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Abstract

In this paper, we are interested in the computational complexity of computing (dis)simila-

rity measures between two genomes when they contain duplicated genes or genomic markers,

a problem that happens frequently when comparing whole nuclear genomes. Recently, several

methods ( [1], [2]) have been proposed that are based on two steps to compute a given

(dis)similarity measure M between two genomes G1 and G2: first, one establishes a one-to-

one correspondence between genes of G1 and genes of G2 ; second, once this correspondence

is established, it defines explicitly a permutation and it is then possible to quantify their

similarity using classical measures defined for permutations, like the number of breakpoints.

Hence these methods rely on two elements: a way to establish a one-to-one correspondence

between genes of a pair of genomes, and a (dis)similarity measure for permutations. The

problem is then, given a (dis)similarity measure for permutations, to compute a correspondence

that defines an optimal permutation for this measure. We are interested here in two models

to compute a one-to-one correspondence: the exemplar model, where all but one copy are

deleted in both genomes for each gene family, and the matching model, that computes a

maximal correspondence for each gene family. We show that for these two models, and for

three (dis)similarity measures on permutations, namely the number of common intervals, the

maximum adjacency disruption (MAD) number and the summed adjacency disruption (SAD)

number, the problem of computing an optimal correspondence is NP-complete, and even

APX-hard for the MAD number and SAD number.

Index Terms

Comparative genomics, computational complexity, common intervals, maximum adja-

cency disruption number, summed adjacency disruption number.

I. INTRODUCTION

The comparison of whole genomes from the gene order point of view has been a very

active research domain since the early 90’s. In this context, genomes are modeled by
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sequences of integers, each integer representing a single gene or a genomic marker1. In

phylogeny reconstruction, the main problem is thus to compute a (dis)similarity measure

between the corresponding integer sequences, that approximates the true evolutionary

distance between these genomes (see for instance [3] for one of the first papers using

this approach and [4] for a recent application to vertebrate genomes). Most of the

mathematical models developed to compute such (dis)similarity measures are based on

the assumption that a given integer appears exactly once in each considered genome.

The rationale of this approach is that genomes are thus simply represented by permuta-

tions. However, aside some particular cases such as mitochondrial genomes [3], due to

several evolutionary mechanisms (duplication/loss or whole genomes duplications [5])

duplicated genes are very common in genomes. As a result, real data cannot be naturally

modeled by permutations.

A first way to overcome such a limitation is to consider genomes at a higher scale

than genes, e.g., synteny blocks [4]. However, if one wants to stay at the level of genes,

or more generally short genomic markers, one has to deal with the fact that genomes

are modeled by sequences of integers where some integers may appear more than once

in a given genome. Such genes that appear at several occurrences are said to belong

to non-trivial gene families. Two genes represented by the same integer are said to

have the same label. Recently, a new two-step permutation based approach has been

proposed for computing (dis)similarity measures between genomes. The first step consists

in transforming the two sequences into a single permutation P by establishing a one-

to-one correspondence between pairs of genes having the same label (and then, by

resorting to renaming procedure, we can always assume that one of the two permutations

is the identity permutation, see Section II). In the second step, a permutation-based

(dis)similarity measure is computed from the permutation P . The main line of research

1From now, we use only the word gene, without loss of generality.
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following this approach seeks for the permutation P that optimizes the (dis)similarity

measure. The classical criterion retained to define the optimal (dis)similarity measure is

the parsimony criterion: one tries to compute the permutation P that induces the maximal

(resp. minimal) similarity (resp. dissimilarity) measure. Note however that there exists

other methods that are based on the principle of transforming a pair of integer sequences

into a permutation but do not aim at optimizing a (dis)similarity measure for the resulting

permutation (see [6]–[8] for example).

There are two main approaches for computing a one-to-one correspondence between

two integer sequences. In the exemplar model, introduced by Sankoff [1], for every

non-trivial gene family, all but one copy in each genome are deleted. The pair of genes

that is conserved for each family is called a pair of ancestral homologs, as the goal

of the exemplar method is to find the pair of genes which best reflects the original

position of the ancestral gene in the common ancestor genome. The matching model is

more general as it allows to conserve more than one copy of a gene family and seeks

for a maximal one-to-one correspondence between these copies [2]. Several distances

have been considered under the exemplar and matching models, that are either based on

minimizing the number of evolutionary events that allow to transform a genome into the

other, for events like reversals2 [1], [9]–[13], reversals and insertions and deletions [14],

[15], reversals and translocations [16], or on maximizing a similarity measure based on

conserved structure in permutations like the number of adjacencies (which is equivalent

to minimizing the number of breakpoints) [1], [9], [12], [13], [17] or the number of

conserved intervals [18]–[21]. As far as we know, none of the above problems has been

shown to be solvable in polynomial time, and in fact most of them have been shown to

2The reversal model considers signed permutations, where each element has a sign, positive or negative, that

indicates on which strand on the genome the corresponding gene is located. However the three (dis)similarity measures

we consider in this paper do not take signs into account, and thus we do not discuss signed permutations here.
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be NP-complete as soon as duplicates are present in genomes (see Tables I and II, in

Section VI).

In this paper, we present new results on the algorithmic complexity of computing

different (dis)similarity measures between pairs of genomes that contain duplicates. We

describe results for three (dis)similarity measures, namely number of common intervals,

Maximum Adjacency Disruption number (MAD) and Summed Adjacency Disruption

number (SAD), which will be defined in Section II. We focus in Section III on the

problem of computing the number of common intervals in genomes containing dupli-

cates, and show that the problem is NP-complete in both the matching and exemplar

models. In Sections IV and V, we prove that, under both models, both the MAD and

SAD problems are APX-hard when genomes contain duplicates.

II. PRELIMINARIES

In this section, we precisely define the three similarity measures we are interested in,

together with the exemplar and matching models. As mentioned in the introduction, the

three considered measures (number of common intervals, MAD and SAD) are defined

for duplication-free genomes only, and hence one has first to disambiguate the data

by inferring homologs, i.e., a non-ambiguous mapping between the genes of the two

genomes.

We need some notations. A genome is a sequence of unsigned integers. Let G be a

genome of size n. As mentioned above, a gene family is any integer that occurs in G,

regardless to its number of occurrences. A gene is an occurrence of a gene family in

G, and we denote by G[i] the gene that occurs at position i in G. Let occ(G, g) denote

the maximum number of occurrences of a gene g in genome G, and let occ(G) be the

maximum of occ(G, g) over all genes g in G. The genome G is said to be duplication-

free if occ(G) = 1. Let G1 and G2 be two genomes. A matching M between G1

and G2 is a set of pairwise disjoint pairs M = {(i1, j1), (i2, j2), . . . , (ik, jk)} such that
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G1[i`] = G2[j`] for all 1 ≤ ` ≤ k. A maximum matching between G1 and G2 is a

matching of maximum cardinality. Suppose that G is duplication-free ; let i and j be

such that 1 ≤ i < j ≤ n, and write a = G[i] and b = G[j]. The distance between a and

b in G, written Dist(G, a, b), is defined by Dist(G, a, b) = |j − i|.

Given two genomes containing duplications, a first step is thus to establish a non-

ambiguous mapping between the genes of the two genomes. In the exemplar model, for

all gene families, all but one occurrence in each genome is deleted. In other words, we

are looking for a matching M = {(i1, j1), (i2, j2), . . . , (ik, jk)} between G1 and G2 such

that (i) G1[i`] 6= G1[i`′] for all 1 ≤ ` < `′ ≤ k and (ii) each gene family occurs in one

pair of M. In the matching model, the goal is to map as many genes as possible, i.e.,

find a maximum matching between G1 and G2. The rationale of this preliminary step

is that we may now assume that the two genomes are duplication-free. Indeed, suppose

the first step results in the matching M, we thus modify the two genomes G1 and G2

as follows:

1) we delete all genes in G1 and G2 that are not part of the matching M, and

2) we rename the genes of G1 and G2 according to the index of the associated pair

in M.

Observe that the resulting genomes are both of size |M|. According to the above (for

both the exemplar and the matching models), if a gene family occurs in one genome

but not in the other then all occurrences of this gene family will be deleted in the end.

Therefore, we may thus assume in the sequel that any gene family of G1 is a gene

family of G2, and conversely.

We now turn to precisely define the three similarity measures we are interested in. As

mentioned before, we assume now that the two genomes are duplication-free, i.e., both

G1 and G2 are permutations of size n. Moreover, for convenience, by first resorting to

an easy renaming procedure we can always assume that one of the two genomes, say
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G1, is the identity permutation, i.e., G1 = 1 2 . . . n.

a) Number of common intervals: A common interval between G1 and G2 is a

substring of G1, i.e., a consecutive sequence of genes of G1, for which exactly the

same content can be found in a substring of G2. For example, if G1 = 1 2 3 4 5 and

G2 = 1 4 3 5 2 then 1, 2, 3, 4, 5, 3 4, 3 4 5, 2 3 4 5 and 1 2 3 4 5 are common intervals.

Notice that there exist at least n + 1 common intervals between G1 and G2 since each

individual gene is always a common interval and G1 itself is also a common interval.

This lower bound is tight as shown by G1 = 1 2 3 4 and G2 = 2 4 1 3. Furthermore,

if G1 = G2, the number of common intervals between G1 and G2 is n(n+1)
2

, i.e., each

possible substring of G1 is a common interval.

b) Maximum Adjacency Disruption Number (MAD): This notion has been intro-

duced by Sankoff and Haque [22]. The MAD number between G1 and G2, denoted

MAD(G1, G2), is defined by

MAD(G1, G2) = max{M1,M2},

where M1 = max{Dist(G2, G1[i], G1[i+1]) : 1 ≤ i ≤ n−1} and M2 = max{Dist(G1, G2[i], G2[i+

1]) : 1 ≤ i ≤ n − 1}.

The rationale of this double maximization measure lies in the fact that, in general,

M1 6= M2. For instance, if G1 = 1 2 3 4 5 and G2 = 1 4 3 5 2 then M1 = 4 and M2 = 3,

and hence MAD(G1, G2) = max{4, 3} = 4.

c) Summed Adjacency Disruption Number (SAD): This notion has also been in-

troduced by Sankoff and Haque [22] and can be seen as a global variant of the MAD

number. The SAD number between G1 and G2, denoted SAD(G1, G2), is defined by

SAD(G1, G2) =
∑

1≤i≤n−1 Dist(G2, G1[i], G1[i + 1]) +
∑

1≤i≤n−1 Dist(G1, G2[i], G2[i +

1]).

Going back to our example G1 = 1 2 3 4 5 and G2 = 1 4 3 5 2, one obtains SAD(G1, G2) =

(4 + 2 + 1 + 2) + (3 + 1 + 2 + 3) = 18.
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Of particular importance from a computational complexity point of view, we observe

that the MAD and SAD numbers are dissimilarity measures, i.e., the associated optimiza-

tion problem is a minimization one ; on the contrary, the number of common intervals

is a similarity measure, i.e., the associated optimization problem is a maximization one.

III. NUMBER OF COMMON INTERVALS

In this section, we investigate the algorithmic complexity of computing the num-

ber of common intervals between two genomes, in both the exemplar and matching

models. Let ECOMI (resp. MCOMI) denote the problem of computing the maximum

number of common intervals in the exemplar (resp. matching) model. We show that

both ECOMI and MCOMI are NP-complete, even for restricted instances. The proof we

give below is valid for both models, since it shows NP-completeness in the case where

occ(G1) = 1. However, in order to simplify notations, we will mention in the proof

only the exemplar model (i.e., the ECOMI problem). The proof is made by reduction

from VERTEXCOVER. Starting from any instance of VERTEXCOVER (that is, a graph

G = (V, E) with V = {v1, v2 . . . vn} and E = {e1, e2 . . . em}), we will first describe a

polynomial-time construction of two genomes G1 and G2 such that occ(G1) = 1 and

occ(G2) = 2. We first describe G1:

G1 = b1, b2 . . . bm, x, a1, C1, a2, C2 . . . an, Cn, y, bm+n, bm+n−1 . . . bm+1.

The ais, the bis, x and y are genes, while Cis are sequences of genes. They are defined

as follows:

• for any 1 ≤ i ≤ n, ai = 2(i − 1)m + i ;

• for any 1 ≤ i ≤ n, Ci = (ai + 1), (ai + 2) . . . (ai + 2m) ;
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• for any 1 ≤ i ≤ n + m, bi = an + 2m + i ;

• x = bn+m + 1 ;

• y = bn+m + 2.

It can be seen that no gene appears more than once in G1, thus occ(G1) = 1. Now

we describe the construction of G2:

G2 = y, a1, D′
1, bm+1, a2, D′

2, bm+2 . . . an−1, D′
n−1, bm+n−1, an, D′

n, bm+n, x.

The duplicated genes in G2 are b1, b2 . . . bn, and are spread within the D′
is. Moreover,

each bi, 1 ≤ i ≤ n, will appear only twice in G2. We now describe the contents of D′
i,

1 ≤ i ≤ n. Basically, D′
i is constructed in two steps:

1) We first construct, for each i, a sequence of genes Di, which is a specific shuffle of

the contents of Ci = (ai+1), (ai+2) . . . (ai+2m). More precisely, let min = ai+1

and max = ai + 2m ; then Di = (ai + 3), (ai + 5) . . . (ai + 2m− 3), (ai + 2m −

1), min, max, (ai + 2), (ai + 4) . . . (ai + 2m − 4), (ai + 2m − 2).

2) For any 1 ≤ i ≤ n, we obtain D′
i by adding some bjs (1 ≤ j ≤ m) into Di,

according to the initial graph G we are given. More precisely, for any edge ej

that is incident to a vertex vi in G, we add the gene bj between the j-th and the

(j + 1)-th gene of Di. This process gives us the D′
is.

Note that no two bjs (1 ≤ j ≤ m) can appear contiguously in a D′
i, and that no D′

i

starts or ends with a bj (all D′
is start and end with a gene that only appears in Ci in

G1). In the following, any interval of size one (i.e., any singleton), as well as the whole

genome, will be called a trivial interval.

Lemma 1: For any exemplar genome GE
2 of G2, the only non-trivial common intervals

that occur between GE
2 and G1 are necessarily taken in G1 within the sequence aiCi,

for any 1 ≤ i ≤ n.
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Proof: We will first prove that, for any exemplar genome GE
2 obtained from G2,

any interval of size greater than or equal to 2 that contains x (resp. y) also contains

y (resp. x), and thus corresponds to the whole genome. Suppose indeed that there is

a common interval, different from a singleton, containing x and not y. Let us call this

interval Ix. Now let us look at what other genes Ix could contain in G1:

• If Ix contains bm in G1, since bm belongs to a D′
i in GE

2 , this means that Ix contains

bm+n in GE
2 , and thus contains y in G1, a contradiction.

• If Ix contains a1 in G1, Ix contains in particular bm+n in GE
2 , and thus contains y

in G1, a contradiction.

Hence, any common interval Ix that contains x also contains y. Now suppose that a

common interval Iy, different from a singleton, contains y and not x, and let us look at

what other genes Iy could contain in G1:

• If Iy contains bm+n in G1, then it contains all the D′
is in GE

2 , and in particular it

contains all the bjs, 1 ≤ j ≤ m. Thus it contains x in G1, a contradiction.

• If Iy contains an +2m in G1, then it contains in particular bm+n−1 in GE
2 , and thus

contains bm+n in G1. We are back to the previous case.

Hence, the only common interval containing x (resp. y) is the whole genome G1.

Thus, if there are common intervals that are non-trivial, they must be, in G1, either

strictly on the left of x, strictly between x and y or strictly on the right of y. We will

investigate separately these three cases:

1) Intervals strictly on the left of x in G1: since no two bjs, 1 ≤ j ≤ m are contiguous

in GE
2 , any such interval would contain at least one gene in a given D ′

i which occurs

only in Ci in G1, a contradiction.

2) Intervals strictly on the right of y in G1: similarly, any such interval would contain

an ai in GE
2 , a contradiction.

3) Intervals strictly between x and y in G1: independently of the way GE
2 is exem-
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plarized, we see that no common interval in G1 can contain at the same time ai

and ai+1, 1 ≤ i ≤ n − 1. Thus the only possible common intervals between G1

and GE
2 must be taken within a given substring of the form aiCi (1 ≤ i ≤ n) in

G1, and the lemma is proved.

Lemma 2: For any given 1 ≤ i ≤ n, let ∆i be a subsequence of D′
i that does not

contain any bj . If 2 ≤ |∆i| ≤ 2m − 1, then it is not a common interval.

Proof: Let ∆i be a subsequence of D′
i that does not contain any bj , and let

2 ≤ |∆i| ≤ 2m−1. By Lemma 1, ∆i can only be a common interval with a substring of

Ci, which, by construction, contains consecutive integers. Thus, since |∆i| ≥ 2, it must

contain at least two consecutive integers. However, by construction, any two consecutive

integers in D′
i are extremities of an interval that contains both the minimum value m

and the maximum value M of D′
i. But since in Ci, m and M are the left and right

extremities, ∆i is at least as big as Ci. Since, by construction, |Ci| = 2m and since we

supposed |∆i| ≤ 2m − 1, this cannot happen. Hence ∆i is not a common interval.

Lemma 3: For any exemplar genome GE
2 of G2 and for any 1 ≤ i ≤ n, only two

cases can occur:

(1) In GE
2 , all the bjs have been deleted from D′

i, and in that case there are exactly

two non-trivial common intervals involving D′
i.

(2) In GE
2 , at least one bj has been left within D′

i, and in that case there is no non-trivial

common interval involving D′
i.

Proof: By Lemma 1, we know that any non-trivial interval is composed in G1

of elements of the sequence aiCi, for any 1 ≤ i ≤ n. Hence, it is composed, in any

exemplar genome GE
2 obtained from G2, of elements of the sequence aiD

′
i, for any

1 ≤ i ≤ n.

Suppose first that all the bjs in D′
i have been deleted in our exemplar genome GE

2 , thus
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transforming it into the exemplar subsequence Di. By Lemma 1, we know that any non-

trivial interval is composed in G1 of elements of the sequence aiCi, for any 1 ≤ i ≤ n.

Hence, it is composed, in any exemplar genome GE
2 obtained from G2, of elements of

the sequence aiDi, for any 1 ≤ i ≤ n. In that case, it can be easily seen that, for any

1 ≤ i ≤ n:

1) Interval aiCi in G1 is a common interval to aiDi in GE
2 , and

2) Interval Ci in G1 is a common interval to Di in GE
2 .

Moreover, by Lemma 2, no strict subsequence ∆i of Di such that 2 ≤ |∆i| ≤ |Di|−1

is a common interval (we recall that |Di| = |Ci| = 2m by construction). Hence if all the

bjs in D′
i have been deleted to obtain Di, then only two common non-trivial intervals

exist in GE
2 : aiDi (which is common with aiCi in G1) and Di (which is common with

Ci in G1).

Suppose now that at least one bj in D′
i has not been deleted in GE

2 . First, we note that no

non-trivial common interval can include bj , since bj does not appear in Ci. Hence any

possible non-trivial interval involving D′
i is a substring ∆i of D′

i that does not contain

any bj . But since no bj is an extremity of D′
i, it implies that necessarily |∆i| ≤ 2m− 1.

However, by Lemma 2 we know that in that case, ∆i is not a common interval.

Lemma 4: Let G be a graph and G1 and G2 be the two genomes obtained by the

construction described above. G admits a Vertex Cover V C such that |V C| ≤ k iff there

exists an exemplar genome GE
2 obtained from G2 having at least I = 2(n − k) + IT

common intervals, where IT is the number of trivial common intervals.

Proof: (⇒) Suppose there exists in G a Vertex Cover V C such that |V C| =

k′ ≤ k. Let V C = {vi1, vi2 . . . vik′
}. In G2, delete the bjs in the substrings D′

i for

any i 6∈ {i1, i2 . . . ik′}. If, after doing this, there remains some bjs which appear twice,

remove one copy of each arbitrarily. Since in G2 (1) only the bjs are duplicated, (2) each

bj occurs exactly twice in G2 and (3) V C is a Vertex Cover of G, we conclude that
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with those deletions, we end up with an exemplar genome GE
2 . In GE

2 , we have at least

(n − k) substrings of the form D′
i for which all the bjs have been deleted. Thus, by

Lemma 3, we know they each imply two non-trivial common intervals, which sums up

to at least 2(n − k). To those intervals, we add the trivial ones. Hence, on the whole,

we get at least I = 2(n − k) + IT common intervals between G1 and GE
2 .

(⇐) Suppose there exists an exemplar genome GE
2 obtained from G2, and having at

least I = 2(n− k) + IT common intervals. Then, there are at least 2(n− k) non-trivial

common intervals. However, by Lemma 1, we know that they can only occur within the

substrings aiCi, 1 ≤ i ≤ n, in G1, that is within the substrings aiD
′
i, 1 ≤ i ≤ n, in GE

2 .

By Lemma 3, we know that in at least (n − k) such substrings, all the bjs, 1 ≤ j ≤ m

have been deleted. Since GE
2 is exemplar, this means that the bjs have remained in at

most k substrings of the form aiD
′
i. By construction, each bj has been included in a D′

i

because the edge ej is incident to the vertex vi in the graph G. Since one copy of each

bj has remained in GE
2 , and since they are included in at most k substrings of the form

aiD
′
i, we conclude that those substrings imply a Vertex Cover, of size at most k, in G.

As a direct consequence of Lemma 4, we can say that the ECOMI problem is NP-

complete. Moreover, as mentioned before, the proof and the result are also valid for

the MCOMI problem, since our construction implies occ(G1) = 1. We thus have the

following theorem.

Theorem 1: The ECOMI and MCOMI problems are both NP-complete, even when

occ(G1) = 1 and occ(G2) = 2.

We also consider, for the matching model, instances for which the constraints do not

rely on the maximum number of duplicates per family, but on the number of families

that contain duplicates. With this restriction, we obtain the following result.

Theorem 2: The MCOMI problem is NP-complete, even when f(G1) = f(G2) = 1,

where f(G) denotes the number of different families of genes that contain duplicates in
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G.

Proof: The proof is directly derived from the proof of Blin and Rizzi [18], in

which the authors studied conserved intervals, a measure which is closely related to

common intervals. More precisely, a conserved interval is a common interval for which

the extremities are conserved [23]. Hence, any conserved interval is by definition a

common interval, though the converse is not true in general. However, the construction

given in [18] has the property that any common interval is in fact also a conserved

interval. Hence, the reduction they provide is also valid for the MCOMI problem, and

the result follows.

IV. MAXIMUM ADJACENCY DISRUPTION (MAD)

Let EMAD (resp. MMAD) denote the problem of computing the minimum MAD

number in the exemplar (resp. matching) model. In this section, we prove inapproxima-

bility results for both the EMAD and MMAD problems. More precisely, we show that

for no ε > 0, EMAD (resp. MMAD) admits a (2− ε)-approximation algorithm, unless

P=NP. This inapproximability result does not rely on the PCP theorem. We will also

remark however, how, reconsidering the reduction proposed in view of APX-hardness

results based on the PCP theorem, one can replace the constant 2 above with a strictly

bigger constant. The proof is split into two: we first study the complexity of a restricted

form of SAT, which we call UNIFORM-SAT, and in particular we show that it is NP-

complete. Next, we show that a (2 − ε)-approximation algorithm for EMAD (resp.

MMAD), for some ε > 0, would imply the existence of a polynomial time algorithm

for UNIFORM-SAT. Finally, we obtain the inapproximability result for EMAD (resp.

MMAD).

In the following, 3SAT will denote the restriction of SAT for which each clause

contains at most three literals. We introduce a restricted form of 3SAT called UNIFORM-
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SAT, as follows: an instance 〈X, C〉 of 3SAT is an instance of UNIFORM-SAT when

the following two conditions are met:

1) for each clause C ∈ C, either all literals occurring in C are positive occurrences of

variables from X or all literals occurring in C are negated occurrences of variables

from X , and

2) for each variable x ∈ X , x has at most 3 positive and at most 2 negated occurrences

within C.

A 3SAT formula F =
∧

C∈C C is called 3-bounded if no variable has more than 3

occurrences within C and is called (2, 2)-bounded if no variable has more than 2 positive

occurrences and no more than 2 negated occurrences within C. The following two facts

are known:

1) The decision problem 3SAT is NP-complete even when restricted to 3-bounded

formulas [24], and

2) The optimization problem MAX-3SAT is APX-hard even when restricted to 3-

bounded formulas [25].

Since both problems admit a trivial self-reduction in case a variable has only positive

(or only negated) occurrences, then the following two facts also hold:

1) 3SAT is NP-complete even when restricted to (2, 2)-bounded formulas, and

2) MAX-3SAT is APX-hard even when restricted to (2, 2)-bounded formulas.

Notice that, of the above two results, only the second is related to the PCP theorem,

whereas the first was known much before its appearance.

The following reduction links the complexity of UNIFORM-SAT to the complexity

of (2, 2)-bounded 3SAT. Given a generic instance 〈X, C〉 of (2, 2)-bounded 3SAT,

where X = {x1, x2, . . . , xn} and C = {C1, C2, . . . , Cm}, consider the instance 〈Y,P〉 of

UNIFORM-SAT, where Y = {yj
i : i = 1, 2, . . . , n, j = 0, 1, 2, 3} and P = Pvar ∪ Pcla,
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where Pvar = {(yj
i ∨yj+1 mod 4

i ), (¬yj
i ∨¬yj+1 mod 4

i ) : i = 1, 2, . . . , n, j = 0, 1, 2, 3} and

Pcla = {P1, P2, . . . , Pm}, where, for j = 1, 2, . . . , m, the clause Pj is obtained from the

clause Cj as follows: for each literal ` occurring in Cj , and assuming ` is the t-th positive

(or the t-th negated) literal of variable xi (with i = 1, 2, . . . , n and t = 1, 2) occurring

within the clauses C1, C2, . . . , Cm as taken in this order, then the literal y2t−1
i (resp., the

literal y2t−2
i ) is placed in the clause Pj . In practice, the clause Pj is a clause made only

of positive literals which is meant to represent the original clause Cj. At the same time,

the all-positive or all-negated clauses in Pvar are there to enforce the consistency of the

truth values of the variables y0
i , y

1
i , y

2
i , and y3

i which are meant to represent either the

positive (y1
i , and y3

i ) or the negated (y0
i , and y2

i ) occurrences of variable xi within C.

The above is clearly a polynomial time reduction; besides, we have the following

lemmas.

Lemma 5: Let tX : X 7→ {0, 1} be a truth assignment over X which satisfies at least

c of the clauses in C. Then there exists a truth assignment tY : Y 7→ {0, 1} over Y

which satisfies at least c + 8n of the clauses in P .

Proof: Consider the assignment tY defined by tY (y1
i ) := tY (y3

i ) := tX(xi) and by

tY (y0
i ) := tY (y2

i ) := ¬tX(xi). Note that each of the 8n clauses in Pvar is satisfied under

tY . Moreover, for each j = 1, 2, . . . , m, the clause Pj is satisfied under tY if and only

if the clause Cj is satisfied under tX .

Lemma 6: Let tY : Y 7→ {0, 1} be a truth assignment over Y which satisfies at least

c + 8n of the clauses in P . Then, in polynomial time, we can derive from tY a truth

assignment tX : X 7→ {0, 1} over X which satisfies at least c of the clauses in C.

Proof: Truth assignment tY is called canonical if, for each i = 1, 2, . . . , n, the truth

values of the variables y0
i , y

1
i , y

2
i , and y3

i are consistent, that is, when tY (y0
i ) = tY (y2

i ) 6=

tY (y1
i ) = tY (y3

i ). Notice that, by possibly redefining at most two truth values among

tY (y0
i ), tY (y2

i ), tY (y1
i ), tY (y3

i ), we can always assume that tY is canonical. Indeed, at
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least two extra clauses from Pvar get satisfied in restoring the consistency among the

variables y0
i , y

1
i , y

2
i and y3

i while, at the same time, since at most two truth values have

been affected, at most two clauses from Pcla may lose in satisfaction. In other words, we

can make tY canonical by a majority vote on y0
i , y

1
i , y

2
i and y3

i for each i = 1, 2, . . . , n,

while preserving the fact that at least c + 8n of the clauses in P are satisfied under tY .

Once tY is canonical, the arguments spent within the proof of the previous lemma are

fully reversible.

The above two lemmas imply that UNIFORM-SAT is NP-complete.

Theorem 3: Deciding whether a given UNIFORM-SAT formula is satisfiable is NP-

complete.

Theorem 3 here above does not need the PCP theorem and is all what is required in

the following for proving that, for no ε > 0, EMAD (resp. MMAD) admits a (2 − ε)-

approximation algorithm, unless P=NP. With dependence on PCP, Lemmas 5 and 6 also

imply the following result, which, besides being of independent interest, can be used to

show that the right constant for the approximability of EMAD (resp. MMAD) is not 2.

Theorem 4: Given a UNIFORM-SAT formula, the problem of finding a truth assign-

ment maximizing the number of satisfied clauses is APX-hard.

Proof: We will proceed as follows: assume we are given a (1 − ε)-approximation

algorithm A for UNIFORM-SAT and design a (1 − 25 ε)-approximation algorithm for

(2, 2)-bounded 3SAT which rests on algorithm A as a subroutine. The APX-hardness

of UNIFORM-SAT then follows from the APX-hardness of (2, 2)-bounded 3SAT.

After receiving in input an instance 〈X, C〉 of (2, 2)-bounded 3SAT, we construct the

instance 〈Y,P〉 of UNIFORM-SAT as described above. Assume the optimal truth assign-

ment tX,opt for 〈X, C〉 satisfies at least opt clauses in C. Clearly, opt ≥ n
3

since there

clearly exists a truth assignment under which, for each variable x ∈ X , at least one of the

occurrences of x in C belongs to a satisfied clause, and since each clause contains at most
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3 literals. Moreover, by Lemma 5, there exists a truth assignment tY,opt over Y satisfying

at least 8n + opt clauses in P . By running algorithm A, we are hence guaranteed to

find a truth assignment tY,apx over Y satisfying at least (8 n + opt)(1− ε) clauses in P .

And Lemma 6 (whose proof can be easily converted into a polynomial time algorithm)

shows how, starting from this truth assignment tY,apx, one can obtain a truth assignment

tX,apx over X such that the clauses in C which are satisfied under tX,apx are at least

(8n+ opt)(1− ε)− 8n ≥ opt− ε opt− 8 ε n ≥ opt− ε opt− 24 ε opt ≥ (1− 25ε) opt.

We now prove that both the EMAD and MMAD problems are APX-hard. The result

holds for both problems, since we prove it in the case where occ(G1) = 1, where they

coincide. The result rests on a reduction from UNIFORM-SAT. Assume we are given

an instance 〈X, C〉 of UNIFORM-SAT, where X = {x1, x2, . . . , xn}. Here, C can be

partitioned into the family P = {P1, P2, . . . , Pmp
} of clauses comprising only positive

literals and the family N = {N1, N2, . . . , Nmn
} of clauses comprising only negated

literals. Let Mε be a sufficiently big positive integer that we will fix later in order to

force our conclusions. Let us now detail the construction of the two genomes G1 and

G2, from any instance of the UNIFORM-SAT problem. Here, G1 is the simple (that is,

duplication-free) genome G1 of length L1 = 2 Mε +mp +mn +n−1 defined as follows:

G1 = 1 2 3 . . . L1. A gene at position i in G1 with i ≤ mp or i ≥ L1 −mn + 1 is called

a ∗-gene. Genome G2 has length L2 = 2 Mε + 6 n − 1, and conforms to the following

pattern, where we have found it convenient and pertinent to spot out the displacement

of the ∗-genes within genome G2.

G2 = mp+1, mp+2, . . . , mp+Mε, ∗, ∗, ∗, ∗, ∗, mp+Mε+1, ∗, ∗, ∗, ∗, ∗, mp+Mε+2, . . .

. . . , ∗, ∗, ∗, ∗, ∗, mp+Mε+n, mp+Mε+n+1, mp+Mε+n+2, . . . , mp+2 Mε+n−1.

We will specify later the precise identity of the ∗-genes within genome G2. For now,

January 25, 2007 DRAFT



TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 19

notice that in G2 we have precisely n runs of five consecutive ∗-genes. We put these

runs into 1, 1-correspondence with the n variables in X , so that the i-th run corresponds

to variable xi, for i = 1, 2, . . . , n. For each i = 1, 2, . . . , n, let Pi and Ni be the lists of

index sets of the clauses from P and N which contain variable xi. E.g., if xi appears in

P3, in P7, and in N2, then Pi = (3, 7), whereas Ni = (2). Notice that the lengths of the

lists Pi and Ni are at most 3, and 2, respectively. From the list Pi we obtain a list P ′
i

of length precisely 3 by possibly iterating the last element in Pi the required number of

times (that is, 3− |Pi| times). A list N ′
i of length precisely 2 is similarly obtained from

list Ni. Now, for each i = 1, 2, . . . , n, the i-th run of five consecutive ∗-genes consists,

more precisely, in the following five characters.

(∗, ∗, ∗, ∗, ∗) → (P ′
i[1],P ′

i[2],P ′
i[3], L1 − mn + N ′

i [1], L1 − mn + N ′
i [2]).

The above is clearly a polynomial time reduction. It can also be easily seen that

there are no duplications in G1, while each gene appears at most 9 times in G2 (that is,

occ(G1) = 1 and occ(G2) ≤ 9). Besides, we have the following lemmas.

Lemma 7: Let tX : X 7→ {0, 1} be a satisfying truth assignment for 〈X, C〉. Then there

exists an exemplar subgenome GE
2 of G2 whose MAD number satisfies MAD(G1, G

E
2 ) ≤

Mε + mp + mn + n.

Proof: For each clause Pj ∈ P , choose a variable xi occurring in Pj and such

that tX(xi) = 1 (remember that tX is a satisfying truth assignment) and color with red

one copy of gene j occurring within the i-th run of five consecutive ∗-genes in G2.

Similarly, for each clause Nj ∈ N , choose a variable xi occurring in Nj and such that

tX(xi) = 0 (again, at least one such variable must exist since tX is a satisfying truth

assignment) and color with red one copy of gene (L1−mn)+ j = 2 Mε +mp +n−1+ j

occurring within the i-th run of five consecutive ∗-genes in G2. Now, obtain GE
2 from
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G2 by deleting all the ∗-genes, except those marked red. Notice that GE
2 is indeed an

exemplar genome on the genes 1, 2, . . . , L1.

We now verify that MAD(G1, G
E
2 ) ≤ Mε + mp + mn + n, which is better done

in two separate steps. First, we check out that any two genes j and j + 1 which are

adjacent in G1 are at most Mε + mp + mn + n positions apart in GE
2 . This follows

from the fact that L1 = 2 Mε + mp + mn + n − 1 and considering that the first Mε

positions in GE
2 are taken by genes j ∈ [mp +1, mp +Mε] whereas the last Mε positions

in GE
2 are taken by genes j ∈ [L1 − mn − Mε + 1, L1 − mn]. Moreover, for j ∈

[mp + 1, mp + Mε − 1] ∪ [L1 − mn − Mε + 1, L1 − mn − 1], genes j and j + 1 are

also adjacent in GE
2 (more generally, for j ∈ [mp + 1, L1 − mn − 1], genes j and j + 1

have both a unique occurrence also in G2, where they are at most 6 positions apart,

and they are at most 4 positions apart in GE
2 ). Second and last, we check out that any

two genes i and j which are adjacent in GE
2 are at most Mε + mp + mn + n positions

apart in G1. Here, if neither i nor j are ∗-genes, then i and j are also adjacent in G1,

that is, j = i ± 1. Furthermore, if precisely one among i and j, say j, is a ∗-gene, then

mp +Mε ≤ i ≤ mp +Mε +n since otherwise i could not be adjacent to a *-gene in GE
2 ;

hence, if j < i, then i− j ≤ mp +Mε +n, whereas, if i < j, then j − i ≤ mn +Mε +n.

Thus the only interesting case is when both i and j are ∗-genes, that is, both i and j

belong either to the interval [1, mp] or to the interval [L1 −mn + 1, L1]. It suffices here

to notice that in this case i and j come from the same interval. Indeed, this follows

from the fact that i and j are adjacent in GE
2 and hence correspond to occurrences of

the same variable. But then these two occurrences must either be both positive or both

negative since they both have been colored with red in the marking phase.

Lemma 8: For any exemplar genome GE
2 of G2 such that MAD(G1, G

E
2 ) < 2 Mε +n,

we can derive in polynomial time from GE
2 a satisfying truth assignment for 〈X, C〉.

Proof: Since MAD(G1, G
E
2 ) < 2 Mε + n, then, in obtaining GE

2 from G2, and
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for each i = 1, 2, . . . , n, it must be the case that in the i-th run of five consecutive

∗-genes in G2, either the genes P ′
i[1], P ′

i[2], P ′
i[3] have all been deleted, or the genes

N ′
i [1] + L1 − mn and N ′

i [2] + L1 − mn have both been deleted. Consider the truth

assignment tX : X 7→ {0, 1} such that, for each i = 1, 2, . . . , n, tX(xi) = 1 iff both

N ′
i [1] + L1 − mn and N ′

i [2] + L1 − mn have been deleted. We claim that tX(xi) is a

satisfying truth assignment. Indeed, for each clause Pj ∈ P , we know that at least a

copy of gene j has been retained in GE
2 . This copy must come from one of the runs

of five consecutive ∗-genes in G2, say from the i-th run. It follows that xi occurs in Pj

and that tX(xi) = 1. Similarly, for each clause Nj ∈ N , we know that at least a copy

of the gene (L1 − mn) + j (i.e., of gene 2 Mε + mp + n − 1 + j) has been retained in

GE
2 . This copy must come from one of the runs of five consecutive ∗-genes in G2, say

from the i-th run. It follows that xi occurs in Nj and that tX(xi) = 0.

Theorem 5: For no ε > 0, EMAD (resp. MMAD) admits a (2 − ε)-approximation

algorithm, unless P=NP.

Proof: We proceed as follows: we assume we are given a (2 − ε)-approximation

algorithm A for EMAD (resp. MMAD) and design a polynomial time algorithm for

UNIFORM-SAT which rests on algorithm A as a subroutine. The theorem then follows

from the NP-completeness of UNIFORM-SAT, as stated in Theorem 3. After receiving

in input an instance 〈X, C〉 of UNIFORM-SAT, we construct the instance 〈G1, G2〉 of

EMAD (resp. MMAD) as described above. If 〈X, C〉 is satisfiable, then, by Lemma 7,

there exists an exemplar subgenome GE
2 of G2 such that MAD(G1, G

E
2 ) ≤ Mε + mp +

mn+n. By running algorithm A, we are hence guaranteed to find an exemplar subgenome

GE
apx of G2 such that MAD(G1, G

E
apx) ≤ (Mε + mp + mn + n)(2− ε) ≤ 2 Mε + 2 mp +

2 mn+2 n−ε Mε. Now, after choosing Mε ≥
2 mp+2 mn+2 n

ε
, we conclude that the solution

GE
apx produced by algorithm A satisfies MAD(G1, G

E
apx) ≤ 2 Mε. And Lemma 8 (whose

proof can be easily converted into a polynomial time algorithm) shows how, starting
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from GE
apx, one can obtain a satisfying truth assignment for 〈G1, G2〉. Conversely, if

〈X, C〉 is not satisfiable, then, by Lemma 8, MAD(G1, G
E
apx) ≥ 2 Mε + n must hold for

the solution returned by algorithm A, as it holds for any solution, and we can realize

that 〈X, C〉 was not satisfiable comparing this fact against Lemma 7.

Remark 1: There actually exists a constant c > 2 such that EMAD (resp. MMAD)

admits no c-approximation algorithm unless P=NP. We can get to this stronger conclu-

sion if in the proof of Theorem 5 above we apply Theorem 4 instead of Theorem 3.

And explicit values of c for which this stronger statement holds can also be worked out.

V. SUMMED ADJACENCY DISRUPTION (SAD)

Let ESAD (resp. MSAD) denote the problem of computing the minimum SAD

number in the exemplar (resp. matching) model. In this section, we prove that both

problems ESAD and MSAD, expressed on two genomes G1 and G2 such that |G1| ≤

|G2| cannot be better than log(|G1|) approximated (here and in the rest of the paper,

logarithms are assumed to be base e). This result holds for both the exemplar and the

matching models, since we prove it in the case where occ(G1) = 1, for which the two

problems coincide. The inapproximability of ESAD (resp. MSAD) is obtained starting

from the inapproximability of SETCOVER. This result will hence depend on the PCP

theorem, but will deliver stronger SETCOVER-like inapproximability thresholds than for

the EMAD and MMAD problems discussed in the previous section.

Let 〈V,S〉 be an instance of SETCOVER, where V = {1, 2, . . . , n} and S = {S1, S2,

. . . , Sm} is a family of subsets of V . We can assume n is even, say n = 2k, and

each set Si contains precisely k = n
2

elements, say si
1, s

i
2, . . . , s

i
k. The well known

inapproximability results for SETCOVER hold also under these assumptions, since we

can think of enlarging a groundset V , originally on k elements, by adding a set V ′ of

k new elements, adding V ′ to S, and enlarging the other sets in S with elements from

V ′ until their size rises up to k. Let M = m2n2 play the role of a sufficiently big
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positive integer. Let us now detail the construction of the two genomes G1 and G2, from

any instance of the SETCOVER problem. Here, G1 is a simple (that is, duplication-free)

genome of length L1 = M + n + m as given by G1 = 1, 2, 3 . . . L1. Genome G2 has

length L2 = M + m(k + 1), and is constructed as follows:

G2 = n + 1, n + 2, . . . , n + M, s1
1, s

1
2, . . . , s

1
k, n + M + 1, s2

1, s
2
2, . . . , s

2
k, n + M + 2, . . .

. . . , sm−1
1 , sm−1

2 , . . . , sm−1
k , n + M + m − 1, sm

1 , sm
2 , . . . , sm

k , n + M + m.

The above is clearly a polynomial time reduction; besides, we have the following lemmas.

Lemma 9: Let S ′ ⊂ S be a set cover of V with |S ′| ≤ s. Then there exists an exemplar

subgenome GE
2 of G2 whose SAD number satisfies SAD(G1, G

E
2 ) ≤ 2 s M + 5 M .

Proof: For each element v ∈ V , choose a set Si in S ′ such that v ∈ Si, i.e., si
j = v

for some j = 1, 2, . . . , k. Color with red this copy of gene v, that is, the copy of gene

v occurring in the position M + (k + 1)(i− 1) + j of G2. Now, obtain GE
2 from G2 by

deleting all the copies of the first n genes, except those marked with red. Notice that

GE
2 is indeed an exemplar genome on the genes 1, 2, . . . , L1.

We now verify that SAD(G1, G
E
2 ) ≤ 2 s M + 5 M . Indeed,

SAD(G1, G
E
2 ) =

M+m+n−1
∑

i=1

Dist(GE
2 , G1[i], G1[i + 1]) +

M+m+n−1
∑

i=1

Dist(G1, G
E
2 [i], GE

2 [i + 1])

where, assuming m and n sufficiently big (m, n ≥ 4),
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M+m+n−1
∑

i=1

Dist(GE
2 , G1[i], G1[i + 1]) ≤

n−1
∑

i=1

Dist(GE
2 , G1[i], G1[i + 1]) +

(M + m + n) +
M+n−1
∑

i=n+1

Dist(GE
2 , G1[i], G1[i + 1]) +

M+m+n−1
∑

i=M+n

Dist(GE
2 , G1[i], G1[i + 1])

≤ n(n + m) + (M + m + n) + M + mn

≤ 2 M + 3 mn2

≤ 2 M + m2n2

≤ 3 M ,

and where, again assuming m and n sufficiently big (m, n ≥ 4),
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M+m+n−1
∑

i=1

Dist(G1, G
E
2 [i], GE

2 [i + 1]) =

M−1
∑

i=1

Dist(G1, G
E
2 [i], GE

2 [i + 1]) +

M+m+n−1
∑

i=M

Dist(G1, G
E
2 [i], GE

2 [i + 1]) =

(M − 1) +
M+m+n−1

∑

i=M

Dist(G1, G
E
2 [i], GE

2 [i + 1])

≤ M +
∑

Si /∈S′

1 +
∑

Si∈S′

(2(M + m + n + n2))

≤ M + m + 2 s (M + m + n + n2)

≤ M + 2 s M + m2n2

≤ 2 s M + 2 M .

To better explain the upper bound on the term
∑M+m+n−1

i=M Dist(G1, G
E
2 [i], GE

2 [i+1]) used

in the above chain of inequalities, denote with pi, i = 0, 1, . . . , m, the absolute position

of the gene M + n + i inside the genome GE
2 . (Thus, p0 = M and pn = M + n + m).

Clearly,
∑M+m+n−1

i=M Dist(G1, G
E
2 [i], GE

2 [i + 1]) =
∑m

i=1

∑pi−1
j=pi−1

Dist(G1, G
E
2 [j], GE

2 [j + 1]).

Now, when Si /∈ S ′, then the two genes n + M + (i− 1) and n + M + i are adjacent

both in GE
2 and in G1, whence

∑pi−1
j=pi−1

Dist(G1, G
E
2 [j], GE

2 [j + 1]) = 1. Also, for each

i = 1, 2, . . . , m, Dist(G1, G
E
2 [pi−1], G

E
2 [pi−1 + 1]) ≤ M + m + n and Dist(G1, G

E
2 [pi −

1], GE
2 [pi]) ≤ M +m+n, since M +m+n is the length of G1. Furthermore, pi−pi−1 ≤

1 + k ≤ n, and, for each j = 1, 2, . . . , pi − pi−1 − 2, Dist(G1, G
E
2 [pi−1 + j], GE

2 [pi−1 +
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j + 1]) ≤ n.

Lemma 10: For any exemplar subgenome GE
2 of G2 such that SAD(G1, G

E
2 ) < 2 s M ,

we can derive, from GE
2 and in polynomial time, a set cover S ′ ⊂ S of V such that

|S ′| ≤ s.

Proof: Let S ′ be the family of those Si ∈ S for which there exists a v ∈ Si, say

v = sj
i , such that, in obtaining GE

2 from G2, the copy sj
i of gene v has not been deleted.

Notice that S ′ is a cover of V , since all genes 1, 2, . . . , L1 occur in GE
2 . Moreover, |S ′| ≤

s follows from SAD(G1, G
E
2 ) < 2 s M . Indeed,

∑M+m+n−1
i=M Dist(G1, G

E
2 [i], GE

2 [i+1]) ≤

SAD(G1, G
E
2 ) ≤ 2 s M . However, for every i such that Si ∈ S ′, the genes M+n+(i−1)

and M + n + i are not consecutive in GE
2 . Let us denote with pi−1 and pi the absolute

positions of genes M +n+(i−1) and M +n+i within the genome GE
2 . Thus, whenever

Si ∈ S ′, then pi > pi−1 + 1 and we have Dist(G1, G
E
2 [pi−1], G

E
2 [pi−1 + 1]) ≥ M and

Dist(G1, G
E
2 [pi−1], GE

2 [pi]) ≥ M , since GE
2 [pi−1+1] ≤ n and GE

2 [pi−1] ≤ n. It follows

that |S ′| ≤ 2 sM
2 M

= s.

Theorem 6: There exists a constant c > 0 such that ESAD (resp. MSAD) admits

no (c log |G1|)-approximation algorithm unless P=NP, where |G1| is the length of the

smallest genome.

Proof: It is well known that SETCOVER cannot be approximated within (1−ε) log n

(where n is the number of elements) for any ε > 0 (see [26]), nor within c log m (where

m the number of sets (see [27]) for some c > 0. To be more precise, it has been

proved in [27] that the instance of Set Cover produced through the reduction in [26]

is characterized by having m ≤ n5. Thus, for no ε > 0, SETCOVER can be (1 − ε)-

approximated, even when restricting attention to instances in which log m ≤ 5 log n. This

means that there exists a constant c′ such that no polynomial algorithm approximates

SETCOVER within c′(log m+log n), with c′ chosen small enough (consider any c′ < 1
6
).

We claim that ESAD (resp. MSAD) admits no
(

c′

4
log |G1|

)

-approximation algorithm.
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We proceed as follows: we assume we are given a
(

c′

4
log |G1|

)

-approximation algorithm

A for ESAD (resp. MSAD), and design a c′(log m+log n)-approximation algorithm for

SETCOVER which rests on algorithm A as a subroutine. The theorem then follows from

the above collected inapproximability facts about SETCOVER. After receiving in input

an instance 〈V,S〉 of SETCOVER, we construct the instance 〈G1, G2〉 of ESAD (resp.

MSAD) as described above. Notice that |G1| ≤ 2 M and hence log |G1| ≤ log 2m2n2 ≤

3 (log m + log n). Let opt be the minimum size of a set cover for 〈V,S〉. Then, by

Lemma 9, there exists an exemplar subgenome GE
2 of G2 such that SAD(G1, G

E
2 ) ≤

2 opt M + 5 M . By running algorithm A, we are hence guaranteed to find an exemplar

subgenome GE
apx of G2 such that SAD(G1, G

E
apx) ≤ (2 opt M + 5 M) c′

4
log |G1| ≤

(

8
3
opt M

)

c′

4
3 (log m + log n) ≤ (2 opt M) c′ (log m + log n). Indeed, in the derivation

of the above chain of inequalities we can conveniently assume that the value of opt is

sufficiently big since, if opt was bounded by any constant, then an optimal solution to the

original SETCOVER instance could be found in polynomial time. Now, Lemma 10 (whose

proof can be easily converted into a polynomial time algorithm) shows how, starting

from GE
apx, one can obtain a set cover S ′ with |S ′| ≤ 1

2 M
(2 opt M) c′ (log m + log n) =

opt c′ (log m + log n).

VI. SUMMARY OF THE RESULTS AND DISCUSSION

In this section, we give a summary of the results from this paper, as well as some

other results concerning the complexity of computing several classical (dis)similarity

measures, under both the exemplar and the matching models. We found interesting to

end this paper by giving an overview of existing results in this area, since several

recent papers, by different groups of authors, have investigated the problem. Hence,

in addition to the number of common intervals, MAD number and SAD number, we

include results concerning the number of conserved intervals (initially defined in [23]),

number of breakpoints and number of reversals. However, we should note that the three
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above mentioned measures take signs into account, which is not the case for common

intervals, MAD and SAD.

We recall that occ(G) denotes the maximum of occ(G, g) over all genes g in G, where

occ(G, g) denotes the maximum number of occurrences of a gene g in genome G

(regardless of the signs). We also recall that f(G) denotes the number of different

families of genes that contain several occurrences in genome G.

The results concerning the exemplar model are summarized in Table I, while the ones

concerning the matching model are summarized in Table II.

The main conclusion that we can draw from these two tables is that, as soon as

occ(G1) = 1 and occ(G2) = 2, the computation of five out of the six above-mentioned

measures becomes NP-complete, under both the exemplar and matching models. In that

sense, we are able to draw the exact border between polynomial problems (occ(G1) =

occ(G2) = 1) and NP-complete problems (occ(G1) = 1 and occ(G2) = 2), except for the

number of reversals, where a gap exists (we do not know the complexity of the problem

when occ(G1) = 1 and occ(G2) = 2).

Another interesting parameter to consider for the complexity of those problems is f(G),

the number of families of genes that are duplicated in genome G. Concerning this

parameter, only a few results are known (breakpoints, conserved and common intervals,

in the matching model only).

Concerning the approximability of the problems, it turns out that even when occ(G1) = 1,

we are able to say that five out of the six measures lead to APX-hard problems. For the

number of reversals, it is APX-hard in the exemplar model when occ(G1) = occ(G2) =

2 [13]. However, for three of those five cases (breakpoints, conserved and common

intervals), similarly to the complexity results, we know that the problem is APX-hard

even when occ(G1) = 1 and occ(G2) = 2, while in the others, the value of occ(G2) is

either unbounded (SAD) or bounded by constant 9 (MAD).
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VII. CONCLUSION

In this paper, we have investigated the algorithmic complexity of the problem of

computing similarity measures between genomes, in the case where they contain dupli-

cates. This has been done for three measures: common intervals, Maximum Adjacency

Disruption and Summed Adjacency Disruption. We have shown that the three problems

are NP-complete, for both the exemplar and matching variants. Moreover, we have

provided APX-hardness results concerning MAD and SAD. Those results, together with

the ones concerning conserved intervals, breakpoints and reversals, basically show that as

soon as duplicates are present, the problem becomes hard, and even hard to approximate,

even in very restricted instances.

Several lines of research would be interesting to follow, some of which we mention

below:

• make Tables I and II even more precise. In particular: (i) complete the cases for

which no result is known or a gap exists (that is, number of reversals) ; (ii) study

more deeply the complexity and approximability results with respect to parameter

f ; (iii) tighten, if possible, the results concerning the (in)approximability of the

problems, notably for the number of reversals in the exemplar model.

• find Fixed-Parameter Tractable algorithms for those problems, in order to circum-

vent NP-completeness and APX-hardness of the problems.

• find good heuristics for those problems, as done for instance in [17] and [28] (among

many others), in which the authors are able to compare their proposed heuristic to

the exact results.
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TABLE I

RESULTS CONCERNING THE EXEMPLAR MODEL.

(*) We note that this result can actually be extended to the case where occ(G1) = 1 and

occ(G2) = 2, by reducing the problem from VERTEXCOVER instead of SETCOVER.

Exemplar Model

Measure Complexity Approximability

Breakpoints NP-complete [9] APX-hard [21]

even when occ(G1) = 1 even when occ(G1) = 1

and occ(G2) = 2 and occ(G2) = 2

Reversals NP-complete [9] APX-hard [13]

even when occ(G1) = 2 even when occ(G1) = 2

and occ(G2) = 2 and occ(G2) = 2

Conserved Intervals NP-complete [18] APX-hard [21]

even when occ(G1) = 1 (*) even when occ(G1) = 1

and occ(G2) = 2

Common Intervals NP-complete (Theorem 1) APX-hard [21]

even when occ(G1) = 1 even when occ(G1) = 1

and occ(G2) = 2 and occ(G2) = 2

MAD NP-complete (Theorem 5) APX-hard (Theorem 5)

even when occ(G1) = 1 even when occ(G1) = 1

and occ(G2) ≤ 9 and occ(G2) ≤ 9

SAD NP-complete (Theorem 6) APX-hard (Theorem 6)

even when occ(G1) = 1 even when occ(G1) = 1
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TABLE II

RESULTS CONCERNING THE MATCHING MODEL.

(*) We note that this result can actually be extended to the case where occ(G1) = 1 and

occ(G2) = 2, by reducing the problem from VERTEXCOVER instead of SETCOVER.

Matching Model

Measure Complexity Approximability

Breakpoints NP-complete APX-hard [21]

even when occ(G1) = 1 even when occ(G1) = 1

and occ(G2) = 2 [9] and occ(G2) = 2

even when f(G1) = f(G2) = 1 [2]

Reversals NP-complete [10]

even when occ(G1) = 2

and occ(G2) = 2

Conserved NP-complete APX-hard [21]

Intervals even when occ(G1) = 1 [18] (*) even when occ(G1) = 1

even when f(G1) = f(G2) = 1 [18] and occ(G2) = 2

Common NP-complete APX-hard [21]

Intervals even when occ(G1) = 1 even when occ(G1) = 1

and occ(G2) = 2 (Theorem 1) and occ(G2) = 2

even when f(G1) = f(G2) = 1 (Th. 2)

MAD NP-complete (Theorem 5) APX-hard (Theorem 5)

even when occ(G1) = 1 even when occ(G1) = 1

and occ(G2) ≤ 9 and occ(G2) ≤ 9

SAD NP-complete (Theorem 6) APX-hard (Theorem 6)

even when occ(G1) = 1 even when occ(G1) = 1
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