome rearrangement distance computation[END_REF], we improved this heuristic in the following way: at each iteration, not only we match an LCS, but we also remove each unmatched gene of a genome, for which there is no unmatched gene of same family in the other genome. These rules imply that the resulting matching is a maximum matching. We call this heuristic IILCS MM. Exemplar Model. For the exemplar model, we use the same strategy (iteratively match the genes of an LCS), except that in this case we must make sure that only one gene from each family is matched on each genome. Therefore, at each iteration, and for each gene g present in the LCS (and thus kept in the matching), we remove all the other occurrences of g in both genomes. Let us call this heuristic IILCS EX.

We have tested both IILCS MM and IILCS EX under, respectively, the maximum matching and exemplar models. Current results are given in Tables 1 to 4 (see http://www.lri.fr/~thevenin/Breakpoint/#Some results for upto-date results). The two heuristics are quite fast and one can obtain all results for IILCS MM and IILC EX within 20 minutes on a regular desktop computer. For the maximum matching model, Heuristic IILCS MM provides results that are on average 99.11% of the optimal number of breakpoints, ranging from 95.51% to 100%. We actually note that in 14 out of the 66 cases, IILCS MM returns the optimal value. Concerning IILCS EX, the average, obtained over the 49 instances for which we know the optimal result, is 96.88%, ranging from 94.38% to 99.10%. We thus conclude that both heuristics IILCS MM and IILCS EX, despite being extremely simple and fast, appear to be very good on the dataset we studied. In particular, for the exemplar model, since our pseudo-boolean approach seems to reach its limits for some instances, it could be convenient to compute those remaining instances using Heuristic IILCS EX.

Conclusion

In this paper, we presented a method that helps speeding-up computations of exact results for comparing whole genomes containing duplicates. This method, which makes use of pseudo-boolean programming, has been introduced in [START_REF] Angibaud | How pseudo-boolean programming can help genome rearrangement distance computation[END_REF] for computing the maximum number of common intervals between two genomes, and can be used for several (dis)similarity measures. In this paper, we used this method for computing the minimum number of breakpoints between two genomes, and developed pseudo-boolean programs for both the maximum matching and exemplar models. Experiments were undertaken on a dataset of γ-Proteobacteria, showing the validity of our approach, since all the results (resp. 49 results out of 66) have been obtained in a limited amount of time in the maximum matching model (resp. exemplar model). Moreover, these results allow us to state that both the IILCS MM and the IILCS EX heuristics provide excellent results on this dataset, hence showing their validity and robustness. On the whole, these preliminary results are very encouraging.

There is still a great amount of work to be done. For instance:

-Implementing and testing the maximum matching and the exemplar models, for several other (dis)similarity measures, -For each case, determining strong and relevant rules for speeding-up the process by avoiding the generation of a large number clauses and variables (a pre-processing step that should not be underestimated), -Obtaining exact results for each of these models and measures, and for different datasets, that could be later used as benchmarks in order to validate (or not) possible heuristics, and -Implementing and testing an intermediate model between the maximum matching and the exemplar models, in which one must match at least one gene of each family in each genome.

Fig. 1 .

 1 Fig. 1. Program Breakpoint-Maximum-Matching for finding the maximum number of adjacencies between two genomes under the maximum matching model.

 (k1) + . . . + b1(kj) + . . . + b1(kp) = min(occ0(|G0[i]|), occ1(|G0[i]|)

Table 1 .

 1 Exact number of breakpoints for the maximum matching model

	Genomes Number of Breakpoints (maximum matching model)
	Ecoli	156									
	Haein	270 665								
	Paeru	240 1082 615							
	Pmult	259 703 525 681						
	Salty	158 277 676 1091 704					
	Wglos	170 194 277 260 270 192				
	Xaxon	226 842 533 1016 557 854 269			
	Xcamp	226 845 530 1012 555 854 268 181		
	Xfast	236 564 468 572 481 569 272 400 404	
	Ypest-co92 170 596 649 990 671 591 193 760 755 542
	Ypest-kim 176 607 653 1004 676 606 197 760 749 545 59
		B a p h i	E c o li	H a e in	P a e r u	P m u lt	S a lt y	W g lo s	X a x o n	X c a m p	X fa s t	Y p e s t -c
												o
												9
												2

Table 2 .

 2 Exact number of breakpoints for the exemplar model (49 instances out of 66)

	Genomes Number of Breakpoints (exemplar model)
	Ecoli	152								
	Haein	265 610							
	Paeru	232		550						
	Pmult	254 622			592				
	Salty	154		612			622		
	Wglos	168 183 267 248 262 181
	Xaxon	222 675 473			495 684 261
	Xcamp	222 678 473			495			260
	Xfast	231 491 424 499 436 497 264
	Ypest-co92 166		597			597			182 624 620 473
	Ypest-kim 172		598			601			186 624 618 477
			B a p h i	E c o li	H a e in	P a e r u	P m u lt	S a lt y	W g lo s	X a x o n	X c a m p	X fa s t	Y p e s t -c o 9 2
		Number of Breakpoints (maximum matching model)
	Genomes for Heuristic IILCS MM			
	Ecoli	157									
	Haein	270 670								
	Paeru	241 1097 619							
	Pmult	259 705 529 684					
	Salty	158 290 680 1101 708			
	Wglos	171 195 277 262 270 193	
	Xaxon	226 848 533 1023 560 863 269
	Xcamp	226 851 532 1023 559 860 269 185
	Xfast	236 569 468 575 481 571 272 406 408
	Ypest-co92 173 618 655 1007 678 609 195 767 766 549
	Ypest-kim 178 628 660 1019 684 626 198 766 758 550 59
		B a p h i	E c o li	H a e in	P a e r u	P m u lt	S a lt y	W g lo s	X a x o n	X c a m p	X fa s t	Y p e s t -c
												o
												9
												2

Table 3 .

 3 Number of breakpoints for the maximum matching model by IILCS MM

Table 4 .

 4 Number of breakpoints for the exemplar model by IILCS EX

		Number of Breakpoints (exemplar model)
	Genomes for Heuristic IILCS EX				
	Ecoli	155									
	Haein	268 636								
	Paeru	238 888 571							
	Pmult	258 657 509 619						
	Salty	156 175 641 908 659					
	Wglos	170 189 272 254 266 188				
	Xaxon	224 712 494 844 516 722 264			
	Xcamp	224 716 492 841 516 720 263 126		
	Xfast	234 511 443 517 456 514 268 384 383	
	Ypest-co92 171 482 619 829 620 491 188 650 648 490
	Ypest-kim 176 485 624 827 623 492 191 649 644 495 34
		B a p h i	E c o li	H a e in	P a e r u	P m u lt	S a lt y	W g lo s	X a x o n	X c a m p	X fa s t	Y p e s t -c o 9 2