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Abstract

In this paper, we investigate the computational and approximation complexity of the Exemplar

Longest Common Subsequence of a set of sequences (ELCS problem), a generalization of the Longest

Common Subsequence problem, where the input sequences are over the union of two disjoint sets of

symbols, a set of mandatory symbols and a set of optional symbols. We show that different versions

of the problem areAPX-hard even for instances with two sequences. Moreover, we show that the

related problem of determining the existence of a feasible solution of the Exemplar Longest Common

Subsequence of two sequences isNP-hard. On the positive side, we first present an efficient algorithm

for the ELCS problem over instances of two sequences where each mandatory symbol can appear in

total at most three times in the sequences. Furthermore, we present two fixed parameter algorithms for

the ELCS problem over instances of two sequences where the parameter is the number of mandatory

symbols.

Index Terms

Longest common subsequence, comparative genomics, algorithm design and analysis, combinatorial

algorithms, analysis of algorithms and problem complexity.

I. INTRODUCTION

Algorithmic studies in comparative genomics have producedpowerful tools for the analysis

of genomic data which has been successfully applied in several contexts, from gene functional

annotation to phylogenomics and whole genome comparison. Amain goal in this research field

is to explain differences in gene order in two (or more) genomes in terms of a limited number

of rearrangement operations.

When there are no duplicates in the considered genomes, the computation of the similarity

measure is usually polynomial-time solvable,e.g., number of breakpoints, reversal distance

for signed genomes, number of conserved intervals, number of common intervals, maximum

adjacency disruption, summed adjacency disruption [8]–[10]. However, aside a few exceptions,

several copies of the same gene or several highly homologousgenes are usually scattered across

the genome, and hence it is major problem to handle those duplicates when computing the

similarity between two genomes. One approach to overcome this difficulty is based on the

concept ofexemplar [11]: for each genome, an exemplar sequence is constructed by deleting

all but one occurrence of each gene family. Another approachis based onmatching [12]: in
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this two-step procedure, the two genomes are first madebalanced (the number of occurrences

of genes from the same family must be the same in both genomes)by removing a minimum

number of genes and next a one-to-one correspondence (amonggenes of each family) between

genes of the genomes is computed.

Unfortunately, in the presence of duplicates, most similarity measures turn out to beNP-hard

to be computed [12]–[15] for both the exemplar and the matching models, so that we generally

have to rely on approximation algorithms or heuristic approaches. We discuss here one such

general heuristic approach, the EXEMPLAR LCS problem, which is basically a constrained string

alignment problem. The basic idea of the general framework we propose here is based on the

observation that, for most similarity measures and for boththe exemplar and the matching models,

specific common subsequences may correspond to highly conserved sets of genes. This suggests

the following greedy heuristic algorithm: find a common subsequence of significant length –

but compact enough – between the two genomes, replace in the two genomes the substring that

contains the common subsequence (the substring that startsat the first character of the common

subsequence and ends at the last character of the common subsequence) by a new letter and

continue in a similar way. Observe that after we have identified a common subsequence of the

genomes, we can establish a one-to-one correspondence between genes of the two genomes.

At each iteration of this simple heuristic algorithm, one however has to be cautious in how

to choose the common subsequence, as bad choices may have a disastrous impact for the rest

of the algorithm. Let us take the exemplar model as a very simple explanatory example, and

suppose that we are searching for a common subsequence between two precise substrings of

the two genomes. For one, if one gene family has occurrences elsewhere in the two genomes,

then taking or not one occurrence of this particular gene family in the common subsequence is

thus not based on necessity but on the length of the obtained solution. For another, if there do

not exist any other occurrences of one gene family except onein the two considered substrings,

definitively one has to take this occurrence in the common subsequence (observe that in this case

the obtained common subsequence may not be the longest one).This simple example suggests

to consider an LCS-like problem that deals with two types of letters (mandatory and optional

symbols) to allow greater flexibility in the searching process.

In this paper we will formally define such framework with a simple combinatorial problem that

generalizes the well-known LCS problem and we will study itscomputational and approximation
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Problem name Occurrences

mandatory

symbols

Occurrences

optional

symbols

ELCS(1,≤ 1) exactly 1 at most 1

ELCS(1) exactly 1 unrestricted

ELCS(≥ 1,≤ 1) at least 1 at most 1

ELCS(≥ 1) at least 1 unrestricted

TABLE I

VERSIONS OFEXEMPLAR LCS

complexity. We show that different versions of the problem are APX-hard even for instances

with two sequences and that even determining if a feasible solution exists or not isNP-hard. On

the positive side the hardness of the problem can be limited in some cases; in fact we show that

it is possible to determine efficiently a feasible solution,provided that each symbol appears at

most three times in total in the input sequence. Finally, we present fixed parameter algorithms,

where the parameter is the number of mandatory symbols.

II. THE PROBLEMS

The LONGESTCOMMON SUBSEQUENCEproblem (shortly LCS) is a well-known problem in

Computational Biology. Lets = s[1], s[2], . . . , s[m] andt = t[1], t[2], . . . , t[l] be two sequences,

s is a subsequence oft if for somej1 < j2 < . . . < jm, s[h] = t[jh]. Let S be a set of sequences,

then alongest common subsequence of S is a longest possible sequences that is a subsequence

of each sequence inS.

A simple way to informally define a subsequence is by using thenotion of threading scheme.

First write the two sequences on two parallel lines, then a threading scheme is a set of lines, each

one connecting two identical symbols of different sequences, so that no two lines are crossing.

In this case a common subsequence consists of symbols connected by the non-crossing lines.

Given a set of sequencesS, the LCS problem asks for alongest common subsequence of S.

The complexity of the LCS problem has been deeply studied in the past. In [7] it is shown that

the problem isNP-hard even for sequences over binary alphabet. However, when the instance

of the problem consists of a fixed number of sequences, the LCScan be solved in polynomial
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time via dynamic programming algorithms [4], [5], [16].

The EXEMPLAR LCS problem (ELCS) is related to the LCS problem. The input ofthe ELCS

problem consists of a setS of sequences over alphabetAo ∪Am, Ao ∩Am = ∅, whereAo is the

set ofoptional symbols andAm is the set ofmandatory symbols. The output of the problem is

a longest common subsequence of all sequences inS that contains all mandatory symbols. Next

we state formally the ELCS problem.

Problem 1: ELCS PROBLEM

Input: a setS of sequences over alphabetAo ∪ Am, whereAo is the set ofoptional symbols

andAm is the set ofmandatory symbols. The setsAo, Am are disjoint.

Output: a longest common subsequence of all sequences inS that contains an occurrence of

each mandatory symbol inAm.

Given an instanceS of ELCS, byexemplar common subsequence we mean a feasible solution

of ELCS overS. It is possible to define different versions of the problem, according to the

number of occurrences of each symbol in the solution, as represented in Table I. In this paper

we will deal with such different versions of ELCS. First notice that ELCS(1) and ELCS(≥ 1)

are generalizations of the LCS problem. Indeed LCS problem can be seen as the restriction of

ELCS(1) and ELCS(≥ 1) with an empty set of mandatory symbols. Therefore all the hardness

results for LCS apply to ELCS(1) and ELCS(≥ 1). Moreover, we will show that the above

problems are hard also on instances of only two sequences (while the LCS problem can be

solved in polynomial time for any fixed number of sequences).When dealing with the restriction

of ELCS containing only a fixed number of sequences, we will denote such restriction prefixing

the problem name with the number of sequences, e.g. 2-ELCS(1,≤ 1) is the restriction of

ELCS(1,≤ 1) to instances of two sequences.

III. COMPLEXITY RESULTS

In this section we investigate the complexity of the 2-ELCS(1,≤ 1) problem and the 2-

ELCS(≥ 1,≤ 1) problem. More precisely we will show that both problems areAPX-hard even

when restricted to instances where each symbol appears at most twice in each input sequence.
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A. Complexity of 2-ELCS(1,≤ 1)

We prove that 2-ELCS(1,≤ 1) is APX-hard even when each symbol appears at most twice

in each input sequence via an L-reduction from MAX INDEPENDENT SET problem on Cubic

Graph (MISC) to 2-ELCS(1,≤ 1), since the MISC problem is known to beAPX-hard [1].

The MISC problem is defined as follows:

Problem 2: MISC PROBLEM

Input: G = (V, E) a cubic graph.

Output: a setV ′ ⊆ V of maximum size, such that no two verticesu, v ∈ V ′ are adjacent.

Let G = (V, E) be a cubic graph. SinceG is cubic, for each vertexvi ∈ V there are exactly

three edges incident on it; denote bye1(vi), e2(vi), e3(vi) these edges. The reduction associates

with each vertexvi a symbolvi of Ao and a symbolxi in Am. Furthermore, the reduction

associates with each edgeej ∈ E a distinct symbolsj ∈ Am.

Let vi ∈ V and let e1(vi), e2(vi) and e3(vi) be the edges incident on it. In what follows,

we denote bys(e1(vi)), s(e2(vi)), s(e3(vi)) respectively the symbols ofAm associated by the

reduction with edgese1(vi), e2(vi) and e3(vi). Notice that each edgee = (vi, vj) appears in

the incidence lists of bothvi and vj , thus e will be denoted byex(vi) and ey(vj), for some

1 ≤ x, y ≤ 3, in the incidence list ofvi and vj respectively. Nonetheless observe thate is

mapped to one distinct symbol ofAm, that iss(ex(vi)) = s(ey(vj)).

Define ablock associated with a vertexvi, as a string consisting of a vertex symbolvi, the sym-

bols associated with edges incident tovi in G and the symbolsxi. There are two possible blocks

associated withvi, one contained ins1 and defined asb1(vi) = vis(e1(vi))s(e2(vi))s(e3(vi))xi,

the second contained ins2 and defined asb2(vi) = s(e1(vi))s(e2(vi))s(e3(vi))vixi.

The instance of 2-ELCS(1,≤ 1) consists of the following two sequences:

s1 = b1(v1)b1(v2) · · · b1(vn), that is

s1 = v1s(e1(v1))s(e2(v1))s(e3(v1))x1v2 · · ·xn−1 vns(e1(vn))s(e2(vn))s(e3(vn))xn;

s2 = b2(v1)b2(v2) · · · b2(vn), that is

s2 = s(e1(v1))s(e2(v2))s(e3(v3))v1x1v2 · · ·xn−1 s(e1(vn))s(e2(vn))s(e3(vn))vnxn.

Lemma 1: Each exemplar common subsequence contains the symbolxi, andxi is taken from

blocksb1(vi) and b2(vi).

Proof: Observe that since each symbolxi is mandatory, hence it must appear in any feasible

solution of 2-ELCS(1,≤ 1). Furthermore observe that there is only one occurrence ofxi in s1
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and in s2. More preciselyxi occurs in blockb1(vi) in s1 and in blockb2(vi) in s2. It follows

that any symbolxi in a feasible solution of 2-ELCS(1,≤ 1) over s1 ands2 must be taken from

blocksb1(vi) and b2(vi).

Thus, we can divide an exemplar common subsequences in n blocks, where blocki of s

starts after the positions containing symbolxi−1 (or with the first symbol ofs if i = 1) and ends

in the position containing symbolxi. Observe that, since eachxi must appear in any exemplar

common subsequence, each block ofs contains at least one symbol.

Lemma 2: The i-th block of an exemplar common subsequences contains either symbolvi

or some symbols ins(e1(vi))s(e2(vi))s(e3(vi)).

Proof: Observe that blocki of s can contain only symbols from blocksb1(vi) and b2(vi).

Furthermore observe that if symbolvi is in an exemplar common subsequences, thens does

not contain any symbol ofs(e1(vi))s(e2(vi))s(e3(vi)) of b1(vi) and b2(vi), otherwise it is easy

to see that this block ofs will not be a subsequence ofi-th block of s1 or s2.

Now assume that none of the symbols ofs(e1(vi))s(e2(vi))s(e3(vi)) belongs to thei-th block

of s. Then if vi does not belong to thei-th block of s, we can obtain a better solution adding

vi to the i-th block of s.

Hence a feasible solutions of 2-ELCS(1,≤ 1) over s1, s2 consists off1x1 . . . fixi . . . fnxn,

where each blockfi is eithervi or a subsequence ofs(e1(vi))s(e2(vi))s(e3(vi)).

Theorem 3: The 2-ELCS(1,≤ 1) problem isAPX-hard even when each symbol appears at

most twice in each input sequence.

Proof: Consider the symbols of a common subsequences contained inb1(vi) andb2(vi). The

common subsequences contains the symbolxi and eithervi or some symbols ine1(vi)e2(vi)e3(vi).

Observe that each edge symbol is mandatory, which means thatit must appear exactly once in

a common subsequence. Moreover, an edge symbol encoding edge (vi, vj) appears in blocks

b1(vi) andb1(vj) of s1 and in blocksb2(vi) andb2(vj) of s2. Thus a common subsequence takes

such edge symbol either fromb1(vi) and b2(vi) or from b1(vj) and b2(vj).

Let I be the set of vertices appearing ins, we will show thatI is an independent set ofG.

Assume that symbolsvi, vj ∈ I. Then (vi, vj) is not an edge ofG, otherwises in fi and fj

contains symbolsvi and vj respectively. An immediate consequence is that the edge symbol

associated withe = (vi, vj), that can appear only infi andfj , is not contained ins. Since each

edge symbol is mandatory, it must appear in any feasible solution of 2-ELCS(1,≤ 1), which is
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C

A E
F

B

v
3

1v

D v4

2v

s1 = v1CAEx1v2CFBx2v3AFDx3v4EBDx4

s2 = CAEv1x1CFBv2x2AFDv3x3EBDv4x4

Fig. 1. The cubic graphK4 and its associated instance of 2-ELCS(1,≤ 1)

a contradiction. Observe that the length of a feasible solution s of 2-ELCS(1,≤ 1) over s1, s2

is |V |+ |E|+ |I|, whereI is an independent set ofG. Indeeds will contain symbols associated

with an independent setI and one occurrence of each mandatory symbol. Recall that theset of

mandatory symbols has size|V | + |E|.

On the other side, letI be an independent set ofG, we can compute a feasible solution of 2-

ELCS(1,≤ 1) overs1, s2 of size|V |+ |E|+ |I|, retaining in the exemplar common subsequence

only the symbols associated with vertices inI. SinceI is an independent set, for each edge

e = (vi, vj) at least one ofvi, vj is not in I, hence each symbol associated withe can be

retained once in a feasible solution of 2-ELCS(1,≤ 1) over s1, s2.

B. Complexity of 2-ELCS(≥ 1,≤ 1)

Next we show that also 2-ELCS(≥ 1,≤ 1) is APX-hard with a reduction similar to the

previous one. LetG = (V, E) be a cubic graph, for each vertexvi ∈ V , we introduce four

optional symbolsva
i v

b
i v

c
i v

d
i and the blocksb1(vi) and b2(vi) associated withvi in sequences

s1 and s2 respectively are defined as follows:b1(vi) = va
i v

b
i v

c
i v

d
i s(e1(vi))s(e2(vi))s(e3(vi))xi;

b2(vi) = s(e1(vi))s(e2(vi))s(e3(vi))v
a
i v

b
i v

c
i v

d
i xi. Recall thatxi ands(e1(vi)), s(e2(vi)), s(e3(vi))

are all mandatory symbols.

Since symbolsxi are mandatory and there is only one occurrence of eachxi in s1 ands2, it

follows that Lemma 1 holds. Each symbolxi appears in blocksb1(vi) and b2(vi) of s1 and s2

respectively, and any symbolxi in an exemplar common subsequence must be taken from the

blocks ofs1, s2 associated withvi, that isb1(vi) andb2(vi). Since each mandatory edge symbol
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appears twice in each input sequence, it must appear once or twice in a common subsequence.

Lemma 4: The i-th block of an exemplar common subsequences contains either sequence

va
i v

b
i v

c
i v

d
i or some symbols ins(e1(vi))s(e2(vi))s(e3(vi)).

Proof: It is easy to see that if sequenceva
i v

b
i v

c
i v

d
i is in a feasible solution of 2-ELCS(≥

1,≤ 1) over s1, s2, then this solution does not contain occurrences of symbolsof sequence

s(e1(v1))s(e2(v1))s(e3(v1)) in b1(vi) and b2(vi). This means that a feasible solutions of 2-

ELCS(≥ 1,≤ 1) over s1, s2 consists ofg1x1 . . . gixi . . . gnxn, where eachgi is either a subse-

quence ofva
i v

b
i v

c
i v

d
i or a subsequence ofs(e1(vi))s(e2(vi))s(e3(vi)).

Now assume that none of the symbols ofs(e1(vi))s(e2(vi))s(e3(vi)) belongs toi-th block of

s. Then if some of the symbolsva
i v

b
i v

c
i v

d
i do not belong to thei-th block of s, we can obtain a

better solution adding it to thei-th block of s.

Observe that each edge symbol is mandatory, which means thatit must appear exactly once

in an exemplar common subsequence. Thus an exemplar common subsequence takes each edge

symbol from one of the two blocks where it appears.

Theorem 5: The 2-ELCS(≥ 1,≤ 1) problem isAPX-hard even when each symbol appears at

most twice in each input sequence.

Proof: Let I be an independent set ofG, then s = g1x1 . . . gixi . . . gnxn, where each

gi = va
i v

b
i v

c
i v

d
i if vi ∈ I and gi = s(e1(vi))s(e2(vi))s(e3(vi)) otherwise. It is immediate to note

thats is a common subsequence ofs1 ands2 of length|V |+3(|V |−|I|)+4|I| = |V |+3|V |+ |I|

and that all mandatory symbols encoding an edge are includedin s. W.l.o.g. assume to the

contrary that a symbol encoding the edge(v1, v2) is not included ins. This fact implies that

g1 = va
1
vb
1
vc
1
vd
1

and g2 = va
2
vb
2
vc
2
vd
2
, hencev1, v2 ∈ I, contradicting the assumption thatI is an

independent set ofG.

Assume now that there exists a feasible solutions of 2-ELCS(≥ 1,≤ 1) over s1, s2 with

length |V | + 3|V | + |I|. We can assume that, for each block ins1, s2, either va
i v

b
i v

c
i v

d
i or

s(e1(vi))s(e2(vi))s(e3(vi)) appears as a substring ofs. Let Y be the set of blocks for which

va
i v

b
i v

c
i v

d
i is part ofs. Hence the vertices corresponding toY are an independent set ofG. By a

trivial counting argument, it is easy to show that for|I| blocks,s includesva
i v

b
i v

c
i v

d
i . We claim

that such blocks encode an independent set. W.l.o.g. assumethat va
1
vb
1
vc
1
vd
1

and va
2
vb
2
vc
2
vd
2

are

included ins, then there is no edge(v1, v2) in G, otherwise the mandatory symbol encoding

such edge would not be ins.
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IV. EXISTENCE OF A FEASIBLE SOLUTION

Given an instance of 2-ELCS, a problem related to 2-ELCS is that of determining if a feasible

solution exists. In what follows we will consider a general version of the 2-ELCS problem, where

the instance consists of two sequencess1, s2 over alphabetAo ∪Am and we want to compute if

there exists a subsequence ofs1 ands2 containing all the mandatory symbols inAm. Observe that

computing if a feasible solution of 2-ELCS exists implies computing if a feasible solution exists

for each of the problems 2-ELCS(1,≤ 1), 2-ELCS(1), 2-ELCS(≥ 1,≤ 1) and 2-ELCS(≥ 1).

Notice that both reductions described in the previous section hold for instances that are known

to admit a feasible solution, therefore they are not sufficient for dealing with the problem.

A simple observation allows to simplify the complexity of the problem: in fact only mandatory

symbols are relevant, as removing all optional symbols doesnot change the fact that a feasible

solution exists or not. Therefore in what follows we can assume that both input sequences are

made only of mandatory symbols. Clearly, in order to have a feasible solution, each mandatory

symbol must appear in both input sequencess1 ands2. It is trivial to verify in polynomial time

such property, hence in what follows we assume that each mandatory symbol appears in both

input sequences.

The number of occurrences of each mandatory symbol in the instance is a fundamental

parameter when studying the complexity of 2-ELCS problem. Indeed we will show that finding

a feasible solution can be done in polynomial time for small values of such parameter, but

becomes intractable when each symbol occurs three times in each input sequence.

A. A polynomial time algorithm

First we investigate the case when each mandatory symbol appears in total at most three times

in the input sequences. We will present a polynomial time algorithm for this case, reducing an

instance of 2-ELCS where each mandatory symbol appears in total at most three times in the

input sequences, to an instance of 2SAT (the restriction of SATISFIABILITY to instances where

each clause contains at most two literals). It is well known that 2SAT can be solved in linear

time [2].
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S1

S2
x

xs,1 x
x

x
s,2

u,1
v,1

t,1

Fig. 2. Reducing 2-ELCS to 2SAT

For each symbols, let o1(s) (respectivelyo2(s)) be the set of positions of the input sequences1

(resp.s2) wheres appears. Clearly botho1(s) ando2(s) are not empty and|o1(s)|+ |o2(s)| ≤ 3.

It follows that for each symbols, there exists one ofs1 ands2 containing exactly one occurrence

of s, while in the other sequence there are one or two occurrencesof s. It follows that for each

symbol s there are at most two pairs ino1(s) × o2(s), for otherwise|o1(s)| + |o2(s)| > 3. Let

us associate with each of such pairs a variablexs,i, wherei ∈ {1, 2} if there are two pairs in

o1(s)×o2(s) andi = 1 if there is only one pair ino1(s)×o2(s). Graphically the possible variables

are represented in Fig. 2 with a line connecting two identical symbols belonging to different

sequences. The case|occ1(s)| + |occ2(s)| = 3 is represented by the two leftmost lines and the

variablesxs,1, xs,2, while the case|occ1(s)| + |occ2(s)| = 2 is represented by the rightmost line

and the variablext,1. Each truth assignment to the variables can be viewed as picking the lines

corresponding to true variables.

Let C be the set of clauses of the instance of 2SAT that we are constructing. For each pair

xs,1, xs,2 of variables, the clauses¬xs,1 ∨ ¬xs,2 and xs,1 ∨ xs,2 are added toC. Moreover, for

each symbols such that there is only one pair ino1(s) × o2(s), add the clausexs,1 to C (this

corresponds to forcing the variablexs,1 to be true). Two lines (or two variables) are called

crossing if they cross in the drawing built as in Fig. 2.

If there exists a solutionS of 2SAT that satisfies all the clauses inC, thenS picks exactly

one of the lines associated with each symbol. More formally,notice that each variablexs,i is

associated with an occurrence of symbols in sequences1 (denoted ass1(s, i)) and one occurrence

of symbol s in sequences2 (denoted ass2(s, i)). A pair xs,i, xt,j of variables is crossing if in

s1 the symbols1(s, i) precedess1(t, j) and in s2 the symbols2(s, i) does not precedes2(t, j)

or, symmetrically, if ins1 the symbols1(s, i) does not precedes1(t, j) and in s2 the symbol

s2(s, i) precedess2(t, j). For each pairxs,i, xt,j of crossing variables, the clause¬xs,i ∨¬xt,j is

November 22, 2006 DRAFT



12

added toC.

Theorem 6: The problem of determining if a feasible solution exists foran instance of 2-

ELCS where each mandatory symbol appears in total at most three times in the input sequences,

can be solved in polynomial time.

Proof: We prove that the original instance of 2-ELCS has a feasible solution if and only

if the corresponding instance of 2SAT is satisfiable, that isthere is a truth assignment for all

variables such that all clauses inC are evaluated true. Assume that there is a feasible solution

z of the instance of 2-ELCS then, for each symbols, we pick the lines connecting the symbols

retained inz. By definition of common subsequence there cannot be two crossing lines, and

exactly one of the lines associated with each symbol must be picked asz in an exemplar

common subsequence, thus all the symbols must belong tos. Therefore we have constructed a

feasible solution of 2SAT.

Conversely given a truth assignmentA for variables that satisfies all clauses inC, it follows

that there are no two crossing variables inA. Indeed, for each pair of crossing variablesxs,i, xt,j

a clause¬xs,i ∨ ¬xt,j is in C and this clause can be true iff at least one ofxs,i, xt,j is false.

Moreover, the two clauses¬xs,1 ∨ ¬xs,2 and xs,1 ∨ xs,2 are true if and only if there is exactly

one of the variablesxs,1,xs,2 true in A and one of the variablesxs,1,xs,2 false inA. Hence there

is exactly one line for each symbol, therefore it is immediate to construct a feasible solution of

2-ELCS that contains all symbols.

The overall complexity of the algorithm is quadratic, sincewe build a clause for each pair

xs,i, xt,j of crossing variables.

Notice that the above result holds for all the restrictions of 2-ELCS considered here, as no

symbol appears twice in both input sequences, therefore it can appear at most once in any

solution.

B. NP-hardness

In what follows we will show that slightly relaxing the constraint on the number of occurrences

of each symbol makes the problemNP-hard.

Theorem 7: The problem of determining if a feasible solution exists foran instance of 2-

ELCS where each mandatory symbol appears at most three timesin each input sequence, is

NP-hard.
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Proof: We will prove the theorem reducing 3SAT to 2-ELCS, with a reduction very similar

to the one shown before. LetC = {C1, . . . , Ck} be a set of clauses, each one consisting of at most

three (possibly negated) literals. We construct an instance of 2-ELCS associating a block with

each variable. The block ofs1 associated with variablexi is defined as the symbolxi, followed

by the sequence of clauses containingxi, followed by the sequence of clauses containing¬xi,

where in each sequence the clauses are ordered according to the index in{C1, . . . , Ck}. In s2

the block associated with variablexi is defined as the symbolxi, followed by the sequence of

clauses containing¬xi, followed by the sequence of clauses containingxi (again the clauses are

ordered according to the index in{C1, . . . , Ck}). For example ifx1 appears negated inC1 and not

negated inC2, C3, then the corresponding blocks arex1C2C3C1 (in s1) andx1C1C2C3 (in s2).

Both sequencess1 ands2 consist of the sequence of all blocks associated with the variables of

the original instance of 3SAT. All symbols are mandatory, also notice that each symbol appear

at most three times in each sequence as each clause contains at most three literals.

Each symbolxi appears exactly once in each sequence, hence there is no ambiguity on which

occurrence is retained in any exemplar common subsequence.Consequently each symbol retained

must correspond to occurrences taken from the same block. Inside the block associated withxi,

retaining the clauses wherexi appears as a positive literal is mutually exclusive with retaining the

clauses wherexi appears as a negative literal, by definition of exemplar common subsequence.

The first case (that is retaining the clauses wherexi appears as a positive literal) corresponds

to settingxi to true, while the second case corresponds to settingxi to false. In both cases the

clauses retained are satisfied by the assignment of variables xi.

Any feasible solution of 2-ELCS over sequencess1 ands2 must contain all symbols associated

with clauses, therefore we have computed a truth assignmentof the variables that satisfies all

clauses inC, completing the proof.

The above results have a definitive consequence on the approximability of the 2-ELCS problem

where each mandatory symbol appears at most three times in both input sequences, as they rule

out any polynomial-time approximation algorithm (irregardless of the approximation factor).

V. INSTANCES OF MORE THAN2 SEQUENCES

Since the problem can be extended to instances consisting ofa set of sequences, it is interesting

to know if the above results can be made stronger. In fact, thewell-known inapproximability
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results in [6] for the LCS problem, immediately apply also tothe ELCS(≥ 1) problem, since

ELCS(≥ 1) is more general than LCS. A closer inspection of their proofsshows that their results

also apply to all versions of ELCS, as the optimal solutions in their reductions contain at most

one occurrence of each symbol, excluding anyO(n1−ǫ) ratio polynomial-time approximation

algorithm unlessZPP=NP, even if no mandatory symbol is allowed and all symbols appear at

most twice in each sequence.

VI. I NSTANCES CONTAINING NO MANDATORY SYMBOL

Consider the restrictions of problems 2-ELCS(1,≤ 1) and 2-ELCS(≥ 1,≤ 1), whereAm = ∅.

Observe that the two problems are equivalent, since each feasible solution of the two problems

consists only of optional symbols and each optional symbol can occur at most once. Denote

by 2-ELCS(*,≤ 1) the restriction above. Next we will show that the 2-ELCS(*,≤ 1) is NP-

hard modifying the reduction in Section III-A, replacing all the mandatory symbols by optional

symbols.

First, each mandatory symbolxi can be replaced by a sufficiently long sequencewj of new

optional symbols. Let|wj| = 10n, wheren represents the number of vertices of the cubicG,

that isn = |V |. It follows that, for eachxi, either all or no symbols ofwj are included in the

solution. Indeed if a set of symbols ofwj appears in a solution, it follows that we could add all

the remaining symbols ofwi without shortening the resulting exemplar common subsequence.

Furthermore, since|wi| = 10n, all sequenceswi must be included in an exemplar common

subsequence, otherwise the resulting solution is too short. Notice that eachxi appears exactly

once in the reduction.

It remains to replace the mandatory symbols associated withedges, each with a sequence of

unique symbols. Replace each edge symbols(eij) with a sequencesz(eij) of new mandatory

symbols, such that|z(eij)| = n. Again either all or no edge symbols are included in the solution.

Now if edgeeij is incident to verticesvi and vj , z(eij) will appear in blocksi and j of s1

and s2. It follows that one of the two occurrences ofz(eij) might be taken. Since all symbols

of wi are taken, either the occurrences ofz(eij) in block i of both s1 ands2 or the occurrences

of z(eij) in block j of both s1 and s2 are taken, that is the threading scheme ofz(eij) cannot

cross the threading scheme ofwi. Observe that at most one occurrence ofz(eij) can be taken

in a solution of 2-ELCS(*,≤ 1). Still, at least one symbol of both occurrences ofz(eij) must
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be taken and it is always possible to take only the symbols of one of the occurrences ofz(eij)

without shortening the resulting exemplar common subsequence.

VII. F IXED PARAMETER ALGORITHMS

In this section we propose some fixed parameter algorithms for the resolution of the 2-ELCS(1)

and 2-ELCS(≥ 1) problems, where the parameter is the number of mandatory symbols. First

we describe a naive approach, then we present two dynamic programming algorithms. In what

follows we denote bys1 ands2 the two input sequences, byAm = {α1, α2, . . . , αm} the set of

mandatory symbols and byn the maximum of|s1| and |s2|.

A. Naive approach

We present a naive algorithm for2-ELCS(1) which is based on two phases: the first step

consists of guessing the exact ordering of all mandatory symbols in the optimal solution, the

second step basically fills in the gaps between each pair of mandatory symbols. Since each

mandatory symbol appears exactly once in a feasible solution, the correct ordering of the

mandatory symbol is a permutation ofAm, which can be computed inO(m!) time.

Assume thats is an optimal permutation of mandatory symbols, the second phase consists of

computing a longest common subsequences∗ of {s1, s2}. Notice that each optional symbol can

appear an unrestricted number of times in any solution. Let us denote bys[i] the i-th character

of the sequences and by s[i . . . j] the substring ofs starting with s[i] and ending withs[j].

The recurrence equation for EL[i, j, k], that is the length of an optimal solution overs1[1 . . . i],

s2[1 . . . j], which are both supersequences of the sequences[1] · · · s[k], is:

EL[i, j, k] = max











































































EL[i − 1, j − 1, k] + 1

if s1[i] = s2[j], s1[i] ∈ Ao

EL[i − 1, j − 1, k − 1] + 1

if s1[i] = s2[j] = s[k]

EL[i − 1, j, k], EL[i, j − 1, k]

always

EL[i − 1, j, k], EL[i, j − 1, k]

always
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The boundary conditions are EL[0, j, 0] = 0 and EL[i, 0, 0] = 0 for 0 ≤ i ≤ |s1| and 0 ≤

j ≤ |s2|. The value of an optimal solution can be read in EL[|s1|, |s2|, |s|]. Once the matrix EL

has been completely filled in, the actual optimal subsequence can be constructed with standard

backtracking techniques [3]. The recurrence equation described above can be easily modified for

the 2-ELCS(≥ 1), by removing the requirements1[i] ∈ Ao in the first condition of the equation.

B. Dynamic programming algorithms

The algorithm described above computes the maximum length of an exemplar common sub-

sequence, by computing all the possible permutations of mandatory symbols. Observe that if

the number of mandatory symbols ism then the number of permutations ism! and the above

algorithm has time complexityO(m!n2). Next we present dynamic programming algorithms

to compute the maximum length of an exemplar common subsequence of time complexity

O(m2mn2). Let sx be a sequence, recall that we denote bysx[i . . . j] the subsequence ofsx

starting in positioni and ending in positionj.

First, we describe a dynamic programming algorithm to compute the existence of a feasible

solution of 2-ELCS. Denote by ES[i, j] where1 ≤ i ≤ |s1| and1 ≤ j ≤ |s2|, a boolean function

which is true iff there exists a feasible solution of 2-ELCS with input sequencess1[1 . . . i] and

s2[1 . . . j], otherwise it isfalse. Let z be a feasible solution of 2-ELCS, we call therestriction

of z and denote it byzr, the subsequence ofz consisting only of the rightmost occurrence of

each mandatory symbol.

Lemma 8: Let zr be restriction of a feasible solutionz of 2-ELCS and letα ∈ Am be the

rightmost mandatory symbol ofzr. Then there exist two occurrencesj1 and j2 of α in s1 and

s2 respectively, such thatzr[1 . . .m− 1] is a restriction of an exemplar common subsequence of

s1[1 . . . j1 − 1] ands2[1 . . . j2 − 1] with set of mandatory symbolsAm − {α}.

Proof: In order to obtain a feasible solution we have to guarantee that each mandatory

symbol has at least one occurrence. Sinceα is the rightmost symbol inzr, it follows that

zr[1 . . .m − 1] must contain all mandatory symbols inAm − {α}. Now assume thatzr[m] is

taken from two occurrencesj1 and j2 of α in s1 and s2 respectively. It follows that all the

mandatory symbols inzr[1 . . .m − 1], that is inAm − {α}, must be taken froms1[1 . . . j1 − 1]

ands2[1 . . . j2 − 1], thuszr[1 . . .m− 1] is a restriction of an exemplar common subsequence of

s1[1 . . . j1 − 1] ands2[1 . . . j2 − 1] with set of mandatory symbolsAm − {α}.
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Observe that there must be a mandatory symbolα ∈ Am which is the rightmost mandatory

symbol in a feasible solution. Thus function ES[n, m] is true if and only if there exists a

feasible solution ES[r(o1(α))−1, r(o2(α))−1] over the sets of mandatory symbols inAm−{α},

wherer(o1(α)) (resp.r(o2(α))) represents the rightmost occurrence ofα in s1 ( resp.s2) with

r(o1(α)), r(o2(α)) ≤ n.

Denote by ES[j1, j2, A′], whereA′ ⊆ Am is a subset of the mandatory symbols, a boolean

function which has valuetrue iff there exists a feasible solution of 2-ELCS with input sequences

s1[1 · · · j1], s2[1 · · · j2] containing all the mandatory symbols inA′, otherwise it has valuefalse.

ES[i, j, A′] =
∨

α∈A′



















































ES[i − 1, j − 1, A′ − {α}]

if s1[i] = s2[j], s1[i] ∈ A′

ES[i − 1, j − 1, A]

if s1[i] = s2[j], s1[i] /∈ A′

ES[i, j − 1, A′] always

ES[i − 1, j, A′] always

(1)

The boundary conditions are ES[i, j, ∅] = true for all 0 ≤ i ≤ |s1|, 0 ≤ j ≤ |s2|; ES[0, j, A′] =

false and ES[i, 0, A′] = false for 0 ≤ i ≤ |s1| and0 ≤ j ≤ |s2| and for all subsetsA′ ⊆ Am,

A′ 6= ∅. The existence of a feasible solution of 2-ELCS can be read inES[|s1|, |s2|, Am].

The time complexity of the above algorithm isO(m2mn2). Indeed, each partial solution is

computed by evaluating at mostO(m) equations, since we have to choose a mandatory symbol

α ∈ A′, |A′| ≤ m. The number of partial solutions isO(2mn2), since the possible subsets

A′ ⊆ Am areO(2m), while indices1 ≤ i ≤ |s1|, 1 ≤ j ≤ |s2|.

Now we extend the approach to compute a feasible solution, inorder to design an algorithm

that computes an exemplar longest common subsequence, thatis a solution of the optimization

problem. Informally, since (1) computes the rightmost occurrence of a mandatory symbol of set

A′ in a (possible) feasible solution, we have to add to the solution some symbols between a pair

of consecutive mandatory symbols.

First, we discuss the case when the solution must contain exactly one occurrence of each

mandatory symbol, while the occurrences of each optional symbol are unrestricted. Denote by

EL[j1, j2, A′] whereA′ ⊆ Am is a subset of the mandatory symbols, a function which represents

the length of a longest exemplar common subsequence with input sequencess1[1 · · · j1], s2[1 · · · j2]
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containing one occurrence of each mandatory symbol inA′. Indeed occurrences of mandatory

symbols inA′ − {α} occurs at the left ofi1 and i2 sinceα is the rightmost mandatory symbol

for hypothesis, while symbols inAm − A′ − {α} have already an occurrence in the exemplar

subsequence.

The following is the recurrence to compute EL[j1, j2; A′].

EL[i, j, A′] = max
α∈A′



















































EL[i − 1, j − 1, A′ − {α}]

if s1[i] = s2[j] = α, α ∈ A′

EL[i − 1, j − 1, A′]

if s1[i] = s2[j], s1[i] ∈ Ao

EL[i, j − 1, A′] always

EL[i − 1, j, A′] always

(2)

Denote by LSO[j1,j2] the size of a longest common subsequence with input sequences

s1[1 · · · j1], s2[1 · · · j2], where all mandatory symbols in setAm are removed from intervals[1, j1]

and[1, j2]. The boundary conditions are EL[i, j, ∅] = LSO[i, j] for 0 ≤ i ≤ |s1| and0 ≤ j ≤ |s2|,

EL[0, j, A′] = −∞ and EL[i, 0, A′] = −∞ for 0 ≤ i ≤ |s1| and0 ≤ j ≤ |s2| and for each subset

A′ ⊆ Am, A′ 6= ∅. The value of the optimal solution can be read in EL[|s1|, |s2|, Am].

The time complexity of the algorithm isO(m2mn2). Indeed, each partial solution is computed

by evaluating at most four equations. The number of partial solutions is O(2mn2), since the

possible subsetsA′ ⊆ Am areO(2m), while indices1 ≤ i ≤ |s1|, 1 ≤ j ≤ |s2|.

Next we consider the case of 2-ELCS when a solution contains at least one occurrence of each

mandatory symbol, while the occurrences of each optional symbol are unrestricted. Once again,

we assumeα is the rightmost mandatory symbol of a longest exemplar common subsequence of

length EL[j1, j2, A′]. With respect to (2), observe that we can add to a solution also mandatory

symbols that are not inA′, since each mandatory symbol can appear more than once in a solution.
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EL[i, j, A′] = max
α∈A′



















































EL[i − 1, j − 1, A′ − {α}]

if s1[i] = s2[j] = α, α ∈ A′

EL[i − 1, j − 1, A′]

if s1[i] = s2[j], s1[i] ∈ Ao ∪ Am − A′

EL[i, j − 1, A′] always

EL[i − 1, j, A′] always

(3)

Denote by LSM[j1,j2] the size of a longest common subsequence with input sequences

s1[1 · · · j1], s2[1 · · · j2].

The boundary conditions are EL[i, j, ∅] = LSM [i, j] for 0 ≤ i ≤ |s1| and 0 ≤ j ≤ |s2|;

EL[0, j, A′] = −∞ and EL[i, 0, A′] = −∞ for 0 ≤ i ≤ |s1| and0 ≤ j ≤ |s2| and for each subset

A′ ⊆ Am, A′ 6= ∅. The value of the optimal solution can be read in EL[|s1|, |s2|, Am].

The time complexity of the algorithm isO(m2mn2). Indeed, each partial solution is computed

by evaluating at most four equations. As before, the number of partial solutions isO(2mn2),

since the possible subsetsA′ ⊆ Am areO(2m), while indices1 ≤ i ≤ |s1|, 1 ≤ j ≤ |s2|.

VIII. I MPLEMENTATION

The algorithm described in recurrence (2) has been implemented and tested on randomly

generated data. More precisely, we have tested the algorithm with two input sequences of length

200 and with an alphabet of mandatory symbolsAm of size10. The algorithm produces the output

in a few seconds. However, the space complexity of the algorithm, which grows exponentially

in the size ofAm, makes the algorithm not practical when the size ofAm is 20 or more.

We have implemented and tested a different dynamic programming algorithm to deal with the

problem. This second algorithm uses a different approach and it preprocesses subsequences of

the input sequences consisting only of optional symbols. However, the first approach turns out

to be much more efficient both in time and space than the latterone. Both implementations are

freely available athttp://www.algo.disco.unimib.it/ and licenced under the GNU

General Public Licence.

IX. OPEN PROBLEMS

In this paper we have investigated the computational and approximation complexity of several

versions of the Exemplar Longest Common Subsequence problem. Some interesting cases con-
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cerning the computational complexity of the Exemplar Longest Common Subsequence problem

still needs to be addressed. More precesely, we have shown that the 2-ELCS problem when

each mandatory symbol appears in total at most three times inthe input sequences admits

a polynomial time algorithm. Such an algorithm determines if a feasible solution exists, but

different feasible solutions can lead to exemplar common subsequences of different lenght.

Indeed the computational complexity of the problem of computing an exemplar longest common

subsequence when each mandatory symbol appears in total at most three times in the input

sequences is still not known. Furthermore, we have shown that the 2-ELCS problem isNP-

hardwhen each mandatory symbol appears at least three timesin both input sequences. Hence

it is not known the computational complexity of the2-ELCS problem when each mandatory

symbol appears less than three times in at least one sequence, while it appears in total more

than three times in the two input sequences.

We have proposed fixed parameter algorithms to compute an Exemplar Longest Common

Subsequence. Observe that both the time and space complexity of these algorithms is exponential

on the size of the set of mandatory symbolsAm. In particular, the space complexity makes

the algorithm not practical when the size ofAm is 20 or more. Hence an interesting issue

concerning the implementation of these algorithms, is the reduction of the space complexity of

such algorithms.
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