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Mechanical and Control-Oriented Design of a
Monolithic Piezoelectric Microgripper using a New

Topological Optimisation Method
Mathieu Grossard, Christine Rotinat-Libersa, Nicolas Chaillet and Mehdi Boukallel

Abstract— This paper presents a new method developed for
the optimal design of piezoactive compliant micromechanisms.
It is based on a flexible building block method, called FlexIn,
which uses an evolutionary approach, to optimize a truss-like
planar structure made of passive and active building blocks,
made of piezoelectric material. An electromechanical approach,
based on a mixed finite element formulation, is used to establish
the model of the active piezoelectric blocks. From the first
design step, in addition to conventional mechanical criteria,
innovative control-based metrics can be considered in the op-
timization procedure to fit the open-loop frequency response
of the synthesized mechanisms. In particular, these criteria
have been drawn here to optimize modal controllability and
observability of the system, which is particularly interesting
when considering control of flexible structures. Then, a planar
monolithic compliant micro-actuator has been synthesized using
FlexIn and prototyped. Finally, simulations and experimental
tests of the FlexIn optimally synthetized device demonstrate the
interests of the proposed optimization method for the design of
micro-actuators, microrobots, and more generally for adaptronic
structures.

Index Terms— Actuator design, balanced gramian, compliant
mechanisms, controllability, microgripper, microrobotics, observ-
ability, piezoelectricity, topology optimization, vibrations control.

I. INTRODUCTION

IN many applications including Micro Electro Mechanical
Systems (MEMS) [1], [2], [3], smart structures [4], [5],

surgical tools [6], [7], etc, compliant mechanisms have already
been used. They are single-body, elastic continua flexible
structures, that deliver the desired motion by undergoing
elastic deformation, as opposed to jointed rigid body mo-
tions of conventional mechanisms. When considering small
scale systems (e.g. for microrobotics use), there are many
advantages of compliant mechanisms, among them: simplified
manufacturing, reduced assembly costs, reduced kinematic
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noise, no wear, no backlash, high precision, and ability to
accommodate unconventional actuation schemes.

One type of smart material-based actuator typically used to
actuate compliant structures is piezoceramic PZT actuators:
when compared to other conventional actuation principles at
small scales, they have very appealing properties in the sense
of micromechatronic design. When integrated inside a com-
pliant mechanism, piezoelectric actuators can exert actuation
forces to the host structure without any external support. They
can also be manufactured into the desired shape, while making
realistic the realization of piezoelectric monolithic compliant
mechanisms, such as microgrippers [8]. Piezoelectric actuation
is mostly used for microrobot design in order to achieve
nanometric resolutions, and has naturally became widespread
in micromanipulation systems [9].

However, one limitation of piezoelectric actuators is that
they are capable of producing only about 0.1% strain, resulting
in a restricted range of motion. A number of papers only
address the problem of optimally designing coupling structures
to act as stroke amplifiers of the piezoelectric actuator [10],
[11], [12]. Opposite to these methods, where the piezoelectric
elements in the structure are predetermined, a large body of
work related to optimization of active structures deals with the
optimal location of actuators on a given structure [13]. Another
general approach to optimally design actuated structures is to
simultaneously [14] or separately [15] optimize the actuator
size. Finally, few studies consider the topology optimization
(shape) of monolithic PZT active structures [16].

Moreover, some meso-scale robots exploit the high
bandwidth of piezoelectric actuators (e.g. to achieve
locomotion through a stick-slip principle [17]). Often,
resulting piezoactuated devices are electromechanically tuned
resonating microrobots. But, previous works in topology
design of active compliant structures have mainly focused
on quasi-static applications, which may be sub-optimal
in dynamic operations, or, worse, may induce degraded
functioning. Very few related works deal with topological
optimization method including frequency response analysis
[14], [18]. There, the objective functions generally use
the maximization of either geometrical advantage (stroke
amplification), or mechanical advantage (force amplification),
only in the restrictive case of predetermined harmonic
loadings.

To improve such active compliant micromechanisms per-
formances, it can be useful to optimize them from the first
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designing step, taking into account versatile microrobotic
criteria [19] . A global systematic design approach is presented
in this paper, where topology optimization of the piezoactive
structure, as well as that of its frequency response, is used
to design compliant smart mechanisms. This method is based
on the flexible building block method called FlexIn ("Flexible
Innovation"). It considers a planar compliant mechanism as an
assembly of both passive and piezoactive compliant building
blocks, and uses a multi-objective genetic algorithm to opti-
mize these structures. To complete the panel of purely me-
chanical criteria, innovative control-based metrics have been
newly proposed in FlexIn. These criteria are useful tools to
ensure the efficient control of the flexible structures afterwards.
Indeed, each FlexIn generated structure is described by its own
state model, giving rise to several control-oriented fitnesses.
In particular, the different possible interpretations of modal
gramians for flexible structures in terms of modal control-
lability and observability [20] can be taken into account by
many criteria in the optimization procedure. They can address
several problems, such as avoiding noise amplification and
decoupling disturbances [21], [22], avoiding spillover-effects
[23], improving dynamic input/output performances [24], [25],
[26] which can be of great interest in the control-oriented
design of mechatronic devices.

This paper is organized as follows: firstly, we will briefly
review the underlying idea of the FlexIn methodology for
the optimal design of smart compliant mechanisms. In a
second part, the electromechanical approach, based on a
mixed finite element formulation, is established for the model
of the piezoactive building blocks. Thirdly, the state model
approach used in FlexIn is presented, where the mechanism
is discretized on its modal components. At this stage, a
topology design strategy is drawn to take into account, in the
optimization algorithm, accurate model-reduction and control
of flexible structures. Two resulting numerical criteria will
help meeting open-loop input-output transfer performances
with specific operation requirements. In addition to purely
static mechanical criteria, these new control-oriented metrics
are simultaneously used to optimally synthesize a compliant
piezoactuator. In the fifth part, problem specification,
optimization results and simulation of the pseudo-optimal
piezoactuator are presented. The last part deals with the
realisation of the optimally designed piezoactuator prototype,
and experimental validation. The results obtained demonstrate
the interests of the FlexIn optimization method for the design
of unconventional micro-actuators.

II. FLEXIN: A COMPLIANT MECHANISM STOCHASTIC
DESIGN METHODOLOGY

In this section, we briefly present the flexible building
block method, which has been implemented for the optimal
design of micromechanical planar mechanisms in a software
called FlexIn (developed with Matlab R©). It uses a multi-
objective evolutionary algorithm approach for the optimal
design of smart compliant mechanisms made of an assembly
of elementary passive and active compliant building blocks,

chosen in two specific libraries. Detailed descriptions of the
method can also be found in [27], [28], [29], [30], [31].

A. Compliant building blocks

Two libraries of compliant elements in limited number are
proposed in FlexIn. These bases are composed respectively
of 36 passive and 19 piezoactive block elements, made of
beams assembly (Fig.1). They are sufficient to build a high
variety of topologies. Moreover, the block feasibility related to
fabrication process constraints can also be taken into account
at this stage.

Fig. 1. Passive (black) and piezoactive (grey) libraries of compliant building
blocks, for planar compliant mechanisms synthesis using FlexIn.

B. Principles of the method and design parameters

The purpose of FlexIn is to optimally design realistic
compliant structures. The specification of a planar compliant
mechanism problem considers specific boundary conditions:
fixed frame location, input (actuators), contacts and output
(end-effector). Different types of actuation principles can be
used: either external or internal force/displacement actuators
defined at particular nodes of the mesh [28], or integrated
piezoactive elements taken from the active library above [29],
[31]. The design method consists of searching for an optimal
distribution of allowed passive building blocks, as well as for
the optimal set of structural parameters and materials, in order
to obtain relevant monolithic compliant structures. The loca-
tion of fixed nodes, contacts, and that of the actuators and/or
piezoactuated blocks can also be considered as optimization
parameters. The topology optimization method, inspired from
[32], uses a genetic algorithm approach, where structures are
considered as individuals in a population(Fig.2). Compliant
mechanisms description is made using discrete variable pa-
rameterization and considering conception requirements (mesh
size, topology, material and thickness, boundary conditions).
At every generation, the designed criteria are evaluated for
each individual, and a Pareto graph is computed for multi-
objective optimization. A tournament selects genitors amongst
the whole population, and randomly generates two offsprings
by parent pair. The algorithm continues until criteria desired
values are reached or algorithm stagnates.
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Fig. 2. Flowchart of the FlexIn optimal design method of compliant structures
(multicriteria optimization).

C. Multi-criteria genetic algorithm

Many fitness functions are available in FlexIn, thus allowing
the optimal synthesis of devices within a wide schedule of
conditions.

• Several static mechanical fitness can be specified for the
optimization problem: free displacement and blocking
force at the output port, geometric advantage (GA) i.e.
ratio between output and input strokes, mechanical ad-
vantage (MA) i.e. ratio between output and input forces,
etc.

• Various dynamic control-oriented metrics have been
newly implemented in FlexIn to meet specific control
requirements for microrobotics devices [26]. Obviously,
the design strategy depends on the metrics chosen, which
must be based on the real needs for the device use.

Let us note that multi-degrees of freedom mechanism design
can also be considered. At convergence step, the optimization
algorithm generates a set of pseudo-optimal solutions (see
step 2 in Fig.2) in the case of multicriteria optimization (and
obviously only one global optimal solution for monocriterion
optimization). The designer can next choose, analyse and
interpret the obtained structures that best suit his design
problem (see 3 and 4 in Fig.2). A finite element (FE) software
can be used for subsequent FE analyze and validation of the
chosen design solution, for other criteria not considered during
the optimization stage (see 5 in Fig.2).

III. ELECTRO-MECHANICAL FE MODEL OF THE
PIEZOELECTRIC STRUCTURES

In this section, we present the 2D FE modelling adopted
for the active piezoelectric building blocks, and the way these
blocks are implemented in the optimization method. In this
study, only in-plane forces and displacements are considered.

A. Elementary piezoelectric beam

In FlexIn, it is assumed that the compliant mechanisms
are undergoing structural deformations, mainly due to the in-
plane bending of the beams constituting the blocks. Thus,
the models of the blocks are obtained considering Navier-
Bernoulli beam type finite elements. Structural parameters
of each rectangular block are height, width and thickness.
Material characteristics of each block are parameterized by

Young’s modulus, Poisson’s ratio, yield strength, density, and
piezoelectric coefficients for the piezoactive blocks. To allow
the calculation of different optimization criteria, FlexIn uses
the FE model of each block of the libraries. To obtain the
FE formulation of the piezoelectric blocks, a model of a
piezoelectric beam is first needed.

We consider that the piezoceramic beams constituting the
blocks are perfectly bonded to electrodes at their lower and
upper faces (Fig.3). Exploiting the transverse effect of piezo-
electricity, longitudinal deformation S11 along L dimension is
generated under the transverse electric field E3. Considering
the one-dimensional form of piezoelectricity equation along
the length direction of the beam, the piezoelectric coupling
matrix d and the stress-free electric permittivity matrix εt

are each represented by a single coefficient, d31 and ε33

respectively, and the electric-free compliance matrix sE is
represented by sE

11. The subscript ”t” denotes the transpose of
a matrix. Hence, within the piezoelectric beam, the constitutive
relations for the strain S11 and electric displacement D3, as
functions of stress T11 and electric field E3, take the form
[33]: {

S11

D3

}
=

[
sE
11 d31

d31 εT
33

]{
T11

E3

}
(1)

The superscripts "E" and "T " refer to values taken respec-
tively at constant electric and stress fields.

Fig. 3. Thickness-polarized piezoelectric beam transducer with electroded
surfaces, and orientation in the material reference frame (e1, e2, e3). ϕ1 and
ϕ2 denotes the electric potential of the electrodes.

B. 2D FE formulation of the piezoactuated beam

The displacement field over a planar beam element is
described from its longitudinal u, tangential v and ro-
tational ω components at xp curvilinear abscissa (Fig.4),
and is related to the corresponding node values ηb =
(uA, vA, ωA, uB , vB , ωB)t

Rp
in the beam coordinate system

Rp = (A,xp,yp, zp). From Hamilton’s principle modified
for general electromechanical system [34], [35] the model of
the active beam takes the following form:

Mbη̈b + Kbηb = GbΦb + Frb (2)

where Mb, Kb and Gb are respectively the mass, stiffness
and electromechanical coupling beam matrices. Φb = [ϕ1ϕ2]t

is the vector representing the electric potentials on the upper
and lower faces of the piezoelectric beam. Matrix Gb in (2)
induces piezoelectric loads, which makes the actuator beam
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expand (or contract) proportionally to the external controlled
potential difference (ϕ1 −ϕ2). The forces vector Frb, is due
to the variational mechanical work terms, and is written Frb =(

Rx
A, Ry

A, Hz
A, Rx

B, Ry
B, Hz

B

)t

Rp
(Fig.4).

Displacement field is related to the corresponding node
values ηb by the mean of the shape functions, calculated under
Euler-Bernoulli beam assumptions. Detailed derivations can
be readily found in finite element textbooks. Corresponding
matrices in (2) are simply expressed as follows:

Mb = ρA




L
3 0 0 L

6 0 0
13L
35

11L2

210 0 9L
70 − 13L2

420
L3

105 0 13L2

420 − L3

140
L
3 0 0

(sym.) 13L
35 − 11L2

210
L3

105




Rp

(3)

Kb = Y




A
L 0 0 −A

L 0 0
12I
L3

6I
L2 0 − 12I

L3
6I
L2

4I
L 0 − 6I

L2
2I
L

A
L 0 0

(sym.) 12I
L3 − 6I

L2
4I
L




Rp

(4)

Gb = Y hd31

(
1 0 0 −1 0 0
−1 0 0 1 0 0

)t

Rp

(5)

where I = eph3

12 designates the inertia moment of the beam
cross section A = eph, ρ the density of the beam and Y its
Young’s modulus. The latter is defined by: Y = 1/s11.

Some particular piezoelectric materials (e.g. the crystallo-
graphic class 6mm) are isotropic in (0,x,y) plane. Thus,
mechanical and piezoelectric beam characteristics are invariant
by in-plane rotation θ around z-axis (Fig.4), so that (2) is the
general 2D FE model for all the beams constituting a planar
truss whatever its orientation is.

Fig. 4. Curvilinear coordinates of the piezoelectric beam A − B, and its
orientation in the global coordinate system R

′
= (0,x,y, z). R and H

represent the in-plane nodal force and moment at the beam extremities.

C. Calculation of the active block FE model matrices

As mentioned in section II.A., a library of active compliant
elements made of elementary piezoelectric beams has been
implemented in FlexIn. The active blocks present some various

topologies, as shown in (Fig.1) and (Fig.5). Their advantage
is that they can furnish multiple coupled degrees of freedom
(dofs), thus generating more complex movements with only
one building block. As for passive blocks, the mass MB,
stiffness KB and electromechanical coupling GB matrices
of each piezoactuated block are obtained by the assembly
of mass M

′
b, stiffness K

′
b and electromechanical coupling

G
′
b matrices of beams, which are expressed in the global

coordinate system R
′

= (0,x,y, z). The last matrices are
simply deduced from Mb, Kb and Gb by the base change
formula, accounting for the in-plane θ-rotation transformation.

The results obtained by our 2D active block FE model have
been validated in static conditions and under various boundary
conditions using a commercial 3D multiphysics finite element
software [31].

Fig. 5. Examples of monolithic PIC151 piezoelectric blocks (thickness ep =
200µm), machined by a laser cutting process.

D. FE model of piezoeletric structures

The mass, stiffness and electromechanical coupling matrices
of each block are calculated numerically, considering every
combination of the discrete values allowed for the structural
optimization variables, i.e. material and size of the blocks.
Thus, the calculation of the different matrices of each valued-
block is done one time only at the beginning of the optimal
design problem (before running the genetic algorithm), which
saves running time.

During the optimization, candidate structures are generated
by the genetic algorithm. The conservative dynamic behaviour
of a structure is described through its mass Mg, stiffness Kg

and electromechanical coupling Gg matrices, obtained by the
assembly in R

′
of the matrices of all the blocks constituting

the structure, as follows:

Mgη̈g + Kgηg = GgΦg + Frg (6)

This assembly is done during the optimisation process at each
generation and for each individual . In (6), ηg refers to the
nodal displacements of the truss-structure, Φg to the external
voltages applied to the upper and lower electrodes of each
block constituting the structure (in case of piezoactuation) and
Frg to the external mechanical nodal forces applied to the
structure.
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IV. USEFUL MEASURES FOR EVALUATION OF
INPUT-OUTPUT TRANSFER PERFORMANCES OF FLEXIBLE

SYSTEMS

From the computation of the linear state model of compliant
systems, an optimal topology design strategy is derived taking
into account control considerations. New FlexIn numerical
criteria help reaching input-output transfer performances with
specific operation requirements. In particular, coefficients of
the modal transfer expansion of the system, as well as the joint
modal controllability and observability degrees, are useful
ways to characterize the open-loop system behaviour.

A. New criteria for control-oriented design of compliant struc-
tures with FlexIn

The two significant design tasks in flexible structure
control are the identification of the dominant modes to build
an appropriate reduced model, and the control strategy design.

1) Reduced model: Since the dynamic model of a flexible
structure is characterized by a large number of resonant modes,
accurate identification of all the dominant system dynamics
often leads to very high order model. Thus, a model reduction
is required. A number of approaches for model reduction
have been developed, such as model reduction via balanced
realization [36]. Since the approaches are generally based on
the order reduction of a finite dimensional model, there is a
limit on how many high frequencies can be included.

Thus, in FlexIn, a first criterion has been drawn to optimize
the reduced-model accuracy of the systems, while limiting
spillover effects. Given a set of structures to optimize, the
optimal structures are chosen as the ones guaranteeing the
highest joint controllability and observability for all the modes
in the bandwidth of interest, while providing the minimum
joint controllability and observability of the neglected modes.
This criterion will enable the rise of structures with accurate
reduced model, based on a few highly dominant modes,
allowing the easy identification and computation of state
model, well adapted to further design and implementation of
the control system.

2) A pseudo-collocated active structure: There are a num-
ber of difficulties associated with the control of flexible
structures (amongst them, variable resonance frequencies and
highly resonant dynamics). Traditional control system design
techniques such as LQG, H2 and H∞ commonly appear in
research works ( [37], [38], [39]). But, the performances of
such high authority controllers appear to be very sensitive to
model uncertainty and modeling errors introduced by model
truncation. Moreover, the direct use of such advanced tech-
niques can have the disadvantages to produce control systems
of high order and/or poor robustness, associated with poor
dynamic performance sometimes.

Nevertheless, for some specific class of flexible structures,
which can be modeled as collocated resonant systems,
active damping controllers (PPF, IFF,...) have proven to offer
greater robustness, performance, and ease of implementation
relatively to traditional techniques. They are often focused

on damping the dominant modes [40]. Although the flexible
structures rarely present natural collocated designs, an other
optimization criterion, based on the modal expansion of
SISO systems transfer function, has been established in
FlexIn to force the structures to have an actuator/sensor
collocated behaviour in terms of frequency response function.

These two new criteria, when used simultaneously, provide
a great deal of information concerning the closed-loop device
performances that are achievable with this particular open-loop
frequency configurations.

B. Modal equations of motion of flexible structures

As in [41], each flexible structure synthesized by FlexIn
is defined as a finite-dimension, controllable and observable
linear system with small damping and complex conjugate
poles. Its undamped dynamic behaviour is modeled by the
following second-order differential matrix equations:

Mgη̈g + Kgηg = Egu

y = Fgηg

(7)

Let us consider in the following the integers p, s, and r,
which denote the numbers of degrees of freedom (DOF)
of the structure, inputs (i.e. actuators) and observed outputs
(sensors), respectively. In (7), remind that ηg is the p×1 nodal
displacement vector as defined previously. u is the s×1 input
vector which defines the controlled command of the actuator.
For example, in case of a piezoelectric actuation scheme, u
is defined by Φg. In that case, the p × s input matrix Eg

is exactly Gg. y is the r × 1 output vector, defined from
the r × p output displacement matrix Fg. Each element of
u (resp. y) denotes a physical actuator (resp. sensor) whose
related DOF is defined by the location of the nonzero entry
in the corresponding column in Eg (resp. row in Fg).

By means of modal decomposition, a solution of the form

ηg(t) =
p∑

i=1

Ψiq(t) = Ψq(t) (8)

is considered, which consists of a linear combination of mode
shapes Ψi. q is the p × 1 modal displacement vector. The
eigenvectors matrix Ψ =

[
Ψ1 . . . Ψp

]
and correspond-

ing eigenfrequencies ωi are obtained as solutions of the free
undamped vibration eigenproblem:(

Kg − ω2
i Mg

)
Ψi = 0. (9)

because the damping has very little influence on the natural
frequencies of flexible structures synthesized. Eigenfrequen-
cies are conventionally sorted in ascending order ω2

1 ≤ ω2
2 ≤

. . . ≤ ω2
p, and Ψ is chosen normalized to the mass matrix.

Replacing ηg by Ψq in (7), multiplying on the left by Ψt,
the induced orthogonality relationships in modal form lead to

q̈ + diag
(
ω2

i

)
q = ΨtEgu

y = FgΨq
(10)

We can now introduce diagonal damping by using Basil’s
hypothesis, so that the first equation in (10) becomes

q̈ + diag(2ξiωi)q̇ + diag(ω2
i )q = ΨtEgu (11)
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where ξi is the ith modal damping ratio. This hypothesis can
be made without loss of generality because, in most cases,
the system to control is slightly damped in the low-frequency
band, where the modes are well separated. Moreover, the
model has to be identified on the real structure, since the nature
of damping is not exactly known a priori. A last reason of
using Basil’s hypothesis in FlexIn is that it is more convenient
for the designer to specify the ξi coefficients in the algorithm
procedure.

According to equation (11) in modal space, all equations
of motion are now decoupled and are similar to a set of
independent 2nd order lightly damped harmonic oscillators.

C. State model of flexible structures

One interesting state vector x, of dimension 2p×1, consists
of modal velocities and frequency weighted modal displace-
ments:

x =
(

q̇1 ω1q1 . . . q̇p ωpqp

)t
(12)

with the advantage that the elements of state vector corre-
sponding to each mode are about the same magnitude. This has
computational advantages and has been therefore implemented
yet [42]. This yields the matrices triplet (A,B,C) which
denotes the modal state-space representation of a structure as
stated below,

ẋ = Ax + Bu,

y = Cx. (13)

The matrices take the forms A = diag
(

A1, . . . , Ap

)
,

B =
(

Bt
1, . . . , Bt

p

)t
, and C =

(
C1, . . . , Cp

)
,

with, for i = 1, ..., p,

Ai =
[ −2ζiωi −ωi

ωi 0

]
, (14)

Bi =
[

bi

0

]
, (15)

Ci =
[

0 ci

ωi

]
, (16)

where bi = Ψt
iEg is 1×s size, and ci = FgΨi is r×1 size. bi

and ci are the ith row of ΨtEg and the ith column of FgΨ
respectively. It is important to note that A matrix depends
on the structure itself (eigenfrequencies and modal damping
ratios), B matrix on the location and class of actuators, and
C matrix on location and class of sensors. This modal state
is considered to be a physical coordinate because of its direct
physical link to structural mode shapes.

As another formulation of (13), the Frequency Responses
Functions (FRF) matrix between outputs y and inputs u can be
viewed as the sum of all the modal contributions, as follows:

y (jω) = G (jω)u (jω) (17)

where the r × s FRF matrix is

G (jω) =
p∑

i=1

Gi (jω) =
p∑

i=1

cibi

ω2
i − ω2 + 2jξiωiω

(18)

D. Computation of the controllability and observability grami-
ans

Controllability (Wc) and observability (Wo) gramians are
convenient forms to characterize system controllability and
observability. For stable A, they are obtained from algebraic
solutions of the following Lyapunov equations:

AWc + WcAt + BBt = 0
AtWo + WoA + CtC = 0

(19)

and the energetic interpretations are known [20].
Assuming the damping ratios are infinitely small and the

natural frequencies well spaced, the block diagonal forms of
(A,B,C) triplet can be exploited to give closed-form analyt-
ical solutions for the expression of the modal controllability
and observability gramians [43]. They are diagonal, and equal
to:

Wc = diag
(

Wc11 , . . . , Wcpp

)
(20)

Wo = diag
(

Wo11 , . . . , Wopp

)
(21)

with, for i = 1, ..., p,

Wcii
=

βii

4ξiωi
I2 (22)

Woii
=

γii

4ξiω3
i

I2 (23)

where βii = bibt
i , γii = ct

ici are the coefficients of modal
gramians, and I2 is the 2×2 identity matrix. For a given mode
(ξi, ωi), βii and γii scalars represent the relative influence of
the different actuators on the ith mode, and the way the ith

mode is seen through the different sensors. Let’s note that these
gramian approximation writings indicate that the high-damped
and high-frequency modes are amongst the least controllable
and observable ones.

E. Computation of the balanced gramian
In order to have a consistent level indicator of both con-

trollability and observability of the modes of a system, it is
not enough to look separately at its controllability and ob-
servability gramians. The balanced case, where controllability
and observability gramians are diagonal and equal to Hankel
singular values (HSV) gramian Γ,

Wc = Wo = Γ = diag (σi) (24)

where σi are the HSV of the system, is a useful tool for
quantifying the joint controllability and observability of a
system. It actually characterizes efficient outputs control by
the inputs [43].

It is shown that, when the damping ratios decrease to zero,
the balanced state coordinates are decoupled and coincide with
the modal coordinates [43]. Indeed, HSV equal to the square
root of the product of the controllability and observability
modal coefficients of this mode, so that simple formulas
expressing the asymptotic singular values as functions of the
modal parameters can be derived :

σi =

√
ct
icibibt

i

4ξiω2
i

(25)

HSV describe the degree that a given modal state contributes
to the input/output energy flow through the system.
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F. Formulation of new control-oriented criteria for the opti-
mization of SISO flexible system

In this section, we study new control-oriented criteria in
the particular case of SISO systems. They will be applied
for the optimization of a flexible piezoactuated microgripper
afterwards. A single input voltage will actuate the piezoactive
blocks of the device, and the mechanical end-effector port
will be represented by a single output. One of the objectives
of the optimization is to tune the open-loop transfer function
to one of a reduced SISO model type, while forcing the
system to have a collocated behaviour (by adjusting the
minimum-phase properties). Finally, this will allow the easy
implementation of Low Autorithy Control.

1) Evaluation of the model reduction cost for Low Authority
Control: Resonance peaks amplitudes must be maximized in
the frequencies bandwidth [0, ωc] to increase authority control
on these dominant modes. On the contrary, the amplitudes of
resonance peaks after cut-off frequency must be minimized to
increase gain margin and to limit modes destabilization in this
area (spillover phenomenon) (Fig.6).

Fig. 6. Desired form of the open-loop FRF.

Thanks to their H∞ norm interpretation, HSV are simple
metrics for quantifying the modal autority of the system. H∞
norm characterizes the maximal amplification of the input
signal energy that the system can produce. In MIMO case,
it is equivalent to the maximum singular value of the system,

‖Gi‖∞ = max
ω

σmax (Gi (ω)) (26)

In SISO case, it simply represents the maximum amplitude
value of the frequency response, formulated as follows for
small damping system,

‖Gi‖∞ � |cibi|
2ξiω2

i

(27)

so that, according to (25), it can be almost proportionally
linked to the corresponding HSV of Gi as follows:

‖Gi‖∞ � 2σi (28)

Thus, the k first resonant modes (where k < p) will be
optimized to guarantee high HSV compared to the ones out of
the bandwidth. HSV of G realization, as defined in (25), sorted
in ascending order according to ωi modes, are maximized for

i = 1, ..., k. The modal states with small HSV are both weakly
controllable and weakly observable, and will be removed from
the reduced-system.

As a consequence, the resulting dominant reduced-order
model Gr defined as

Gr (jω) =
k∑

i=1

Gi (jω) (29)

will match the full model G (jω) with an accuracy related to
the size of the HSV which were discarded. The approximation
error upper-bound for a balanced truncated model satisfies the
inequality [44]:

‖G (jω) − Gr (jω)‖∞ ≤ 2
p∑

i=k+1

σi (30)

To improve simultaneously the control authority on the k
first dominant modes and the accuracy of the reduced order
model, the first new criteria implemented in FlexIn is the
following:

Jk
1 =

k∑
i=1

σi

p∑
i=k+1

σi

(31)

where the HSV are defined in their modal form by (25)
for flexible structures. In our case study, an order k = 2 is
chosen as a good compromise for the piezoelectric flexible
structure model. On the one hand, a reduction at low order
facilitates the system identification and the regulator synthesis
afterwards. On the other hand, the very simple case k = 1
will restrain too much the number of candidate solutions for
the global optimization.

2) Optimization of the required minimum-phase properties
for collocated behaviour: The most useful characteristic of a
collocated system is the interlacing of poles and zeros along
the imaginary axis. For a lightly damped structure, poles and
zeros are located in the left half-part in the pole-zero map
(Fig.7). Such systems are minimum of phase. This results
in a phase response that lies continuously between 0◦ and
180◦. In the case where the actuator and sensor are quasi-
collocated, this property is still valid in the low frequency
spectrum. Collocated systems are known to possess interesting
properties. Vibration control of flexible structures involving

Fig. 7. Poles (x) and zeros (o) locations of a collocated system: (a)
undamped, (b) lightly damped (Figure is symmetric towards Real axis).

collocated characteristics was discussed in [45] and [46],
among others. Control was shown to have simple stability
criteria due to the alternating poles and zeros pattern. For
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example, one way of adding damping to the structure is to
use Positive Position Feedback (PPF), as proposed in [47],
which is stable in the presence of uncontrolled modes in the
bandwidth, and which rolls off quickly at higher frequencies,
reducing the risk of destabilizing systems with high-frequency
dynamics. This makes collocation of the transfert function an
attractive control approach.

In FlexIn, an evaluation function was implemented to be
used in the optimization process in order to obtain systems de-
signs with collocated type open-loop transfer function, forcing
the resonances (poles) and antiresonances (zeros) alternating
in the reduced model. Inspired by [40] and [46], it can be
shown that the maximization of the following discrete criterion
will imply the interlacing pole-zero pattern exhibited by a
collocated transfer function:

Jk
2 =

∣∣∣∣∣
k∑

i=1

sign (cibi)

∣∣∣∣∣ (32)

where sign(.) = +1, 0,−1, according to the argument sign.
The sum over i concerns all the modes contained in the
frequency spectrum of the first k dominant modes, where the
alternative is desired. This criteria will force the static gains
of Gi in the spectrum of interest to have the same sign. (In
our application case k is set to 2, and only two numerical
values are possible: the maximum value is J2

2 = 2, otherwise
J2

2 = 0.)

V. MULTIOBJECTIVE OPTIMAL SYNTHESIS OF A
MONOLITHIC COMPLIANT PIEZOACTUATOR

The concepts presented previously have been applied to the
design of a microgripper actuator, considering a multi-criteria
optimization problem, with both static mechanical (stroke and
force at the output node of the structure) and control-oriented
J2

1 and J2
2 fitnesses.

A. Optimization problem specifications

We consider the synthesis of a symmetric monolithic mi-
croactuation mechanism, made of a single piezoelectric ma-
terial PIC151 from PI Piezo Ceramic Technology [48] (see
TableI). Let us note that, since damping cannot be accurately
known a priori before an identification procedure, modal
damping is taken constant in the optimization algorithm, and
equal to 1% for all resonant modes. (Thus, it excludes the
influence of the damping ratio variations in J2

1 criterion.)
At the end, the whole microactuator will be machined using

Laser cutting technology into an electroded piezoelectric plate
whose dimensions are indicated on (Fig.8). To take advantage
of the maximum size allowed for the piezoactive structure, the
half microactuator topology is considered to have a maximal
size of 15mm × 9mm, and a constant thickness of 200µm.

The half-microactuator topology is defined to be made of
either passive or active blocks inside a 2 × 2 mesh (Fig.9).
Actually, active blocks are those which will be bonded with
electrodes, exploiting the inverse piezoelectric effect, while
passive blocks will be made in the same piezoelectric material
but without electrodes. For the optimal synthesis run, the
number of active blocks in the half-part will be allowed to

TABLE I
ELECTROMECHANICAL CHARACTERISTICS OF PIEZOELECTRIC MATERIAL

PIC151 CONSIDERED IN THE OPTIMIZATION.

Young modulus (Y ) 66, 667MPa
Poisson ratio (ν) 0.3
Coupling piezoelectric coefficient (d31) −210 × 10−12m.V −1

Density (ρ) 7800kg.m−3

Modal damping ratio (ξi) 1%

vary between 1 and 4. When external voltages are applied to
the blocks electrodes, the output node of the structure has to
move along the x-axis and to produce a gripping force. For
evaluation of static mechanical criteria, the potential difference
between upper and lower face is taken equal to 200V . The
size ratio of the blocks can vary as bmax/bmin ∈ [[1; 2]] and
amax/amin ∈ [[1; 2]] (see Fig.9 for details about a and b param-
eters definitions). The number of blocked nodes is comprised
between 1 and 3 among the locations permitted which are
reported on Fig.9.

Finally, the four objective functions to be maximized si-
multaneously with FlexIn are: output free stroke δx, blocking
force Fx (i.e. gripping force in our application), J2

1 and J2
2 .

Fig. 8. Electroded PIC 151 plate with its dimensions to be machined using
Laser cutting technology (thickness: ep = 200µm). Electrodes are deposited
on the whole upper and lower surfaces.

Fig. 9. Mesh of the left-part of the symmetric PZT compliant micro-actuator
with imposed and permitted boundary conditions. a and b optimization
parameters define the relative height and width of the blocks.

B. Optimal synthesis results

FlexIn method can generate efficient piezoelectric actuated
flexible mechanisms for microgripper devices. The best com-
promise structures are kept, when the genetic algorithm does
not find any new pseudo-optimum during 130 subsequent
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generations. The set of pseudo-optimal solutions can be rep-
resented on Pareto fronts, giving their different fitness perfor-
mances along each other (Fig.10). The designer can choose
among these solutions. Let us note that lots of individuals have
the same J2

1 and J2
2 values, but they differ when considering

force and displacement performances.

Fig. 10. Pareto fronts of compliant mechanisms synthesized using FlexIn
(genetic parameters used: population of 100 individuals, mutation probability
of 45% on genes and 60% on individuals), and four chosen pseudo-optimal
solutions (A, B, C and D).

From these fronts, four chosen pseudo-optimal solutions,
whose topologies are presented on Fig.11 and referred as
A, B, C and D structures in the following, will illustrate
performance comparison (see TableII). Amongst the Pareto
set of solutions, these four structures have been chosen,
because they exhibit good quasi-static performances (high
stroke δx and blocking force Fx values). Moreover, their open-
loop transfer behaviors differ from each other according to
their respective control-oriented criteria values J2

1 and J2
2 .

The compared analysis of these four structures will help to
illustrate the J2

1 and J2
2 link to the shape of their Frequency

Response Functions.
• Structure A has bad control-oriented criteria perfor-

mances. Firstly, it exhibits non-minimum phase transfer
in the low frequency spectrum (J2

2 = 0), since two
antiresonances occur between the two first resonances.
Then, the authority control on the two first resonant
modes is poor compared to other modes, particularly to
the fourth mode. Resulting Frequency Response Function
is reported on Fig.12.

• Structure B presents a good J2
1 criterion performance:

the authority control on the two first resonant modes is
well optimized, resulting in an important roll-off after

the second resonance. Unfortunately, such a structure
also exhibits non-minimum phase transfer in that low
frequency spectrum (J2

2 = 0), as shown on Fig.13.
• As expected with J2

2 = 2, structure C is a minimum
phase system in the spectrum of interest. Nevertheless,
as expected by its poor J2

1 criteria, some high frequency
resonant modes are as dominant as the first low frequency
ones. For example, on Fig.14, amplitude of the fourth
resonance has the same magnitude as the first one, so
that some high frequency modes cannot be neglected in
the model reduction step.

• Structure D is an example of structure with both good J2
1

and J2
2 control-oriented criteria. Its frequency response

function shape is the one intended (Fig.15).

TABLE II
PERFORMANCES CRITERIA VALUES OF THE A, B, C AND D

PSEUDO-OPTIMAL COMPLIANT PIEZOACTUATORS SYNTHESIZED BY

FLEXIN.

Selected Criteria results
solutions δx Fx J2

1 J2
2

A 15.55µm 1.26N 2.24 0
B 11.74µm 1.26N 21.00 0
C 12.34µm 0.63N 0.28 2
D 10.69µm 0.84N 5842.35 2

Fig. 11. FlexIn representations of the four pseudo-optimal selected piezoac-
tuators (bold yellow lines refer to piezoactuated blocks, whereas fine blue
lines refer to piezo-passive ones).

As regard to its very interesting mechanical and control-
oriented performances, we chose to focus on the study of
structure D in the following.

C. Validation of structure D

The results obtained using the 2D FE model implemented
in FlexIn have been compared and confirmed by a commercial
3D multiphysics FE software (fine tetrahedric mesh).

The active beams are supplied by V = ±100V , which
results in the desired deformed shape (Fig.16). The values
of x-displacement at the output port is 9.23µm (about 14%
relative error compared to FlexIn calculation), demonstrating
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Fig. 12. Bode diagram of structure A between input (voltage u, in V ) and
output (deflexion δx, in µm) simulated by FlexIn.

Fig. 13. Bode diagram of structure B between input (voltage u, in V ) and
output (deflexion δx, in µm) simulated by FlexIn.

Fig. 14. Bode diagram of structure C between input (voltage u, in V ) and
output (deflexion δx, in µm) simulated by FlexIn.

Fig. 15. Bode diagram of structure D between input (voltage u, in V ) and
output (deflexion δx, in µm) simulated by FlexIn.

the nearly good accuracy in the static case of our preliminary
design method. This difference can be explained by the
simplifying assumption made in FlexIn: the 2D FE model
(with only one element per elementary beam) does not take
into account the 3D edge effects at the beams connections,
which can be of importance for multi-beams structures.

Fig. 16. 3D simulation of the x-displacement (in µm) when the half
piezoactuated structure is activated under ±100V , and associated deformed
shape using the 3D FE Software.

Dynamic behaviour of the device has also been plotted using
the 3D FE Software (Fig.17). Let us note that this step is of
great importance for post-treatment procedure: indeed, as the
2D FlexIn method can not model out-of-plane 3D resonant
modes, such as twist modes, they could not be taken into
account in the preliminary frequency response optimization of
the device. As shown on Fig.17, 2D FRF shape of structure
D is nearly unmodified by adding the resonant 3D effects
in the low frequency spectrum of interest. In particular, the
property of minimum-phase system, and the good modal
control authority on the two first resonant modes are still
maintained. As shown in TableIII, the low shifts of natural
frequencies are very acceptable, and prove the good accuracy
of the method in the dynamic case as well.

Fig. 17. Bode diagram of structure D between input voltage and output
deflexion δx in µm (using 3D FE Software simulation for undamped model).

VI. EXPERIMENTAL VALIDATION STUDY OF THE
MONOLITHIC COMPLIANT PIEZOACTUATOR D

After 3D FE simulation and validation, piezoactuated struc-
ture D has been prototyped and experimentally tested.
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TABLE III
COMPARISONS OF THE FIRST TWO NATURAL FREQUENCIES ESTIMATIONS

USING 2D FLEXIN AND 3D FE SOFTWARES.

FlexIn FE Software Relative error
306.23Hz 310.56Hz 1.4%
1429.43Hz 1458.48Hz 2.0%

A. Fabrication of the monolithic compliant piezoactuator

The whole device has been machined in an electroded
PIC151 plaque (Fig.8) by a laser cutting process. PZT is a
ceramic material which can be easily reshaped by laser cut-
ting without perceptible loss of its piezoelectric and material
properties.

• At its maximum output power, laser is capable of pre-
cisely cutting through PZT, quickly enough not to over-
heat the sample.

• By reducing the power of the laser beam, it is also
possible to pattern the very thin layer of gold-nickel that
constitutes the electrode layer of the piezoelectric plate.

Fig.18 shows the device 3D model with top electrode
patterns. The whole structure is divided into an active (elec-
troded) and a passive areas, which both will be free to bend,
and the base remaining area which will be clamped and
kept out from bending (boundary conditions of fixed nodes).
The clamping area is where the electric wires will feed the
electrodes, respectively with Vleft and Vright for the actuated
left and right arms of the gripper. (Fig.19 shows a photo of
the machined piezoelectric layer.)

Fig. 18. 3D CAD model of the piezoeletric device with top face electrode
patterns. Vleft (resp. Vright) is the controlled input for actuating the left
(resp. right) arm.

B. Experimental characterizations of the prototype and vali-
dation

The microactuator prototype is clamped, and placed on x-y-
z micropositioning linear stages, which are manually operated
(Fig.20). The piezoelectric actuator requires high voltage to
provide adequate deflection. Thus, the device is connected to
a linear power amplifier, with an amplification ratio of fifty,
linked to the spectrum analyser source. Output displacement
at the tip of the piezoelectric structure is measured along x-
axis using a 0.1µm-resolution laser sensor. The analog ouput

Fig. 19. Photo of the prototyped piezoelectric monolithic device, obtained
by laser cutting.

of the laser is directly connected to the spectrum analyser, and
the response is recorded for subsequent analyses.

Fig. 20. Experimental setup.

In static loading, experimental x-displacement has been
measured to 9.4µm under ±100V voltage activation, which is
close to the predicted simulation results 9.37µm. Experimental
frequency response data are reported on Fig.21. It appears
that the minimum-phase property is still kept into the de-
sired spectrum (until the 2nd resonance frequency). However,
although the third resonance was not expected with such a
high amplitude, identification process has been still performed
considering the two first dominant modes involved in the
reduced model, as follow:

Gr (jω) =
K1

ω2
1 − ω2 + 2jξ1ω1ω

+
K2

ω2
2 − ω2 + 2jξ2ω2ω

(33)

Identified characteristics of G1 and G2 transfers are men-
tionned in Table.IV. (Let us note that ξ1 �= ξ2 in experimenta-
tion, contrary to the prior hypothesis used for the FlexIn sim-
ulation.) The phase is slightly rolling off, (see Fig.21) coming
from the bandwidth limitation of the laser sensor, whose cut-
off frequency is about 1KHz. Due to mounting imprecisions
of the experimental set-up, we observe extra-resonance modes
(third and forth peaks) which in fact correspond to out-of-
plane deflection of the tip. They were not predicted by simu-
lations because FlexIn uses a planar model. In our preliminary
electromechanical model implemented in FlexIn, nonlinear
behavior of the piezoelectric material, especially hysteresis,
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Fig. 21. Experimental frequency transfer function of the piezoactuator
between input (voltage u, in V ) and output (deflexion δx ,in µm), and
identified transfer function of the reduced-model Gr = G1 + G2.

TABLE IV
IDENTIFIED PARAMETERS OF G1 AND G2 TRANSFER FUNCTIONS.

G1 G2

K1 ξ1 ωn1(rad.s−1) K2 ξ2 ωn2(rad.s−1)
0.87 1.2% 1.51 × 103 0.54 2.0% 5.59 × 103

has not been taken into account. Thus, the hysteresis curve
of the piezoelectric device endpoint displacement controlled
by voltage actuation has been measured, and is shown with
the linear model fit on Fig.22. Design of robust closed-loop
actuator control will therefore be useful to treat such nonlin-
earity. This is also a near perspective of our research work.
An other perspective would consist in driving the piezoelectric
device using a charge source as mentionned in [49]. A last
method would consist in using inverse hysteresis model (the
most common one being Preisach technique) in a feedforward
linearize loop control [50].

Fig. 22. Measured quasi-static relationship between applied voltage actuation
(in V ) and endpoint displacement δx (in µm).

VII. CONCLUSIONS

A new concept of optimal design method for smart com-
pliant mechanisms has been presented. This method, called
FlexIn, can consider a smart compliant mechanism as an
assembly of passive and active compliant building blocks made
of PZT, so that actuators are really integrated in the structure.

Complex multi-objective design problems can be solved
by FlexIn, taking advantage of versatile criteria to synthesize
high performance microrobotic flexible mechanisms designs.
In addition to classical mechanical criteria, currently encoun-
tered in topology optimization (i.e. force and displacement
maximization), FlexIn considers now simultaneously efficient
control-based criteria.

Each FlexIn synthesized structure being described by its
own modal state representation, from the first designing step,
specific control requirements can be optimized.It can be of
great interest for Low Authority Control of flexible devices.
Open-loop transfer considerations lead to two new efficient
numerical criteria. A first criterion takes advantage of the
specific expressions of the balanced gramian eigenvalues of
a flexible structure, to modulate resonance amplitudes of
its frequency response function in a spectrum of interest.
A second criterion efficiently forces minimum-phase system
property. These two criteria, coupled with mechanical ones,
help designing non-intuitive compliant mechanisms, to meet
specific mechanical and active control requirements.

This optimization strategy was tested for the optimal design
of a microgripper actuator. The results obtained have proved
that the method can furnish innovative and efficient solutions,
very different from well-known actuation schemes such as
unimorph or bimorph PZT actuators, which are widespread
in the design of microrobotic manipulators. Post-treatment FE
simulations confirm the accuracy of FlexIn method estima-
tions, in both static and dynamic cases.

A prototype of an optimal flexible piezoactuated device has
been successfully machined by Laser cutting process. Finally,
experimental tests proved that the design optimization process
outlined in this research work is valid. FlexIn is a great tool
to design compliant systems for successful operations in
micromanipulation tasks, and many others.

Future research includes optimal combination of sensors and
actuators into the structure. A perspective is to take advantage
of the direct piezoelectric effect, to consider as well force
sensor integration inside monolithic piezoelectric structures to
synthesize adaptronic devices.
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