N
N

N

HAL

open science

Exemplar Longest Common Subsequence

Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, Guillaume Fertin,
Rafaella Rizzi, Stéphane Vialette

» To cite this version:

Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondi, Guillaume Fertin, Rafaella Rizzi, et al..
Exemplar Longest Common Subsequence. ACM Transactions on Computational Logic, 2007, 4 (4),

pp.535-543. hal-00417728

HAL Id: hal-00417728
https://hal.science/hal-00417728v1
Submitted on 16 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00417728v1
https://hal.archives-ouvertes.fr

Exemplar Longest Common Subsequence

Paola Bonizzoni, Gianluca Della Vedova, Riccardo Dondijl-Gu

laume Fertin , Raffaella Rizzi and &thane Vialette

P. Bonizzoni is with Dipartimento di Informatica, Sistetita e Comunicazione, Universita degli Studi di Milancz&ica,
Milano - Italy. Email: bonizzoni@disco.unimib.it.

G. Della Vedova is with Dipartimento di Statistica, Univiéasdegli Studi di Milano-Bicocca, Milano - Italy. Email:
gianluca.dellavedova@unimib.it.

R. Dondi is with Dipartimento di Scienze dei Linguaggi, deComunicazione e degli Studi Culturali, Universita degflidi
di Bergamo, Bergamo - Italy. Email: riccardo.dondi@unibg.

G. Fertin is with LINA - FRE CNRS 2729 Université de Nantesgrfies Cedex 3, France. Email: fertin@lina.univ-nantes.fr

R. Rizzi is with Dipartimento di Informatica, SistemistieaComunicazione, Universita degli Studi di Milano-Bicagd/ilano
- Italy. Email: rizzi@disco.unimib.it.

S. Vialette is with LRI - UMR CNRS 8623 Faculté des Scienc&@rshy, Université Paris-Sud Bat 490, Orsay Cedex, FFanc
Email: Stephane.Vialette@Iri.fr

November 22, 2006 DRAFT

Abstract

In this paper, we investigate the computational and appration complexity of the Exemplar
Longest Common Subsequence of a set of sequences (ELC®&mjolal generalization of the Longest
Common Subsequence problem, where the input sequencesaréhe union of two disjoint sets of
symbols, a set of mandatory symbols and a set of optional siankve show that different versions
of the problem areAPX-hard even for instances with two sequences. Moreover, w& ghat the
related problem of determining the existence of a feasibletisn of the Exemplar Longest Common
Subsequence of two sequencediR-hard. On the positive side, we first present an efficientrittym
for the ELCS problem over instances of two sequences whete m@ndatory symbol can appear in
total at most three times in the sequences. Furthermoreresept two fixed parameter algorithms for
the ELCS problem over instances of two sequences where tlaenpter is the number of mandatory

symbols.

Index Terms

Longest common subsequence, comparative genomics,talgatesign and analysis, combinatorial

algorithms, analysis of algorithms and problem complexity

I. INTRODUCTION

Algorithmic studies in comparative genomics have produsederful tools for the analysis
of genomic data which has been successfully applied in abeentexts, from gene functional
annotation to phylogenomics and whole genome comparisanai goal in this research field
is to explain differences in gene order in two (or more) geesim terms of a limited number
of rearrangement operations.

When there are no duplicates in the considered genomesothputation of the similarity
measure is usually polynomial-time solvabkeg., number of breakpoints, reversal distance
for signed genomes, number of conserved intervals, numbepmmon intervals, maximum
adjacency disruption, summed adjacency disruption [&]-[However, aside a few exceptions,
several copies of the same gene or several highly homologenss are usually scattered across
the genome, and hence it is major problem to handle thosdcdtgd when computing the
similarity between two genomes. One approach to overconsedifficulty is based on the
concept ofexemplar [11]: for each genome, an exemplar sequence is construgtateleting

all but one occurrence of each gene family. Another apprasdiased ormmatching [12]: in

November 22, 2006 DRAFT

this two-step procedure, the two genomes are first niatienced (the number of occurrences
of genes from the same family must be the same in both genonyesgmoving a minimum
number of genes and next a one-to-one correspondence (ageoreg of each family) between
genes of the genomes is computed.

Unfortunately, in the presence of duplicates, most sintylaneasures turn out to beP-hard
to be computed [12]-[15] for both the exemplar and the matginnodels, so that we generally
have to rely on approximation algorithms or heuristic apptes. We discuss here one such
general heuristic approach, th&EvPLAR LCS problem, which is basically a constrained string
alignment problem. The basic idea of the general framewagkpwopose here is based on the
observation that, for most similarity measures and for bloghexemplar and the matching models,
specific common subsequences may correspond to highly rveolsgets of genes. This suggests
the following greedy heuristic algorithm: find a common sedpsence of significant length —
but compact enough — between the two genomes, replace iwthgegnomes the substring that
contains the common subsequence (the substring that atatts first character of the common
subsequence and ends at the last character of the commoegeehse) by a new letter and
continue in a similar way. Observe that after we have idextih common subsequence of the
genomes, we can establish a one-to-one correspondencedmetggnes of the two genomes.

At each iteration of this simple heuristic algorithm, oneMewer has to be cautious in how
to choose the common subsequence, as bad choices may hasa&stadis impact for the rest
of the algorithm. Let us take the exemplar model as a very Isiregplanatory example, and
suppose that we are searching for a common subsequenceehetwe precise substrings of
the two genomes. For one, if one gene family has occurrerises/lgere in the two genomes,
then taking or not one occurrence of this particular gendlyaim the common subsequence is
thus not based on necessity but on the length of the obtawmleti®. For another, if there do
not exist any other occurrences of one gene family excepirotiee two considered substrings,
definitively one has to take this occurrence in the commoisegibence (observe that in this case
the obtained common subsequence may not be the longestTdng)simple example suggests
to consider an LCS-like problem that deals with two typesetfers (nandatory and optional
symbols) to allow greater flexibility in the searching prese

In this paper we will formally define such framework with a gigcombinatorial problem that

generalizes the well-known LCS problem and we will studyasputational and approximation

November 22, 2006 DRAFT

Problem name | Occurrences | Occurrences
mandatory optional
symbols symbols

ELCS(1,< 1) exactly 1 at most 1

ELCS(1) exactly 1 unrestricted

ELCS(>1,<1) | atleast1 at most 1

ELCS(> 1) at least 1 unrestricted

TABLE |

VERSIONS OFEXEMPLAR LCS

complexity. We show that different versions of the problera APX-hard even for instances
with two sequences and that even determining if a feasibigisn exists or not isNP-hard. On
the positive side the hardness of the problem can be limitexbime cases; in fact we show that
it is possible to determine efficiently a feasible solutipmvided that each symbol appears at
most three times in total in the input sequence. Finally, wese@nt fixed parameter algorithms,

where the parameter is the number of mandatory symbols.

[I. THE PROBLEMS

The LONGESTCOMMON SUBSEQUENCEproblem (shortly LCS) is a well-known problem in
Computational Biology. Let = s[1], s[2],..., s|m] andt = t[1], t[2], ..., t[l] be two sequences,
s is a subsequence ofif for somej; < j» < ... < jm, s|h] = t[jn]. Let S be a set of sequences,
then alongest common subsequence of S is a longest possible sequencéhat is a subsequence
of each sequence if.

A simple way to informally define a subsequence is by usingntiteon of threading scheme.
First write the two sequences on two parallel lines, therreeaiting scheme is a set of lines, each
one connecting two identical symbols of different sequense that no two lines are crossing.
In this case a common subsequence consists of symbols ¢edr®cthe non-crossing lines.

Given a set of sequencés the LCS problem asks for langest common subsequence of S.
The complexity of the LCS problem has been deeply studietienpast. In [7] it is shown that
the problem isNP-hard even for sequences over binary alphabet. Howevem e instance

of the problem consists of a fixed number of sequences, the ¢tahSbe solved in polynomial

November 22, 2006 DRAFT

time via dynamic programming algorithms [4], [5], [16].

The EXEMPLAR LCS problem (ELCS) is related to the LCS problem. The inpuhefELCS
problem consists of a sét of sequences over alphabét U A,,, A,NA,, = 0, whereA, is the
set ofoptional symbols andA,, is the set ofmandatory symbols. The output of the problem is
a longest common subsequence of all sequencgstirat contains all mandatory symbols. Next
we state formally the ELCS problem.

Problem 1: ELCS PROBLEM

Input: a setS of sequences over alphabdt U A,,, where 4, is the set ofoptional symbols
and A,, is the set ofmandatory symbols. The setsl,, A,, are disjoint.

Output: a longest common subsequence of all sequencés timat contains an occurrence of
each mandatory symbol id,,.

Given an instancé of ELCS, byexemplar common subsequence we mean a feasible solution
of ELCS overS. It is possible to define different versions of the problemgaading to the
number of occurrences of each symbol in the solution, asesepted in Table I. In this paper
we will deal with such different versions of ELCS. First retithat ELC$1) and ELC$> 1)
are generalizations of the LCS problem. Indeed LCS problamle seen as the restriction of
ELCS1) and ELC$> 1) with an empty set of mandatory symbols. Therefore all thelieass
results for LCS apply to ELCS) and ELCS> 1). Moreover, we will show that the above
problems are hard also on instances of only two sequenceide(tie LCS problem can be
solved in polynomial time for any fixed number of sequencé#)en dealing with the restriction
of ELCS containing only a fixed number of sequences, we willade such restriction prefixing
the problem name with the number of sequences, e.g. 2-ELES1) is the restriction of

ELCS1,< 1) to instances of two sequences.

[1I. COMPLEXITY RESULTS

In this section we investigate the complexity of the 2-EILCSC 1) problem and the 2-
ELCS> 1,< 1) problem. More precisely we will show that both problems ARX-hard even
when restricted to instances where each symbol appearssttwioe in each input sequence.

November 22, 2006 DRAFT

A. Complexity of 2-ELCS(1,< 1)

We prove that 2-ELCS, < 1) is APX-hard even when each symbol appears at most twice
in each input sequence via an L-reduction fromrmMINDEPENDENT SET problem on Cubic
Graph (MISC) to 2-ELCS8I, < 1), since the MISC problem is known to #ePX-hard [1].

The MISC problem is defined as follows:

Problem 2: MISC PROBLEM
Input: G = (V, E)) a cubic graph.

Output: a setlV’ C V' of maximum size, such that no two verticesv € V' are adjacent.

Let G = (V, E') be a cubic graph. Sinc& is cubic, for each vertex; € V' there are exactly
three edges incident on it; denote by(v;), e2(v;), e3(v;) these edges. The reduction associates
with each vertexv; a symbolv; of A, and a symbolz; in A,,. Furthermore, the reduction
associates with each edgec E a distinct symbols; € A,,.

Let v; € V and lete;(v;), ea(v;) andes(v;) be the edges incident on it. In what follows,
we denote bys(e;(v;)), s(ea(vi)), s(es(v;)) respectively the symbols ofl,,, associated by the
reduction with edges;(v;), e2(v;) andes(v;). Notice that each edge = (v;,v;) appears in
the incidence lists of both; andv;, thuse will be denoted bye,(v;) ande,(v;), for some
1 < z,y < 3, in the incidence list ofy; and v; respectively. Nonetheless observe thais
mapped to one distinct symbol of,,,, that iss(e,(v;)) = s(ey(v;)).

Define ablock associated with a vertex, as a string consisting of a vertex symbglthe sym-
bols associated with edges incidenttdn G and the symbols;. There are two possible blocks
associated with);, one contained iy, and defined as, (v;) = v;s(e1(v;))s(ea(vs))s(es(v;))x;,
the second contained &y and defined aé;(v;) = s(e1(v;))s(e2(v;))s(es(v;))vix;.

The instance of 2-ELCS, < 1) consists of the following two sequences:

s1 = b1(v1)b1(v2) - - - b1(vy), that is

s1 = v1s(er(v1))s(ea(vr))s(es(vr))z1ve - - - o1 vps(er(vy))s(ea(vy))s(es(vy))en;

So = bo(v1)ba(v2) - - - ba(vy,), that is

sy = s(eq(v1))s(ea(va))s(es(vs))vrz1vs - - - 1 S(e1(vn))s(ea(vn))s(es(vn))vneny.

Lemma 1. Each exemplar common subsequence contains the syirpkamdz; is taken from
blocks b, (v;) and by (v;).

Proof: Observe that since each symbglis mandatory, hence it must appear in any feasible

solution of 2-ELCS1, < 1). Furthermore observe that there is only one occurrence @f s,

November 22, 2006 DRAFT

and in s,. More preciselyz; occurs in blockb, (v;) in s; and in blockby(v;) in sq. It follows
that any symbol; in a feasible solution of 2-ELQ$, < 1) overs; and s, must be taken from
blocks b, (v;) and by (v;). [|

Thus, we can divide an exemplar common subsequeanicen blocks, where block of s
starts after the positions containing symbel; (or with the first symbol of if : = 1) and ends
in the position containing symbal,. Observe that, since eaal must appear in any exemplar
common subsequence, each blocksafontains at least one symbol.

Lemma 2. Thei-th block of an exemplar common subsequerantains either symbal;
or some symbols ir(e;(v;))s(ez(v;))s(es(v;)).

Proof: Observe that block of s can contain only symbols from blocks(v;) and by (v;).
Furthermore observe that if symbol is in an exemplar common subsequencehen s does
not contain any symbol of(e;(v;))s(ea(v;))s(es(v;)) of by(v;) andby(v;), otherwise it is easy
to see that this block of will not be a subsequence ofth block of s; or ss.

Now assume that none of the symbolsso#; (v;))s(ea2(v;))s(es(v;)) belongs to the-th block
of s. Then if v; does not belong to théth block of s, we can obtain a better solution adding
v; to thei-th block of s. [|

Hence a feasible solution of 2-ELCS1, < 1) over sy, s, consists offizy ... fiz; ... futy,
where each block; is eitherv; or a subsequence efe;(v;))s(es(v;))s(es(v;))-

Theorem 3: The 2-ELCS1, < 1) problem isAPX-hard even when each symbol appears at
most twice in each input sequence.

Proof: Consider the symbols of a common subsequermmtained irb; (v;) andb,(v;). The
common subsequenes&ontains the symbal; and either,; or some symbols ia, (v;)es(v;)es(v;).
Observe that each edge symbol is mandatory, which meand taist appear exactly once in
a common subsequence. Moreover, an edge symbol encodirg(edg,;) appears in blocks
b1 (v;) andb, (v;) of s; and in blockshy(v;) andby(v;) of so. Thus a common subsequence takes
such edge symbol either from(v;) andby(v;) or from by (v;) and by (v;).

Let I be the set of vertices appearing dnwe will show that/ is an independent set @f.
Assume that symbols;,v; € I. Then (v;,v;) is not an edge of~, otherwises in f; and f;
contains symbols; and v; respectively. An immediate consequence is that the edgdaym
associated witle = (v;, v;), that can appear only ifi; and f;, is not contained irs. Since each

edge symbol is mandatory, it must appear in any feasibldisalof 2-ELCS1, < 1), which is

November 22, 2006 DRAFT

s1 = 1CAEx1v,CF Bx2vs AF Dxsvs EBDxy
$9 = CAEv,2,CFBuyx2AF Dvsxs EBDuvgyxy

Fig. 1. The cubic graphs and its associated instance of 2-ELCS< 1)

a contradiction. Observe that the length of a feasible Ewilut of 2-ELCS1, < 1) over sy, sy
is|VI|+|E|+|I

with an independent sétand one occurrence of each mandatory symbol. Recall thagethef

, Where[is an independent set 6f. Indeeds will contain symbols associated

mandatory symbols has siz€| + |E|.

On the other side, lef be an independent set 6f, we can compute a feasible solution of 2-
ELCS(1, < 1) oversy, sy Of size|V|+|E|+ ||, retaining in the exemplar common subsequence
only the symbols associated with vertices/inSince I is an independent set, for each edge
e = (v;,v;) at least one ofy;, v; is not in I, hence each symbol associated witttan be

retained once in a feasible solution of 2-ELCS< 1) over sy, $o. []

B. Complexity of 2-ELCS(> 1,< 1)

Next we show that also 2-ELGS 1,< 1) is APX-hard with a reduction similar to the
previous one. LetG = (V| E) be a cubic graph, for each vertex € V, we introduce four
optional symbolsvévbvévd and the blocksh; (v;) and b,(v;) associated withy; in sequences

(2 2 A 2

s; and s, respectively are defined as follows;(v;) = vivlvivds(e;(v;))s(ea(v;))s(es(vs))xi;

by(v;) = s(e1(v;))s(ea(v;))s(es(v;))vivlvivdae;. Recall thatr; ands(ey(v;)), s(ea(vs)), s(es(vs))
are all mandatory symbols.

Since symbols:; are mandatory and there is only one occurrence of eath s; and s, it
follows that Lemma 1 holds. Each symbol appears in blocks; (v;) andbs(v;) of s; and s,
respectively, and any symbal in an exemplar common subsequence must be taken from the

blocks of s;, s, associated withy;, that isb; (v;) andb,(v;). Since each mandatory edge symbol

November 22, 2006 DRAFT

appears twice in each input sequence, it must appear onedaar in a common subsequence.

Lemma 4. The i-th block of an exemplar common subsequerceontains either sequence
v@lufud or some symbols iz (e; (v;))s(ex(v;))s(es(v;)).

Proof: It is easy to see that if sequenegv’vév? is in a feasible solution of 2-ELGS
1,< 1) over sy, sq, then this solution does not contain occurrences of symbblsequence
s(eq(vy))s(ez(vy))s(es(vy)) in by(v;) and by(v;). This means that a feasible solutienof 2-
ELCS> 1,< 1) over sy, s, consists ofg zy ... g;x; ... g,x,, Where eaclhy; is either a subse-
quence ofv®vPvivd or a subsequence afe; (v;))s(ex(v;))s(es(v;)).

Now assume that none of the symbolss¢é; (v;))s(es(v;))s(es(v;)) belongs toi-th block of
s. Then if some of the symbolstv?vivd do not belong to thé-th block of s, we can obtain a
better solution adding it to theth block of s. [|

Observe that each edge symbol is mandatory, which meand timaist appear exactly once
in an exemplar common subsequence. Thus an exemplar comubhsagience takes each edge
symbol from one of the two blocks where it appears.

Theorem 5: The 2-ELCS3> 1, < 1) problem isAPX-hard even when each symbol appears at
most twice in each input sequence.

Proof: Let I be an independent set @f, thens = ¢g121...¢;x;...9,2,, Where each
gi = v&lvcud if v; € T andg; = s(e;(v;))s(ex(vs))s(es(v;)) otherwise. It is immediate to note
thats is a common subsequencesxfands, of length|V|+3(|V|—|I|)+4|I| = |V |+3|V|+|]]|
and that all mandatory symbols encoding an edge are inclided W.l.o.g. assume to the
contrary that a symbol encoding the edge, v») is not included ins. This fact implies that
g1 = v&bvied and g, = vsvsvsed, hencevy, v, € I, contradicting the assumption thatis an
independent set afr.

Assume now that there exists a feasible solutioof 2-ELCS> 1,< 1) over sy, sy with
length |V| + 3|V| + |I|. We can assume that, for each block dn s,, either v&vvévd or
s(e1(v;))s(ea(v;))s(es(v;)) appears as a substring ef Let Y be the set of blocks for which
vilufud is part ofs. Hence the vertices correspondingifoare an independent set 6f By a

trivial counting argument, it is easy to show that féf blocks, s includesvfv?vivd. We claim
that such blocks encode an independent set. W.l.o.g. asthahe¢vbv§v¢ and vévsvsvd are
included ins, then there is no edg@,v;) in G, otherwise the mandatory symbol encoding

such edge would not be in

November 22, 2006 DRAFT

10

V. EXISTENCE OF A FEASIBLE SOLUTION

Given an instance of 2-ELCS, a problem related to 2-ELCSas dhdetermining if a feasible
solution exists. In what follows we will consider a generatsion of the 2-ELCS problem, where
the instance consists of two sequenggss, over alphabet4, U A,, and we want to compute if
there exists a subsequencespfands,; containing all the mandatory symbolsh,. Observe that
computing if a feasible solution of 2-ELCS exists impliesmguuting if a feasible solution exists
for each of the problems 2-ELCE < 1), 2-ELCS1), 2-ELCS> 1,< 1) and 2-ELC$> 1).
Notice that both reductions described in the previous gedibld for instances that are known
to admit a feasible solution, therefore they are not sufiicfer dealing with the problem.

A simple observation allows to simplify the complexity oktproblem: in fact only mandatory
symbols are relevant, as removing all optional symbols agm¢schange the fact that a feasible
solution exists or not. Therefore in what follows we can assuhat both input sequences are
made only of mandatory symbols. Clearly, in order to haveasifde solution, each mandatory
symbol must appear in both input sequengeandss. It is trivial to verify in polynomial time
such property, hence in what follows we assume that each aarydsymbol appears in both
input sequences.

The number of occurrences of each mandatory symbol in th&anos is a fundamental
parameter when studying the complexity of 2-ELCS problamdekd we will show that finding
a feasible solution can be done in polynomial time for smalugs of such parameter, but

becomes intractable when each symbol occurs three timeacim iaput sequence.

A. A polynomial time algorithm

First we investigate the case when each mandatory symbebapjn total at most three times
in the input sequences. We will present a polynomial timelgm for this case, reducing an
instance of 2-ELCS where each mandatory symbol appeargahdabmost three times in the
input sequences, to an instance of 2SAT (the restrictionagisHIABILITY to instances where
each clause contains at most two literals). It is well knowat 2SAT can be solved in linear
time [2].

November 22, 2006 DRAFT

11

Fig. 2. Reducing 2-ELCS to 2SAT

For each symbal, leto;(s) (respectivelys(s)) be the set of positions of the input sequerce
(resp.s2) wheres appears. Clearly botby (s) ando,(s) are not empty angb; (s)|+ |oz(s)| < 3.

It follows that for each symbal, there exists one of; ands; containing exactly one occurrence
of s, while in the other sequence there are one or two occurravfceslt follows that for each
symbol s there are at most two pairs i (s) x 0y(s), for otherwise|o;(s)| + |o2(s)| > 3. Let

us associate with each of such pairs a variahlg wherei € {1,2} if there are two pairs in
01(s) x0s(s) andi = 1 if there is only one pair im; (s) X 02(s). Graphically the possible variables
are represented in Fig. 2 with a line connecting two idehtsganbols belonging to different
sequences. The cag@c (s)| + |occa(s)| = 3 is represented by the two leftmost lines and the
variablesz, 1, x, 2, while the cas@occ; (s)| + |occa(s)| = 2 is represented by the rightmost line
and the variabler, ;. Each truth assignment to the variables can be viewed aspitke lines
corresponding to true variables.

Let C be the set of clauses of the instance of 2SAT that we are cmtisty. For each pair
Zs1, Tso Of variables, the clausesz;; V -z, andz,; V x;, are added ta’'. Moreover, for
each symbok such that there is only one pair in(s) x os(s), add the clause;; to C (this
corresponds to forcing the variable ; to be true). Two lines (or two variables) are called
crossing if they cross in the drawing built as in Fig. 2.

If there exists a solutiory of 2SAT that satisfies all the clausesh then S picks exactly
one of the lines associated with each symbol. More formalbtice that each variable, ; is
associated with an occurrence of symbai sequence; (denoted as; (s, i)) and one occurrence
of symbol s in sequences, (denoted as.(s,)). A pair z,;,z,; of variables is crossing if in
s1 the symbols; (s, i) precedess;(¢,j) and ins, the symbolss(s,i) does not precede;(t, j)
or, symmetrically, if ins; the symbols,(s,i) does not precede,(t,7) and in s, the symbol

so(s, 1) precedes,(t, j). For each pair, ;, z,; of crossing variables, the clause;; vV -z, ; is

November 22, 2006 DRAFT

12

added toC.

Theorem 6: The problem of determining if a feasible solution exists & instance of 2-
ELCS where each mandatory symbol appears in total at mas# times in the input sequences,
can be solved in polynomial time.

Proof: We prove that the original instance of 2-ELCS has a feasibletisn if and only
if the corresponding instance of 2SAT is satisfiable, thahere is a truth assignment for all
variables such that all clauses (hare evaluated true. Assume that there is a feasible solution
z of the instance of 2-ELCS then, for each symbplve pick the lines connecting the symbols
retained inz. By definition of common subsequence there cannot be twesicrgdines, and
exactly one of the lines associated with each symbol mustibieeg asz in an exemplar
common subsequence, thus all the symbols must belorg Therefore we have constructed a
feasible solution of 2SAT.

Conversely given a truth assignmetfor variables that satisfies all clausesdan it follows
that there are no two crossing variablesdnindeed, for each pair of crossing variables, ; ;

a clause—z,, V -z, ; is in C and this clause can be true iff at least onexof, z,; is false.
Moreover, the two clausesz,; V —z;, andz,; V x5, are true if and only if there is exactly
one of the variables; ;,z; > true in A and one of the variables, ;,z, » false in A. Hence there
is exactly one line for each symbol, therefore it is immeali@t construct a feasible solution of
2-ELCS that contains all symbols. [|

The overall complexity of the algorithm is quadratic, singe build a clause for each pair
x4, Ty ; Of crossing variables.

Notice that the above result holds for all the restrictioh2-dLCS considered here, as no
symbol appears twice in both input sequences, thereforantappear at most once in any

solution.

B. NP-hardness

In what follows we will show that slightly relaxing the coraint on the number of occurrences
of each symbol makes the problddir-hard.

Theorem 7: The problem of determining if a feasible solution exists &r instance of 2-
ELCS where each mandatory symbol appears at most three iimesch input sequence, is
NP-hard.

November 22, 2006 DRAFT

13

Proof: We will prove the theorem reducing 3SAT to 2-ELCS, with a retchn very similar
to the one shown before. Lét = {C1, ..., C}} be a set of clauses, each one consisting of at most
three (possibly negated) literals. We construct an ingtafc2-ELCS associating a block with
each variable. The block of, associated with variable; is defined as the symbal, followed
by the sequence of clauses containingfollowed by the sequence of clauses containing,
where in each sequence the clauses are ordered accordihg todex in{C,...,Ci}. In so
the block associated with variable is defined as the symbal;, followed by the sequence of
clauses containing;, followed by the sequence of clauses containingagain the clauses are
ordered according to the index{d, ..., Cy}). For example ifz; appears negated i, and not
negated inCy, C3, then the corresponding blocks areC,C3C; (in s1) and z,C1C>C5 (in s3).
Both sequences; ands, consist of the sequence of all blocks associated with thialas of
the original instance of 3SAT. All symbols are mandatorgpahotice that each symbol appear
at most three times in each sequence as each clause contanostahree literals.

Each symbol:; appears exactly once in each sequence, hence there is nguaiybin which
occurrence is retained in any exemplar common subsequénosequently each symbol retained
must correspond to occurrences taken from the same blosklelthe block associated with,
retaining the clauses whetg appears as a positive literal is mutually exclusive witlirghg the
clauses where; appears as a negative literal, by definition of exemplar comsubsequence.
The first case (that is retaining the clauses wher@appears as a positive literal) corresponds
to settingz; to true, while the second case corresponds to seitjrtg false. In both cases the
clauses retained are satisfied by the assignment of vasiahle

Any feasible solution of 2-ELCS over sequeneg®nd s, must contain all symbols associated
with clauses, therefore we have computed a truth assignofethie variables that satisfies all
clauses inC', completing the proof. [|

The above results have a definitive consequence on the apyaioity of the 2-ELCS problem
where each mandatory symbol appears at most three timeghrinput sequences, as they rule

out any polynomial-time approximation algorithm (irredi@ss of the approximation factor).

V. INSTANCES OF MORE THAN2 SEQUENCES

Since the problem can be extended to instances consistageifof sequences, it is interesting

to know if the above results can be made stronger. In factwiiéknown inapproximability

November 22, 2006 DRAFT

14

results in [6] for the LCS problem, immediately apply alsothe ELCS> 1) problem, since

ELCS> 1) is more general than LCS. A closer inspection of their prabisws that their results
also apply to all versions of ELCS, as the optimal solutianshieir reductions contain at most
one occurrence of each symbol, excluding angn'—<) ratio polynomial-time approximation
algorithm unlesZPP=NP, even if no mandatory symbol is allowed and all symbols appéa

most twice in each sequence.

VI. INSTANCES CONTAINING NO MANDATORY SYMBOL

Consider the restrictions of problems 2-ELCS3{(1) and 2-ELCS§¢ 1,< 1), where A,, = 0.
Observe that the two problems are equivalent, since eaaiibfeasolution of the two problems
consists only of optional symbols and each optional symlaol accur at most once. Denote
by 2-ELCS(*< 1) the restriction above. Next we will show that the 2-ELCS(*]) is NP-
hard modifying the reduction in Section IlI-A, replacind #ile mandatory symbols by optional
symbols.

First, each mandatory symbo} can be replaced by a sufficiently long sequengeof new
optional symbols. Letw;| = 10n, wheren represents the number of vertices of the cufic
that isn = |V/|. It follows that, for eachr;, either all or no symbols ofy; are included in the
solution. Indeed if a set of symbols of; appears in a solution, it follows that we could add all
the remaining symbols of; without shortening the resulting exemplar common subsscpie
Furthermore, sincéw;| = 10n, all sequencesy; must be included in an exemplar common
subsequence, otherwise the resulting solution is too shitice that each:; appears exactly
once in the reduction.

It remains to replace the mandatory symbols associatedetigies, each with a sequence of
unique symbols. Replace each edge symdie);) with a sequences(e;;) of new mandatory
symbols, such thgt(e;;)| = n. Again either all or no edge symbols are included in the gmut

Now if edgee;; is incident to vertices; andv;, z(e;;) will appear in blocksi and j of s;
and s,. It follows that one of the two occurrences ofe;;) might be taken. Since all symbols
of w; are taken, either the occurrencesz¢f;;) in block : of both s; ands, or the occurrences
of z(e;;) in block j of both s; and s, are taken, that is the threading scheme:@f;;) cannot
cross the threading scheme ©f. Observe that at most one occurrencez(f;;) can be taken

in a solution of 2-ELCS(*,< 1). Sitill, at least one symbol of both occurrencesz¢f;;) must

November 22, 2006 DRAFT

15

be taken and it is always possible to take only the symbolsnefaf the occurrences af(e;;)

without shortening the resulting exemplar common subsecpie

VIl. FIXED PARAMETER ALGORITHMS

In this section we propose some fixed parameter algorithnmtéoresolution of the 2-ELGS)
and 2-ELC$> 1) problems, where the parameter is the number of mandatorpagmFirst
we describe a naive approach, then we present two dynamiggimmning algorithms. In what
follows we denote by; and s, the two input sequences, by, = {a;, as, ..., a,,} the set of

mandatory symbols and by the maximum ofjs;| and|s,]|.

A. Naive approach

We present a naive algorithm f@ELCS(1) which is based on two phases: the first step
consists of guessing the exact ordering of all mandatorybsysnin the optimal solution, the
second step basically fills in the gaps between each pair eidatary symbols. Since each
mandatory symbol appears exactly once in a feasible salutive correct ordering of the
mandatory symbol is a permutation df,,, which can be computed i@(m!) time.

Assume thatk is an optimal permutation of mandatory symbols, the secdras consists of
computing a longest common subsequesicef {s;, s;}. Notice that each optional symbol can
appear an unrestricted number of times in any solution. kedenote by|i] the i-th character
of the sequence and by si...j] the substring ofs starting with s[;] and ending withsj].
The recurrence equation for ELj, k|, that is the length of an optimal solution overl .. .4,
so[1... 4], which are both supersequences of the sequefi¢e: - s[k], is:

((EL[i— 15— LA +1
if s1[i] = sa2[j], s1li] € 4,
EL[i —1,j—1,k—1]+1
if s1[i] = sa[j] = s[k]
EL[i — 1,4, k],EL[i,j — 1, K]
always
EL[i — 1,4, k],EL[i,j — 1, K]

always

EL[:, j, k] = max

November 22, 2006 DRAFT

16

The boundary conditions are KL j,0] = 0 and EL,0,0] = 0 for 0 < i < |s;] and0 <
J < |s2|. The value of an optimal solution can be read in[[EL, |s2|, |s|]. Once the matrix EL
has been completely filled in, the actual optimal subseqieaa be constructed with standard
backtracking techniques [3]. The recurrence equationritext above can be easily modified for

the 2-ELC$> 1), by removing the requiremeni[i] € A, in the first condition of the equation.

B. Dynamic programming algorithms

The algorithm described above computes the maximum lenigdm @xemplar common sub-
sequence, by computing all the possible permutations ofdatany symbols. Observe that if
the number of mandatory symbols#s then the number of permutationssg and the above
algorithm has time complexity)(m!n?). Next we present dynamic programming algorithms
to compute the maximum length of an exemplar common subseguef time complexity
O(m2™n?). Let s, be a sequence, recall that we denoteshji ... j] the subsequence of,
starting in position and ending in position.

First, we describe a dynamic programming algorithm to comphe existence of a feasible
solution of 2-ELCS. Denote by ES[j] wherel < < |s;| and1 < j < |ss|, a boolean function
which is true iff there exists a feasible solution of 2-ELCS with input segcess;[1 ... and
so[1...j|, otherwise it isfalse. Let z be a feasible solution of 2-ELCS, we call thestriction
of z and denote it by, the subsequence af consisting only of the rightmost occurrence of
each mandatory symbol.

Lemma 8: Let 2, be restriction of a feasible solution of 2-ELCS and leto € A,, be the
rightmost mandatory symbol of.. Then there exist two occurrencgsand j, of « in s; and
sy respectively, such that.[1...m — 1] is a restriction of an exemplar common subsequence of
s1[l...j1 — 1] andsy[1 ... j, — 1] with set of mandatory symbold,, — {«a}.

Proof: In order to obtain a feasible solution we have to guaranteé each mandatory
symbol has at least one occurrence. Siacés the rightmost symbol ir,, it follows that
z[1...m — 1] must contain all mandatory symbols i, — {«}. Now assume that,.[m] is
taken from two occurrenceg and j, of « in s; and s, respectively. It follows that all the
mandatory symbols in.[1...m — 1], that is in 4,, — {a}, must be taken froms;[1...j; — 1]
andss[l...j5 — 1], thusz,.[1...m — 1] is a restriction of an exemplar common subsequence of

s1[l...71 — 1] andsy[l. .. j, — 1] with set of mandatory symbolg,, — {«}. [

November 22, 2006 DRAFT

17

Observe that there must be a mandatory symbeal A,, which is the rightmost mandatory
symbol in a feasible solution. Thus function BSi] is true if and only if there exists a
feasible solution ES{o;(a)) — 1, r(02(cr)) — 1] over the sets of mandatory symbolsAr, — {a},
wherer(o;(«)) (resp.r(oz2(a))) represents the rightmost occurrencenoin s; (resp.ss) with
r(o1(@)), rox(a)) < n.

Denote by ES[;, j», A’], where A’ C A,, is a subset of the mandatory symbols, a boolean
function which has valuérue iff there exists a feasible solution of 2-ELCS with input segces

s1[1---7j1], s2[1 - - - jo] containing all the mandatory symbols iti, otherwise it has valugalse.

ESi—1,7—1, A" — {a}]
if s1i] = s2[j], s1li] € A’
e A= \/ o T &)
aEd if s1[i] = solj], sili] ¢ A’
ESi,j — 1,4 always
| ESi—1,5, A"l always
The boundary conditions are ESj,)] = true forall 0 < i < |s1],0 < j < |sq]; ES0, 5, A'] =
false and ESi, 0, A'] = false for 0 < i < |s;] and0 < j < |sy| and for all subsets!’ C A,,,
A" = (). The existence of a feasible solution of 2-ELCS can be red@diw, |, |sa|, Ay

The time complexity of the above algorithm &(m2™n?). Indeed, each partial solution is

computed by evaluating at moSt(m) equations, since we have to choose a mandatory symbol
a € A, |A] < m. The number of partial solutions i©(2™n?), since the possible subsets
A" C A, areO(2™), while indices] < i < |sy], 1 < j < |sa].

Now we extend the approach to compute a feasible solutioardar to design an algorithm
that computes an exemplar longest common subsequenceés thablution of the optimization
problem. Informally, since (1) computes the rightmost eoenice of a mandatory symbol of set
A’ in a (possible) feasible solution, we have to add to the smilgome symbols between a pair
of consecutive mandatory symbols.

First, we discuss the case when the solution must contaiotlgxane occurrence of each
mandatory symbol, while the occurrences of each optionalbsy are unrestricted. Denote by
EL[j1,j2, Al where A’ C A,, is a subset of the mandatory symbols, a function which reptss

the length of a longest exemplar common subsequence with sggjuences; [1 - - - 71|, sa[1 - - - jo]

November 22, 2006 DRAFT

18

containing one occurrence of each mandatory symbol’inindeed occurrences of mandatory
symbols inA’ — {«} occurs at the left of; andi, since« is the rightmost mandatory symbol
for hypothesis, while symbols inl,, — A’ — {a} have already an occurrence in the exemplar
subsequence.

The following is the recurrence to compute EL[j; A'].

(EL[i—1,j— 1,4 — {a}]
if s1[i] = s2[j] =, a € A
EL[i, j, A'] = max (2
acA! |f Sl[i] = Sg[j], Sl[i] € AO

EL[,j —1,A’] always

| EL[i — 1,5, 4] always

Denote by LSO];,j.] the size of a longest common subsequence with input segsenc
s1[1---71], s2[1 - - jo], where all mandatory symbols in séf, are removed from intervalg, j; |
and([1, j»]. The boundary conditions are ELj,)] = LSOJi, j] for 0 <i < |s;] and0 < j < [ss],
EL[0, j, A'] = —oco and EL7,0, A’} = —oo for 0 < i < |s;] and0 < j < |s,| and for each subset
A" C A, A' # 0. The value of the optimal solution can be read in[[EL, |s2|, A)-

The time complexity of the algorithm i9(m2™n?). Indeed, each partial solution is computed
by evaluating at most four equations. The number of partiutens is O(2™n?), since the
possible subsetd’ C A,, areO(2™), while indicesl <i < |s1|, 1 < j < [sg].

Next we consider the case of 2-ELCS when a solution contailesst one occurrence of each
mandatory symbol, while the occurrences of each optionab®y are unrestricted. Once again,
we assume is the rightmost mandatory symbol of a longest exemplar comsubsequence of
length EL[j1, 72, A’]. With respect to (2), observe that we can add to a solutiea alandatory

symbols that are not id’, since each mandatory symbol can appear more than once nt@so

November 22, 2006 DRAFT

19

(EL[i—1,j - 1,4 — {a}]
if s1[i] = solj] =, € A
.. a4y EL[Z_L]_LA/]
EL[:, j, A'] = max
o€) it si[i] = solf], sili] € AgU A, — A’
EL[i,j —1,A'] always

3)

| EL[i — 1,5, 4] always

Denote by LSMJ,,j2] the size of a longest common subsequence with input segqeenc
si[l-- 1], s2[1- - o).

The boundary conditions are ELj,)] = LSM[i,j] for 0 < i < [s1] and0 < j < |sof;
EL[0,j, A'] = —o0 and ELi,0, A'] = —oco for 0 < i < |s;| and0 < j < |sq| and for each subset
A" C A, A" # 0. The value of the optimal solution can be read in[[EL, |sa|, A)-

The time complexity of the algorithm i9(m2™n?). Indeed, each partial solution is computed
by evaluating at most four equations. As before, the numbgradtial solutions isO(2™n?),

since the possible subsets C A,, areO(2™), while indicesl <i < |s1|, 1 < j < [sg].

VIII. | MPLEMENTATION

The algorithm described in recurrence (2) has been impledeand tested on randomly
generated data. More precisely, we have tested the algowiith two input sequences of length
200 and with an alphabet of mandatory symbadls of size10. The algorithm produces the output
in a few seconds. However, the space complexity of the dlgariwhich grows exponentially
in the size ofA,,, makes the algorithm not practical when the sizedgf is 20 or more.

We have implemented and tested a different dynamic progiagaigorithm to deal with the
problem. This second algorithm uses a different approachitapreprocesses subsequences of
the input sequences consisting only of optional symbolsvéder, the first approach turns out
to be much more efficient both in time and space than the latter Both implementations are
freely available ahtt p: // ww. al go. di sco. uni mi b. it/ and licenced under the GNU

General Public Licence.

IX. OPENPROBLEMS

In this paper we have investigated the computational andoappation complexity of several

versions of the Exemplar Longest Common Subsequence pnoleme interesting cases con-

November 22, 2006 DRAFT

20

cerning the computational complexity of the Exemplar Lastg@ommon Subsequence problem
still needs to be addressed. More precesely, we have shanth2-ELCS problem when
each mandatory symbol appears in total at most three timegkennput sequences admits
a polynomial time algorithm. Such an algorithm determinfea ifeasible solution exists, but
different feasible solutions can lead to exemplar commadossguences of different lenght.
Indeed the computational complexity of the problem of cotimguan exemplar longest common
subsequence when each mandatory symbol appears in totabsatthmee times in the input
sequences is still not known. Furthermore, we have shownttiga2-ELCS problem isNP-
hardwhen each mandatory symbol appears at least three itintegh input sequences. Hence
it is not known the computational complexity of tlReELCS problem when each mandatory
symbol appears less than three times in at least one sequehite it appears in total more
than three times in the two input sequences.

We have proposed fixed parameter algorithms to compute amiae Longest Common
Subsequence. Observe that both the time and space comlEttiese algorithms is exponential
on the size of the set of mandatory symbels,. In particular, the space complexity makes
the algorithm not practical when the size df, is 20 or more. Hence an interesting issue
concerning the implementation of these algorithms, is duiction of the space complexity of

such algorithms.

REFERENCES

[1] P. Alimonti and V. Kann. Some APX-completeness resulisdubic graphsTheoretical Computer Science, 237(1-2):123—
134, 2000.

[2] B. Aspvall, M. F. Plass, and R. E. Tarjan. A linear-timgaiithm for testing the truth of certain quantified booleamfulas.
Information Processing Letters, 8(3):121-123, 1979.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stémroduction to Algorithms. MIT Press, 2nd edition, 2001.

[4] K. Hakata and H. Imai. The longest common subsequencklgrofor small alphabet size between many stringsPriac.
3rd International Symp. on Algorithms and Computation (ISAAC), pages 469-478, 1992.

[5] W. Hsu and M. Du. New algorithms for the LCS probledournal of Computer and System Sciences, 19:133-152, 1984.

[6] T. Jiang and M. Li. On the approximation of shortest comnsupersequences and longest common subsequeBiédd.
Journal on Computing, 24(5):1122-1139, 1995.

[7] D. Maier. The complexity of some problems on subsequeraral supersequencelaurnal of the ACM, 25:322—-336, 1978.

[8] A. Bergeron and J. Stoye. On the similarity of sets of petations and its applications to genome comparisonPrirc.
9th International Computing and Combinatorics Conference (COCOON), pages 68-79, 2005.

[9] T. Uno and M. Yagiura. Fast Algorithms to Enumerate All@mon Intervals of Two PermutationsAlgorithmica, 2:
290-309, 2000.

November 22, 2006 DRAFT

21

[10] D. Sankoff and L. Haque. Power Boosts for Cluster TestsProc. of Comparative Genomics, RECOMB International
Workshop, RCG, pages 121-130, 2005.

[11] D. Sankoff. Genome rearrangement with gene famillgisinformatics, 11:909-917, 1999.

[12] G. Blin and C. Chauve and G. Fertin. The breakpoint distafor signed sequences. Rmoc. 1st Int. Conference on
Algorithms and Computational Methods for Biochemical and Evolutionary Networks, CompBioNets, pages 3-16, 2004.

[13] D. Bryant. The complexity of calculating exemplar distes. InComparative Genomics: Empirical and Analytical
Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families D. Sankoff and J. Nadeau
editors, pages 207-212, 2000.

[14] G. Blin and R. Rizzi. Conserved interval distance cotagion between non-trivial genomes. Pnoc. 11th Int. Computing
and Combinatorics Conference (COCOON), pages 22—-31, 2005.

[15] C. Chauve, and G. Fertin, and R. Rizzi and S. Vialettendbees containing Duplicates are Hard to comparePriac.
International Workshop on Bioinformatics Research and Applications (IWBRA), pages 783-790, 2006.

[16] R. A. Wagner and M. J. Fischer The String-to-String @otion Problem.Journal of the ACM, 21(1):168-173, 1974.

November 22, 2006 DRAFT

