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Robust Steering Control of Hot Strip Mill

Ivan Malloci, Jamal Daafouz,Member, IEEE,Claude Iung,Member, IEEE,Rémi Bonidal and Patrick Szczepanski

Abstract— In this article, a robust hot strip mill steering
control is proposed in order to guarantee the system stability
and to improve its performances. The rolling process consists
in crushing a metal strip between some rolls for obtaining
a product with constant and desired thickness. The quality
of the rolled products and the safety of the production
process are linked to the lateral movement of the strip in the
line. Then, the main task of the steering control consists in
reducing this displacement. A hot strip mill treats products
with very different characteristics. Then, the products are
divided into several families, with reference to their physical
characteristics, and the stabilisation problem is formulated as
a convex problem. Finally, for each family, a different robust
controller is designed. Simulated and experimental results
concerning the steering control in the ArcelorMittal hot strip
mill of Eisenhüttenstadt are presented.

Index Terms— Hot strip mill, Steering control, Singular
perturbation, Polytopic uncertainties, H2 robust control design,
Linear matrix inequalities.

I. INTRODUCTION

A hot strip mill is composed by several stands in a line,
where each stand is constituted by a set of rolls. The rolling
process consists in crushing a metal strip between the rolls
for obtaining a product with constant and desired thickness.
Furthermore, specific physical characteristics are required
for the rolled products. In order to prevent a decrease of
the product quality or rolling accidents, the strip has to
be maintained on the centre of the mill line. The lateral
movement of the strip with reference to the mill axis is called
strip off-centre.

The most important contributions on the steering control
theory are based on differential force measurements [5], [10],
[11] and [12]. The differential force is assumed to be the
strip off-centre image. Hence, the stand tilting correction is
fixed proportional to the strip off-centre and a PID controller
can be used. Nevertheless, the law linking the differential
force and the strip off-centre is strongly non-linear. These
constraints are taken into account in [3], where a linear
quadratic controller is designed for a nominal framework.
Since a mill treats products with very different characteris-
tics, this strategy cannot guarantee the same performances
for the whole set of rolled products.
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In this article, we propose a robust controller able to
stabilises the mill system, reducing the strip off-centre for the
whole set of treated products. The variation of the product
parameters is taken into account in the control design: strips
are divided into several families, with reference to their
thickness and width. For each family, a different controller
is designed. A polytopic approach is used to describe the
system as a convex problem and then to design a robust
controller using LMI technics [2].

The article is organised as follows. In section II, the
physical system equations are given. Moreover, the linearised
system and the singular perturbation approximation used to
design the controller are presented [6]. In section III, the
polytopic modeling is introduced. A method to simplify
the system description exploiting physical relations between
parameters is proposed. In section IV, the robust controller
is designed. In section V, simulated and experimental results
concerning the ArcelorMittal hot strip mill of Eisenhütten-
stadt (Germany) are presented.

II. SYSTEM DESCRIPTION

A hot strip mill (HSM) is constituted byn stands (Fig.
1). Each stand contains a set of rolls (composed by two
work rolls and two support rolls). Only the casen = 5
is considered. The generalisation ton stands can be made
without any theoretical difficulty.

Fig. 1. ArcelorMittal Eisenhüttenstadt HSM view

The superposition of the relations governing the system
behaviour yields to the non-linear strip off-centre physical
model.



For each standj ∈ Υ = {1, ..., n}, the main physical
parameters are the strip widthwj , the strip thicknesshj ,
the back strip tensionT am

j , the front strip tensionT av
j , the

screw interaxis lengthlvj , the interstand lengthl0j , the work
rolls speedsj and the Young’s moduleEj . The constants
c
fh
j , c

fTam

j , c
fTav

j , c
gh
j , c

gTam

j , c
gTav

j , Kh
j , K

f
j , K l

j, Pj and
gj represent the gradient of the strip parameters. They can
be evaluated using numerical algorithms developed by the
ArcelorMittal engineers. Furthermore, the main asymmetries
are the strip off-centreZj, the strip thickness profile (wedge)
∆hj , the stand tilting∆Sj and the differential stand stretch
∆Kj .

The main equations governing the system are:
– The differential rolling force equation

∆Pj = c
fh
j−1∆hj−1 + c

fh
j ∆hj

+ c
fTam

j ∆T am
j + c

fTav

j ∆T av
j ;

(1)

– The exit stand wedge equation

∆hj =
(

wj

(lv)2
j
Kh

j

+
6wj

b2
j
K

f
j

)

(

∆Pj + 2Pj

)

Zj

+
∆Pj

K l
j

+
wj

lvj
∆Sj −

wj

lvj (Kh
j )2

Pj∆Kj;
(2)

– The angleαj between the strip and the mill axis
equation

α̇j =
sj

wj

(

c
gh
j

1+gj
+ 1

hj

)

∆hj +
sj

wj

(

c
gh
j−1

1+gj
− 1

hj−1

)

∆hj−1

+
sjc

gTav

j

wj(1 + gj)
∆T av

j +
sjc

gTam

j

wj(1 + gj)
∆T am

j ;

(3)
– The strip off-centre equation

Żj = sj αj ; (4)

– The front-back differential of strip tension equation

∆T am
j =3

(

wjEj

(l0
j
)2

+
T am

j

wj

)

(

Zj − Zj−1

)

+
wjEj

l0j

(

2αj − αj−1

)

+ 3
l0jT

am
j

wj

αj ;
(5)

– The coupling between two successive stands equation

∆T av
j−1 = −∆T am

j ; (6)

Two state variables can be associated to each stand: the
strip off-centreZj and the angleαj . According to the pre-
vious physical equations, the complete process is described
by the non-linear continuous-time differential system

ẋ = ϕ(x, u, d) (7)

where

x =
[

α1, . . . , αn, Z1, . . . , Zn

]′
∈ R

2n

is the state,u ∈ R
r is the control signal (the stand tilting

∆S) and d ∈ R
q the external perturbation, which consists

in the strip off-centre in the input of the first stand due to
the vibrations of the coilbox (the device used to coil the

strips into the finishing train). The other perturbations onthe
system are negligible with reference to the input strip off-
centre. There existn cameras to measure the state variables
Z1, . . . , Zn.

The main task of the steering control consists in reducing
the lateral movement of the strip, which can be maintained
close to the mill axis modifying the differential rolling force.
Since the stand tiltings are bounded, only small deviations
around the ideal operating point (αj = Zj = ∆hj = 0)
must be considered. Then, we obtain the following linearised
model:

{

ẋ = Mx + Nuu + Ndd

y = Cyx.
(8)

The HSM system has a two-time scale dynamics: the an-
gles are fast variables with reference to the strip off-centre
variables. In this case, some numerical problems can occur
due to the stiffness of this kind of structure. Moreover, the
system actuators have a limited rate. Then, the dynamics
corresponding to the angles cannot be directly controlled.

In this case, the singular perturbation approximation can
be used in order to design the controller. It consists in
describing the system behaviour in the slow manifold. The
differential equations concerning the fast variables are re-
placed by algebraic equations. Decomposing the system state
into the fast and slow componentsx = [x′

1 x′
2]

′, we obtain:










ẋ1 = M11x1 + M12x2 + Nu
1 u + Nd

1 d

ẋ2 = M21x1 + M22x2 + Nu
2 u + Nd

2 d

y = C
y
1 x1 + C

y
2 x2.

(9)

Fixing ẋ1 = 0,

M11x1 + M12x2 + Nu
1 u + Nd

1 d = 0 (10)

gives the slow manifold equation and
{

ẋs = Msxs + Nu
s u + Nd

s d

y = Cy
s xs

(11)

gives the zero order approximation of the system, where

xs =
[

Z1 . . . Zn

]′
∈ R

n

and
Ms = M22 − M21M

−1
11 M12,

Nu
s = Nu

2 − M21M
−1
11 Nu

1 ,

Nd
s = Nd

2 − M21M
−1
11 Nd

1 ,

Cs = C2 − M21M
−1
11 C1.

The pair (Ms, N
u
s ) is assumed to be controllable and the

state vectorxs always available. Moreover, the matrixM11 is
assumed to be invertible, Hurwitz and it verifies the condition

max
ι

Re(ξι{M11}) < min
ζ

Re(ξζ{Ms}), (12)

with ι, ζ ∈ Υ. In this case, the singularly perturbed system
(11) gives a good approximation of the original system (9).



III. POLYTOPIC MODELING

The products rolled in a mill have very different physical
characteristics. Hence, we have to consider a different un-
certainty for each parameter of the product. The uncertain
parameters depend on the physical parameters of the rolled
strip (width, thickness, temperature, etc.) and on the HSM
parameters (roll radius, roll speed, roll force, etc.). TheHSM
parameters are related to the strip but fixed by an operator.
Then, each product is characterised by its strip and HSM
parameters. Since products can be very different, several
controllers have to be designed in order to obtain the same
performances for any product. The whole set of products that
can be treated in the mill will be divided into several families,
with reference to their physical parameters. For each family,
a specific controller will be designed.

In this section, a method to formulate the robust steering
control as a convex problem is presented. Furthermore, it is
shown how the complexity of the problem can be reduced ex-
ploiting the physical relations between the different product
parameters. According to the practical implementation, the
controller must be designed in the discrete-time. Consider

x(k + 1) = Ax(k), (13)

whereA is the polytopic domain

A =

Nv
∑

ν=1

λνAν , (14)

λν denotes the uncertainty and belongs to the unit simplex

Λ = {

Nv
∑

ν=1

λν = 1, λν ≥ 0} (15)

andNv is the vertices number of the convex hull. The whole
set of products is divided intoF families. For each family
f ∈ Ψ = {1, ...,F}, the vertices number of its convex hull
Nf

v , with ν ∈ Γf = {1, ..., Nf
v } and the products number

Nf
p , with p ∈ Ωf = {1, ..., Nf

p }, can be defined.
The space dimensionD of the convex hull coincides with

the number of uncertain parametersUp. In the considered
HSM, Up = 70. Since the state matrices are ill-conditioned,
the LMI solvers cannot find any solution, with a problem
of this dimension. Then, a simplified system description has
to be found. We know that a set of main parametersUm

can be determined. When two products have the same main
parameters, the systems have similar dynamics. Let define
Um = {Up \ Us}, whereUs is the set of the remaining
parameters (secondary parameters).Us can be divided into
two subsets. The first one can be computed by analytic
functions. For example the relation between the roll speed
and the output thickness of two adjacent stands is given by
the law of matter conservation. The second subset ofUs

depends on the operator choice. Nevertheless, for similar
strips the operator must use analogous HSM parameters.
Consequently, products with similarUm have also similar
Us.

We simulated the system behaviour with different products
and we foundUm = {w, hn, σ0

1 , σ0
n}, wherew is the strip

width, hn is the output thickness of the strip in the last stand
andσ0

1 andσ0
n are the hardness of the strip in the first and

in the last stand, respectively. Hence, the system dynamics
can be described by a convex hull with dimensionD = 4.

In order to compute the convex hull, two different strate-
gies have been evaluated. The first one consists in consid-
ering each product as a point in the main parameters space.
Thus, the corresponding convex hull can be computed, for
example, using the free softwareQhull [1]. We find at least
Nf

v = 100.
The second strategy consists in considering the2D possi-

ble combinations of the maximum and minimum values of
each dimension. Then, a hyper trapezoid withNf

v = 16 ver-
tices is found. With this approach, the number of vertices can
be considerably reduced. This decreases numerical problems
which may be very restrictive for LMI solvers. Moreover,
products which are not in the database but which could be
rolled in the future are taken into account.

For these reasons, we decided to use the second method.
In this case, the products corresponding to the convex hull
vertices could not be present in the database because the
combinations between the main parameters are infinite. Then,
in most of the cases, secondary parameters of the products
corresponding to the vertices have to be computed. For each
family f , the setUs(ν, f) of the product corresponding to
the vertexν in the family f can be imposed to be equal to
the setUs(p, f) of the closest productp, which is computed
by the equation

Dmin(ν, p, f) = min
(ν, p)∈Γf

ν×Ωf

{D(ν, p, f)} (16)

with

D(ν, p, f) = [(w(ν, f) − w(p, f))2 + (hs(ν, f) − hs(p, f))2+

(σ0
1(ν, f) − σ0

1(p, f))2 + (σ0
n(ν, f) − σ0

n(p, f))2]
1

2

∀ (ν, p, f) ∈ Γf
ν ×Ωf ×Ψ. D(ν, p, f) represents the distance,

with reference to the setUm, between the vertexν and the
productp in the family f . To compute it, all the parameters
are normalised beforehand into the interval[−1, 1]. The
approximately trapezoidal shape of the database guarantees
that each vertex is close at least to a product. Then, the
proposed solution assures a good approximation.

IV. H2 CONTROL DESIGN

In this section, we describe the robust controller designed
for each familyf ∈ Ψ. For simplicity, the indexf is omitted.
Consider the uncertain discrete-time linear system











x(k + 1) = Ax(k) + Buu(k) + Bdd(k)

z(k) = Czx(k) + Dzuu(k)

y(k) = Cyx(k)

(17)

wherex ∈ R
n is the state,u ∈ R

r is the control signal,d ∈
R

q is the external perturbation,y ∈ R
m is the measured

output andz ∈ R
m is the controlled output. Let define the

convex hulls

A =

Nv
∑

ν=1

λA
ν Aν , (18)



Bu =

Nv
∑

v=1

λBu

ν Bu
ν (19)

and

Bd =

Nv
∑

ν=1

λBd

ν Bd
ν , (20)

with {λA
ν , λBu

ν , λBd

ν } ∈ Λ. A H2 LMI-based controller is
designed. It provides a solution taking a priori into account
the uncertainties and minimising the effects of the external
perturbations. Given the control law

u(k) = Kx(k) (21)

and the closed loop matricesAcl
ν = Aν + Bu

ν K andCcl =
Cz + DzuK, the transfer matrix betweenz andd is

T dz
ν (ς) = Ccl(ςI − Acl

ν )−1Bd
ν (22)

and itsH2 norm is

‖T dz
ν ‖2

2 =
1

2π

∫ π

−π

Tr{T dz
ν (ς)∗T dz

ν (ς)}dω (23)

with ς = ejω , ∀ ν ∈ Γ. The following theorem
gives a method to compute the state-feedback gain
K = argm

K
in‖T dz

ν ‖2
2 which guarantees the asymptotical

stability of the system (17)∀ ν ∈ Γ.

Theorem 1:[4] If there exist symmetric positive definite
matricesW , Pν , matricesX , L and a scalarµ > 0 such that
LMIs

Tr(W ) < µ (24)

[

W CzX + DzuL

(⋆)′ X + X ′ − Pν

]

≻ 0 (25)





Pν AνX + Bu
ν L Bd

ν

(⋆)′ X + X ′ − Pν 0
(⋆)′ (⋆)′ I



 ≻ 0 (26)

are verified ∀ ν ∈ Γ, then the controller (21) with
K = LX−1 guarantees the asymptotic stability of the
system (17), with‖T dz

ν ‖2
2 < µ.

In order to choose the controller gainK minimising the
norm ‖T dz

ν ‖2
2, we can solve the optimisation problem

{

min µ

under(24) − (26)
. (27)

V. RESULTS

In this section, the control design described in the previous
sections is applied to the ArcelorMittal HSM of Eisenhütten-
stadt.

TABLE I

FAMILIES BOUNDS

X
X

X
X

X
X

XX
Family

Data
w hn σ

0

1
σ

0
n

1 810 − 1200 1.9 − 3 22 − 65 30 − 95

2 810 − 1200 3 − 4.5 22 − 65 30 − 95

3 810 − 1200 4.5 − 6.2 22 − 65 30 − 95

4 1200 − 1670 1.9 − 3 22 − 65 30 − 95

5 1200 − 1670 3 − 4.5 22 − 65 30 − 95

6 1200 − 1670 4.5 − 6.2 22 − 65 30 − 95

TABLE II

COMPARISON OF THE COST FUNCTION VALUES

Family Cost function value

all 752.8
1 237.1
2 66.3
3 41.2
4 251
5 100.6
6 48.9

A. Robust Steering Control Toolbox

A Matlab toolbox (RSCT, [9]) has been developed for
obtaining a systematic procedure to extend the steering con-
trol to different factories. It provides a user-friendly interface
to compute the products database. Moreover, the algorithm
described in section III is implemented. This allows to divide
the database inF families and to compute the products
corresponding to the vertices of each familyf ∈ F . Then,
for each product, the corresponding reduced linear system is
computed (see section II). These informations are necessary
to design the controller gainsKf using Theorem 1. The
toolbox also includes the HSM simulator to analyse the
system behaviour. The LMI problem (24)-(26) is solved
using the free LMI solverSeDuMi[13] and the freeMatlab
toolbox YALMIP, which provides a simple interface for the
most popular LMI solvers [8].

B. Controllers Gain Computing

After experimental trials, we decided to divide the whole
database intoF = 6 families, using the main parameters
setUm = {w, hn, σ0

1 , σ0
n}. The families bounds are sum-

marised in Table I.
The control system is designed in the discrete-time, with

sample timeTs = 0.05 sec. Applying Theorem 1, we can
find robust control gainKf for each familyf ∈ Ψ.

The analysis of the cost function (27) shows that the
described families choice improves the system performances.
The results are summarised in Table II: in the first row the
cost function value for the controller which stabilises the
whole set of products is shown. The following rows show
the cost function values corresponding to the controllersKf

which stabilise only one family of products.

C. Simulation Results

Simulation results are shown for a productp with
Um ={967, 2.02, 27.9, 40.1}. From Table I,p belongs to



the first family. Fig. 2 shows the outputZ evolution. The
solid line represents theZ evolution with theH2 control gain
K1. The dashed line shows theZ evolution with a classic LQ
control gain, designed for a medium product of family 1. The
dotted line shows theZ evolution with a classic LQ control
gain, designed for a medium product of the whole database.
This last controller is presented in [3]. As expected, the
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Fig. 2. Exit strip off-centre evolution

division of the whole database into more families improves
the system performances. Moreover, theH2 robust controller
takes into account the uncertain parameters and minimises
the effects of the external perturbation, which is due to the
coilbox vibrations. Then, results may still be improved. The
last line, the dash-dotted one, shows theZ evolution without
control. Notice that in this case a saturation occurs: it means
that the strip crashes against the HSM guides because of the
elevatedZ. The result is a decrease of the product quality
and, in the worst case, the damage of the rolls.

D. Industrial Implementation

Fig. 3. Information global process at ArcelorMittal Eisenhüttenstadt HSM

The steering control system includes five cameras, the
main computer SC and the data connection devices (Fig.
3). The cameras, which areDAC004delivered byFife, are
protected by a water-cooled housing (the strip can reach the
1000◦C) and mounted on dedicated vibration absorbers to
avoid high accelerations. AProfibusconnects each camera
to the main computer, which is linked to the standPLC by
Profibusas well. The main computer consists of a3 GHz
Intel-P4standard personal computer with integratedProfibus
interface. The control system is developed in theC++
language and works under the operating systemWindows
XP. A TCP/IP using anEthernet connection realises the
communication to theLevel 2 system in order to load the
rolling parameters. Filtering, active pixel selection andedge
detection are done byFPGA devices, which are located
directly on the cameras. This architecture allows to reduce
the amount of data which is necessary transmitting to the
main computer. An edge detection algorithm based on the
gradient analyses is used in order to obtain a clear infor-
mation concerning the strip off-centre valuesZ. During the
operating phase of the control system, the stand tiltingu is
obtained by multiplying theZ values to the right controller
gain Kf , computed off-line byRSCT. In order to avoid big
values ofu, due to measurement errors, a saturation function
is applied before sending the stand tilting signal to thePLC.
For the evaluation of the control system some indicators are
computed and stored in a database.

E. Experimental Results

Some experimental result are presented here. In Fig. 4,
the exit Z evolution of two consecutive products with the
sameUm ={1510, 2.02, 59.1, 72.5} is shown. The solid
line corresponds to theZ evolution when the steering control
is on whereas the dotted line corresponds to the open loop
Z evolution. Notice that theZ value, which varies between
−35 and 50 cm in open-loop, is maintained close to zero
when the mill works in closed-loop. Then, a better quality
of the rolled products is obtained. Moreover, the probability
that the strip crashes against the guides decreases. Hence,
the rolling process works in more safe conditions.

In Fig. 5, the exit strip off-centre evolution of10 different
products is shown. We chose the products in order to cover
all the extreme combinations of the family4, with reference
to the set of the main parametersUm. The initial coilbox
perturbation, which can be deducted by theZ initial values,
varies between−25 and30 cm. However, the strip off-centre
is kept between−15 and 20 cm during the whole rolling
process. This fact proves the robustness of the designed
control gain.

VI. CONCLUSION

In this article, aH2 robust steering control is proposed in
order to guarantee the stability of the HSM system and to im-
prove its performances. Since a finishing mill treats products
that can be very different, a significant database is created
and divided into several families of products. A method to
reduce the complexity of the problem exploiting the relation
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Fig. 5. Exit strip off-centre evolution (family 4)

between the different products parameters is also presented.
This method yields to a convex stabilisation problem. Then,
for each family, a different LMI-based controller is designed.

We proposed a division of the whole set of products into
6 families and we showed that the corresponding designed
controllers guarantee the asymptotic stability of the closed-
loop system. Moreover, the presented control law reduces
the strip off-centre improving the product quality and the
system safety. Also if the results that we presented concern
the ArcelorMittal HSM of Eisenhüttenstadt, the described
steering control design is adaptable to any plant.

The next step consists in solving the tail end phase
stabilisation problem. The tail end phase is the last phase
of the hot rolling process: the strip leaves the stands one
after the other. Each time the strip leaves a stand the system
dynamics changes. Hence, the HSM system can be described
as a switched system [7].
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