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 and prove that both APS({⊏, ≬}, ∅) and APS({<, ≬}, ∅) are NPcomplete. We end this paper by giving some new positive results, namely showing that APS({≬}, ∅) and APS({≬},{≬}) are polynomial time solvable.

Introduction

At a molecular state, the understanding of biological mechanisms is subordinated to the discovery and the study of RNA functions. Indeed, it is established that the conformation of a single-stranded RNA molecule (a linear sequence composed of ribonucleotides A, U , C and G, also called primary structure) partly determines the function of the molecule. This conformation results from the folding process due to local pairings between complementary bases (A-U and C-G, connected by a hydrogen bond). The secondary structure of an RNA (a simplification of the complex 3-dimensional folding of the sequence) is the collection of folding patterns (stem, hairpin loop, bulge loop, internal loop, branch loop and pseudoknot) that occur in it.

RNA secondary structure comparison is important in many contexts, such as:

-identification of highly conserved structures during evolution, non detectable in the primary sequence which is often slightly preserved. These structures suggest a significant common function for the studied RNA molecules [START_REF] Juan | Evidence for evolutionarily conserved secondary structure in the H19 tumor suppressor RNA[END_REF][START_REF] Teunissen | Conserved features of Y RNAs: a comparison of experimentally derived secondary structures[END_REF][START_REF] Hellendoorn | Protonatable hairpins are conserved in the 5'-untranslated region of tymovirus RNAs[END_REF][START_REF] Farris | Conserved features of Y RNAs revealed by automated phylogenetic secondary structure analysis[END_REF], -RNA classification of various species (phylogeny) [START_REF] Caetano-Anolls | Tracing the evolution of RNA structure in ribosomes[END_REF][START_REF] Billoud | Cirripede phylogeny using a novel approach: Molecular morphometrics[END_REF][START_REF] Wang | Secondary structure of mitochondrial 12S rRNA among fish and its phylogenetic applications[END_REF], -RNA folding prediction by considering a set of already known secondary structures [START_REF] Zuker | RNA folding[END_REF][START_REF] Hofacker | Automatic detection of conserved RNA structure elements in complete RNA virus genomes[END_REF], -identification of a consensus structure and consequently of a common role for molecules [START_REF] Wuyts | Comparative analysis of more than 3000 sequences reveals the existence of two pseudoknots in area V4 of eukaryotic small subunit ribosomal RNA[END_REF][START_REF] Chaia | RNA Sequence Requirements for NasR-mediated, Nitrate-responsive Transcription Antitermination of the Klebsiella oxytoca M5al nasF Operon Leader[END_REF].

Structure comparison for RNA has thus become a central computational problem bearing many challenging computer science questions. At a theoretical level, the RNA structure is often modeled as an arc-annotated sequence, that is a pair (S, P ) where S is the sequence of ribonucleotides and P represents the hydrogen bonds between pairs of elements of S. Different pattern matching and motif search problems have been investigated in the context of arc-annotated sequences among which we can mention the arc-preserving subsequence (APS) problem, the Edit Distance problem, the arc-substructure (AST) problem and the longest arc-preserving subsequence (LAPCS) problem (see for instance [START_REF] Evans | Algorithms and Complexity for Annotated Sequence Analysis[END_REF][START_REF] Jiang | The longest common subsequence problem for arc-annotated sequences[END_REF][START_REF] Guo | Exact algorithms for the longest common subsequence problem for arcannotated sequences[END_REF][START_REF] Gramm | Pattern matching for arc-annotated sequences[END_REF][START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF]). For other related studies concerning algorithmic aspects of (protein) structure comparison using contact maps, refer to [START_REF] Goldman | Algorithmic aspects of protein structure similarity[END_REF][START_REF] Lancia | 101 optimal PDB structure alignments: a branch-and-cut algorithm for the maximum contact map overlap problem[END_REF].

In this paper, we focus on the arc-preserving subsequence (APS) problem: given two arc-annotated sequences (S, P ) and (T, Q), this problem asks whether (T, Q) can be exactly obtained from (S, P ) by deleting some of its bases together with their incident arcs, if any. This problem is commonly encountered when one is searching for a given RNA pattern in an RNA database [START_REF] Guo | Exact algorithms for the longest common subsequence problem for arcannotated sequences[END_REF]. Moreover, from a theoretical point of view, the APS problem can be seen as a restricted version of the LAPCS problem, and hence has applications in the structural comparison of RNA and protein sequences [START_REF] Evans | Algorithms and Complexity for Annotated Sequence Analysis[END_REF][START_REF] Goldman | Algorithmic aspects of protein structure similarity[END_REF][START_REF] Zhang | Computing the similarity between RNA structures[END_REF]. The APS problem has been extensively studied in the past few years [START_REF] Gramm | Pattern matching for arc-annotated sequences[END_REF][START_REF] Guo | Exact algorithms for the longest common subsequence problem for arcannotated sequences[END_REF][START_REF] Evans | Algorithms and Complexity for Annotated Sequence Analysis[END_REF]. Of course, different restrictions on arc-annotation alter the computational complexity of the APS problem, and hence this problem has been naturally divided into subproblems reflecting the complexity of the arc structure of both (S, P ) and (T, Q): plain, chain, nested, crossing or unlimited (see Section 2 for details). All of them but one have been classified as to whether they are polynomial time solvable or NP-complete. The problem of the existence of a polynomial time algorithm for the APS(Crossing,Plain) problem was mentioned in [START_REF] Gramm | Pattern matching for arc-annotated sequences[END_REF] as the last open problem in the context of arc-preserving subsequences (cf. Table 1). Unfortunately, as we shall prove in Section 4, the APS(Crossing,Plain) problem is NP-complete even for restricted special cases.

In analyzing the computational complexity of a problem, we are often trying to define the precise boundary between the polynomial and the NP-complete cases. Therefore, as another step towards establishing the precise complexity landscape of the APS problem, it is of great interest to subdivide the existing cases into more precise ones, that is to refine the classical complexity levels of the APS problem, for determining more precisely what makes the problem hard. For that purpose, we use the framework introduced by Vialette [START_REF] Vialette | Pattern matching over 2-intervals sets[END_REF] in the context of 2-intervals (a simple abstract structure for modelling RNA secondary structures). As a consequence, the number of complexity levels rises from 4 (not taking into account the unlimited case) to 8, and all the entries of this new complexity table need to be filled. Previous known results concerning the APS problem, along with two NP-completeness and two polynomiality proofs, allow us to fill all the entries of this new table, therefore determining what exactly makes the APS problem hard.

The paper is organized as follows. In Section 2, we give notations and definitions concerning the APS problem. In Section 3 we introduce and explain the new refinements of the complexity levels we are going to study. In Section 4, we show that the APS({⊏, ≬}, ∅) problem is NP-complete thereby proving that the (classical) APS(Crossing, Plain) problem is NP-complete as well. As another refinement to that result, we prove that the APS({<, ≬}, ∅) problem is NP-complete. Finally, in Section 5, we give new polynomial time solvable algorithms for restricted instances of the APS(Crossing, Plain) problem.

Preliminaries

An RNA structure is commonly represented as an arc-annotated sequence (S, P ) where S is the sequence of ribonucleotides (or bases) and P is the set of arcs connecting pairs of bases in S. Let (S, P ) and (T, Q) be two arc-annotated sequences such that |S| ≥ |T | (in the following, n = |S| and m = |T |). The APS problem asks whether (T, Q) can be exactly obtained from (S, P ) by deleting some of its bases together with their incident arcs, if any.

Since the general problem is easily seen to be intractable [START_REF] Evans | Algorithms and Complexity for Annotated Sequence Analysis[END_REF], the arc structure must be restricted. Evans [START_REF] Evans | Algorithms and Complexity for Annotated Sequence Analysis[END_REF] proposed four possible restrictions on P (resp. Q) which were largely reused in the subsequent literature:

1. there is no base incident to more than one arc, 2. there are no arcs crossing, 3. there is no arc contained in another, 4. there is no arc. These restrictions are used progressively and inclusively to produce five different levels of allowed arc structure:

-Unlimited -the general problem with no restrictions -Crossing -restriction 1 -Nested -restrictions 1 and 2 -Chain -restrictions 1, 2 and 3 -Plain -restriction [START_REF] Caetano-Anolls | Tracing the evolution of RNA structure in ribosomes[END_REF] Guo proved in [START_REF] Guo | Exact algorithms for the longest common subsequence problem for arcannotated sequences[END_REF] that the APS(Crossing, Chain) problem is NP-complete. Guo et al. observed in [START_REF] Gramm | Pattern matching for arc-annotated sequences[END_REF] that the NP-completeness of the APS(Crossing, Crossing) and APS(Unlimited, Plain) easily follows from results of Evans [START_REF] Evans | Algorithms and Complexity for Annotated Sequence Analysis[END_REF] concerning the LAPCS problem. Furthermore, they gave a O(nm) time for the APS(Nested, Nested) problem. This algorithm can be applied to easier problems such as APS(Nested, Chain), APS(Nested, Plain), APS(Chain, Chain) and APS(Chain,Plain). Finally, Guo et al. mentioned in [START_REF] Gramm | Pattern matching for arc-annotated sequences[END_REF] that APS(Chain, Plain) can be solved in O(n+ m) time. Until now, the question of the existence of an exact polynomial algorithm for the problem APS(Crossing, Plain) remained open. We will first show in the present paper that the problem APS(Crossing,Plain) is NP-complete. Table 1 surveys known and new results for various types of APS. Observe that the Unlimited level has no restrictions, and hence is of limited interest in our study. Consequently, from now on we will not be concerned anymore with that level.

APS

Crossing

Nested Chain Plain Crossing NP-complete [START_REF] Evans | Algorithms and Complexity for Annotated Sequence Analysis[END_REF] 

NP-complete [12] NP-complete ⋆ Nested O(nm) [11] Chain O(nm) [11] O(n + m) [11]
Table 1. APS problem complexity where n = |S| and m = |T |. ⋆ result from this paper.

Refinement of the APS problem

In this section, we propose a refinement of the APS problem. We first state formally our approach and explain why such a refinement is relevant for both theoretical and experimental studies. We end the section by giving easy properties of the proposed refinement that will prove extremely useful in Section 5.

Splitting the levels

As we will show in Section 4, the APS(Crossing, Plain) problem is NPcomplete. That result answers the last open problem concerning the computational complexity of the APS problem with respect to classical complexity levels, i.e., Plain, Chain, Nested and Crossing (cf. Table 1). However, we are mainly interested in the elaboration of the precise border between NP-complete and polynomially solvable cases. Indeed, both theorists and practitioners might naturally ask for more information concerning the hard cases of the APS problem in order to get valuable insight into what makes the problem difficult. As a next step towards a better understanding of what makes the APS problem hard, we propose to refine the models which are classically used for classifying arc-annotated sequences. Our refinement consists in splitting those models of arc-annotated sequences into more precise relations between arcs. For example, such a refinement provides a general framework for investigating polynomial time solvable and hard restricted instances of APS(Crossing, Plain), thereby refining in many ways Theorem 1 (see Section 5).

We use the three relations first introduced by Vialette [START_REF] Vialette | Pattern matching over 2-intervals sets[END_REF][START_REF] Vialette | On the computational complexity of 2-interval pattern matching[END_REF] in the context of 2-intervals (a simple abstract structure for modelling RNA secondary structures). Actually, his definition of 2-intervals could almost apply in this paper (the main difference lies in the fact that Vialette used 2-intervals for representing sets of contiguous arcs). Vialette defined three possible relations between 2-intervals that can be used for arc-annotated sequences as well. They are the following: for any two arcs p 1 = (i, j) and p 2 = (k, l) in P , we will write

p 1 < p 2 if i < j < k < l (precedence relation), p 1 ⊏ p 2 if k < i < j < l (nested relation) and p 1 ≬ p 2 if i < k < j < l (crossing relation).
Two arcs p 1 and p 2 are τ -comparable for some τ ∈ {<, ⊏, ≬} if p 1 τ p 2 or p 2 τ p 1 . Let P be a set of arcs and R be a non-empty subset of {<, ⊏, ≬}. The set P is said to be R-comparable if any two distinct arcs of P are τ -comparable for some τ ∈ R. An arc-annotated sequence (S, P ) is said to be an R-arc-annotated sequence for some non-empty subset R of {<, ⊏, ≬} if P is R-comparable. We will write R = ∅ in case P = ∅. Observe that our model cannot deal with arc-annotated sequences which contain only one arc. However, having only one arc or none can not really affect the computational complexity of the problem. Just one guess reduces from one case to the other. Details are omitted here.

As a straightforward illustration of the above definitions, classical complexity levels for the APS problem can be expressed in terms of combinations of our new relations: Plain is fully described by R = ∅, Chain is fully described by R = {<}, Nested is fully described by R = {<, ⊏} and Crossing is fully described by R = {<, ⊏, ≬}. The key point is to observe that our refinement allows us to consider new structures for arc-annotated sequences, namely R = {⊏}, R = {≬}, R = {<, ≬} and R = {⊏, ≬}, which could not be considered using the classical complexity levels. Although other refinements may be possible (in particular well-suited for parameterized complexity analysis), we do believe that such an approach allows a more precise analysis of the complexity of the APS problem.

Of course one might object that some of these subdivisions are unlikely to appear in RNA secondary structures. While this is true, it is also true that it is of great interest to answer, at least partly, the following question: Where is the precise boundary between the polynomial and the NP-complete cases? Indeed, such a question is relevant for both theoretical and experimental studies.

For one, many important optimization problems are known to be NP-complete. That is, unless P = NP, there is no polynomial time algorithm that optimally solves these on every input instance, and hence proving a problem to be NPcomplete is generally accepted as a proof of its difficulty. However the problem to be solved may be much more specialized than the general one that was proved to be NP-complete. Therefore, during the past three decades, many studies have been devoted to proving NP-completeness results for highly restricted instances in order to precisely define the border between tractable and intractable problems. Our refinements have thus to be seen as another step towards establishing the precise complexity landscape of the APS problem.

For another, it is worthwhile keeping in mind that intractability must be coped with and problems must be solved in practical applications. Computer science theory has articulated a few general programs for systematically coping with the ubiquitous phenomena of computational intractability: average case analysis, approximation algorithm, randomized algorithm and fixed parameter complexity. Fully understanding where the boundary lies between efficiently solvable formulations and intractable ones is another important approach. Indeed, from an engineering point of view for which the emphasis is on efficiency, that precise boundary might be a good starting point for designing efficient heuristics or for exploring fixed-parameter tractability. The better our understanding of the problem, the better our ability in defining efficient algorithms for practical applications.

Immediate results

First, observe that, as in Table 1, we only have to consider cases of APS(R 1 ,R 2 ) where R 1 and R 2 are compatible, i.e. R 2 ⊆ R 1 . Indeed, if this is not the case, we can immediately answer negatively since there exists two arcs in T which satisfy a relation in R 2 which is not in R 1 , and hence T simply cannot be obtained from S by deleting bases of S. Those incompatible cases are simply denoted by hatched areas in Table 2.

Some known results allow us to fill many entries of the new complexity table derived from our refinement. The remainder of this subsection is devoted to detailing these first easy statements. We begin with an observation concerning complexity propagation properties of the APS problems in our refined model.

Observation 1 Let R 1 , R 2 , R ′ 1 and R ′ 2 be four subsets of {<, ⊏, ≬} such that R ′ 2 ⊆ R 2 ⊆ R 1 and R ′ 2 ⊆ R ′ 1 ⊆ R 1 . If APS(R ′ 1 , R ′ 2 ) is NP-complete (resp. APS(R 1 , R 2 ) is polynomial time solvable) then so is APS(R 1 , R 2 ) (resp. APS(R ′ 1 , R ′ 2 )).
On the positive side, Gramm et al. have shown that APS(Nested, Nested) is solvable in O(nm) time [START_REF] Gramm | Pattern matching for arc-annotated sequences[END_REF]. Another way of stating this is to say that APS({< , ⊏}, {<, ⊏}) is solvable in O(mn) time. That result together with Observation 1 may be summarized by saying that APS(R 1 , R 2 ) for any compatible R 1 and R 2 such that ≬ / ∈ R 1 and ≬ / ∈ R 2 is polynomial time solvable.

Conversely, the NP-completeness of APS(Crossing,Crossing) has been proved by Evans [START_REF] Evans | Algorithms and Complexity for Annotated Sequence Analysis[END_REF]. A simple reading shows that her proof is concerned with {<, ⊏, ≬}-arc-annotated sequences, and hence she actually proved that APS({< , ⊏, ≬}, {<, ⊏, ≬}) is NP-complete. Similarly, in proving that APS(Crossing, Chain) is NP-complete [START_REF] Guo | Exact algorithms for the longest common subsequence problem for arcannotated sequences[END_REF], Guo actually proved that APS({<, ⊏, ≬}, {<}) is NP-complete. Note that according to Observation 1, this latter result implies that APS({<, ⊏, ≬}, {<, ⊏}) and APS({<, ⊏, ≬},{<, ≬}) are NP-complete. 

Hardness results

We show in this section that APS({⊏, ≬}, ∅) is NP-complete thereby proving that the (classical) APS(Crossing, Plain) problem is NP-complete. That result answers an open problem posed in [START_REF] Gramm | Pattern matching for arc-annotated sequences[END_REF], which was also the last open problem concerning the computational complexity of the APS problem with respect to classical complexity levels, i.e., Plain, Chain, Nested and Crossing (cf. Table 1). Furthermore, we prove that the APS({<, ≬}, ∅) is NP-complete as well.

We provide a polynomial time reduction from the 3-Sat problem: Given a set V n of n variables and a set C q of q clauses (each composed of three literals) over V n , the problem asks to find a truth assignment for V n that satisfies all clauses of C q . It is well-known that the 3-Sat problem is NP-complete [START_REF] Garey | Computers and Intractability: A Guide to the Theory of NP-Completeness[END_REF].

It is easily seen that the APS({⊏, ≬}, ∅) problem is in NP. The remainder of the section is devoted to proving that it is also NP-hard. Let V n = {x 1 , x 2 , ...x n } be a finite set of n variables and C q = {c 1 , c 2 , . . . , c q } a collection of q clauses. Observe that there is no loss of generality in assuming that, in each clause, the literals are ordered from left to right, i.e., if

c i = (x j ∨ x k ∨ x l ) then j < k < l.
Let us first detail the construction of the sequences S and T : We now detail the subsequences that compose S and T . Let γ m (resp. γ m ) be the number of occurrences of literal x m (resp. x m ) in C q and let k m = max(γ m , γ m ). For each variable x m ∈ V n , 1 ≤ m ≤ n, we construct words S s xm = AC km , S s xm = C km A and T s xm = AC km A where C km represents a word of k m consecutive bases C. For each clause c i of C q , 1 ≤ i ≤ q, we construct words S ci = U GGGA and T ci = U GA. Finally, for each variable x m ∈ V n , 1 ≤ m ≤ n, we construct words S e xm = U U A and T e xm = U A. Having disposed of the two sequences, we now turn to defining the corresponding two arc structures (see Figure 1). In the following, Seq[i] will denote the i th base of a sequence Seq and, for any 1 ≤ m ≤ n, l m = |S s xm |. For all 1 ≤ m ≤ n, we create the two following arcs: (S s xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF],S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) and (S s xm [l m ],S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF]). For each clause c i of C q , 1 ≤ i ≤ q, and for each 1 ≤ m ≤ n, if the k th (i.e. 1 st , 2 nd or 3 rd ) literal of c i is x m (resp. x m ) then we create an arc between any free (i.e. not already incident to an arc) base C of S s xm (resp. S s xm ) and the k th base G of S ci (note that this is possible by definition of S s xm , S s xm and S ci ). On the whole, the instance we have constructed is composed of 3q + 2n arcs. We denote by APS-cp-construction any construction of this type. In the following, we will distinguish arcs between bases A and U , denoted by AU -arcs, from arcs between bases C and G, denoted by CG-arcs. An illustration of an APS-cp-construction is given in Figure 1. Clearly, our construction can be carried out in polynomial time. Moreover, the result of such a construction is indeed an instance of APS({⊏, ≬}, ∅), since Q = ∅ (no arc is added to T ) and P is a {⊏, ≬}-comparable set (since there are no arcs {<}-comparable. 

S = S s
= (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).
We begin by proving a canonicity lemma of an APS-cp-construction. Lemma 1. Let (S, P ) and (T, Q) be any two arc-annotated sequences obtained from an APS-cp-construction. If (T, Q) can be obtained from (S, P ) by deleting some of its bases together with their incident arcs, if any, then for each 1 ≤ i ≤ q and 1 ≤ m ≤ n: Proof. Let (S, P ) and (T, Q) be two arc-annotated sequences resulting from an APS-cp-construction.

1. T ci is obtained from S ci
(1) By construction, the first base U appearing in S (resp. T ) is S c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] (resp.

T c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]). Thus, T c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is obtained from a base U of S at, or after, S c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]. Moreover, the number of bases A appearing after S c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] in S is equal to the number of bases A appearing after T c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] in T . Therefore, every base A appearing after S c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] and T c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] must be matched. That is, for each 1 ≤ i ≤ q, T ci [START_REF] Billoud | Cirripede phylogeny using a novel approach: Molecular morphometrics[END_REF] is matched to S ci [START_REF] Chaia | RNA Sequence Requirements for NasR-mediated, Nitrate-responsive Transcription Antitermination of the Klebsiella oxytoca M5al nasF Operon Leader[END_REF].

In particular, T cq [START_REF] Billoud | Cirripede phylogeny using a novel approach: Molecular morphometrics[END_REF] is matched to S cq [START_REF] Chaia | RNA Sequence Requirements for NasR-mediated, Nitrate-responsive Transcription Antitermination of the Klebsiella oxytoca M5al nasF Operon Leader[END_REF]. But since there are as many bases U between S c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] and S cq [START_REF] Chaia | RNA Sequence Requirements for NasR-mediated, Nitrate-responsive Transcription Antitermination of the Klebsiella oxytoca M5al nasF Operon Leader[END_REF] as there are between T c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] and T cq [START_REF] Billoud | Cirripede phylogeny using a novel approach: Molecular morphometrics[END_REF], any base U in this interval in S must be matched to any base U in this interval in T ; that is, for any 1 ≤ i ≤ q, T ci [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is matched to S ci [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]. Thus, we conclude that for any 1 ≤ i ≤ q, T ci is obtained by deleting two of the three bases G of S ci .

(2) By the above argument concerning the bases A appearing after S c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] and T c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF], we know that if (T, Q) can be obtained from (S, P ), then T e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is matched to S e xm [START_REF] Billoud | Cirripede phylogeny using a novel approach: Molecular morphometrics[END_REF] for any 1 ≤ m ≤ n. Thus, for any 1 ≤ m ≤ n, T e xm is obtained from S e xm , and in particular T e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is matched to either S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] or S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF]. (3) By definition, as there is no arc incident to bases of T , at least one base incident to every arc of P has to be deleted. We just mentioned that T e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is matched to either S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] or S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] for any 1 ≤ m ≤ n. Thus, since by construction there is an arc between S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] and S s xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] (resp. S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] and S s xm [l m ]), for any 1 ≤ m ≤ n either S s xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] or S s xm [l m ] has to be deleted; and all these arcs connect a base A appearing before S c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] to a base U appearing after S cq [START_REF] Chaia | RNA Sequence Requirements for NasR-mediated, Nitrate-responsive Transcription Antitermination of the Klebsiella oxytoca M5al nasF Operon Leader[END_REF]. Therefore, for any 1 ≤ m ≤ n a base A appearing before S c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] in S is deleted. Originally, there are 3n bases A appearing before S c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] in S and 2n appearing before the first base of T c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] in T . Thus, the number of bases A matched in S and appearing before S c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is equal to the number of bases A appearing before T c1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] 

⊓ ⊔

We now turn to proving that our construction is a polynomial time reduction from 3-Sat to APS(Crossing, Plain). Lemma 2. Let I be an instance of the problem 3-Sat with n variables and q clauses, and I ′ an instance ((S, P ); (T, Q)) of APS({⊏, ≬}, ∅) obtained by an APS-cp-construction from I. An assignment of the variables that satisfies the boolean formula of I exists iff T is an Arc-Preserving Subsequence of S.

Proof. (⇒) Suppose we have an assignment AS of the n variables that satisfies the boolean formula of I. By definition, for each clause there is at least one literal that satisfies it. In the following, j i will define, for any 1 ≤ i ≤ q, the smallest index of the literal of c i (i.e. 1, 2 or 3) which, by its assignment, satisfies c i . Let (S, P ) and (T, Q) be two sequences obtained from an APS-cp-construction from I. We look for a set B of bases to delete from S in order to obtain T . For each variable x m ∈ AS with 1 ≤ m ≤ n, we define B as follows: [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] and S ci [START_REF] Caetano-Anolls | Tracing the evolution of RNA structure in ribosomes[END_REF], [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] and S ci [START_REF] Billoud | Cirripede phylogeny using a novel approach: Molecular morphometrics[END_REF].

-if x m = T rue then B contains each base of S s xm and S e xm [1], -if x m = F alse then B contains each base of S s xm and S e xm [2], -if j i = 1 then B contains S ci [3] and S ci [4], -if j i = 2 then B contains S ci
-if j i = 3 then B contains S ci
Since a variable has a unique value (i.e. T rue or F alse), either each base of S s xm and S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] or each base of S s xm and S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] are in B for all 1 ≤ m ≤ n. Thus, B contains at least one base in S of any AU -arc of P .

For any 1 ≤ i ≤ q, two of the three bases G of S ci are in B. Thus, B contains at least one base in S of two thirds of the CG-arcs of P . Moreover, S ci [j i + 1] is the base G that is not in B. We suppose in the following that the j th i literal of the clause c i is x m , with 1 ≤ m ≤ n. Thus, by the way we build the APS-cpconstruction, there is an arc between a base C of S s xm and S ci [j i + 1] in P . By definition, if AS is an assignment of the n variables that satisfies the boolean formula, AS satisfies c i and thus x m = T rue. We mentioned, in the definition of B that if

x m = T rue then each base of S s xm is in B. Thus, the base C of S s xm incident to the CG-arc in P with S ci [j i + 1] is in B.
A similar result can be found if the j th i literal of the clause c i is x m . Thus, B contains at least one base in S of any CG-arc of P .

If S ′ is the sequence obtained from S by deleting all the bases of B together with their incident arcs, then there is no arc in S ′ (i.e. neither AU -arcs or CGarcs). By the way we define B, S ′ is obtained from S by deleting all the bases of either S s xm or S s xm , two bases G of S ci and either S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] or S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF], for 1 ≤ i ≤ q and 1 ≤ m ≤ n. According to Lemma 1, it is easily seen that sequence S ′ obtained is similar to T .

(⇐) Let I be an instance of the problem 3-Sat with n variables and q clauses. Let I ′ be an instance ((S, P ); (T, Q)) of APS({⊏, ≬}, ∅) obtained by an APScp-construction from I such that (T, Q) can be obtained from (S, P ) by deleting some of its bases (i.e. a set of bases B) together with their incident arcs, if any. By Lemma 1, either all bases of S s xm or all bases of S s xm are in B. Consequently, for 1 ≤ m ≤ n, we define an assignment AS of the n variables of I as follows:

-if all bases of S s xm are in B then x m = T rue, -if all bases of S s xm are in B then x m = F alse. Now, let us prove that for any 1 ≤ i ≤ q the clause c i is satisfied by AS. By Lemma 1, for any 1 ≤ i ≤ q there is a base G of substring S ci (say the j i + 1 th ) that is not in B. By the the way we build the APS-cp-construction, there is a

CG-arc in P between S ci [j i + 1] and a base C of S s xm (resp. S s xm ) if the j th i literal of c i is x m (resp. x m ).
Suppose, w.l.o.g., that the j th i literal of c i is x m . Since Q is an empty set, at least one base of any arc of P is in B. Thus, the base C of S s xm incident to the CG-arc in P with S ci [j i + 1] is in B (since S ci [j i + 1] ∈ B). Therefore, by Lemma 1, all the bases of S s xm are in B. By the way we define AS, x m = T rue and thus c i is satisfied. The same conclusion can be similarly derived if the j th i literal of

c i is x m . ⊓ ⊔
We have thus proved the following theorem.

Theorem 1. The APS({⊏, ≬}, ∅) problem is NP-complete.

It follows immediately from Theorem 1 that the APS({<, ⊏, ≬}, ∅) problem, and hence the classical APS(Crossing, Plain) problem, is NP-complete.

One might naturally ask for more information concerning the hard cases of the APS problem in order to get valuable insight into what makes the problem difficult. Another refinement of Theorem 1 is given by the following theorem.

Theorem 2. The APS({<, ≬}, ∅) problem is NP-complete.

As for Theorem 1, the proof is by reduction from the 3-Sat problem. It is easily seen that the APS({<, ≬}, ∅) problem is in NP. The remainder of this section is devoted to proving that it is also NP-hard. Let V n = {x 1 , x 2 , ...x n } be a finite set of n variables and C q = {c 1 , c 2 , . . . , c q } a collection of q clauses. The instance of the APS({<, ≬}, ∅) problem we will build is decomposed in two parts: a Truth Setting part and a Checking part. For readability, we denote by APS2-cp-construction any construction of the type described hereafter. Moreover, we will present separately the Truth Setting part and the Checking part : first, we will describe the Truth Setting part, then the Checking part and end by the description of the set of arcs connecting those two parts. Indeed, the instance of the APS({<, ≬}, ∅) problem will be the concatenation of those two parts.

Truth Setting part

Let us first detail the construction of sequences S ′ and T ′ of the Truth Setting part :

S α S β S ′ = S e x1 S e x2 . . . S e xn GGG S s x1 A S s x1 S s x2 A S s x2 . . . S s xn A S s xn T ′ = T e x1 T e x2 . . . T e xn GGG T s x1 T s x2 . . . T s xn T α ′ T β ′ We now detail subsequences that compose S ′ and T ′ . Let γ m (resp. γ m ) be the number of occurrences of literal x m (resp. x m ) in C q and let k m = max(γ m , γ m ). For each variable x m ∈ V n , we construct substrings S e xm = U U A, T e xm = U A, S s xm = AC km , S s xm = C km A and T s xm = AC km A,
where C km represents a substring of k m consecutive bases C. Having disposed of the two sequences, we now turn to defining the corresponding arc structure (see Figure 2). For all 1 ≤ Fig. 2. The truth setting part of an APS2-cp-construction with Cq = (x2

∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).
m ≤ n, we create the two following arcs: (S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF],S s xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) and (S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF],S s xm [k m + 1]). Remark that, by now, all the arcs defined are {≬}-comparable.

Checking part

Let us now detail the construction of sequences S ζ and T ζ ′ of the Checking part :

S 1 S 1 S q S q S ζ = U S 1 x1 S 1 x2 ...S 1 xn U S 1 x1 S 1 x2 ...S 1 xn U...U S q x1 S q x2 ...S q xn U S q x1 S q x2 ...S q xn U T ζ ′ = U T 1 U T 1 U...U T q U T q U
We now detail subsequences that compose S ζ and T ζ ′ . For any 1 ≤ m ≤ n and any 1 ≤ i ≤ q, let γ i m (resp. γ i m ) be the number of occurrences of literal x m (resp. x m ) in the set of clauses c j with i < j ≤ q and let λ i m = γ i m + γ i m . For any 1 ≤ m ≤ n and for any 1 ≤ i ≤ q, let y i m = 1 if x m ∈ c i , y i m = 0 otherwise. For any 1 ≤ m ≤ n and for any 1 ≤ i ≤ q, let y i m = 1 if x m ∈ c i , y i m = 0 otherwise. For any 1 ≤ m ≤ n and 1 ≤ i ≤ q, we construct substrings:

S i xm = (GGA) λ i m +y i m (GA) y i m (GGA) λ i m +y i m (GA) y i m S i xm = (CCA) λ i m (CA) y i m (CCA) λ i m (CA) y i m T i = (GA) 4+6q-6i T i = (CA) 2+6q-6i
For example, assuming that

C q = (x 2 ∨ x 3 ∨ x 4 ) ∧ (x 1 ∨ x 2 ∨ x 3 ) ∧ (x 2 ∨ x 3 ∨ x 4 )
we have, among others, the following segments:

S 1 x1 = (GGA) 1 (GA) 0 (GGA) 1 (GA) 0 = GGA GGA S 1 x2 = (GGA) 2 (GA) 1 (GGA) 3 = GGA GGA GA GGA GGA GGA S 2 x3 = (CCA) 1 (CA) 0 (CCA) 1 (CA) 1 = CCA CCA CA T 2 = (GA) 4+6 * 3-6 * 2 = GA GA GA GA GA GA GA GA GA GA T 3 = (CA) 2+6 * 3-6 * 3 = CA CA
Having disposed of the two sequences, we now turn to defining the corresponding arc structure (see Figure 3). By construction, S i xm (resp. S i xm ) is composed of substrings GA and GGA (resp. CA and CCA). We denote by repeater any substring GGA or CCA. We denote by terminal any substring GA or CA which is not part of a repeater. Let term(i, m, j) (resp. rep(i, m, j)) be the j th terminal (resp. repeater) of S i xm , and let term(i, m, j) (resp. rep(i, m, j)) be the j th terminal (resp. repeater) of S i xm . For all 1 ≤ m ≤ n, 1 ≤ j ≤ 2λ i m + 1 and 1 ≤ i < q, we create the following arcs:

-an arc between the second base G of rep(i, m, j) and the first base C of the j th element (i.e. either a terminal or a repeater) of S i xm ; -an arc between the second base C of rep(i, m, j) and the first base G of the j th element of S i+1 xm .

Final Construction

Final sequences S and T are respectively obtained by concatenating S ′ with S ζ and T ′ with T ζ ′ . Moreover, we create, for all 1 ≤ m ≤ n and all 1 ≤ j ≤ γ m + γ m , an arc between the j th base C of substring S s xm AS s xm in S ′ and the first base G of the j th element of S In the following, we will show that P is {<, ≬}-comparable. Let a 1 and a 2 be any two arcs connecting a base of S β to a base of S ζ . As all the arcs connecting a base of S β to a base of S ζ are of the same form, we consider, w.l.o.g. that:

-for a given j and a given 1 ≤ m ≤ n, a 1 is the arc which connects the j th base C of substring S s xm AS s xm to the first base G of the j th element of S 1 xm ; -for a given k and a given 1 ≤ m ′ ≤ n, a 2 is the arc which connects the

k th base C of substring S s x m ′ AS s x m ′ to the first base G of the k th element of S 1 x m ′ ; -j < k.
We now consider the three following cases: (i) m = m ′ , (ii) m < m ′ and (iii) m > m ′ . Suppose m = m ′ . As j < k, the j th base C precedes the k th base C of substring S s xm AS s xm . Moreover, the first base G of the j th element of 

= (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).
S 1 xm precedes the first base G of the k th element of S 1 xm . Thus, a 1 and a 2 are {≬}-comparable.

Suppose now m < m ′ . Then, the j th base C of substring S s xm AS s xm precedes the k th base C of substring S s

x m ′ AS s x m ′ . Moreover, the first base G of the j th element of S 1 xm precedes the first base G of the k th element of S 1 x m ′ . Thus, a 1 and a 2 are {≬}-comparable. The case where m > m ′ is fully similar. Therefore, given two arcs a 1 and a 2 connecting a base of S β and a base of S ζ , a 1 and a 2 are {≬}-comparable, and thus, {<, ≬}-comparable.

Let a 1 and a 2 be any two arcs connecting two bases of S ζ . There are two types of arcs connecting two bases of S ζ :

1. arcs connecting, for a given 1 ≤ i ≤ q and a given j, a base of the j th repeater of S i to a base of the j th element of S i ; 2. arcs connecting, for a given 1 ≤ i < q and a given j, a base of the j th repeater of S i to a base of the j th element of S i+1 .

By definition, a 1 and a 2 can be either of type 1 or type 2. Since the cases where a 1 and a 2 are of different types are fully similar, we detail hereafter three cases: (a) a 1 and a 2 are of type 1, (b) a 1 is of type 1 and a 2 is of type 2, and (c) a 1 and a 2 are of type 2.

(a) Suppose that a 1 and a 2 are of type 1. Since a 2 is of type 1, a 2 connects, for a given 1 ≤ i ′ ≤ q and a given k, a base of the k th repeater of S i ′ to a base of the k th element of S i ′ . Suppose, w.l.o.g., that j < k. By construction, if i = i ′ then either a 1 precedes a 2 or a 2 precedes a 1 . Therefore, if i = i ′ then a 1 and a 2 are {<}-comparable. Moreover, if i = i ′ then a 1 and a 2 are {≬}-comparable.

(b) Suppose that a 1 is of type 1 and a 2 is of type 2. Since a 2 is of type 2, a 2 connects, for a given 1 ≤ i ′ ≤ q and a given k, a base of the k th repeater of S i ′ to a base of the k th element of S i ′ +1 . By construction, if i = i ′ then either a 1 precedes a 2 or a 2 precedes a 1 . Therefore, if i = i ′ then a 1 and a 2 are {<}-comparable. Consider now the case where i = i ′ . Suppose first that j < k. If i = i ′ then, as S i precedes S i+1 and j < k, a 1 and a 2 are {<}-comparable. Suppose now that j > k. If i = i ′ then, as S i precedes S i+1 and k < j, a 1 and a 2 are {≬}-comparable.

(c) Suppose that a 1 and a 2 are of type 2. Since a 2 is of type 2, a 2 connects, for a given 1 ≤ i ′ ≤ q and a given k, a base of the k th repeater of S i ′ to a base of the k th element of S i ′ +1 . Suppose, w.l.o.g., that j < k. By construction, if i = i ′ then either a 1 precedes a 2 or a 2 precedes a 1 . Therefore, if i = i ′ then a 1 and a 2 are {<}-comparable. Moreover, if i = i ′ then a 1 and a 2 are {≬}-comparable.

Therefore, given two arcs a 1 and a 2 connecting two bases of S ζ , a 1 and a 2 are {<, ≬}-comparable. We now turn to proving that the set P is {<, ≬}comparable. Notice, first, that there is no arc connecting two bases of S β (resp. S α ). We proved previously that given two arcs a 1 and a 2 connecting a base of S β and a base of S ζ , a 1 and a 2 are {<, ≬}-comparable. Finally, we proved that given two arcs a 1 and a 2 connecting a base of S α and a base of S β , a 1 and a 2 are {≬}comparable.Therefore, the set of arcs starting in S α S β is {<, ≬}-comparable.

Let a ζ = (u ′ , v ′ ), where u ′ and v ′ are bases, denote the arc connecting a base of S β to a base of S ζ and which ends the last. By construction, all the arcs connecting two bases of S ζ are ending after v ′ . Therefore, the set of arcs in S (i.e. the set P ) is {<, ≬}-comparable.

A full illustration of an APS2-cp-construction is given in Figure 3. Clearly, our construction can be carried out in polynomial time. Moreover, the result of such a construction is indeed an instance of APS({<, ≬}, ∅), since Q = ∅ (no arc is added to T ) and P is a {<, ≬}-comparable set of arcs.

Let (S, P ) and (T, Q) be two sequences obtained from an APS2-cp-construction. In the following, we will give some technical lemmas that will be useful for the comprehension of proof of Theorem 2. Definition 1. A canonical alignment of two sequences (S, P ) and (T, Q) obtained from an APS2-cp-construction is an alignment where, for any 1 ≤ i ≤ q and 1 ≤ m ≤ n:

-any base of S e xm is either matched with a base of T e xm or deleted, -either each base of S s xm A is matched with a base of T s xm and all bases of S s xm are deleted, or each base of AS s xm is matched with a base of T s xm and all bases of S s xm are deleted, -any base of S i is either matched with a base of T i or deleted, -any base of S i is either matched with a base of T i or deleted. Lemma 3. Let (S, P ) and (T, Q) be two sequences obtained from an APS2cp-construction. If (T, Q) is an arc-preserving subsequence of (S, P ) then any corresponding alignment is canonical.

Proof. Suppose (T, Q) is an arc-preserving subsequence of (S, P ). Let A denote any corresponding alignment. In T , there is a substring GGG between T α ′ and T β ′ . In S, bases G are present either between S α and S β , or in S ζ . The number of bases U in S ζ and in T ζ ′ is equal. Moreover, in both S ζ and T ζ ′ the first (i.e. leftmost) base is a base U . Therefore, in A, none of the bases of the substring GGG in T between T α ′ and T β ′ can be matched to a base G of S ζ since, in that case, at least one base U of T ζ ′ would not be matched. Thus, in A, substring GGG of S has to be matched with substring GGG of T and T α ′ must be matched with substrings of S α .

Moreover, the number of bases U in S ζ and in T ζ ′ is equal; besides, in S β and T β ′ there is no base U . Thus, T β ′ (resp. T ζ ′ ) must be matched with substrings of S β (resp. S ζ ). Therefore, we will consider the three cases

(S α /T α ′ , S β /T β ′ , S ζ /T ζ ′ ) separately.
Consider S α and T α ′ . There are exactly n bases A both in S α and T α ′ . Consequently, in A, for all 1 ≤ m ≤ n, S e xm has to be matched with T e xm . More precisely, T e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] has to be matched to either S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] or S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] for all 1 ≤ m ≤ n.

Consider S β and T β ′ . By definition, as Q = ∅, at least one base incident to every arc of P has to be deleted. We just mentioned that T e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] has to be matched to either S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] or S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] for any 1 ≤ m ≤ n. Thus, since by construction there is an arc between S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] and S s xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] . Thus, in A, the 2q + 1 bases U of S ζ have to be matched with the 2q + 1 bases U of T ζ ′ . Therefore, in A, for any 1 ≤ i ≤ q, any base of S i is either matched with a base of T i or deleted, and any base of S i is either matched with a base of T i or deleted.

⊓ ⊔

In the following, given an alignment A of S and T , if the first base of a terminal is matched (resp. deleted) in A then the corresponding terminal will be denoted as active (resp. inactive). Similarly, a repeater is said to be inactive (resp. active) when its two first bases (resp. exactly one out of its two first bases) are deleted in A. Notice that the case where none of the two first bases of a repeater is deleted in A is not considered.

Notice that, by construction, for any 1 ≤ i ≤ q, there are no two consecutive bases G in T ζ ′ , and there are no two consecutive bases C in T ζ ′ . Thus, at least one out of any two consecutive bases C or G of S ζ is deleted in A. Therefore, given a canonical alignment, for any repeater of S, either the repeater is active or all its bases C or G are deleted. Lemma 4. Let (S, P ) and (T, Q) be two sequences obtained from an APS2-cpconstruction. If (T, Q) is an arc-preserving subsequence of (S, P ), then for any corresponding alignment A and for any 1 ≤ i ≤ q, one of the three following cases must occur:

-all the repeaters and one terminal of S i are active, -all the repeaters but one and two terminals of S i are active, -all the repeaters but two and three terminals of S i are active.

Proof. By Lemma 3, A is canonical. Moreover, by definition, in any canonical alignment, for all 1 ≤ i ≤ q, any base of S i is either matched with a base of T i or deleted. Let ω j (resp. ω ′ j ) denote the j th element of S i (resp. T i ). By construction, in T i , there are two bases A less than in S i . Therefore, we know that in A, all the bases A of S i but two will be matched. Let ω k and ω l , with k < l, denote the two elements of S i which contain the deleted bases A. There are two cases, as illustrated in Figure 4: either (a) l = k + 1 or (b) l > k + 1. Let us consider those two cases separately.

(a) Suppose l = k + 1 (i.e. ω k and ω l are consecutive). In that case, since all the bases A but two will be matched in S i , the base A of ω k-1 (resp. ω l+1 ) is matched with a base A of an element of T i , say ω ′ m (resp. ω ′ m+1 ). Therefore, the base G of ω ′ m+1 is either matched with a base of ω k , ω l or ω l+1 . In each of those cases, all the elements but two of S i are active.

(b) Suppose l > k + 1 (i.e. ω k and ω l are not consecutive). In that case, since all the bases A but two will be matched in S i , the base A of ω k-1 (resp. ω k+1 ) is matched with a base A of an element of T i , say ω ′ m (resp. ω ′ m+1 ). Similarly, the base A of ω l-1 (resp. ω l+1 ) is matched with a base A of an element of T i , say ω ′ p (resp. ω ′ p+1 ). Therefore, the base G of ω ′ m+1 (resp. ω ′ p+1 ) is either matched with a base of ω k or ω k+1 (resp. ω l or ω l+1 ). In each of those cases, all the elements but two of S i are active.

Therefore, either two terminals, or one repeater and one terminal, or two repeaters of S i are inactive.

⊓ ⊔ Lemma 5. Let (S, P ) and (T, Q) be two sequences obtained from an APS2-cpconstruction. If (T, Q) is an arc-preserving subsequence of (S, P ), then for any corresponding alignment A, all the repeaters and two terminals of S 1 are active.

Proof. Note that in this lemma, we focus on the first clause (i.e. c 1 ). c 1 is defined by three literals (say x i , x j and x k ). Since c 1 is equal to the disjunction of variables built with x i , x j and x k , c 1 can have eight different forms, because each literal can appear in either its positive (x i ) or negative (x i ) form. In the following, we suppose, to illustrate the proof, that c 1 = (x i ∨x j ∨x k ) as illustrated in Figure 5. The other cases will not be considered here, but can be treated similarly. By Lemma 3, A is canonical. Moreover, by definition, in any canonical alignment, for all 1 ≤ i ≤ q, any base of S i is either matched with a base of T i or deleted. We recall that ω j (resp. ω ′ j ) denotes the j th element of S i (resp. T i ). By construction, in T 1 , there is one base A less than in S 1 . Therefore, we know that in A, all the bases A of S 1 but one will be matched. Let ω k denote the element of S 1 which contains the deleted base A. Since all the bases A of S 1 but two will be matched, the base A of ω k-1 (resp. ω k+1 ) is matched with a base A of an element of T 1 , say ω ′ m (resp. ω ′ m+1 ). Therefore, the base C of ω ′ m+1 is either matched with a base of ω k or ω k+1 . Consequently, all the elements but one of S 1 are active. To prove that the inactive element is a terminal, we suppose, by contradiction, that one repeater of S 1 is inactive. Therefore, the three terminals of {S 1 xi , S 5. Since, by hypothesis, the three terminals of {S 1 xi , S 1 xj , S 1

x k } are active, then θ is matched. By definition, as Q = ∅, at least one base incident to every arc of P has to be deleted. Therefore, rep [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted. Since rep is an active repeater, rep [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is matched. Thus, δ is deleted. Moreover, by construction, there is an arc between a base C of S s xi and the first base of the terminal in S 1 xi (cf. Figure 5). Therefore, since the first base of terminal in S 1 xi is matched (because we supposed that the active terminal is in S 1 xi ), a base C of S s xi is deleted. Thus, a base of both S s xi and S s xi is deleted. Therefore, by Definition 1, the alignment is not canonical, a contradiction.

(b) Suppose now that the active terminal is in S 1 x k . By construction, there is a repeater rep of S 1

x k such that (δ, rep [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) ∈ P , (rep [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF], θ) ∈ P where δ (resp. θ) is a base C of S s

x k (resp. the first base of the terminal in S 1 x k ), as illustrated in Figure 5. Since, by hypothesis, the three terminals of {S 1 xi , S 1 xj , S 1

x k } are active, then θ is matched. By definition, as Q = ∅, at least one base incident to every arc of P has to be deleted. Therefore, rep [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted. Since rep is an active repeater, rep [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is matched. Thus, δ is deleted. Moreover, by construction, there is an arc between a base C of S s

x k and the first base of the terminal in S 1

x k (cf. Figure 5). Therefore, since the first base of terminal in S 1

x k is matched (because we supposed that the active terminal is in S 1

x k ), a base C of S s x k is deleted. Thus, a base of both S s

x k and S s x k is deleted. Therefore, by Definition 1, the alignment is not canonical, a contradiction.

(2) Suppose that all the repeaters but one of S 1 and two terminals of {S 5. Similarly, by construction, there is a repeater rep ′ of S 1

x k such that (δ ′ , rep ′ [1]) ∈ P , (rep ′ [2], θ ′ ) ∈ P where δ ′ (resp. θ ′ ) is a base C of S s
x k (resp. the first base of the terminal in S 1 x k ). Since, by hypothesis, the three terminals of {S 1 xi , S x k and S s x k is deleted. Consequently, by Definition 1, the alignment is not canonical, a contradiction.

(3) Suppose that all the repeaters but two of S 1 and three terminals of {S 1 xi , S x k and S s x k is deleted. Therefore, by Definition 1, the alignment is not canonical, a contradiction.

Thus, the hypothesis that one repeater of S 1 is inactive is wrong. Consequently, only a terminal of S 1 can be inactive. We deduce that all the repeaters and two terminals of S 1 are active.

⊓ ⊔

We now turn to proving that our construction is a polynomial time reduction from 3-Sat to APS({<, ≬}, ∅). Lemma 6. Let I be an instance of the problem 3-Sat with n variables and q clauses, and I ′ an instance ((S, P ); (T, Q)) of APS({<, ≬}, ∅) obtained by an APS2-cp-construction from I. An assignment of the variables that satisfies the boolean formula of I exists iff (T, Q) is an Arc-Preserving Subsequence of (S, P ).

Proof. (⇒) Suppose we have an assignment AS of the n variables that satisfies the boolean formula of I. By definition, for each clause there is at least one literal that satisfies it. Let (S, P ) and (T, Q) be two sequences obtained from an APS2-cp-construction from I. We look for a set of bases to delete from S in order to obtain T . We define this set in three steps as follows.

(Step 1) For each variable x m ∈ AS, 1 ≤ m ≤ n:

-if x m = T rue then S e
xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] and all the bases of S s xm are deleted, -if x m = F alse then S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] and all the bases of S s xm are deleted.

Notice that the sequence obtained from S α (resp. S β ) by deleting the bases described above is similar to T α ′ (resp. T β ′ ), when not considering arcs.

(Step 2) We recall that, for any 1 ≤ m ≤ n and any 1 ≤ i ≤ q, γ i m (resp. γ i m ) denotes be the number of occurrences of literal x m (resp. x m ) in the set of clauses c j with i < j ≤ q and λ i m = γ i m + γ i m . For any 1 ≤ m ≤ n and for any 1 ≤ i ≤ q, we also recall that y i m = 1 (resp.

y i m = 1) if x m ∈ c i (resp. x m ∈ c i ), y i m = 0 (resp. y i m = 0) otherwise. For each variable x m ∈ AS, 1 ≤ m ≤ n and 1 ≤ i ≤ q:
-if x m = T rue then the following bases are deleted:

• rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] for all 1

≤ j ≤ λ i m + y i m , • rep(i, m, j)[1] for all λ i m + y i m < j ≤ 2λ i m + y i m + y i m , • rep(i, m, j)[2] for all 1 ≤ j ≤ λ i m , • rep(i, m, j)[1] for all λ i m < j ≤ 2λ i m -if x m = F
alse then the following bases are deleted:

• rep(i, m, j)[1] with 1 ≤ j ≤ λ i m + y i m , • rep(i, m, j)[2] with λ i m + y i m < j ≤ 2λ i m + y i m + y i m , • rep(i, m, j)[1] with 1 ≤ j ≤ λ i m , • rep(i, m, j)[2] with λ i m < j ≤ 2λ i m
Let j i ∈ {1, 2, 3} denote the smallest position of the literal(s) satisfying c i . For each 1 ≤ i ≤ q, all the bases of the j th i terminal of S i are deleted.

Notice that, for all 1 ≤ m ≤ n and all 1 ≤ i ≤ q, a base G (resp. C) of each repeater of S i xm (resp. S i xm ) is deleted. The sequence obtained from S i by deleting the bases described in Step 2 is a sequence of 2 + 2 n m=1 λ i m substrings CA (since, by construction, S i is initially composed of 2 n m=1 λ i m repeaters and 3 terminals).

By definition, n m=1 λ i m represents the number of literals in all the clauses c j with i < j ≤ q. Since any clause is composed of three literals, we can deduce that n m=1 λ i m = 3(qi). Therefore, there are 2 + 2 n m=1 λ i m (i.e. 2 + 6q -6i) terminals (i.e. CA) in T i . Consequently, the sequence obtained from S i by deleting the bases described in Step 2 is similar to T i (when not considering arcs).

(Step 3) For each clause c i ∈ C q with 1 ≤ i ≤ q, the following bases are deleted:

-if exactly one literal (i.e. the j th i ) satisfies c i then all the bases of the k th and the l th terminals of S i with k = l and k, l ∈ {1, 2, 3}\{j i }.

-if exactly two literals (say the j th i and k th ) satisfy c i then: • all the bases of the l th terminal of S i with l = k, l = j i and l ∈ {1, 2, 3}, • all the bases of the repeater of S i connected to the bases of the k th terminal of S i . -if exactly three literals (i.e. the j th i , k th and l th ) satisfy c i then: • all the bases of the repeater of S i connected to the bases of the k th terminal of S i • all the bases of the repeater of S i connected to the bases of the l th terminal of S i .

The sequence obtained from S i by deleting the bases described in Step 2 is composed of a sequence of 6+2 n m=1 λ i m substrings GA (since, by construction, S i is initially composed of 3 + 2 n m=1 λ i m repeaters and 3 terminals). Moreover, we know that n m=1 λ i m = 3(qi). Therefore, there are 4 + 2 n m=1 λ i m (i.e. 4+6q -6i) terminals (i.e. substrings GA) in T i . As in each of the above cases, all the bases of two elements of S i have been deleted, the sequence obtained from S i by deleting the bases described in Step 2 and Step 3 is similar to T i (when not considering arcs).

Thus, the sequence obtained from S by deleting the bases described in Step 1, Step 2 and Step 3 is similar to T (when not considering arcs). We now turn to demonstrating that at least one base of any arc of P has been deleted. In the following, we will distinguish arcs between bases A and U , denoted by AU -arcs, from arcs between bases C and G, denoted by CG-arcs. Let us consider those two types of arcs separately:

(1) By construction, for all 1 ≤ m ≤ n, the following AU -arcs have been created: (S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF],S s xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) and (S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF],S s xm [k m + 1]).

By

Step 1, since a variable x m has a unique value, either each base of S s xm and S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF], or each base of S s xm and S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted for all 1 ≤ m ≤ n. Thus, at least one base in S of any AU -arc of P is deleted.

(2) By construction, the following CG-arcs have been created:

-for all 1 ≤ m ≤ n, 1 ≤ j ≤ 2λ i m and 1 ≤ i < q: • an arc between the second base G of rep(i, m, j) and the first base C of the j th element (i.e. either a terminal or a repeater) of S i xm ; • an arc between the second base C of rep(i, m, j) and the first base G of the j th element of S i+1 xm .

-for all 1 ≤ j ≤ γ m +γ m , an arc between the j th base C of substring S s xm AS s xm in S β and the first base G of the j th element of S 1 xm in S ζ . In the following, we focus on the arcs of a clause c i and the arcs between c i and c i+1 , for any given 1 ≤ i < q (cf. Figure 6). More precisely, we will demonstrate that, for any given 1 ≤ m ≤ n, at least one base of any arc in {S i m , S i m , S i+1 m , S i+1 m } is deleted. This will prove that at least one base of any arc connecting two bases of S ζ is deleted. In a second step, we will focus on the first clause and prove that at least one base of any arc connecting a base of S β and a base of S 1 is deleted.

We recall that by construction:

S i xm = (GGA) λ i m +y i m (GA) y i m (GGA) λ i m +y i m (GA) y i m S i xm = (CCA) λ i m (CA) y i m (CCA) λ i m (CA) y i m
Consider any variable x m with 1 ≤ m ≤ n. For any given 1 ≤ m ≤ n and 1 ≤ i ≤ q, we define the following four subsets of arcs: xm . Suppose first that x m = T rue. We now consider separately the nine following cases: -

-(A i m ) for each 1 ≤ m ≤ n, the λ i m + y i m first
-(a 1 ) x m , x m ∈ {c i , c i+1 }; -(a 2 ) x m , x m ∈ c i and x m ∈ c i+1 ; -(a 3 ) x m , x m ∈ c i and x m ∈ c i+1 ; -(b 1 ) x m ∈ c i and x m , x m ∈ c i+1 ;
(b 2 ) x m ∈ c i and x m ∈ c i+1 ; -(b 3 ) x m ∈ c i and x m ∈ c i+1 ; -(c 1 ) x m ∈ c i and x m , x m ∈ c i+1 ; -(c 2 ) x m ∈ c i and x m ∈ c i+1 ; -(c 3 ) x m ∈ c i and x m ∈ c i+1 .
(a 1 ). Since x m , x m ∈ {c i , c i+1 }, by definition, y i m = y i m = y i+1 m = y i+1 m = 0. Moreover, as x m = T rue, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λ i m +y i m , rep(i, m, j)[2] is deleted. Thus, at least one base of any arc of the set (A i m ) is deleted. Since x m = T rue, rep(i, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted for all 1 ≤ i ≤ q and all λ i m < j ≤ 2λ i m (cf.

Step 2). Therefore, at least one base of any arc of the set (B i m ) is deleted.

Moreover, as x m = T rue, for all 1 ≤ i ≤ q and all 1

≤ j ≤ λ i m , rep(i, m, j)[2] is deleted (cf.
Step 2). Consequently, at least one base of any arc of the set (C i m ) is deleted.

Finally, x m = T rue implies that rep(i + 1, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted for all 1 ≤ i < q and all λ i+1 m + y i+1 m < j ≤ 2λ i+1 m + y i+1 m + y i+1 m . Therefore, at least one base of any arc of the set (D i m ) is deleted.

(a 2 ). The proof is fully similar to the one of (a 1 ).

(a 3 ). Since x m , x m ∈ c i and x m ∈ c i+1 , by definition, y i m = y i m = y i+1 m = 0 and y i+1 m = 1. Moreover, as x m = T rue, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λ i m +y i m , rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted. Thus, at least one base of any arc of the set (A i m ) is deleted.

Since x m = T rue, rep(i, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted for all 1 ≤ i ≤ q and all λ i m < j ≤ 2λ i m (cf.

Step 2). Therefore, at least one base of any arc of the set (B i m ) is deleted.

Moreover, as x m = T rue, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λ i m , rep(i, m, j)[2] is deleted (cf. Step 2). Consequently, at least one base of any arc of the set (C i m ) is deleted.

Finally, x m = T rue implies that rep(i + 1, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted for all 1 ≤ i < q and all λ i+1 m + y i+1 m < j ≤ 2λ i+1 m + y i+1 m + y i+1 m . Moreover, by construction, if y i+1 m = 1 then there is an arc connecting the base rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] to a base of the j th element (which is a terminal) of S i+1 xm where j = 2λ i m . By definition, as x m ∈ c i+1 , x m does not satisfies c i+1 (since x m = T rue). By definition, there exists at least a literal which, by it assignment, satisfies c i+1 . Therefore, all the bases of the terminal of S i+1 xm have been deleted (cf.

Step 3). Therefore, at least one base of any arc of the set (D i m ) is deleted.

(b 1 ). Since x m ∈ c i and x m , x m ∈ c i+1 , by definition, y i m = 1 and y i m = y i+1 m = y i+1 m = 0. Moreover, as x m = T rue, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λ i m + y i m , rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted. Thus, at least one base of any arc of the set (A i m ) is deleted.

Since x m = T rue, rep(i, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted for all 1 ≤ i ≤ q and all λ i m < j ≤ 2λ i m (cf.

Step 2). Moreover, by construction, if y i m = 1 then there is an arc connecting the base rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] to a base of the j th element (which is a terminal) of S i xm where j = 2λ i m + y i m + y i m . By definition, since y i m = 1, x m ∈ c i and thus x m satisfies c i . If x m is the literal with the smallest position of the literal(s) satisfying c i , then all the bases of the terminal of S i xm have been deleted. Otherwise, all the bases of the repeater of S i xm connected to the bases of the terminal of S i xm are deleted (cf.

Step 3). Therefore, at least one base of any arc of the set (B i m ) is deleted. Moreover, as x m = T rue, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λ i m , rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted (cf. Step 2). Consequently, at least one base of any arc of the set (C i m ) is deleted.

Finally, x m = T rue implies that rep(i + 1, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted for all 1 ≤ i < q and all λ i+1 m + y i+1 m < j ≤ 2λ i+1 m + y i+1 m + y i+1 m . Therefore, at least one base of any arc of the set (D i m ) is deleted.

(b 2 ). The proof is fully similar to the one of (b 1 ).

(b 3 ). Since x m ∈ c i and x m ∈ c i+1 , by definition, y i m = y i+1 m = 1 and y i+1 m = y i m = 0. Moreover, as x m = T rue, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λ i m + y i m , rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted. Thus, at least one base of any arc of the set (A i m ) is deleted.

Since x m = T rue, rep(i, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted for all 1 ≤ i ≤ q and all λ i m < j ≤ 2λ i m (cf.

Step 2). Moreover, by construction, if y i m = 1 then there is an arc connecting the base rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] to a base of the j th element (which is a terminal) of S i xm where j = 2λ i m + y i m + y i m . By definition, since y i m = 1, x m ∈ c i and thus x m satisfies c i . If x m is the literal with the smallest position of the literal(s) satisfying c i then all the bases of the terminal of S i xm have been deleted. Otherwise, all the bases of the repeater of S i xm connected to the bases of the terminal of S i xm are deleted (cf.

Step 3). Therefore, at least a base of any arc of the set (B i m ) is deleted. Moreover, as x m = T rue, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λ i m , rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted (cf. Step 2). Consequently, at least one base of any arc of the set (C i m ) is deleted.

Finally, x m = T rue implies that rep(i + 1, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted for all 1 ≤ i < q and all λ i+1 m + y i+1 m < j ≤ 2λ i+1 m + y i+1 m + y i+1 m . Moreover, by construction, if y i+1 m = 1 then there is an arc connecting the base rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] to a base of the j th element (which is a terminal) of S i+1 xm where j = 2λ i m . By definition, as x m ∈ c i+1 , x m does not satisfies c i+1 (since x m = T rue). By definition, there exists at least a literal which, by it assignment, satisfies c i+1 . Therefore, all the bases of the terminal of S i+1 xm have been deleted (cf.

Step 3). Therefore, at least one base of any arc of the set (D i m ) is deleted.

(c 1 ). Since x m ∈ c i and x m , x m ∈ c i+1 , by definition, y i m = 1 and y i m = y i+1 m = y i+1 m = 0. Moreover, as x m = T rue, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λ i m + y i m , rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted. Thus, at least one base of any arc of the set (A i m ) is deleted.

Since x m = T rue, rep(i, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted for all 1 ≤ i ≤ q and all λ i m < j ≤ 2λ i m (cf. Step 2). Therefore, at least a base of any arc of the set (B i m ) is deleted. Moreover, as x m = T rue, for all 1 ≤ i ≤ q and all 1 ≤ j ≤ λ i m , rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted (cf. Step 2). Consequently, at least one base of any arc of the set (C i m ) is deleted.

Finally, x m = T rue implies that rep(i + 1, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted for all 1 ≤ i < q and all λ i+1 m + y i+1 m < j ≤ 2λ i+1 m + y i+1 m + y i+1 m . Moreover, by construction, if y i+1 m = 1 then there is an arc connecting the base rep(i, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] to a base of the j th element (which is a terminal) of S i+1 xm where j = 2λ i m . By definition, as x m ∈ c i+1 , x m does not satisfies c i+1 (since x m = T rue). By definition, there exists at least a literal which, by it assignment, satisfies c i+1 . Therefore, all the bases of the terminal of S i+1 xm have been deleted (cf.

Step 3). Therefore, at least one base of any arc of the set (D i m ) is deleted.

(c 2 ). The proof is fully similar to the one of (c 1 ).

(c 3 ). The proof is fully similar to the one of (a 1 ).

Therefore, when x m = T rue, at least one base of any CG-arc has been deleted. If x m = F alse then a similar reasoning leads to the same conclusion, i.e. at least one base of any CG-arc has been deleted. Thus, for any 1 < i ≤ q, any CG-arc between a base of an element of the representation of the clause c i-1 (i.e. S i-1 U S i-1 ) and a base of an element of the representation of the clause c i (i.e. S i U S i ) has been deleted.

Moreover, for any 1 ≤ i ≤ q, any CG-arc between two bases of the representation of the clause c i has been deleted. Remains us to consider the special case of the first clause (i.e. c 1 ). Indeed, there is, for all 1 ≤ j ≤ γ m + γ m , an arc between the j th base C of substring S s xm AS s xm in S β and the first base G of the j th element of S 1 xm in S ζ . For each 1 ≤ m ≤ n, if x m = T rue then each base of S s xm and S e xm [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted and rep(1, m, j) [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted with 1 ≤ j ≤ λ i m + y i m . Moreover, for each 1 ≤ m ≤ n, if x m = F alse then each base of S s xm and S e xm [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted and rep(1, m, j) [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is deleted with 1 ≤ j ≤ λ i m + y i m . Thus, at least one base in S of any CG-arc of P is deleted.

We just proved that if S ′ is the sequence obtained from S by deleting all the bases described in Step 1, Step 2 and Step 3 together with their incident arcs, then there is no arc in S ′ (i.e. neither AU -arcs or CG-arcs). Moreover, we demonstrated previously that the sequence S ′ is similar to T . Therefore, if an assignment of the variables that satisfies the boolean formula of I exists, then (T, Q) is an Arc-Preserving Subsequence of (S, P ).

(⇐) Let I be an instance of the problem 3-Sat with n variables and q clauses. Let I ′ be an instance ((S, P ); (T, Q)) of APS({<, ≬}, ∅) obtained by an APS2-cp-construction from I such that (T, Q) can be obtained from (S, P ) by deleting some of its bases together with their incident arcs, if any. By Lemma 3, any corresponding alignment of (S, P ) and (T, Q) is canonical. Therefore, T s xm is matched with either S s xm A or A S s xm . Consequently, for any 1 ≤ m ≤ n, we define an assignment AS of the variables of I as follows:

-if T s
xm is matched with S s xm A then x m = F alse, -otherwise, x m = T rue. Now, let us prove that for any 1 ≤ i ≤ q the clause c i is satisfied by AS. Let us first focus on the first clause (i.e. c 1 ). c 1 is defined by three literals (say x i , x j and x k ). Since, c 1 is equal to the disjunction of variables built with x i , x j and x k , c 1 can have eight different forms, because each literal can appear in either its positive (x i ) or negative (x i ) form. In the following, we suppose, to illustrate the proof, that c 1 = (x i ∨ x j ∨ x k ) as illustrated in Figure 5, since the other cases can be treated similarly.

By Lemmas 4 and 5, the two following properties must be satisfied:

-all the repeaters and two terminals of S 1 are active, -and either:

• all the repeaters and one terminal of S 1 are active,

• all the repeaters but one and two terminals of S 1 are active,

• all the repeaters but two and three terminals of S 1 are active.

(1) Suppose that all the repeaters of S 1 and one terminal of {S xi and (b) the active terminal is in S 1

x k . (a) Suppose that the active terminal is in S 1 xi . By construction, there is an arc between a base C of S s xi and the first base of the terminal in S 1 xi . Thus, a base C of S s xi is deleted. Therefore, by the way we defined AS, x i = T rue and thus c 1 is satisfied.

(b) Suppose that the active terminal is in S 1 x k . By construction, there is an arc between a base C of S s

x k and the first base of the terminal in S 1 x k . Thus, a base C of S s

x k is deleted. Therefore, by the way we defined AS, x k = F alse and thus c 1 is satisfied.

(2) Suppose that all the repeaters but one of S 1 and two terminals of {S is deleted. Therefore, by the way we defined AS, x i = x j = T rue and thus c 1 is satisfied.

For the sake of the proof, we now detail the alignment of the elements of c 1 in case (a). Since all the repeaters and two terminals of S 1 are active, at least a terminal of either S xi . Thus, a base C of S s xi is deleted. Moreover, by construction, there is an arc between a base C of S s

x k and the first base of the terminal in S 1 x k . Thus, a base C of S s

x k is deleted. Therefore, by the way we defined AS, x i = T rue, x k = F alse and thus c 1 is satisfied.

For the sake of the proof, we now detail the alignment of the elements of c 1 in case (b). Since all the repeaters and two terminals of S 1 are active, at least a terminal of either S 1 xi or S 1 x k is active. By construction, there is a repeater rep of S 1 xi such that (δ, rep [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) ∈ P and (rep [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF], θ) ∈ P , where δ (resp. θ) is a base C of S s xi (resp. the first base of the terminal in S 1 xi ), as illustrated in Figure 5. Moreover, by construction, there is a repeater rep ′ of S 1

x k such that (δ ′ , rep ′ [1]) ∈ P and (rep ′ [2], θ ′ ) ∈ P , where δ ′ (resp. θ ′ ) is a base C of S s x k (resp. the first base of the terminal in S 1

x k ), as illustrated in Figure 5. Since at least a terminal of either S 1 xi or S 1 x k is active, then either θ or θ ′ is matched. By definition, as Q = ∅, at least one base incident to every arc of P has to be deleted. Therefore, either rep [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] or rep ′ [2] is deleted. Since either rep or rep ′ is an active repeater, either rep [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] or rep ′ [1] is matched. Thus, either δ or δ ′ is deleted. Since the alignment is canonical, for all 1 ≤ m ≤ n, a base of both S s xm and S s xm cannot be deleted. Therefore, the only two solutions are: either the terminal of S 1 xi and rep ′ are inactive, or the terminal of S 1

x k and rep are inactive.

(3) Suppose that all the repeaters but two of S 1 and three terminals of {S 1 xi , S x k and the first base of the terminal in S 1 x k . Thus, a base C of S s

x k is deleted. Therefore, by the way we defined AS, x i = x j = T rue, x k = F alse and thus c 1 is satisfied.

For the sake of the proof, we now detail the alignment of the elements of c 1 in case [START_REF] Billoud | Cirripede phylogeny using a novel approach: Molecular morphometrics[END_REF]. Since all the repeaters and two terminals of S 1 are active, at least two terminals of S 1 xi , S x k and rep and rep ′ are inactive.

We just proved that if I ′ is a solution then the truth assignment we defined above satisfies clause c 1 . Moreover, we proved that any inactive repeater of S 1 is linked to a terminal of S 1 (i.e. its second base is connected to a base of a terminal of S 1 ). Let rep be a repeater in S such that rep [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] and rep [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] are respectively connected to bases u and v. The particular design of the repeaters ensues that if rep is active then the situation is equivalent to the one where u and v are connected with an arc. Indeed, if (S, P ) is an arc-preserving subsequence of (T, Q) and rep is active, then exactly one out of {rep [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF], rep [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF]} is matched. Therefore, if v is matched then rep [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] is deleted and rep [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] is matched. Consequently, u is deleted. Similarly, if u is matched then v is deleted. More generally we can prove the following claim (illustrated in Figure 7):

Claim. Let u and v be two bases and {rep 1 , rep 2 . . . rep k } be a set of repeaters such that (u, rep 1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) ∈ P , (rep k [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF], v) ∈ P and (rep i [START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF], rep i+1 [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) ∈ P for all 1 ≤ i < k.

Let A be an alignment. If for each 1 ≤ i ≤ k, rep i is active in A, then:

-if u is matched then v is deleted; -if v is matched then u is deleted.
Therefore, since all the repeaters of S 1 are active and the inactive repeaters of S 1 are linked to terminals of S 1 , by the above claim, considering clause c 2 is equivalent to considering c 1 . Therefore, c 2 is satisfied and all the repeaters of S 2 are active and the inactive repeaters of S 2 are linked to terminals of S 2 . Consequently, a similar reasoning can be done recursively for any clause c i with 1 ≤ i ≤ q. Thus, we just proved that if I ′ is a solution then the truth assignment we defined above satisfies all the clauses. ⊓ ⊔

Two polynomial time solvable APS problems

We prove in this section that APS({≬},∅) and APS({≬},{≬}) are polynomial time solvable. In other words, the relation ≬ alone does not imply NP-completeness.

We need the following notations. Sequences are the concatenation of zero or more elements from an alphabet. We use the period "." as the concatenation operator, but frequently the two operands are simply put side by side. Let S = S [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]. A factorization of S is any decomposition S = x 1 x 2 . . . x q where x 1 , x 2 , . . . x q are (possibly empty) sequences. Let (S, P ) be a {≬}-arcannotated sequence and (i, j) ∈ P , i < j, be an arc. We call S[i] a forward base and S[j] a backward base. We will denote by LF S the position of the last forward base in (S, P ) and by FB S the position of the first backward base in (S, P ), i.e., LF S = max{i : (i, j) ∈ P } and FB S = min{j : (i, j) ∈ P }. By convention, we let LF S = 0 and FB S = |S| + 1 if P = ∅. Observe that LF S < FB S .

We begin by proving a factorization result on {≬}-arc-annotated sequences. So there are at most m -2k iterations to go before eventually returning false. According to the above, Line 4 constitutes an instance of APS({⊏},{⊏}). But APS({⊏},{⊏}) is a special case of APS({<, ⊏},{<, ⊏}), and hence is solvable in O(nm) time [START_REF] Gramm | Pattern matching for arc-annotated sequences[END_REF]. Then it follows that the algorithm as a whole runs in O(nm(m -2k)) = O(nm 2 ) time.

⊓ ⊔

Clearly, proof of Theorem 3 relies on an efficient algorithm for solving APS({⊏ },{⊏}): the better the complexity for APS({⊏},{⊏}), the better the complexity for APS({≬},{≬}). We have used only the fact that APS({⊏},{⊏}) is a special case of APS({<, ⊏},{<, ⊏}). It remains open, however, wether a better complexity can be achieved for APS({⊏},{⊏}).

Theorem 3 carries out easily to restricted versions (Observation 1).

Corollary 1. APS({≬},∅) is solvable in O(nm 2 ) time.

Conclusion

In this paper, we investigated the APS problem time complexity and gave a precise characterization of what makes the APS problem hard. We proved that APS(Crossing,Plain) is NP-complete thereby answering an open problem posed in [START_REF] Gramm | Pattern matching for arc-annotated sequences[END_REF] (see Table 3). Note that this result answers the last open problem concerning APS computational complexity with respect to classical complexity levels, i.e., Plain, Chain, Nested and Crossing. Also, we refined the four above mentioned levels for exploring the border between polynomial time solvable and NP-complete problems. We proved that both APS({⊏, ≬}, ∅) and APS({<, ≬}, ∅) are NP-complete and gave positive results by showing that APS({≬}, ∅) and APS({≬},{≬}) are polynomial time solvable. Hence, the refinement we suggest shows that APS problem becomes hard when one considers sequences containing {≬, α}-comparable arcs with α = ∅. Therefore, crossing arcs alone do not imply APS hardness. It is of course a challenging problem to further explore the complexity of the APS problem, and especially the parameterized views, by considering additional parameters such as the cutwidth or the depth of the arc structures. Table 3. Complexity results after refinement of the complexity levels. ⋆: results from this paper.

Fig. 1 .

 1 Fig. 1. Example of an APS-cp-construction with Cq= (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).

Fig. 3 .

 3 Fig. 3. Example of an APS2-cp-construction with Cq= (x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x3 ∨ x4).

Fig. 4 .

 4 Fig. 4. Illustration of Lemma 4. (a) l = k + 1 or (b) l > k + 1.

Fig. 5 .

 5 Fig. 5. Part of an APS2-cp-construction corresponding to a clause c1 = (xi ∨ xj ∨ x k ). Bold arcs correspond to the different cases studied in Lemma 5.

  arcs between a base of S i xm and a base of S i xm ; -(B i m ) for each 1 ≤ m ≤ n, the rest of the arcs between a base of S i xm and a base of S i xm ; -(C i m ) for each 1 ≤ m ≤ n, the λ i m first arcs between a base of S i xm and a base of S i+1 xm ; -(D i m ) for each 1 ≤ m ≤ n, the rest of the arcs between a base of S i xm and a base of S i+1

Fig. 6 .

 6 Fig. 6. Sketch of the arc-structure of a clause ci, for any given 1 ≤ m ≤ n and 1 ≤ i < q. (a1) when xm, xm ∈ {ci, ci+1}. (a2) when xm, xm ∈ ci and xm ∈ ci+1. (a3) when xm, xm ∈ ci and xm ∈ ci+1. (b1) when xm ∈ ci and xm, xm ∈ ci+1. (b2) when xm ∈ ci and xm ∈ ci+1. (b3) when xm ∈ ci and xm ∈ ci+1. (c1) when xm ∈ ci and xm, xm ∈ ci+1. (c2) when xm ∈ ci and xm ∈ ci+1. (c3) when xm ∈ ci and xm ∈ ci+1.

Fig. 7 .

 7 Fig. 7. Illustration of Claim 4.

  [START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] S[START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] . . . S[m] be a sequence of length m. For all 1 ≤ i ≤ j ≤ m, we writeS[i : j] to denote S[i] S[i + 1] . . . S[j]. The reverse of S is the sequence S R = S[m] . . . S[2] S
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  Table 2 surveys known and new results for various types of our refined APS problem. Observe that this paper answers all questions concerning the APS problem with respect to the new complexity levels.

					APS			
	H H H H R1 R2 {<, ⊏, ≬} {⊏, ≬} {<, ≬} {≬}	{<, ⊏}	{⊏}	{<}	∅
	{<, ⊏, ≬} NP-C [6]	?	NP-C [12] ?	NP-C [12]	?	NP-C [12]	?
	{⊏, ≬}	?	////	?	////	?	////	?
	{<, ≬}		?	?	////	////	?	?
	{≬}			?	////	////	////	?
	{<, ⊏}				O(nm) [11] O(nm) [11] O(nm) [11] O(nm) [11]
	{⊏}					O(nm) [11]	////	O(nm) [11]
	{<}						O(nm) [11] O(n + m) [11]
	∅							O(n + m) [11]

Table 2 .

 2 Complexity results after refinement of the complexity levels. ////: incompatible cases. ?: open problems.

  (resp. S e xm[START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] and S s xm [k m + 1]), for any 1 ≤ m ≤ n, either S s xm [1] or S s xm [k m + 1] is deleted. Therefore, n bases A appearing in S β are deleted. Note that there are 3n bases A in S β and 2n in T β ′ . Thus, the number of bases A not deleted in S β is equal to the number of bases A in T β ′ . Since, for each 1 ≤ m ≤ n, a base A of either S s xm or S s xm is deleted, we conclude that for each 1 ≤ m ≤ n, T s xm is obtained from S s xm AS s xm , by deleting all bases of either S s xm or S s xm . Consider S ζ and T ζ ′ . By construction, there are 2q + 1 bases U in S ζ and in T ζ ′

  Suppose that all the repeaters of S 1 and one terminal of {S 1 xi , S 1 xj , S 1 x k } are active. The active terminal can be in either S 1 xi , S 1 xj or S 1 x k . We recall that the clause considered is c 1 = (x i ∨ x j ∨ x k ). Since the cases where the active terminal is either in S 1 xi or S 1 xj are fully similar, we detail hereafter only two cases: (a) the active terminal is in S 1 xi and (b) the active terminal is in S 1 x k . (a) Suppose that the active terminal is in S 1 xi . By construction, there is a repeater rep of S 1

	1 xj , S 1 x k } are active. Moreover, by Lemma 4, either:
	1. all the repeaters of S 1 and one terminal of {S 1 xi , S 1 xj , S 1 x k } are active, 2. all the repeaters but one of S 1 and two terminals of {S 1 xi , S 1 xj , S 1 x k } are active, 3. all the repeaters but two of S 1 and three terminals of {S 1 xi , S 1 xj , S 1 x k } are active.
	Let us consider those three cases separately:
	(1)

xi such that (δ, rep

[START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]

) ∈ P , (rep

[START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF]

, θ) ∈ P where δ (resp. θ) is a base C of S s xi (resp. the first base of the terminal in S 1 xi ), as illustrated in Figure

  Suppose that the active terminals are in (S 1 xi , S 1 xj ). By construction, there is a repeater rep of S 1 xi such that (δ, rep[1]) ∈ P , (rep[2], θ) ∈ P where δ (resp. θ) is a base C of S s xi (resp. the first base of the terminal in S 1 xi ), as illustrated in Figure 5. Similarly, by construction, there is a repeater rep ′ of S 1 xj such that (δ ′ , rep ′ [1]) ∈ P , (rep ′ [2], θ ′ ) ∈ P where δ ′ (resp. θ ′ ) is a base C of S s xj (resp. the first base of the terminal in S 1 xj ). Since, by hypothesis, the three terminals of {S 1 xi , S 1 xj , S 1 x k } are active, then θ and θ ′ are matched. Therefore, since both {θ, θ ′ } are matched, rep[2] and rep ′ [2] are deleted. Since either rep or rep ′ is active, either rep[1] or rep ′ [1] is matched. Thus, either δ or δ ′ is deleted. Moreover, by construction, there is an arc between a base C of S s xi (resp.

	(a) S s xj ) and the first base of the terminal in S 1 xi (resp. S 1 xj ). Therefore, since two
	terminals of {S 1 xi , S 1 xj , S 1 x k } are active, at least one base C of either S s xi or S s xj is deleted. Thus, a base of either both S s xi and S s xi or both S s xj and S s xj is deleted.
	Consequently, by Definition 1, the alignment is not canonical, a contradiction.
	(b) Suppose now that the active terminals are in (S 1 xi , S 1 x
	1 xi , xi , S 1 xj ), (S 1 xi , S 1 x k } are active. The active terminals can be in either (S 1 xj , S 1 S 1 x k )
	or (S 1 xj , S 1 x k ). Since the cases where the active terminals are either in (S 1 xi , S 1 x k )
	or (S 1 xj , S 1 x k ) are fully similar, we detail hereafter only two cases: (a) the active
	terminals are in (S 1 xi , S 1 xj ) and (b) the active terminals are in (S 1 xi , S 1 x k ).

k ). By construction, there is a repeater rep of S 1 xi such that (δ, rep[1]) ∈ P , (rep[2], θ) ∈ P where δ (resp. θ) is a base C of S s xi (resp. the first base of the terminal in S 1 xi ), as illustrated in Figure

  1 xj , S 1x k } are active, then θ and θ ′ are matched. Therefore, since both {θ, θ ′ } are matched, rep[START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF] and rep ′ [2] are deleted. Since either rep or rep ′ is active, either rep[START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF] or rep ′ [1] is matched. Thus, either δ or δ ′ is deleted. Moreover, by construction, there is an arc between a base C of S s xi (resp. S s x k ) and the first base of the terminal in S 1

	xi (resp. S 1 x k ). Therefore, since two ter-x k } are active, at least one base C of either S s xj , S 1 xi , S 1 minals of {S 1 xi or S s x k is deleted. Thus, a base of either both S s xi and S s xi or both S s

  1 xj , S 1x k } are active. By construction, there is a repeater rep such that (δ, rep[START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) ∈ P , (rep[START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF], θ) ∈ P where δ (resp. θ) is a base C of S s xi (resp. the first base of the terminal in S 1 xi ). Similarly, by construction, there is a repeaterrep ′ such that (δ ′ , rep ′ [1]) ∈ P , (rep ′ [2], θ ′ ) ∈ P where δ ′ (resp. θ ′ ) is a base C ofS s xj (resp. the first base of the terminal in S 1 xj ). By construction, there is a repeater rep ′′ such that (δ ′′ , rep ′′ [1]) ∈ P , (rep ′′ [2], θ ′′ ) ∈ P where δ ′′ (resp. θ ′′ ) is a base C of S s x k (resp. the first base of the terminal in S 1 x k ). Since, by hypothesis, the three terminals of {S 1 xi , S 1 xj , S 1 x k } are active, then θ, θ ′ and θ ′′ are matched. Therefore, since both {θ, θ ′ , θ ′′ } are matched, rep[2], rep ′ [2] and rep ′′ [2] are deleted. Since either rep, rep ′ or rep ′′ is active, either rep[1], rep ′ [1] or rep ′′ [1] is matched. Thus, either δ, δ ′ or δ ′′ is deleted. Moreover, by construction, there is an arc between a base C of S s

	active, at least one base C of either S s xi , S s xj or S s x k is deleted. Thus, a base of either both S s xi and S s xi or both S s xj and S s xj or both S s
	xi (resp. S s xj and S s x k ) and the first base of the terminal in x k ). Therefore, since three terminals of {S 1 xj and S 1 xi (resp. S 1 S 1 xi , S 1 xj , S 1 x k } are

  1 xi , S 1 xj , S 1 x k } are active. The active terminal can be in either S 1 xi , S 1 xj or S 1 x k . Since the cases where the active terminal is either in S 1 xi or S 1 xj are fully similar, we detail hereafter only two cases: (a) the active terminal is in S 1

  1 xi or S 1 xj is active. By construction, there is a repeater rep of S1 xi such that (δ, rep[START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) ∈ P and (rep[START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF], θ) ∈ P , where δ (resp. θ) is a base C of S s xi (resp. the first base of the terminal in S 1 xi ), as illustrated in Figure5. Moreover, by construction, there is a repeaterrep ′ of S 1 xj such that (δ ′ , rep ′ [1]) ∈ P and (rep ′ [2], θ ′ ) ∈ P , where δ ′ (resp. θ ′ ) is a base C ofS s xj (resp. the first base of the terminal in S 1 xj ), as illustrated in Figure 5. Since at least a terminal of either S 1 xi or S 1 xj is active, then either θ or θ ′ is matched. By definition, as Q = ∅, at least one base incident to every arc of P has to be deleted. Therefore, either rep[2] or rep ′ [2] is deleted. Since either rep or rep ′ is an active repeater, either rep[1] or rep ′ [1] is matched. Thus, either δ or δ ′ is deleted. Since the alignment is canonical, for all 1 ≤ m ≤ n, a base of both S s xm and S s xm cannot be deleted. Therefore, the only two solutions are: either the terminal of S 1 xi and rep ′ are inactive, or the terminal of S 1 xj and rep are inactive. (b) Suppose that the active terminals are in (S 1 xi , S 1 x k ). By construction, there is an arc between a base C of S s xi and the first base of the terminal in S 1

  1 xj , S 1 x k } are active. By construction, there is an arc between a base C of S s xi and the first base of the terminal in S 1 xi . Thus, a base C of S s xi is deleted. Moreover, there is an arc between a base C of S s xj and the first base of the terminal in S 1 xj . Thus, a base C of S s xj is deleted. Finally, by construction, there is an arc between a base C of S s

  1 xj , S 1x k are active. By construction, there is a repeater rep of S1 xi such that (δ, rep[START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) ∈ P and (rep[START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF], θ) ∈ P , where δ (resp. θ) is a base C of S s xi (resp. the first base of the terminal in S 1 xi ), as illustrated in Figure5. Moreover, by construction, there is a repeaterrep ′ of S 1 xj such that (δ ′ , rep ′ [1]) ∈ P and (rep ′ [2], θ ′ ) ∈ P , where δ ′ (resp. θ ′ ) is a base C of S s xj (resp.the first base of the terminal in S 1 xj ), as illustrated in Figure5. Finally, by construction, there is a repeater rep ′′ of S 1x k such that (δ ′′ , rep ′′[START_REF] Alber | Towards optimally solving the longest common subsequence problem for sequences with nested arc annotations in linear time[END_REF]) ∈ P and (rep ′′[START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF], θ ′′ ) ∈ P , where δ ′′ (resp. θ ′′ ) is a base C of S sx k (resp. the first base of the terminal in S 1x k ), as illustrated in Figure5. Since at least two terminals of S 1 xi , S 1 xj , S 1 x k are active, then at least two of (θ, θ ′ , θ ′′ ) are matched. By definition, as Q = ∅, at least one base incident to every arc of P has to be deleted. Therefore, two of (rep[START_REF] Alber | Computing the similarity of two sequences with nested arc annotations[END_REF], rep ′ [2], rep ′′ [2]) are deleted. Since rep, rep ′ or rep ′′ is an active repeater, either rep[1], rep ′ [1] or rep ′′ [1] is matched. Thus, either δ, δ ′ or δ ′′ is deleted. Since the alignment is canonical, for all 1 ≤ m ≤ n a base of both S s xm and S s xm cannot be deleted. Therefore, the only three solutions are: either the terminal of S 1 xi and rep ′ and rep ′′ are inactive, or the terminal of S 1 xj and rep and rep ′′ are inactive, or the terminal of S 1