
HAL Id: hal-00417847
https://hal.science/hal-00417847

Submitted on 17 Sep 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Emergence of structured interactions: from a theoretical
model to pragmatic robotics

Arnaud Revel, Pierre Andry

To cite this version:
Arnaud Revel, Pierre Andry. Emergence of structured interactions: from a theoretical model to
pragmatic robotics. Neural Networks, 2009, 22 (2), pp.116-125. �hal-00417847�

https://hal.science/hal-00417847
https://hal.archives-ouvertes.fr


Emergence of structured interactions :

from a theoretical model to pragmatic robotics

A.Revel 1, P.Andry 2

ETIS, CNRS UMR 8051, ENSEA, Univ Cergy-Pontoise, F-95000 Cergy-Pontoise, France

Abstract

In this article, we present two neural architectures for the control of socially interacting robots. Beginning with

a theoretical model of interaction inspired by developmental psychology, biology and physics, we present two sub-

cases of the model that can be interpreted as “turn-taking” and “synchrony” at the behavioral level. These neural

architectures are both detailed and tested in simulation. A robotic experiment is even presented for the “turn-taking”

case. We then discuss the interest of such behaviors for the development of further social abilities in robots.
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1. Introduction

With the democratisation of robotics, an impor-
tant effort is made to make those “technological”
machines more attractive for human beings. For in-
stance, a major focus of interest is put on the ex-
pressiveness and the aspect of the robots [11,27,34]:
the question is then how to design “cute” robots?
Nevertheless, if the aim of these approaches is to fa-
cilitate human-machine communication, they often
neglect to consider the dynamics of the interaction
between two agents. In our opinion, intuitive com-
munication (verbal or not) refers to the ability “to
take turn” in the interaction or to be “synchronized”
with the other: in summary, to adapt its own dy-
namics to the other’s behavior via the integration of
the global dynamical exchange. In consequence, our
aim is to design robotic controllers that can adapt
to the interaction, embed fundamental dynamical
properties, and make emerge communicative behav-
iors such as the “ability to synchronize” and “alter-
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nate the exchange”. To support this approach, we
take inspiration from different scientific fields that
have to deal with interaction: dynamical systems,
developmental psychology, and neurobiology.
In this paper, we will show how “synchrony” and “al-
ternation” can emerge from a simple neural model
of interaction. Next, the underlying dynamical pa-
rameters of the model will be applied to 2 robotic
controllers in order to increase their interactional
abilities.

2. Neural model of agents interaction

2.1. Inspiration

2.1.1. Developmental psychology
Developmental psychology aims at understanding

how the sensory, motor and cognitive capabilities
of the individual evolve from birth. In the frame of
longitudinal studies applied to populations with se-
lected developmental ages, researches detect and ob-
serve the emergence, or the disappearance of behav-
iors, allowing to formulate hypothesis and models of
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the underlying sensori-motor and cognitive mecha-
nisms. In this discipline, a lot of issues are concerned
with the progressive rise of communication among
babies and young children.

It has been described that human communica-
tion can adopt several modalities [47]: language, par-
alanguage and kinesic. Paralanguage are the non-
verbal voice and sounds which can be emitted. Ki-
nesic stands for the “body-language” (facial expres-
sions, gaze, gestures, postures, head and body move-
ments, haptics and proxemics). Obviously, nonver-
bal communication is anterior to language in devel-
opment.

As our goal is to tackle intuitive communication,
and as our robots are not verbal, we are essentially
interested in that latter kind of communication.

At a behavioral point of view, it has been shown
that in our daily activities the social context is for-
matted by physical interactions. One example is, for
instance, the emergence of rhythmic applause in a
crowd [38]. Another interesting example is the fact
that we can adopt a similar posture [9] when inter-
acting with another. More precociously, adults and
neonate participate in a social interaction via head
movements [43] what seems to suggest that very
early in development, humans are equipped to deal
with social interaction.

In particular, Neo-natal imitation (from [32,33,29]),
has been widely studied for its presumed impli-
cation in communication. In neo-natal imitation
the observation by the baby of facial expressions
performed by the experimenter gives rise to basic
imitation (tongue protrusion, eye blinking, vocal-
izations). As experiments has been done with babies
aged of a few minutes old, this kind of imitation is
not supposed to be learned. This phenomenon asks
an important question concerning the function of
such a low-level imitative behavior. Answering this
question, a few developmental psychologists have
emphasized that imitation has not only a learn-
ing function but also a communication one [36,12].
They have suggested that neo-natal imitation is
a pre-linguistic mode of communication that does
not require any interaction protocol but can be the
basis of subsequent higher level communication and
social abilities. More precisely, Nadel has empha-
sized the fact that synchrony and “turn-taking” are
fundamental for communication [37].

Several recent experiments seem to validate this
point of view. Oullier, for instance [41], has proposed
a simple experimental paradigm in which pairs of
participants facing each other are required to ac-

tively produce actions, while provided (or not) with
the vision of similar actions being performed by
someone else. Results reveal that spontaneous phase
synchrony (i.e. in-phase co-ordinated behavior) be-
tween two people emerges as soon as they exchange
visual information, even if they are not explicitly in-
structed to co-ordinate with each other.

In a similar experiment, [26] tries to identify
whether an interpersonal motor co-ordination
emerges between two participants when they in-
tentionally tried to not co-ordinate their move-
ments between each other. The goal of the first
two situations was for participants to intentionally
co-ordinate or not co-ordinate their movements
between each other. The results revealed in the
“not co-ordinate” condition the emergence of an
unintended co-ordination in the frequency domain.
What is however interesting to notice is that the re-
sults also reveal the presence of individual intrinsic
motor properties (motor signature) in the 2 condi-
tions. These results indicate that, when there was
information sharing, participants could not avoid
(unintentionally) co-ordinating with someone.

This is consistent with the results found by
[55] in EEG. In a specially designed dual electro-
encephalogram system, pairs of participants execut-
ing self-paced rhythmic finger movements with and
without vision of each other’s actions were continu-
ously monitored and recorded. After analysis, a pair
of oscillatory components (phi1 and phi2) located
above the right centro-parietal cortex distinguished
effective from ineffective co-ordination: increase of
phi1 favored independent behavior and increase of
phi2 favored co-ordinated behavior. The author’s
hypothesis is that the phi complex rejects the influ-
ence of the other on a person’s ongoing behavior,
with phi1 expressing the inhibition of the human
mirror neuron system and phi2 its enhancement.

In this section, we have shown that synchroniza-
tion behaviors exist very early in human and per-
sists in time. This can suggest that they could have
a early and perennial effect on the structure of inter-
personal non-verbal communication.

2.1.2. Synchrony in biological systems
We have seen that behavioral synchronisation ex-

ists in social contexts. The question is then: are they
individual mechanisms that can help synchrony be-
tween humans ?

In fact, many biological activities in human are
naturally synchronized. For instance, it has been
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shown that heartbeat, respiration and locomotion in
humans walking or running on a treadmill are syn-
chronized [40].

The role of circadian rhythm has also been proved
to have effect on the oscillation of hormone secre-
tion, core body temperature and lymphocyte num-
ber [3,35,48].

It has also been shown that we are well equipped
to satisfy auto-synchrony (for instance with fingers
[22]). What is interesting to note is that the result
is different in function of speed of motion: we are in
phase for slow motion, and anti-phase for increasing
speed.

When regarding underlying neural circuits, there
is also evidence that synchrony exists within brain
areas and between them, and is even crucial for
information processing [56,49]. For instance, syn-
chronization in the visual cortex seems responsible
of binding of related visual features [20,56]. Syn-
chronization of oscillatory activity in the sensori-
motor cortex serve also for the integration and co-
ordination of information underlying motor control
[31]. Simultaneous spiking in neural population has
also been observed in olfaction [51] and touch [50].

In certain cases, synchronization of neural popu-
lations leads to pathological disorders. For instance,
Parkinson tremors seem to be due to synchro-
nization between the cortex and the basal ganglia
[15,54].

2.1.3. Dynamical systems
In 1665, C.Huygens described how two clocks

anti-synchronize after a while by mutually inter-
acting together [23]. Since this discovery, the self-
organization of synchronization phenomenon has
been widely studied by nonlinear dynamics [21,39].
In physics, relaxation oscillators have been modeled
by Van Der Pol [46]. More recently, the synchroniza-
tion mechanisms has been deeply studied between
2 or several oscillators, even in the case of chaotic
systems [45,42,53]. This has lead to a better under-
standing and modeling of the mechanisms involved
during mutual interaction.

As far as we are concerned, this discipline pro-
vides a theoretical framework for the study of inter-
acting/coupled social systems.

Taking inspiration from non-linear dynamics we
propose that basic dynamical social properties may
emerge from the dynamical perception/action inter-
action of two identical oscillatory systems in inter-
action. The main idea is that the value of the oscil-

lators embedded in each robot models an internal
propensity to “interact” with the other robot.

The oscillator is supposed to be connected both
to sensations and actions: perception modulates this
oscillator while this latter modifies the actions (in-
hibition, modulation, activation...).

2.2. Formal model of the oscillator

The oscillator we use is made of 2 neurons (u and
v) inhibiting each other proportionally to the pa-
rameter β. The equations are given in 1 (see also
fig.1).






u(n + 1) = f (u(n) − β · v(n))

v(n + 1) = f (v(n) + β · u(n))
(1)

With f(.) being the activating function of the neu-
rons.

In a first approximation, we consider the function
f(.) as the identity function. Equation 1 becomes:






u(n + 1) = u(n) − β · v(n)

v(n + 1) = v(n) + β · u(n)
(2)

By approximating the derivative of a function by:
f ′(x + 1) ≃ f(x + 1)− f(x). Equation 2 turns into:






u′(t) = −β · v(t)

v′(t) = β · u(t)
(3)

By deriving the first line of equation and simpli-
fying equation 3, we get:

u′′(t) + β2
· u(t) = 0

Solutions of such an equation have the following
form:

u(t) = A · eiβt + cnt

That is an oscillatory function with frequency ν =
β
2π

2.2.1. Linking 2 oscillators together
When considering the interaction between the 2

agents, it can simply be obtained by linking the out-
put of neuron u1 of agent 1 (considered as the “ac-
tion” performed by agent 1) to the input of neuron
u2 of agent 2 (considered as the “sensation” of agent
2) and reversely.

In that case, we want to study the form of the
interaction between the 2 systems.
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Fig. 1. The oscillator is made of 2 neurons, u and v, with
a self-connection weighted to 1. A link whose weight is +β

connects v to u, and a link whose weight is −β connects u

to v.

Formally, this interaction can be modeled by
transforming equation 3 into:







u′

1/2(t) = −β1/2 · v1/2(t) + I21/12 · u2/1(t)

v′1/2(t) = β1/2 · u1/2(t)
(4)

With I21 the value of the inhibition between agent
2 and 1 and I12 the value of the inhibition between
agent 1 and 2.

By deriving the first line of those equations and
by reducing with the second line, we get:







u′′

1(t) = −β2
1 · u1(t) + I21 · u

′

2(t)

u′′

2(t) = −β2
2 · u2(t) + I12 · u

′

1(t)
(5)

Let us consider to simplify that: I12 = I21 = ε a
weak value of the interaction. The previous equation
becomes:






u′′

1(t) = −β2
1 · u1(t) + ε · u′

2(t)

u′′

2(t) = −β2
2 · u2(t) + ε · u′

1(t)
(6)

2.2.1.1. Oscillatory solutions We consider here
that oscillatory solutions can exists. For that pur-
pose, we consider the variables (A1 and A2 being
complex):







x1 = u1 = A1e
iωt x2 = u2 = A2e

iωt

y1 = u′

1 = iωA1e
iωt y2 = u′

2 = iωA2e
iωt

(7)

Considering that 7 can be rewritten as:







u′′

1(t) − ω2 = (ω2
− β2

1) · u1(t) + ε · u′

2(t)

u′′

2(t) − ω2 = (ω2
− β2

2) · u2(t) + ε · u′

1(t)
(8)

We can deduce that:











A′

1(t) = −i · (
(ω2

− β2
1)

ω
) · A1(t) + ε · A2

A′

2(t) = −i · (
(ω2

− β2
2)

ω
) · A2(t) + ε · A1

(9)

As ω ≃ β1 ≃ β2,
(ω2

−β2)
ω = (ω−β)(ω+β)

ω ≃ 2 · (ω −

β). If we set ω = β1+β2

2 and χ = β1−β2

2 , equation 9
becomes:






A′

1(t) = 2iχA1 + ε · A2

A′

2(t) = −2iχA2 + ε · A1

(10)

As A is a complex amplitude, we can turn it into
A = R · eiΦ.

After substitution in 10 and simplifications, we
get:






R′

1(t) + R1iΦ
′

1 = 2iχR1 + ε · R2e
i(Φ2−Φ1)

R′

2(t) + R2iΦ
′

2 = 2iχR2 + ε · R1e
i(Φ1−Φ2)

(11)

Grouping real and imaginary terms and consider-
ing Ψ = Φ2 − Φ1 leads to:










R′

1(t) = εR2 cosΨ Φ′

1 = 2χ + ε ·
R2

R1
sin Ψ

R′

2(t) = εR1 cosΨ Φ′

2 = 2χ − ε ·
R1

R2
sin Ψ

(12)

As Ψ′ = Φ′

2 − Φ′

1, we finally reach the following
equation:


















R′

1(t) = εR2 cosΨ

R′

2(t) = εR1 cosΨ

Ψ′ = −ε · (
R2

R1
−

R1

R2
) sin Ψ

(13)

The equation in Ψ has different behavior accord-
ing to the sign of ε.

2.2.1.2. If ε > 0 (positive coupling) The stable
solution stands for Ψ = 0=”synchronous case”.

Indeed, in that case, supposing that R2

R1

−
R1

R2

= 1
τ :

Ψ′
≃ −εΨ (14)

Whose solution is Ψ = e−
ε

τ
t.

The only stable solution stands for ε > 0.

2.2.1.3. If ε < 0 (negative coupling) The stable
solution stands for Ψ = π=”phase opposition”.

Indeed, in that case, supposing that Ψ = π + φ:

Ψ′ = φ′ = −ε sin(π + φ) = ε sinφ ≃ εφ (15)

Whose solution is φ = e
ε

τ
t with a stable solution

only if ε < 0.
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2.2.2. Interpretation of the model for social
interaction

Given this theoretical framework, we can give an
interpretation of this model at the level of social in-
teraction. The oscillator could be an abstraction of
the agent’s motivation for action: if the oscillator is
“up”, the system tends to produce actions; if the os-
cillator is “down”, it does not produce actions. The
inhibition coupling is then a model of the interaction
between the agents which is supposed to be “per-
fect” (without loose of energy).

2.2.2.1. Phase opposition (ε < 0 ) In this case, we
are in the situation where the two oscillators recipro-
cally alternate in motor production: when an agent
acts the other stops any action until this situation
alternates. It is interesting to notice that in such a
case, the alternation itself is an emergent property
of coupling. Interpreting this situation as a social in-
teraction, the model suggests that a “turn-taking”
behaviour, as demonstrated by young children, may
naturally emerge from the dynamical interaction be-
tween 2 agents (cf. section 2.1.1).

2.2.2.2. Phase synchronisation (ε > 0 ) In this
case, the interaction allows to reciprocally exchange
energy which results in the synchronization of oscil-
lators: both agents performs the same action at the
same time. It typically corresponds to a minimal in-
teraction, where each agent is able to produce its
motor repertoire, and at the same time to modulate
its production in order to adapt to the other’s one. In
other words, solving the trade-off between producing
actions of self and observing those of others, as ob-
served among young children naturally performing
immediate and spontaneous imitations in the frame
of pre-verbal communication (cf. section 2.1.1).

In the following section, we will consider those two
sub-cases in the context of robotics control architec-
tures.

3. Designing an interactive robotic controller

3.1. The case of negative coupling: turn taking

In this section, we explore the idea that the formal
model developed above can make a kind of “turn-
taking” behaviour emerge from the dynamical inter-
action between 2 agents (see figure 2).

.

.

.

.

inhib

Agent 2
Action 2

Sensation 2

Oscillator 2

Environment

Noise Noise 

inhib

Oscillator 1

Sensation 1

Action 1

Agent 1

α β

Fig. 2. Architecture of the two agents influencing each other.
Each agent is driven by an internal oscillator and produces
actions depending on this oscillator. A noise due to the
environment and the hardware devices appears on the signal
between the two oscillators.

3.1.1. Simulation results
To test the conditions and the limits of the anti-

synchronization between the two oscillators in inter-
action we varied the different parameters in simula-
tion: the oscillator 1 was kept unchanged (β1 = 0.2)
while the oscillator 2 was varied between 0.02 and
0.4 with a step of 0.01. The inhibition between the
two systems was also varied between 0. and 0.1 with
a step of 0.02. We observe in figure 3 Left. which
plots the difference of frequencies f1 − f2 that they
get completely synchronized (∆f = 0) in the vicin-
ity of the mean frequency (this is called “frequency
locking”). In addition, as the inhibition increases,
the locking region gets wider and wider. The regions
of synchronization observed in simulation are anal-
ogous to the “phase locking domain” described as
“tongues” by Arnold : when two periodic oscillators
are coupled together there are parameter regions
called “Arnold tongues” where they mode lock and
their motion is periodic with a common frequency
[2].

Concurrently with “frequency locking”, it can
be observed (an example is given in figure 3-right,
which plots u1(n) in function of u2(n) with f1 = f2

and I = 0.5) that both oscillators converge to a con-
stant phase shift of π. That precisely corresponds to
anti-synchronization. This phenomenon is described
as “phase locking of periodic oscillators” [52].

3.1.2. Robotic implementation
To transpose the conceptual model to a robotics

platform, the way the oscillators and their interac-
tion could be embodied in a concrete robot should
be considered. In particular, the reciprocal influ-
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Fig. 3. a) Difference of frequencies f1 − f2 for oscillators 1
and 2 in function of f2 (f2 ∈ [0.01, 0.4])and I the mutual
inhibition (I ∈ [0, 0.1]) between oscillators (f1 is fixed to
0.2). b) Lissajou plotting of u1(n) in function of u2(n) for
the first 500 steps of the simulation.

ence between the two oscillators is then mediated
by the environment. In the robotic platform ADRI-
ANA (ADaptable Robotics for Interaction ANAly-
sis – see [28] for details), dedicated to the study of
interaction and communication features, the detec-
tion of movements and a moving arm are used to
interact (see fig.4).

Fig. 4. In the present experiment ADRIANA is customized
with a single arm for each robot and a webcam which enables
the robot to see the other robot but not to see its own
arm. The two robots move their arms according to their own
dynamic. They influence each other by seeing the movement
of the other robot.

Each robot has one arm and the camera is put
in front of the arm so as each robot faces the other
robot in order to perceive its arm movements. The
architecture controlling each robot is made of two
parts: the oscillator described in the previous section
which controls the arm movements ; the image pro-
cessing system which computes the inhibitory signal.
The frequency of the arm movements directly de-
pends on the activation of the oscillator: the higher
the activation of u1 is, the more frequent the arm

movements are. The vision system allows to detect
the motor actions of the other agent.

0 1 2 3 4 5 6 7
-80

-60

-40

-20

0

20

40

60

80

Fig. 5. Left : Difference of frequencies in function of the
reciprocal inhibition. Right : Time plot of agent1 and agent2
activities. Both internal oscillators rapidly anti-synchronize
thanks to the perception/action interaction.

We have first tested this architecture and setup
with two robots having the same oscillator’s pa-
rameter (β1 = β2). After a transition period, the
two behaviors of the two robots stabilise in anti-
synchronization: when one robot moves the other
stops and conversely, the two robots take turns. This
is shown by figure 5 Left. where both internal os-
cillators rapidly anti-synchronize thanks to the per-
ception/action interaction (this plot is equivalent
to the Lissajou representation mention above, along
the time axis).

As in simulation, we have tested the interaction
between the 2 agents for several values of f2 and
I. 32 experiments were conducted with the robots
in order to test the following set of parameters :
the frequency ratio β2

β1

took the values 1, 1.2, 1.4,

1.6, 1.8, 2, 4 and 6, (only β2 varies) the reciprocal
inhibition I took the values 0, 0.1, 0.3 and 0.5. The
difference of frequencies is plotted in figure 5-right.
As in simulation, we can see wide region of frequency
locking which varies with I.

3.1.3. Summary
This emerging dynamics have been shown to tol-

erate a wide range of parameters. This robustness
allows the 2 systems to remain in interaction even
if the conditions are not ideal: the agent’s dynam-
ics and environment may be modified along time. It
suggests that the emergence of turn taking between
two systems is a very robust dynamical attractor
that can be trusted in order to develop further social
and communicative functionalities.

This view fits physics results on chaotic oscillators
which support the idea that the more chaotic oscil-
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lators are synchronized, the more information they
exchange ([7]).

3.2. The case of positive coupling: synchrony

In the previous section, we have seen the effects
of adding an oscillator, as a component of the ar-
chitecture, that modulates the perceptions and the
action of the agents. In the previous robotic exper-
iment, the perceptions and the actions of the ar-
chitecture are limited to a coding of the perception
(amount of movement perceived) and of the action
(speed of the movement of the arm) expressed in
one dimension. Nevertheless, if we take into account
more elaborated control architectures such as the
one that apply to complex robotic systems, it can
appear that adding explicitly one internal oscilla-
tor is not so simple, because the information flow is
of higher dimension, and because these systems are
often able to switch from a particular dynamics to
another (for example systems that have a particular
dynamics during a learning phase, and a second one
during the reproduction phase).

But interestingly, the dynamics of such systems is
often already rich enough to provide oscillating sig-
nal without the use of any explicit ad-hoc oscillators.
Traditional works on motor control have for exam-
ple shown the benefit of using oscillating primitives
as the basis of the building of more complex behav-
iors [8,25,24,13,10]. In previous works, we have pro-
posed a NN architecture able to learn, predict and
reproduce on-line one simple sequence of sensori-
motor events. Such a system has been used in navi-
gation (from [5] to [19]), planning [4,14], imitation
with an eye-arm system [17,30], with different vari-
ations of the NN model used to categorize and pre-
dict the sensori-motor flow.

On these systems, the behavior (i.e the sequence of
sensori-motor actions) learned was most of the time
cyclic, in order to obtain a system that provides con-
tinuous demonstration of the learned sequence. For
example a system that learned the sequence ABCD
(each letter symbolizing a different sensory-motor
attractor) associated the transitions A-B, B-C, C-D,
D-A, in order to reproduce cyclically the sequence
ABCD. As a result, after an on-line learning period,
and once they are able to predict a sensory-motor
event, our robots start to reproduce it in loop, driven
by their step by step predictions [18,1]. This pro-
vides systems that start to reproduce the behavior
they have learned, once they are able to predict a

sequence. Of course, a reliable demonstration of the
learned sequence requires that no input is given con-
currently to the system (the experimenter, or the
learner stops stimulating the robot), otherwise the
system will be confused between selecting an action
corresponding to its own prediction (the response to
its own predictions) or to its inputs (the response to
the other’s stimulations).

.

.

.

.

Agent 2
Action 2

Sensation 2

Environment

Noise Noise 

Sensation 1

Action 1

Agent 1

Sequence
Learning and 
 reproduction

Sequence
Learning and 
 reproduction

Fig. 6. Architecture of the two agents influencing each other.
Each agent is now able to learn and reproduce a sequence

of actions. This “learn and reproduce” mechanism induces
an internal dynamics that will drive the behavior of each
agent. If we suppose that an agent learns a cyclic sequence
(for example ABCDA), it will then reproduce the sequence
in loop, and the looping of the prediction of the sensori-mo-
tor transitions will act as an endogenous multi-stable oscil-
lator. Interestingly, the first property that emerges from the
interaction of 2 systems is the synchronization of the sen-
sori-motor behaviors.

As a result, one could qualify such an architec-
ture as “blind” when reproducing the sequence : in
order to obtain a correct reproduction, the system
executes its predictions without “listening” to any
other inputs. Therefore, an important question is
how to obtain the emergence of interactive capabili-
ties with any architecture having a possible conflict
between perceptive and predictive inputs? From the
theoretical model described in section 2.1.3, the idea
is to start from the connection of two systems sim-
ulating a robot-robot interaction (see Fig 6), and to
exploit for free the dynamics of the interaction. Our
working hypothesis is that the predictive layer plays
the role of an endogenous oscillator, producing in-
ternal energy (the predictions) for the motor out-
put, while the perceptive input plays the role of the
modulation link allowing to add or subtract energy
to the motor layer and favour a global synchrony or
anti-synchrony of both agents. Once again, the solu-
tion is inspired by the C. Huyggens “entrainment”
phenomenon: our system’s perception is considered
as an energy playing the same role than the phys-
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ical wave transmitted by the support in Huyggens
experiment.

In the next sections, we will describe more pre-
cisely the details of the architecture , and the inter-
action experiment.

3.2.1. Energy based architecture
The Perception-Action architecture studied is a

Neural network with the following properties (see
the architecture Fig. 7):

A reflex pathway links actions (the Motor Output,
MO) with perceptions (the Input group, Input).
Perception is processed by the Input Group and sent
to MO. If the resulting MO potential overcome a
given Motor threshold it triggers a response (an ac-
tion) from the MO neuron.

The output of MO neurons is computed as fol-
lows:

PotMO
i =

∑

j

(W Input
i,j · Act

Input
i,j ) (16)

ActMO
i,j = fMO

(

PotMO
i,j

)

(17)

fMO (x (t)) =







1 if x(t) > θMO

0 otherwise
(18)

This direct Input-MO connection, ensures simple
reflex behaviors at the basis of sensori-motor explo-
ration and task learning [16,44]. In order to exploit
this emerging “spontaneous” imitative behavior, our
architecture is composed of a second pathway con-
necting a Transition Learning and Prediction (TLP )
network. The role of this network is to allow the
architecture to learn and predict the timing of the
changing sensory-motor events. The TLP system is
recording proprioceptive information, that is to say
the successive activations of the MO group: the sys-
tem learns its own sequence of actions. The TLP is
inspired by the functions of two brain structures in-
volved in memory and timing learning: the cerebel-
lum and the hippocampus (see [6] for the neurobio-
logical model we have proposed). TLP is composed
of three groups of neurons (Fig. 7): Time Derivation
(TD) group, Time Base (TB) group and Prediction
output (PO) group. These three groups will learn
and predict the timing of the transitions between
MO neurons. The neurons of the Prediction (PO)
group learn the association between incoming pro-
prioceptions via TD, the present, and the time trace
of the last event on TB (the past). The connectivity
plays an important role in the transition learning.

d/dt

PO TB

Cells
Time BasePrediction

Cells

TD

Motor

Output

Sensory−Motor 
Pathway

Transition Learning

and Prediction

Proprioceptive Pathway

Inputs

+

Fig. 7. Details of the Perception-Action architecture. The
Input-Motor Output link represents a “reflex” pathway. A
second loop pathway allow a Transition Learning and Pre-
diction group to learn the sensori-motor flow under the form
of a sequence of sensori-motor transition. As a result, after
a learning phase and TLP is able to recall step by step the
transition and to replay the learned sequence.

To each neuron in MO corresponds a detector in
TD (a simple derivator to detect new events), and
to each neuron of MO corresponds one battery of
TB neurons firing with different time constants de-
pending of j:

ActTB
j,l (t) =











n · Θ

Tmax · (j + 1)
· t if t < Tmax

θTB otherwise

(19)

The PO activity is computed classically, depend-
ing on the output of TB.

PotPO
i,j =

∑

l

W
TB(j,l)
po(i,j) · ActTB

j,l (20)

ActPO
i,j = fPO

(

PotPO
i,j

)

(21)

fPO = exp
x2

2 · σ2
(22)

Because of the connectivity between TD, TB and
PO, each PO neuron can learn a given transition be-
tween two events. To n possible events corresponds
n × n neurons in PO. The potential of a PO neu-
ron is the sum of the information coming from TD

and the delayed activity in TB. The (i, j) neuron
learns the transition between the ith neuron of TD
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and the jth group of TB (itself corresponding to the
time trace of the jth neuron of MO). Finally, merg-
ing the activities coming from PO and Input to ac-
tivate MO plays a crucial role. The overshot of θMO

by PO or Input will trigger the action execution
(Eq. 16). Figure 8 gives a summary of the different
cases of functioning:

Motor

Output

Proprioceptive 
Pathway

Sensory−Motor 

Pathway

Motor

Output

Motor

Output

+ ++

B CA

TLP TLP TLP

Fig. 8. Importance of the information flow in the function-
ing of the architecture. A) During learning, Input informa-
tion drives the system, triggers MO and the learning of the
transition by TLP B) When a sequence is learned, TLP

and MO (via the “proprioceptive” feedback) entertain their
activities resulting in the recall of the sequence. C) During
an interaction Input and TLP are active, resulting in a po-
tential increase of energy sent to MO, if PO and Input are
the same. This add of energy will result in an acceleration
of the played sequence.

– During learning, the activity of the Input is im-
portant. Therefore, the Input-MO links are set
to 1, and an activity of Input directly triggers the
corresponding MO neuron (overshooting θMO),
in order to activate the TLP groups and the learn-
ing of the sequence.

– When the system has learned a sequence, PO

starts to fire and predict the timing of the transi-
tions of the sequence. In order to obtain th com-
plete reproduction of the sequence, each PO re-
sponse must activate the corresponding MO neu-
ron in order to generate the next transition pre-
diction in TLP . Consequently, the PO-MO links
are set to 1.

– Nevertheless, if the Input-MO link is critical for
the learning process, it can as much interfere with
the reproduction of a given sequence, as play a
crucial role in the synchronisation process. Dur-
ing the experiments, the Input-MO links are set
to values belonging to [0, 1[. A sole activity from
Input is not sufficient to overshot θMO, but the
co-activation of Input with a rising potential of
the same PO neuron induce an earlier overshot of
θMO (because of the summation of Input and PO

activities on the same MO neuron): in other words
the system accelerates the triggering of MO, and
repetitive co-occurrences will cause the system to

synchronize MO outputs on the perceived Input

activities.
It is important to mention that during all the ex-

periments, the weights of the PO-MO links are set
to 1, while the weights of Input-MO where manu-
ally set to 1 during learning and [0 − 1[ with a step
of 0.1 during the different tests.

3.2.2. Learning a sequence
During the learning phase, the successive inputs

are given to the system, causing TLP to learn the
transitions between each activated MO neurons.
The transitions correspond to the instants of co-
activations of TD and TB, and are learned on the
TB-PO links. The learning rule is an associative
“Delta rule” :

∆W
TB(j,l)
PO(i,j) = ε · (ActTB

j,l − W
TB(j,l))
PO(i,j) ) (23)

Each W
TB(j,l)
PO(i,j) encodes the activity level of ActTB

j,l

at the instant of the co-activation, and the l links
between the l neurons of the jth group of TB and
the PO neuron at position (i, j) code the exact tim-
ing of the i-j transition. To recall a transition, the
activation of the ith MO neuron will cause the exact
instant of the transition between i and j to be pre-
dicted when the ActPO

i,j reaches its maximum value,
corresponding to 1. In order to reproduce the se-
quence, we trigger the system by stimulating the in-
put of the first element of the sequence. This ele-
ment will cause the prediction of the first transition,
and in turn triggers the second element of the se-
quence, and so on. As a result the step by step pre-
dictions connected to the MO group drive the recall
and the reproduction of the sequence. Fig.9 details
the learning and recall of a single transition AB.

3.2.3. Experiment and results
The output (MO) of the first system is connected

to the input (Input) of the second one, and con-
versely. The experiment was conducted as follow :
first, the two agents learned apart the same sequence
composed of the activation of three different inputs :
A, then B then C, then A. Each activation simulates
the recognition of a different sensori-motor category
by the system.

After the learning phase, each agent is then able
to reproduce the sequence. For each agent, a sole
stimulation of the first element of the sequence (here
A) starts the TLP predictions and the step by step
recall of the whole sequence at the learned timing.
In all the experiments, the first agent, (Agent1) was
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Fig. 9. Up : Example of a prediction of a transition on a PO

neuron. activities of Input, Time Base (TB), and Prediction
(PO) neurons. Before this record, the system was stimulated
with input A from time step 0 to 250, and with input B at
time step 250. This figure shows activities during the recall
of the PO(i,j) neurons whose activity reach its maximum
at time step 250. Bottom: Learning and recalling a typical
sequence used in our experiments. A sequence of 4 items
activating 3 different neurons of Input group is presented
to the system ( ABCA, at time steps 0 to 200). Once the
sequence is learned, at time step 200 the TLP starts to
predict and reproduce the sequence.

taught the same reference sequence at a period t1 =
10 seconds, meaning that each element of the se-
quence is lasting 10 seconds. In order to study the
dynamics of the interaction, and especially phase
locking of two agents, the period of the second agent
(Agent2) was taught with different values going from
t2 = 1 to t2 = 30. For each t2, we tested eleven differ-
ent cases of interactions corresponding to the modifi-
cation in both agents of the values of the Input−MO

link with values belonging to [0.0, 1.0] with steps of
0.1. A value of 0.0 indicates that the Inputs have
no effect on the system acceleration, and that the
agents are not able to modulate the timing of their
actions. Conversely, a value of 1.0 indicates that
Input is able solely to overshoot θMO and triggers
the system’s action without taking into account the
predictions. In the range ]0.0, 0.1[ the acceleration
of both systems happens with a strength depend-
ing on the instant of the co-occurrence of PO and
Input. Each control architecture was running on a
separate Linux workstation, and exchanged infor-
mation via the standard 100MB local network of the
laboratory. It is important to mention that during
the experiments, there where no particular attention
or will to isolate the computers or the sub-network
from the Lab. It means that on each workstation,
the control architecture was running with the same
priority than other processes (potentially cpu con-
sumers) and that the delay of transmission of the
information from MO of an agent to Input of the
other one could be uncertain. These experimental
conditions can be seen as equivalent to those of fu-
ture experiment on real robots (for example in a face
to face setup) where interferences can come from
the internal or the external environment. Figure 10

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  10  20  30  40  50  60  70  80  90  100

line 1
line 2

 0

 100

 200

 300

 400

 500

 600

 0  10  20  30  40  50  60  70  80  90  100

line 1
line 2

Fig. 10. Left: FFT transform of both agents MO output.
The interaction weight Input-MO is set to 0.0 There is thus
no synchronization, and each agent plays the sequence at
its original frequency (t1 = 10 vs t2 = 13). Right: Same
experiment (t1 = 10 vs t2 = 13) with Input-MO set to 0.8.
Both agents synchronize. Bottom: Detailed activity of the
fusion of PO and Input of Agent1 during the interaction
corresponding to experiment b). A Continuous modulation
can be seen, with important catch up can be seen at iterations
0.2, 1.3 and 1.7

shows the FFT of PotMO of both systems during the
two experiments. For all experiments, a Input-MO

link with a weight of 0.0 results in no synchroniza-
tion, each system playing its own sequence with its
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own initial period t. For the eleven experiments con-
ducted with a period t2 = 1, (whatever the value of
Input-MO is) there was also no global synchroniza-
tion, due to the too strong difference between t1 =
10 and t2 = 1. For the experiments conducted with
t2 going from 2 to 30, we can observe a progressive
and strong synchronization of the motor production
of both systems. Perception thus results in an ear-
lier triggering of the chosen action. To sum up, when
the agents are connected together, the effect of pro-
ducing cyclically the same sequence with a positive
coupling results in a step by step synchronization of
both behaviors, due to mutual accelerations when
prediction and perception coincide.

4. Discussion

From an initial theoretical neural model, ab-
stracting an interactive agent as a simple oscillating
perception-action system we have shown that :

(i) the formal coupling of two of these NN oscilla-
tors leads to two different dynamics: a positive
coupling involving synchrony and a negative
coupling involving phase opposition,

(ii) the computational simulation of this coupling
confirmed these dynamics with coupling pa-
rameters belonging to a large range of values,

(iii) the application of the negative coupling in the
frame of a robotic demonstrator leads to a sta-
ble interaction, where each robot alternates
active and passive behaviors, and where both
actors take turn,

(iv) the application of the positive coupling in the
frame of a simulated, real time, interaction
between two embedded control architectures
leads to a stable interaction, where both sys-
tems are able to synchronize when demon-
strating the same sequence.

It is important to notice that in the case of a neg-
ative coupling, the turn taking is an emergent be-
havior. It should facilitate the design of intuitive
human-robot interactions, but also robot-robot in-
teractions. Indeed, we can imagine that different
systems, with different morphologies or simply with
different motor repertories should be able to alter-
nate their turns of activity under the condition that
they embed this oscillating motivation for interac-
tion. This could provide a basic, but robust interac-
tion which should favor the exchanges and the shar-
ing of each agent’s motor repertoire. In the frame of
a positive coupling, it is interesting to notice that

the synchrony between the two agents is also an
emergent behavior, under the important condition
that both agents are doing the same thing, i.e ini-
tially share some parts of their motor repertory. In
this case, both agents synchronize their production
with noticeable adjustments of the timing of their
motor production. Therefore, in a situation of syn-
chronization, the dynamics of an agent is slightly
different from the one occurring when reproducing
solely a sequence. The synchronization state could
be easily characterizable and then could allow the
systems to detect that it is interacting with “some-
thing” doing “the same thing at the same time”.
In conjunction with immediate imitation (allowing
to “kick off” gestural games), we believe that syn-
chrony is a good means to detect if the others can
interact, in order to reach important stable states
that may be involved in the recognition of the be-
haviors of others. As a characterizable “marker” of
the interaction, synchrony can in turn be exploited
as a transition state for behavior selection or mod-
ulation. It should help autonomous systems to stay
locked, alternate roles, select and enrich their motor
repertory via interaction, in a word to communicate.

For the moment, we have considered the 2 archi-
tectures as separated: one devoted to phase opposi-
tion, the other to synchrony and learning. However,
when observing imitation sessions between young
infants, “turn-taking” and synchrony are tightly
imbricated [37]: in experiments involving pairs of
child sharing similar objects, sequences of recipro-
cal imitation are observed. During a given period,
one children takes turn and demonstrate something.
The other tries to reproduce in synchrony, mainly
for the pleasure of communication. Then they could
eventually alternate their role. Regarding this ex-
periment, it must be noticed that “turn-taking”
and “synchrony” cannot be described at the same
timescale: synchrony occurs within a “turn”. In
consequence, “turn-taking” can be considered as a
phenomenon occurring at a higher timescale, hav-
ing a low frequency. Conversely, synchrony must
be analysed at a micro-level during the interaction
of the two children. Coming back to our model,
it would suggest that the oscillator regulating the
“turn-taking” mechanism should modulate the
learning and reproduction of sequences of action. It
could act as a motivation for learning or being in
synchrony. We are now exploring this idea unifying
our 2 architectures.
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