Guillaume Blin
email: gblin@univ-mlv.fr

Cedric Chauve
email: cedric.chauve@sfu.ca

Guillaume Fertin
email: fertin@lina.univ-nantes.fr

Romeo Rizzi
email: romeo.rizzi@dimi.uniud.it

Stéphane Vialette
email: vialette@lri.fr

Comparing Genomes with Duplications: a Computational Complexity Point of View

Keywords: Comparative genomics, computational complexity, common intervals, maximum adjacency disruption number, summed adjacency disruption number

published or not. The documents may come L'archive ouverte pluridisciplinaire

I. INTRODUCTION

The comparison of whole genomes from the gene order point of view has been a very active research domain since the early 90's. In this context, genomes are modeled by sequences of integers, each integer representing a single gene or a genomic marker 1 . In phylogeny reconstruction, the main problem is thus to compute a (dis)similarity measure between the corresponding integer sequences, that approximates the true evolutionary distance between these genomes (see for instance [START_REF] Sankoff | Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome[END_REF] for one of the first papers using this approach and [START_REF] Bourque | Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages[END_REF] for a recent application to vertebrate genomes). Most of the mathematical models developed to compute such (dis)similarity measures are based on the assumption that a given integer appears exactly once in each considered genome.

The rationale of this approach is that genomes are thus simply represented by permutations. However, aside some particular cases such as mitochondrial genomes [START_REF] Sankoff | Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome[END_REF], due to several evolutionary mechanisms (duplication/loss or whole genomes duplications [START_REF] Sankoff | Gene and genome duplication[END_REF]) duplicated genes are very common in genomes. As a result, real data cannot be naturally modeled by permutations.

A first way to overcome such a limitation is to consider genomes at a higher scale than genes, e.g., synteny blocks [START_REF] Bourque | Comparative architectures of mammalian and chicken genomes reveal highly variable rates of genomic rearrangements across different lineages[END_REF]. However, if one wants to stay at the level of genes, or more generally short genomic markers, one has to deal with the fact that genomes are modeled by sequences of integers where some integers may appear more than once in a given genome. Such genes that appear at several occurrences are said to belong to non-trivial gene families. Two genes represented by the same integer are said to have the same label. Recently, a new two-step permutation based approach has been proposed for computing (dis)similarity measures between genomes. The first step consists in transforming the two sequences into a single permutation P by establishing a oneto-one correspondence between pairs of genes having the same label (and then, by resorting to renaming procedure, we can always assume that one of the two permutations is the identity permutation, see Section II). In the second step, a permutation-based (dis)similarity measure is computed from the permutation P . The main line of research following this approach seeks for the permutation P that optimizes the (dis)similarity measure. The classical criterion retained to define the optimal (dis)similarity measure is the parsimony criterion: one tries to compute the permutation P that induces the maximal (resp. minimal) similarity (resp. dissimilarity) measure. Note however that there exists other methods that are based on the principle of transforming a pair of integer sequences into a permutation but do not aim at optimizing a (dis)similarity measure for the resulting permutation (see [START_REF] Korbel | Shot: a web server for the construction of genome phylogenies[END_REF]- [START_REF] Blin | Inferring positional homologs with common intervals of sequences[END_REF] for example).

There are two main approaches for computing a one-to-one correspondence between two integer sequences. In the exemplar model, introduced by Sankoff [START_REF] Sankoff | Genome rearrangement with gene families[END_REF], for every non-trivial gene family, all but one copy in each genome are deleted. The pair of genes that is conserved for each family is called a pair of ancestral homologs, as the goal of the exemplar method is to find the pair of genes which best reflects the original position of the ancestral gene in the common ancestor genome. The matching model is more general as it allows to conserve more than one copy of a gene family and seeks for a maximal one-to-one correspondence between these copies [START_REF] Blin | CompBioNets 2004: Algorithms & computational methods for biochemical and evolutionary networks[END_REF]. Several distances have been considered under the exemplar and matching models, that are either based on minimizing the number of evolutionary events that allow to transform a genome into the other, for events like reversals2 [START_REF] Sankoff | Genome rearrangement with gene families[END_REF], [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF]- [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF], reversals and insertions and deletions [START_REF] Marron | Genomic distances under deletions and insertions[END_REF], [START_REF] Tang | Phylogenetic reconstruction from gene-rearrangement data with unequal gene content[END_REF], reversals and translocations [START_REF] Fu | A parsimony approach to genome-wide ortholog assignment[END_REF], or on maximizing a similarity measure based on conserved structure in permutations like the number of adjacencies (which is equivalent to minimizing the number of breakpoints) [START_REF] Sankoff | Genome rearrangement with gene families[END_REF], [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF], [START_REF] Thach | Algorithms for calculating exemplar distances[END_REF], [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF], [START_REF] Nguyen | Divide-and-conquer approach for the exemplar breakpoint distance[END_REF] or the number of conserved intervals [START_REF] Blin | Conserved interval distance computation between non-trivial genomes[END_REF]- [START_REF] Angibaud | On the inapproximability of similarity measures between genomes containing duplicates[END_REF]. As far as we know, none of the above problems has been shown to be solvable in polynomial time, and in fact most of them have been shown to be NP-complete as soon as duplicates are present in genomes (see Tables I andII, in Section VI).

In this paper, we present new results on the algorithmic complexity of computing different (dis)similarity measures between pairs of genomes that contain duplicates. We describe results for three (dis)similarity measures, namely number of common intervals, Maximum Adjacency Disruption number (MAD) and Summed Adjacency Disruption number (SAD), which will be defined in Section II. We focus in Section III on the problem of computing the number of common intervals in genomes containing duplicates, and show that the problem is NP-complete in both the matching and exemplar models. In Sections IV and V, we prove that, under both models, both the MAD and SAD problems are APX-hard when genomes contain duplicates.

II. PRELIMINARIES

In this section, we precisely define the three similarity measures we are interested in, together with the exemplar and matching models. As mentioned in the introduction, the three considered measures (number of common intervals, MAD and SAD) are defined for duplication-free genomes only, and hence one has first to disambiguate the data by inferring homologs, i.e., a non-ambiguous mapping between the genes of the two genomes.

We need some notations. A genome is a sequence of unsigned integers. Let G be a genome of size n. As mentioned above, a gene family is any integer that occurs in G, regardless to its number of occurrences. A gene is an occurrence of a gene family in G, and we denote by G[i] the gene that occurs at position i in G. Let occ(G, g) denote the maximum number of occurrences of a gene g in genome G, and let occ(G) be the maximum of occ(G, g) over all genes g in G. The genome G is said to be duplication- Given two genomes containing duplications, a first step is thus to establish a nonambiguous mapping between the genes of the two genomes. In the exemplar model, for all gene families, all but one occurrence in each genome is deleted. In other words, we are looking for a matching M = {(i 1 , j 1), (i 2 , j 2), . . . ,

free if occ(G) = 1. Let G 1 and G 2 be two genomes. A matching M between G 1 and G 2 is a set of pairwise disjoint pairs M = {(i 1 , j 1), (i 2 , j 2), . . . , (i k , j k)} such that G 1 [i] = G 2 [j] for all 1 ≤ ≤ k. A maximum matching between G 1 and G 2 is
(i k , j k)} between G 1 and G 2 such that (i) G 1 [i] = G 1 [i]
for all 1 ≤ < ≤ k and (ii) each gene family occurs in one pair of M. In the matching model, the goal is to map as many genes as possible, i.e., find a maximum matching between G 1 and G 2 . The rationale of this preliminary step is that we may now assume that the two genomes are duplication-free. Indeed, suppose the first step results in the matching M, we thus modify the two genomes G 1 and G 2 as follows:

1) we delete all genes in G 1 and G 2 that are not part of the matching M, and 2) we rename the genes of G 1 and G 2 according to the index of the associated pair in M.

Observe that the resulting genomes are both of size |M|. According to the above (for both the exemplar and the matching models), if a gene family occurs in one genome but not in the other then all occurrences of this gene family will be deleted in the end. Therefore, we may thus assume in the sequel that any gene family of G 1 is a gene family of G 2 , and conversely.

We now turn to precisely define the three similarity measures we are interested in. As mentioned before, we assume now that the two genomes are duplication-free, i.e., both G 1 and G 2 are permutations of size n. Moreover, for convenience, by first resorting to an easy renaming procedure we can always assume that one of the two genomes, say [START_REF] Sankoff | Genome rearrangement with gene families[END_REF] DRAFT G 1 , is the identity permutation, i.e., G 1 = 1 2 . . . n.

a) Number of common intervals:

A common interval between G 1 and G 2 is a substring of G 1 , i.e., a consecutive sequence of genes of G 1 , for which exactly the same content can be found in a substring of G 2 . For example, if G 1 = 1 2 3 4 5 and G 2 = 1 4 3 5 2 then 1, 2, 3, 4, 5, 3 4, 3 4 5, 2 3 4 5 and 1 2 3 4 5 are common intervals.

Notice that there exist at least n + 1 common intervals between G 1 and G 2 since each individual gene is always a common interval and G 1 itself is also a common interval.

This lower bound is tight as shown by

G 1 = 1 2 3 4 and G 2 = 2 4 1 3. Furthermore, if G 1 = G 2 , the number of common intervals between G 1 and G 2 is n(n+1)

2

, i.e., each possible substring of G 1 is a common interval.

b) Maximum Adjacency Disruption Number (MAD):

This notion has been introduced by Sankoff and Haque [START_REF] Sankoff | Power boosts for cluster tests[END_REF]. The MAD number between G 1 and G 2 , denoted

MAD(G 1 , G 2), is defined by MAD(G 1 , G 2) = max{M 1 , M 2 },
where

M 1 = max{Dist(G 2 , G 1 [i], G 1 [i+1]) : 1 ≤ i ≤ n-1} and M 2 = max{Dist(G 1 , G 2 [i], G 2 [i+ 1]) : 1 ≤ i ≤ n -1}.
The rationale of this double maximization measure lies in the fact that, in general,

M 1 = M 2 . For instance, if G 1 = 1 2

c) Summed Adjacency Disruption Number (SAD):

This notion has also been introduced by Sankoff and Haque [START_REF] Sankoff | Power boosts for cluster tests[END_REF] and can be seen as a global variant of the MAD number. The SAD number between G 1 and G 2 , denoted SAD(G 1 , G 2), is defined by

SAD(G 1 , G 2) = 1≤i≤n-1 Dist(G 2 , G 1 [i], G 1 [i + 1]) + 1≤i≤n-1 Dist(G 1 , G 2 [i], G 2 [i + 1]).

Going back to our example

G 1 = 1 2 3 4 5 and G 2 = 1 4 3 5 2, one obtains SAD(G 1 , G 2) = (4 + 2 + 1 + 2) + (3 + 1 + 2 + 3) = 18.
January 25, 2007 DRAFT

Of particular importance from a computational complexity point of view, we observe that the MAD and SAD numbers are dissimilarity measures, i.e., the associated optimization problem is a minimization one ; on the contrary, the number of common intervals is a similarity measure, i.e., the associated optimization problem is a maximization one.

III. NUMBER OF COMMON INTERVALS

In this section, we investigate the algorithmic complexity of computing the number of common intervals between two genomes, in both the exemplar and matching models. Let ECOMI (resp. MCOMI) denote the problem of computing the maximum number of common intervals in the exemplar (resp. matching) model. We show that both ECOMI and MCOMI are NP-complete, even for restricted instances. The proof we give below is valid for both models, since it shows NP-completeness in the case where occ(G 1) = 1. However, in order to simplify notations, we will mention in the proof only the exemplar model (i.e., the ECOMI problem). The proof is made by reduction from VERTEXCOVER. Starting from any instance of VERTEXCOVER (that is, a graph

G = (V, E) with V = {v 1 , v 2 . . . v n } and E = {e 1 , e 2 .
. . e m }), we will first describe a polynomial-time construction of two genomes G 1 and G 2 such that occ(G 1) = 1 and occ(G 2) = 2. We first describe G 1 :

G 1 = b 1 , b 2 . . . b m , x, a 1 , C 1 , a 2 , C 2 . . . a n , C n , y, b m+n , b m+n-1 . . . b m+1 .
The a i s, the b i s, x and y are genes, while C i s are sequences of genes. They are defined as follows:

• for any 1 ≤ i ≤ n, a i = 2(i -1)m + i ; • for any 1 ≤ i ≤ n, C i = (a i + 1), (a i + 2) . . . (a i + 2m) ; January 25, 2007 DRAFT • for any 1 ≤ i ≤ n + m, b i = a n + 2m + i ; • x = b n+m + 1 ; • y = b n+m + 2.
It can be seen that no gene appears more than once in G 1 , thus occ(G 1) = 1. Now we describe the construction of G 2 :

G 2 = y, a 1 , D 1 , b m+1 , a 2 , D 2 , b m+2 . . . a n-1 , D n-1 , b m+n-1 , a n , D n , b m+n , x.
The duplicated genes in G 2 are b 1 , b 2 . . . b n , and are spread within the D i s. Moreover, each b i , 1 ≤ i ≤ n, will appear only twice in G 2 . We now describe the contents of D i ,

1 ≤ i ≤ n. Basically, D i is constructed in two steps:
1) We first construct, for each i, a sequence of genes D i , which is a specific shuffle of the contents of C i = (a i +1), (a i +2) . . . (a i +2m). More precisely, let min = a i +1

and max = a i + 2m ; then

D i = (a i + 3), (a i + 5) . . . (a i + 2m -3), (a i + 2m - 1), min, max, (a i + 2), (a i + 4) . . . (a i + 2m -4), (a i + 2m -2).
2) For any

1 ≤ i ≤ n, we obtain D i by adding some b j s (1 ≤ j ≤ m) into D i ,
according to the initial graph G we are given. More precisely, for any edge e j that is incident to a vertex v i in G, we add the gene b j between the j-th and the (j + 1)-th gene of D i . This process gives us the D i s.

Note that no two b j s (1 ≤ j ≤ m) can appear contiguously in a D i , and that no D i starts or ends with a b j (all D i s start and end with a gene that only appears in C i in G 1). In the following, any interval of size one (i.e., any singleton), as well as the whole genome, will be called a trivial interval.

Lemma 1: For any exemplar genome G E 2 of G 2 , the only non-trivial common intervals that occur between G E 2 and G 1 are necessarily taken in G 1 within the sequence a i C i , for any 1 ≤ i ≤ n.

Proof: We will first prove that, for any exemplar genome G E 2 obtained from G 2 , any interval of size greater than or equal to 2 that contains x (resp. y) also contains y (resp. x), and thus corresponds to the whole genome. Suppose indeed that there is a common interval, different from a singleton, containing x and not y. Let us call this interval I x . Now let us look at what other genes I x could contain in G 1 :

• If I x contains b m in G 1 , since b m belongs to a D i in G E 2 , this means that I x contains b m+n in G E
2 , and thus contains y in G 1 , a contradiction.

• If I x contains a 1 in G 1 , I x contains in particular b m+n in G E 2 ,
and thus contains y in G 1 , a contradiction.

Hence, any common interval I x that contains x also contains y. Now suppose that a common interval I y , different from a singleton, contains y and not x, and let us look at what other genes I y could contain in G 1 :

• If I y contains b m+n in G 1 , then it contains all the D i s in G E 2
, and in particular it contains all the b j s, 1 ≤ j ≤ m. Thus it contains x in G 1 , a contradiction.

• If I y contains a n + 2m in G 1 , then it contains in particular b m+n-1 in G E
2 , and thus contains b m+n in G 1 . We are back to the previous case.

Hence, the only common interval containing x (resp. y) is the whole genome G 1 .

Thus, if there are common intervals that are non-trivial, they must be, in G 1 , either strictly on the left of x, strictly between x and y or strictly on the right of y. We will investigate separately these three cases:

1) Intervals strictly on the left of x in G 1 : since no two b j s, 1 ≤ j ≤ m are contiguous in G E
2 , any such interval would contain at least one gene in a given D i which occurs only in C i in G 1 , a contradiction.

2) Intervals strictly on the right of y in G 1 : similarly, any such interval would contain an a i in G E 2 , a contradiction. 3) Intervals strictly between x and y in G 1 : independently of the way G E 2 is exem-plarized, we see that no common interval in G 1 can contain at the same time a i and a i+1 , 1 ≤ i ≤ n -1. Thus the only possible common intervals between G 1

and G E 2 must be taken within a given substring of the form

a i C i (1 ≤ i ≤ n) in G 1
, and the lemma is proved.

Lemma 2: For any given 1 ≤ i ≤ n, let ∆ i be a subsequence of D i that does not contain any b j . If 2 ≤ |∆ i | ≤ 2m -1, then it is not a common interval.
Proof: Let ∆ i be a subsequence of D i that does not contain any b j , and let (1) In G E 2 , all the b j s have been deleted from D i , and in that case there are exactly two non-trivial common intervals involving D i .

2 ≤ |∆ i | ≤ 2m -1. By Lemma 1, ∆ i can
(2) In G E 2 , at least one b j has been left within D i , and in that case there is no non-trivial common interval involving D i .

Proof: By Lemma 1, we know that any non-trivial interval is composed in G 1 of elements of the sequence a i C i , for any 1 ≤ i ≤ n. Hence, it is composed, in any exemplar genome G E 2 obtained from G 2 , of elements of the sequence a i D i , for any

1 ≤ i ≤ n.
Suppose first that all the b j s in D i have been deleted in our exemplar genome G E 2 , thus January 25, 2007 DRAFT transforming it into the exemplar subsequence D i . By Lemma 1, we know that any nontrivial interval is composed in G 1 of elements of the sequence a i C i , for any

1 ≤ i ≤ n.
Hence, it is composed, in any exemplar genome G E 2 obtained from G 2 , of elements of the sequence a i D i , for any 1 ≤ i ≤ n. In that case, it can be easily seen that, for any

1 ≤ i ≤ n: 1) Interval a i C i in G 1 is a common interval to a i D i in G E 2 , and 2) Interval C i in G 1 is a common interval to D i in G E 2 . Moreover, by Lemma 2, no strict subsequence ∆ i of D i such that 2 ≤ |∆ i | ≤ |D i | -1 is a common interval (we recall that |D i | = |C i | = 2m by construction). Hence if all the b j s in D i have been deleted to obtain D i , then only two common non-trivial intervals exist in G E 2 : a i D i (which is common with a i C i in G 1) and D i (which is common with C i in G 1).
Suppose now that at least one b j in D i has not been deleted in G E 2 . First, we note that no non-trivial common interval can include b j , since b j does not appear in C i . Hence any possible non-trivial interval involving D i is a substring ∆ i of D i that does not contain any b j . But since no b j is an extremity of D i , it implies that necessarily

|∆ i | ≤ 2m -1.
However, by Lemma 2 we know that in that case, ∆ i is not a common interval. with those deletions, we end up with an exemplar genome G E 2 . In G E 2 , we have at least (nk) substrings of the form D i for which all the b j s have been deleted. Thus, by Lemma 3, we know they each imply two non-trivial common intervals, which sums up to at least 2(nk). To those intervals, we add the trivial ones. Hence, on the whole, we get at least I = 2(nk) + I T common intervals between G 1 and G E 2 . (⇐) Suppose there exists an exemplar genome G E 2 obtained from G 2 , and having at least I = 2(nk) + I T common intervals. Then, there are at least 2(nk) non-trivial common intervals. However, by Lemma 1, we know that they can only occur within the

Proof: (⇒) Suppose there exists in G a Vertex Cover V C such that |V C| = k ≤ k. Let V C = {v i 1 , v i 2 . . . v i k }. In G 2 , delete the b j s in the substrings D i for any i ∈ {i 1 , i 2 . . . i k }. If,
substrings a i C i , 1 ≤ i ≤ n, in G 1 , that is within the substrings a i D i , 1 ≤ i ≤ n, in G E 2 .
By Lemma 3, we know that in at least (nk) such substrings, all the b j s, 1 ≤ j ≤ m have been deleted. Since G E 2 is exemplar, this means that the b j s have remained in at most k substrings of the form a i D i . By construction, each b j has been included in a D i because the edge e j is incident to the vertex v i in the graph G. Since one copy of each b j has remained in G E 2 , and since they are included in at most k substrings of the form a i D i , we conclude that those substrings imply a Vertex Cover, of size at most k, in G.

As a direct consequence of Lemma 4, we can say that the ECOMI problem is NPcomplete. Moreover, as mentioned before, the proof and the result are also valid for the MCOMI problem, since our construction implies occ(G 1) = 1. We thus have the following theorem.

Theorem 1: The ECOMI and MCOMI problems are both NP-complete, even when occ(G 1) = 1 and occ(G 2) = 2.

We also consider, for the matching model, instances for which the constraints do not rely on the maximum number of duplicates per family, but on the number of families that contain duplicates. With this restriction, we obtain the following result.

Theorem 2: The MCOMI problem is NP-complete, even when f (G 1) = f (G 2) = 1,
where f (G) denotes the number of different families of genes that contain duplicates in [START_REF] Sankoff | Genome rearrangement with gene families[END_REF] DRAFT

G.

Proof: The proof is directly derived from the proof of Blin and Rizzi [START_REF] Blin | Conserved interval distance computation between non-trivial genomes[END_REF], in which the authors studied conserved intervals, a measure which is closely related to common intervals. More precisely, a conserved interval is a common interval for which the extremities are conserved [START_REF] Bergeron | On the similarity of sets of permutations and its applications to genome comparison[END_REF]. Hence, any conserved interval is by definition a common interval, though the converse is not true in general. However, the construction given in [START_REF] Blin | Conserved interval distance computation between non-trivial genomes[END_REF] has the property that any common interval is in fact also a conserved interval. Hence, the reduction they provide is also valid for the MCOMI problem, and the result follows.

IV. MAXIMUM ADJACENCY DISRUPTION (MAD)

Let EMAD (resp. MMAD) denote the problem of computing the minimum MAD number in the exemplar (resp. matching) model. In this section, we prove inapproximability results for both the EMAD and MMAD problems. More precisely, we show that for no ε > 0, EMAD (resp. MMAD) admits a (2ε)-approximation algorithm, unless P=NP. This inapproximability result does not rely on the PCP theorem. We will also remark however, how, reconsidering the reduction proposed in view of APX-hardness results based on the PCP theorem, one can replace the constant 2 above with a strictly bigger constant. The proof is split into two: we first study the complexity of a restricted form of SAT, which we call UNIFORM-SAT, and in particular we show that it is NPcomplete. Next, we show that a (2ε)-approximation algorithm for EMAD (resp.

MMAD), for some ε > 0, would imply the existence of a polynomial time algorithm for UNIFORM-SAT. Finally, we obtain the inapproximability result for EMAD (resp.

MMAD).

In the following, 3SAT will denote the restriction of SAT for which each clause contains at most three literals. We introduce a restricted form of 3SAT called UNIFORM-SAT, as follows: an instance X, C of 3SAT is an instance of UNIFORM-SAT when the following two conditions are met:

1) for each clause C ∈ C, either all literals occurring in C are positive occurrences of variables from X or all literals occurring in C are negated occurrences of variables from X, and 2) for each variable x ∈ X, x has at most 3 positive and at most 2 negated occurrences within C. 1) The decision problem 3SAT is NP-complete even when restricted to 3-bounded formulas [START_REF] Garey | Computers and Intractability: a guide to the theory of NP-completeness[END_REF], and

A 3SAT formula F = C∈C C is called 3-bounded if
2) The optimization problem MAX-3SAT is APX-hard even when restricted to 3bounded formulas [START_REF] Papadimitriou | Optimization, approximation, and complexity classes[END_REF].

Since both problems admit a trivial self-reduction in case a variable has only positive (or only negated) occurrences, then the following two facts also hold:

1) 3SAT is NP-complete even when restricted to (2, 2)-bounded formulas, and 2) MAX-3SAT is APX-hard even when restricted to (2, 2)-bounded formulas.

Notice that, of the above two results, only the second is related to the PCP theorem, whereas the first was known much before its appearance.

The following reduction links the complexity of UNIFORM-SAT to the complexity of (2, 2)-bounded 3SAT. Given a generic instance X, C of (2, 2)-bounded 3SAT, where X = {x 1 , x 2 , . . . , x n } and C = {C 1 , C 2 , . . . , C m }, consider the instance Y, P of UNIFORM-SAT, where Y = {y j i : i = 1, 2, . . . , n, j = 0, 1, 2, 3} and P = P var ∪ P cla ,

where P var = {(y j i ∨y j+1 mod 4 i), (¬y j i ∨¬y j+1 mod 4 i

) : i = 1, 2, . . . , n, j = 0, 1, 2, 3} and P cla = {P 1 , P 2 , . . . , P m }, where, for j = 1, 2, . . . , m, the clause P j is obtained from the clause C j as follows: for each literal occurring in C j , and assuming is the t-th positive (or the t-th negated) literal of variable x i (with i = 1, 2, . . . , n and t = 1, 2) occurring within the clauses C 1 , C 2 , . . . , C m as taken in this order, then the literal y 2t-1 i (resp., the

literal y 2t-2 i
) is placed in the clause P j . In practice, the clause P j is a clause made only of positive literals which is meant to represent the original clause C j . At the same time, the all-positive or all-negated clauses in P var are there to enforce the consistency of the truth values of the variables y 0 i , y 1 i , y 2 i , and y 3 i which are meant to represent either the positive (y 1 i , and y 3 i) or the negated (y 0 i , and y 2 i) occurrences of variable x i within C. The above is clearly a polynomial time reduction; besides, we have the following lemmas.

Lemma 5: Let t X : X → {0, 1} be a truth assignment over X which satisfies at least c of the clauses in C. Then there exists a truth assignment t Y : Y → {0, 1} over Y which satisfies at least c + 8n of the clauses in P.

Proof: Consider the assignment t Y defined by t Y (y 1 i) := t Y (y 3 i) := t X (x i) and by t Y (y 0 i) := t Y (y 2 i) := ¬t X (x i).
Note that each of the 8n clauses in P var is satisfied under t Y . Moreover, for each j = 1, 2, . . . , m, the clause P j is satisfied under t Y if and only if the clause C j is satisfied under t X .

Lemma 6: Let t Y : Y → {0, 1} be a truth assignment over Y which satisfies at least c + 8n of the clauses in P. Then, in polynomial time, we can derive from t Y a truth assignment t X : X → {0, 1} over X which satisfies at least c of the clauses in C.

Proof: Truth assignment t Y is called canonical if, for each i = 1, 2, . . . , n, the truth values of the variables y 0 i , y 1 i , y 2 i , and

y 3 i are consistent, that is, when t Y (y 0 i) = t Y (y 2 i) = t Y (y 1 i) = t Y (y 3 i).
Notice that, by possibly redefining at most two truth values among

t Y (y 0 i), t Y (y 2 i), t Y (y 1 i), t Y (y 3 i),
we can always assume that t Y is canonical. Indeed, at least two extra clauses from P var get satisfied in restoring the consistency among the variables y 0 i , y 1 i , y 2 i and y 3 i while, at the same time, since at most two truth values have been affected, at most two clauses from P cla may lose in satisfaction. In other words, we can make t Y canonical by a majority vote on y 0 i , y 1 i , y 2 i and y 3 i for each i = 1, 2, . . . , n, while preserving the fact that at least c + 8n of the clauses in P are satisfied under t Y .

Once t Y is canonical, the arguments spent within the proof of the previous lemma are fully reversible.

The above two lemmas imply that UNIFORM-SAT is NP-complete.

Theorem 3: Deciding whether a given UNIFORM-SAT formula is satisfiable is NPcomplete.

Theorem 3 here above does not need the PCP theorem and is all what is required in the following for proving that, for no ε > 0, EMAD (resp. MMAD) admits a (2ε)approximation algorithm, unless P=NP. With dependence on PCP, Lemmas 5 and 6 also imply the following result, which, besides being of independent interest, can be used to show that the right constant for the approximability of EMAD (resp. MMAD) is not 2.

Theorem 4: Given a UNIFORM-SAT formula, the problem of finding a truth assignment maximizing the number of satisfied clauses is APX-hard.

Proof: We will proceed as follows: assume we are given a (1ε)-approximation algorithm A for UNIFORM-SAT and design a (1 -25 ε)-approximation algorithm for (2, 2)-bounded 3SAT which rests on algorithm A as a subroutine. The APX-hardness of UNIFORM-SAT then follows from the APX-hardness of (2, 2)-bounded 3SAT.

After receiving in input an instance X, C of (2, 2)-bounded 3SAT, we construct the instance Y, P of UNIFORM-SAT as described above. Assume the optimal truth assignment t X,opt for X, C satisfies at least opt clauses in C. Clearly, opt ≥ n 3 since there clearly exists a truth assignment under which, for each variable x ∈ X, at least one of the occurrences of x in C belongs to a satisfied clause, and since each clause contains at most And Lemma 6 (whose proof can be easily converted into a polynomial time algorithm)

shows how, starting from this truth assignment t Y,apx , one can obtain a truth assignment t X,apx over X such that the clauses in C which are satisfied under t X,apx are at least

(8n + opt)(1 -ε) -8n ≥ opt -ε opt -8 ε n ≥ opt -ε opt -24 ε opt ≥ (1 -25ε) opt.
We now prove that both the EMAD and MMAD problems are APX-hard. The result holds for both problems, since we prove it in the case where occ(G 1) = 1, where they coincide. The result rests on a reduction from UNIFORM-SAT. Assume we are given an instance X, C of UNIFORM-SAT, where X = {x 1 , x 2 , . . . , x n }. Here, C can be partitioned into the family P = {P 1 , P 2 , . . . , P mp } of clauses comprising only positive literals and the family N = {N 1 , N 2 , . . . , N mn } of clauses comprising only negated literals. Let M ε be a sufficiently big positive integer that we will fix later in order to force our conclusions. Let us now detail the construction of the two genomes G 1 and G 2 , from any instance of the UNIFORM-SAT problem. Here, G 1 is the simple (that is,

duplication-free) genome G 1 of length L 1 = 2 M ε + m p + m n + n -1 defined as follows: G 1 = 1 2 3 . . . L 1 . A gene at position i in G 1 with i ≤ m p or i ≥ L 1 -m n + 1 is called a * -gene. Genome G 2 has length L 2 = 2 M ε + 6 n -1,
m p +M ε +n, m p +M ε +n+1, m p +M ε +n+2, . . . , m p +2 M ε +n-1.
We will specify later the precise identity of the * -genes within genome G 2 . For now, January 25, 2007 DRAFT notice that in G 2 we have precisely n runs of five consecutive * -genes. We put these runs into 1, 1-correspondence with the n variables in X, so that the i-th run corresponds to variable x i , for i = 1, 2, . . . , n. For each i = 1, 2, . . . , n, let P i and N i be the lists of index sets of the clauses from P and N which contain variable x i . E.g., if x i appears in P 3 , in P 7 , and in N 2 , then P i = (3, 7), whereas N i = (2). Notice that the lengths of the lists P i and N i are at most 3, and 2, respectively. From the list P i we obtain a list P i of length precisely 3 by possibly iterating the last element in P i the required number of times (that is, 3 -|P i | times). A list N i of length precisely 2 is similarly obtained from list N i . Now, for each i = 1, 2, . . . , n, the i-th run of five consecutive * -genes consists, more precisely, in the following five characters.

(* , * , * , * , *) →

(P i [1], P i [2], P i [3], L 1 -m n + N i [1], L 1 -m n + N i [2]).
The above is clearly a polynomial time reduction. It can also be easily seen that there are no duplications in G 1 , while each gene appears at most 9 times in G 2 (that is, occ(G 1) = 1 and occ(G 2) ≤ 9). Besides, we have the following lemmas.

Lemma 7: Let t X : X → {0, 1} be a satisfying truth assignment for X, C . Then there

exists an exemplar subgenome G E 2 of G 2 whose MAD number satisfies MAD(G 1 , G E 2) ≤ M ε + m p + m n + n.
Proof: For each clause P j ∈ P, choose a variable x i occurring in P j and such that t X (x i) = 1 (remember that t X is a satisfying truth assignment) and color with red one copy of gene j occurring within the i-th run of five consecutive * -genes in G 2 .

Similarly, for each clause N j ∈ N , choose a variable x i occurring in N j and such that t X (x i) = 0 (again, at least one such variable must exist since t X is a satisfying truth assignment) and color with red one copy of gene

(L 1 -m n) + j = 2 M ε + m p + n -1 + j occurring within the i-th run of five consecutive * -genes in G 2 . Now, obtain G E 2 from
G 2 by deleting all the * -genes, except those marked red. Notice that G E 2 is indeed an exemplar genome on the genes 1, 2, . . . , L 1 .

We now verify that MAD(G 1 , G E

2) ≤ M ε + m p + m n + n, which is better done in two separate steps. First, we check out that any two genes j and j + 1 which are

adjacent in G 1 are at most M ε + m p + m n + n positions apart in G E 2 . This follows from the fact that L 1 = 2 M ε + m p + m n + n -1 and considering that the first M ε positions in G E 2 are taken by genes j ∈ [m p + 1, m p + M ε] whereas the last M ε positions in G E 2 are taken by genes j ∈ [L 1 -m n -M ε + 1, L 1 -m n]. Moreover, for j ∈ [m p + 1, m p + M ε -1] ∪ [L 1 -m n -M ε + 1, L 1 -m n -1], genes j and j + 1 are also adjacent in G E 2 (more generally, for j ∈ [m p + 1, L 1 -m n -1]
, genes j and j + 1 have both a unique occurrence also in G 2 , where they are at most 6 positions apart, and they are at most 4 positions apart in G E

2). Second and last, we check out that any two genes i and j which are adjacent in G E 2 are at most M ε + m p + m n + n positions apart in G 1 . Here, if neither i nor j are * -genes, then i and j are also adjacent in G 1 , that is, j = i ± 1. Furthermore, if precisely one among i and j, say j, is a * -gene, then

m p + M ε ≤ i ≤ m p + M ε + n since otherwise i could not be adjacent to a *-gene in G E 2 ; hence, if j < i, then i -j ≤ m p + M ε + n, whereas, if i < j, then j -i ≤ m n + M ε + n.
Thus the only interesting case is when both i and j are * -genes, that is, both i and j belong either to the interval [1, m p] or to the interval [L 1m n + 1, L 1]. It suffices here to notice that in this case i and j come from the same interval. Indeed, this follows from the fact that i and j are adjacent in G E 2 and hence correspond to occurrences of the same variable. But then these two occurrences must either be both positive or both negative since they both have been colored with red in the marking phase.

Lemma 8: For any exemplar genome G E 2 of G 2 such that MAD(G 1 , G E 2) < 2 M ε + n, we can derive in polynomial time from G E 2 a satisfying truth assignment for X, C . Proof: Since MAD(G 1 , G E 2) < 2 M ε + n, then, in obtaining G E 2 from G 2 ,

and

for each i = 1, 2, . . . , n, it must be the case that in the i-th run of five consecutive * -genes in G 2 , either the genes P i [START_REF] Sankoff | Genome rearrangement with gene families[END_REF], P i [START_REF] Blin | CompBioNets 2004: Algorithms & computational methods for biochemical and evolutionary networks[END_REF], P i [START_REF] Sankoff | Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome[END_REF] have all been deleted, or the genes

N i [1] + L 1 -m n and N i [2]
+ L 1m n have both been deleted. Consider the truth assignment t X : X → {0, 1} such that, for each i = 1, 2, . . . , n, t X (x i) = 1 iff both

N i [1] + L 1 -m n and N i [2]
+ L 1m n have been deleted. We claim that t X (x i) is a satisfying truth assignment. Indeed, for each clause P j ∈ P, we know that at least a copy of gene j has been retained in G E 2 . This copy must come from one of the runs of five consecutive * -genes in G 2 , say from the i-th run. It follows that x i occurs in P j and that t X (x i) 1. Similarly, for each clause N j ∈ N , we know that at least a copy of the gene (L 1m n) + j (i.e., of gene 2 M ε + m p + n -1 + j) has been retained in

G E
2 . This copy must come from one of the runs of five consecutive * -genes in G 2 , say from the i-th run. It follows that x i occurs in N j and that t X (x i) = 0.

Theorem 5: For no ε > 0, EMAD (resp. MMAD) admits a (2ε)-approximation algorithm, unless P=NP.

Proof: We proceed as follows: we assume we are given a (2ε)-approximation algorithm A for EMAD (resp. MMAD) and design a polynomial time algorithm for UNIFORM-SAT which rests on algorithm A as a subroutine. The theorem then follows from the NP-completeness of UNIFORM-SAT, as stated in Theorem 3. After receiving in input an instance X, C of UNIFORM-SAT, we construct the instance G 1 , G 2 of EMAD (resp. MMAD) as described above. If X, C is satisfiable, then, by Lemma 7, there exists an exemplar subgenome G E 2 of G 2 such that MAD(G 1 , G E 2) ≤ M ε + m p + m n +n. By running algorithm A, we are hence guaranteed to find an exemplar subgenome

G E apx of G 2 such that MAD(G 1 , G E apx) ≤ (M ε + m p + m n + n)(2 -ε) ≤ 2 M ε + 2 m p + 2 m n +2 n-ε M ε . Now, after choosing M ε ≥ 2 mp+2 mn+2 n ε , we conclude that the solution G E apx produced by algorithm A satisfies MAD(G 1 , G E apx) ≤ 2 M ε .
And Lemma 8 (whose proof can be easily converted into a polynomial time algorithm) shows how, starting from G E apx , one can obtain a satisfying truth assignment for G 1 , G 2 . Conversely, if X, C is not satisfiable, then, by Lemma 8, MAD(G 1 , G E apx) ≥ 2 M ε + n must hold for the solution returned by algorithm A, as it holds for any solution, and we can realize that X, C was not satisfiable comparing this fact against Lemma 7.

Remark 1: There actually exists a constant c > 2 such that EMAD (resp. MMAD) admits c-approximation algorithm unless P=NP. We can get to this stronger conclusion if in the proof of Theorem 5 above we apply Theorem 4 instead of Theorem 3.

And explicit values of c for which this stronger statement holds can also be worked out.

V. SUMMED ADJACENCY DISRUPTION (SAD)

Let ESAD (resp. MSAD) denote the problem of computing the minimum SAD number in the exemplar (resp. matching) model. In this section, we prove that both problems ESAD and MSAD, expressed on two genomes G 1 and G 2 such that |G 1 | ≤ |G 2 | cannot be better than log(|G 1 |) approximated (here and in the rest of the paper, logarithms are assumed to be base e). This result holds for both the exemplar and the matching models, since we prove it in the case where occ(G 1) = 1, for which the two problems coincide. The inapproximability of ESAD (resp. MSAD) is obtained starting from the inapproximability of SETCOVER. This result will hence depend on the PCP theorem, but will deliver stronger SETCOVER-like inapproximability thresholds than for the EMAD and MMAD problems discussed in the previous section.

Let V, S be an instance of SETCOVER, where V = {1, 2, . . . , n} and S = {S 1 , S 2 , . . . , S m } is a family of subsets of V . We can assume n is even, say n = 2k, and each set S i contains precisely k = n 2 elements, say s i 1 , s i 2 , . . . , s i k . The well known inapproximability results for SETCOVER hold also under these assumptions, since we can think of enlarging a groundset V , originally on k elements, by adding a set V of k new elements, adding V to S, and enlarging the other sets in S with elements from V until their size rises up to k. Let M = m 2 n 2 play the role of a sufficiently big [START_REF] Sankoff | Genome rearrangement with gene families[END_REF] DRAFT

M +m+n-1 i=1 Dist(G E 2 , G 1 [i], G 1 [i + 1]) ≤ n-1 i=1 Dist(G E 2 , G 1 [i], G 1 [i + 1]) + (M + m + n) + M +n-1 i=n+1 Dist(G E 2 , G 1 [i], G 1 [i + 1]) + M +m+n-1 i=M +n Dist(G E 2 , G 1 [i], G 1 [i + 1]) ≤ n(n + m) + (M + m + n) + M + mn ≤ 2 M + 3 mn 2 ≤ 2 M + m 2 n 2 ≤ 3 M ,
and where, again assuming m and n sufficiently big (m, n ≥ 4),

January 25, 2007 DRAFT M +m+n-1 i=1 Dist(G 1 , G E 2 [i], G E 2 [i + 1]) = M -1 i=1 Dist(G 1 , G E 2 [i], G E 2 [i + 1]) + M +m+n-1 i=M Dist(G 1 , G E 2 [i], G E 2 [i + 1]) = (M -1) + M +m+n-1 i=M Dist(G 1 , G E 2 [i], G E 2 [i + 1]) ≤ M + S i / ∈S 1 + S i ∈S (2(M + m + n + n 2)) ≤ M + m + 2 s (M + m + n + n 2) ≤ M + 2 s M + m 2 n 2 ≤ 2 s M + 2 M .
To better explain the upper bound on the term M +m+n-

1 i=M Dist(G 1 , G E 2 [i], G E 2 [i+1]
) used in the above chain of inequalities, denote with p i , i = 0, 1, . . . , m, the absolute position of the gene M + n + i inside the genome G E 2 . (Thus, p 0 = M and p n = M + n + m). Clearly,

M +m+n-1 i=M Dist(G 1 , G E 2 [i], G E 2 [i + 1]) = m i=1 p i -1 j=p i-1 Dist(G 1 , G E 2 [j], G E 2 [j + 1]).
Now, when S i / ∈ S , then the two genes n + M + (i -1) and n

+ M + i are adjacent both in G E 2 and in G 1 , whence p i -1 j=p i-1 Dist(G 1 , G E 2 [j], G E 2 [j + 1]) = 1. Also, for each i = 1, 2, . . . , m, Dist(G 1 , G E 2 [p i-1], G E 2 [p i-1 + 1]) ≤ M + m + n and Dist(G 1 , G E 2 [p i - 1], G E 2 [p i]) ≤ M + m + n, since M + m + n is the length of G 1 . Furthermore, p i -p i-1 ≤ 1 + k ≤ n, and, for each j = 1, 2, . . . , p i -p i-1 -2, Dist(G 1 , G E 2 [p i-1 + j], G E 2 [p i-1 + January 25, 2007 DRAFT j + 1]) ≤ n. Lemma 10: For any exemplar subgenome G E 2 of G 2 such that SAD(G 1 , G E 2) < 2 s M , we can derive, from G E
2 and in polynomial time, a set cover S ⊂ S of V such that |S | ≤ s.

Proof: Let S be the family of those S i ∈ S for which there exists a v ∈ S i , say v = s j i , such that, in obtaining G E 2 from G 2 , the copy s j i of gene v has not been deleted. Notice that S is a cover of V , since all genes 1, 2, . . . , L 1 occur in G E 2 . Moreover, |S | ≤ s follows from SAD(G 1 , G E 2) < 2 s M . Indeed, M +m+n-

1 i=M Dist(G 1 , G E 2 [i], G E 2 [i+1]) ≤ SAD(G 1 , G E
2) ≤ 2 s M . However, for every i such that S i ∈ S , the genes M +n+(i-1) and M + n + i are not consecutive in G E 2 . Let us denote with p i-1 and p i the absolute positions of genes M +n+(i-1) and M +n+i within the genome G E 2 . Thus, whenever S i ∈ S , then p i > p i-1 + 1 and we have Dist Proof: It is well known that SETCOVER cannot be approximated within (1-ε) log n (where n is the number of elements) for any ε > 0 (see [START_REF] Feige | A threshold of ln(n) for approximating set cover[END_REF]), nor within c log m (where m the number of sets (see [START_REF] Eidenbenz | Positioning Guards at Fixed Height above a Terrain -An January 25, 2007 DRAFT Optimum Inapproximability Result[END_REF]) for some c > 0. To be more precise, it has been proved in [START_REF] Eidenbenz | Positioning Guards at Fixed Height above a Terrain -An January 25, 2007 DRAFT Optimum Inapproximability Result[END_REF] that the instance of Set Cover produced through the reduction in [START_REF] Feige | A threshold of ln(n) for approximating set cover[END_REF] is characterized by having m ≤ n 5 . Thus, for no ε > 0, SETCOVER can be (1ε)approximated, even when restricting attention to instances in which log m ≤ 5 log n. This means that there exists a constant c such that no polynomial algorithm approximates SETCOVER within c (log m + log n), with c chosen small enough (consider any c < 1 6). We claim that ESAD (resp. MSAD) admits no c 4 log |G 1 | -approximation algorithm. January 25, 2007 DRAFT above mentioned measures take signs into account, which is not the case for common intervals, MAD and SAD.

(G 1 , G E 2 [p i-1], G E 2 [p i-1 + 1]) ≥ M and Dist(G 1 , G E 2 [p i -1], G E 2 [p i]) ≥ M , since G E 2 [p i-
We recall that occ(G) denotes the maximum of occ(G, g) over all genes g in G, where occ(G, g) denotes the maximum number of occurrences of a gene g in genome G

(regardless of the signs). We also recall that f (G) denotes the number of different families of genes that contain several occurrences in genome G.

The results concerning the exemplar model are summarized in Table I, while the ones concerning the matching model are summarized in Table II.

The main conclusion that we can draw from these two tables is that, as soon as occ(G 1) = 1 and occ(G 2) = 2, the computation of five out of the six above-mentioned measures becomes NP-complete, under both the exemplar and matching models. In that sense, we are able to draw the exact border between polynomial problems (occ(G 1) = occ(G 2) = 1) and NP-complete problems (occ(G 1) = 1 and occ(G 2) = 2), except for the number of reversals, where a gap exists (we do not know the complexity of the problem when occ(G 1) = 1 and occ(G 2) = 2).

Another interesting parameter to consider for the complexity of those problems is f (G), the number of families of genes that are duplicated in genome G. Concerning this parameter, only a few results are known (breakpoints, conserved and common intervals, in the matching model only).

Concerning the approximability of the problems, it turns out that even when occ(G 1) = 1, we are able to say that five out of the six measures lead to APX-hard problems. For the number of reversals, it is APX-hard in the exemplar model when occ(G 1) = occ(G 2) = 2 [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF]. However, for three of those five cases (breakpoints, conserved and common intervals), similarly to the complexity results, we know that the problem is APX-hard even when occ(G 1) = 1 and occ(G 2) = 2, while in the others, the value of occ(G 2) is either unbounded (SAD) or bounded by constant 9 (MAD).

 a matching of maximum cardinality. Suppose that G is duplication-free ; let i and j be such that 1 ≤ i < j ≤ n, and write a = G[i] and b = G[j]. The distance between a and b in G, written Dist(G, a, b), is defined by Dist(G, a, b) = |j -i|.

3 4 5

 5 and G 2 = 1 4 3 5 2 then M 1 = 4 and M 2 = 3, and hence MAD(G 1 , G 2) = max{4, 3} = 4.

 only be a common interval with a substring of C i , which, by construction, contains consecutive integers. Thus, since |∆ i | ≥ 2, it must contain at least two consecutive integers. However, by construction, any two consecutive integers in D i are extremities of an interval that contains both the minimum value m and the maximum value M of D i . But since in C i , m and M are the left and right extremities, ∆ i is at least as big as C i . Since, by construction, |C i | = 2m and since we supposed |∆ i | ≤ 2m -1, this cannot happen. Hence ∆ i is not a common interval. Lemma 3: For any exemplar genome G E 2 of G 2 and for any 1 ≤ i ≤ n, only two cases can occur:

Lemma 4 :

 4 Let G be a graph and G 1 and G 2 be the two genomes obtained by the construction described above. G admits a Vertex Cover V C such that |V C| ≤ k iff there exists an exemplar genome G E 2 obtained from G 2 having at least I = 2(nk) + I T common intervals, where I T is the number of trivial common intervals.

 after doing this, there remains some b j s which appear twice, remove one copy of each arbitrarily. Since in G 2 (1) only the b j s are duplicated, (2) each b j occurs exactly twice in G 2 and (3) V C is a Vertex Cover of G, we conclude thatJanuary 25, 2007 DRAFT

 and conforms to the following pattern, where we have found it convenient and pertinent to spot out the displacement of the * -genes within genome G 2 . G 2 = m p +1, m p +2, . . . , m p +M ε , * , * , * , * , * , m p +M ε +1, * , * , * , * , * , m p +M ε +2, , * , * , * , * , * ,

 1 +1] ≤ n and G E 2 [p i -1] ≤ n. It follows that |S | ≤ 2 s M 2 M = s.Theorem 6: There exists a constant c > 0 such that ESAD (resp. MSAD) admits no (c log |G 1 |)-approximation algorithm unless P=NP, where |G 1 | is the length of the smallest genome.

 no variable has more than 3 occurrences within C and is called (2, 2)-bounded if no variable has more than 2 positive occurrences and no more than 2 negated occurrences within C. The following two facts are known:

 Moreover, by Lemma 5, there exists a truth assignment t Y,opt over Y satisfying at least 8n + opt clauses in P. By running algorithm A, we are hence guaranteed to find a truth assignment t Y,apx over Y satisfying at least (8 n + opt)(1ε) clauses in P.

	3 literals.	
	January 25, 2007	DRAFT

[START_REF] Sankoff | Genome rearrangement with gene families[END_REF] DRAFT

From now, we use only the word gene, without loss of generality. January

25, 2007 DRAFT

The reversal model considers signed permutations, where each element has a sign, positive or negative, that indicates on which strand on the genome the corresponding gene is located. However the three (dis)similarity measures we consider in this paper do not take signs into account, and thus we do not discuss signed permutations here.January 25, 2007 DRAFT

positive integer. Let us now detail the construction of the two genomes G 1 and G 2 , from any instance of the SETCOVER problem. Here, G 1 is a simple (that is, duplication-free) genome of length L 1 = M + n + m as given by G 1 = 1, 2, 3 . . . L 1 . Genome G 2 has length L 2 = M + m(k + 1), and is constructed as follows:

G 2 = n + 1, n + 2, . . . , n + M, s 1 1 , s The above is clearly a polynomial time reduction; besides, we have the following lemmas.

Lemma 9: Let S ⊂ S be a set cover of V with |S | ≤ s. Then there exists an exemplar

Color with red this copy of gene v, that is, the copy of gene v occurring in the position M + (k + 1)(i -1) + j of G 2 . Now, obtain G E 2 from G 2 by deleting all the copies of the first n genes, except those marked with red. Notice that

2 is indeed an exemplar genome on the genes 1, 2, . . . , L 1 .

We now verify that SAD(G

where, assuming m and n sufficiently big (m, n ≥ 4), January 25, 2007 DRAFT We proceed as follows: we assume we are given a c 4 log |G 1 | -approximation algorithm A for ESAD (resp. MSAD), and design a c (log m+log n)-approximation algorithm for SETCOVER which rests on algorithm A as a subroutine. The theorem then follows from the above collected inapproximability facts about SETCOVER. After receiving in input an instance V, S of SETCOVER, we construct the instance G 1 , G 2 of ESAD (resp. MSAD) as described above. Notice that |G 1 | ≤ 2 M and hence log |G 1 | ≤ log 2m 2 n 2 ≤ 3 (log m + log n). Let opt be the minimum size of a set cover for V, S . Then, by Lemma 9, there exists an exemplar subgenome

Indeed, in the derivation of the above chain of inequalities we can conveniently assume that the value of opt is sufficiently big since, if opt was bounded by any constant, then an optimal solution to the original SETCOVER instance could be found in polynomial time. Now, Lemma 10 (whose proof can be easily converted into a polynomial time algorithm) shows how, starting

VI. SUMMARY OF THE RESULTS AND DISCUSSION

In this section, we give a summary of the results from this paper, as well as some other results concerning the complexity of computing several classical (dis)similarity measures, under both the exemplar and the matching models. We found interesting to end this paper by giving an overview of existing results in this area, since several recent papers, by different groups of authors, have investigated the problem. Hence, in addition to the number of common intervals, MAD number and SAD number, we include results concerning the number of conserved intervals (initially defined in [START_REF] Bergeron | On the similarity of sets of permutations and its applications to genome comparison[END_REF]), number of breakpoints and number of reversals. However, we should note that the three Several lines of research would be interesting to follow, some of which we mention below:

• make Tables I and II even more precise. In particular: (i) complete the cases for which no result is known or a gap exists (that is, number of reversals) ; (ii) study more deeply the complexity and approximability results with respect to parameter f ; (iii) tighten, if possible, the results concerning the (in)approximability of the problems, notably for the number of reversals in the exemplar model.

• find Fixed-Parameter Tractable algorithms for those problems, in order to circumvent NP-completeness and APX-hardness of the problems.

• find good heuristics for those problems, as done for instance in [START_REF] Nguyen | Divide-and-conquer approach for the exemplar breakpoint distance[END_REF] and [START_REF] Angibaud | How pseudo-boolean programming can help genome rearrangement distance computation[END_REF] (among many others), in which the authors are able to compare their proposed heuristic to the exact results. (*) We note that this result can actually be extended to the case where occ(G 1) = 1 and occ(G 2) = 2, by reducing the problem from VERTEXCOVER instead of SETCOVER.

Exemplar Model

Measure Complexity Approximability

Breakpoints NP-complete [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF] APX-hard [START_REF] Angibaud | On the inapproximability of similarity measures between genomes containing duplicates[END_REF] even when occ(G 1) = 1 even when occ(G 1) = 1

and occ(G 2) = 2 and occ(G 2) = 2

Reversals NP-complete [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF] APX-hard [START_REF] Chen | The approximability of the exemplar breakpoint distance problem[END_REF] even when occ(G 1) = 2 even when occ(G 1) = 2

and occ(G 2) = 2 and occ(G 2) = 2

Conserved Intervals NP-complete [START_REF] Blin | Conserved interval distance computation between non-trivial genomes[END_REF] APX-hard [START_REF] Angibaud | On the inapproximability of similarity measures between genomes containing duplicates[END_REF] even when occ(G 1) = 1 (*) even when occ(G 1) = 1

and occ(G 2) = 2

Common Intervals NP-complete (Theorem 1) APX-hard [START_REF] Angibaud | On the inapproximability of similarity measures between genomes containing duplicates[END_REF] even when occ(G 1) = 1 even when occ(G (*) We note that this result can actually be extended to the case where occ(G 1) = 1 and occ(G 2) = 2, by reducing the problem from VERTEXCOVER instead of SETCOVER.

Matching Model

Measure Complexity Approximability

Breakpoints NP-complete APX-hard [START_REF] Angibaud | On the inapproximability of similarity measures between genomes containing duplicates[END_REF] even when occ(G 1) = 1 even when occ(G 1) = 1

and occ(G 2) = 2 [START_REF] Bryant | The complexity of calculating exemplar distances[END_REF] and occ(G 2) = 2

Reversals NP-complete [START_REF] Chen | Assignment of orthologous genes via genome rearrangement[END_REF] even when occ(G 1) = 2

and occ(G 2) = 2

Conserved NP-complete APX-hard [START_REF] Angibaud | On the inapproximability of similarity measures between genomes containing duplicates[END_REF] Intervals even when occ(G 1) = 1 [START_REF] Blin | Conserved interval distance computation between non-trivial genomes[END_REF] (*) even when occ(G 1) = 1 even when f (G 1) = f (G 2) = 1 [START_REF] Blin | Conserved interval distance computation between non-trivial genomes[END_REF] and occ(G