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Extra
ting Constrained 2-Interval Subsetsin 2-Interval Sets ⋆
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her
he en Informatique (LRI), UMR CNRS 8623Université Paris-Sud, 91405 Orsay Cedex - FRANCEAbstra
t
2-interval sets were used in [28,29℄ for establishing a general representation forma
ros
opi
 des
ribers of RNA se
ondary stru
tures. In this 
ontext, we have a 2-interval for ea
h legal lo
al fold in a given RNA sequen
e, and a 
onstrained patternmade of disjoint 2-intervals represents a putative RNA se
ondary stru
ture. We fo
ushere on the problem of extra
ting a 
onstrained pattern in a set of 2-intervals. Morepre
isely, given a set of 2-intervals D and a model R des
ribing if two disjoint 2-intervals in a solution 
an be in pre
eden
e order (<), be allowed to nest (⊏) and/orbe allowed to 
ross (≬), we 
onsider the problem of �nding a maximum 
ardinalitysubset D′ ⊆ D of disjoint 2-intervals su
h that any two 2-intervals in D′ agree with

R. The di�erent 
ombinations of restri
tions on model R alter the 
omputational
omplexity of the problem, and need to be examined separately.In this paper, we improve the time 
omplexity of [29℄ for model R = {⊏} by givingan optimal O(n log n) time algorithm, where n is the 
ardinality of the 2-intervalset D. We also give a graph-like relaxation for model R = {⊏, ≬} that is solvablein O(n2√n) time. Finally, we prove that the 
onsidered problem is NP-
ompletefor model R = {<, ≬} even for same-length intervals, and give a �xed-parametertra
tability result based on the 
rossing stru
ture of D.Key words: 2-intervals, Pattern Mat
hing, Computational 
omplexityPreprint submitted to Elsevier S
ien
e 4 July 2007



1 Introdu
tionThe problem of establishing a general representation of stru
tured patterns,i.e., ma
ros
opi
 des
ribers of RNA se
ondary stru
tures, was 
onsidered in[28,29℄. The approa
h is to set up a geometri
 des
ription of heli
es by meansof a natural generalization of intervals, namely a 2-interval. A 2-interval isthe disjoint union of two intervals on the line. The geometri
 properties of
2-intervals provide a possible guide for understanding the 
omputational 
om-plexity of �nding stru
tured patterns in RNA sequen
es. Using a model torepresent non sequential information allows us for varying restri
tions on the
omplexity of the pattern stru
ture. Indeed, two disjoint 2-intervals, i.e., two
2-intervals that do not interse
t in any point, 
an be in pre
eden
e order (<),be allowed to nest (⊏) or be allowed to 
ross (≬). Furthermore, the set of
2-intervals and the pattern 
an have di�erent restri
tions, e.g., all intervalshave the same length or all the intervals are disjoint. These di�erent 
om-binations of restri
tions alter the 
omputational 
omplexity of the problems,and need to be examined separately. This examination produ
es e�
ient algo-rithms for more restri
tive stru
tured patterns, and hardness results for thoseless restri
tive.In this paper, we 
onsider the problem of �nding a 
onstrained patternin aset of 2-intervals. More pre
isely, given a set of 2-intervals D and a model Rdes
ribing if two disjoint 2-intervals in a solution 
an be in pre
eden
e order(<), be allowed to nest (⊏) and/or be allowed to 
ross (≬), we 
onsider theproblem of �nding a maximum 
ardinality subset D′ ⊆ D of disjoint 2-intervalssu
h that any two 2-intervals in D′ agree with R. The problem of �nding thelargest 2-interval pattern in a set of 2-intervals D with respe
t to a givenabstra
t model, referred hereafter as the 2-Interval Pattern problem, hasbeen introdu
ed by Vialette [28,29℄. Vialette divided the problem in di�erent
lasses based on the stru
ture of the model and gave for most of them eitherNP-
ompleteness results or polynomial-time algorithms. Dividing the problemin several 
lasses was later proved to be extremely useful for approximatingof the 2-Interval Pattern problem [8℄.
⋆ An extended abstra
t of this work appeared in Pro
eedings of the 15th AnnualSymposium on Combinatorial Pattern Mat
hing (CPM 2004) [5℄. This work waspartially supported by the CNRS ACI Masse de Donnï¾1

2es �NavGraphe� proje
t.Email addresses: gblin�univ-mlv.fr (Guillaume Blin),fertin�lina.univ-nantes.fr (Guillaume Fertin), vialette�lri.fr (StéphaneVialette). 2



In the present paper, we fo
us on three spe
ial 
ases of the 2-Interval Pat-tern problem:(1) The 2-intervals of the solution subset need to be pairwise nested,(2) Two 2-intervals in a solution 
an only be nested or 
rossing, and all theintervals involved in the 2-interval set D are disjoint, and(3) Two 2-intervals in a solution 
an only be nested or in pre
eden
e, and allthe intervals involved in the 2-interval set D have the same length.We give pre
ise results for these three problems. Those three problems are ofimportan
e sin
e ea
h one is a straightforward extension of the problem of�nding a given 2-interval set in another 2-interval set introdu
ed in [29℄ andfurther studied in [19℄ and [23℄, and hen
e is strongly related, in the 
ontext ofmole
ular biology, to pattern mat
hing over RNA se
ondary stru
tures. Morepre
isely, in this paper, we improve the time 
omplexity of the best knownalgorithm for R = {⊏} by giving an optimal O(n log n) time algorithm. Also,we give a graph-like relaxation for R = {⊏, ≬} that is solvable in O(n2
√

n)time. Finally, we prove that the problem is NP-
omplete for R = {<, ≬}, and,we give a �xed-parameter tra
tability result based on the 
rossing stru
tureof D. Those results almost 
omplete the table proposed by Vialette [29℄ (seeTable 1) and provide an important step towards a better understanding of thepre
ise 
omplexity of 2-interval pattern mat
hing problems.There are basi
ally two main lines of resear
h our results refer to: (i) ar
-annotated sequen
es and protein topologies, and (ii) t-intervals 
ombinatori
s.
• For a sequen
e S, an ar
-annotation of S is a set of unordered pairs of po-sitions in S. In this 
ontext, given two ar
-annotated sequen
es S1 and S2,the Ar
-Preserving Subsequen
e (APS) problem asks to �nd an o

ur-ren
e of S1 in S2, and the Longest Ar
-Preserving Common Subse-quen
e (LAPCS) problems asks to �nd the longest 
ommon ar
-annotatedsequen
e that o

urs both in S1 and S2. The APS and LAPCS problemsare useful in representing the stru
tural information of RNA and protein se-quen
es [11,21,18,1℄. The basi
 idea is to provide a measure for similarity, notonly on the sequen
e level, but also on the stru
tural level (an ar
-annotatedsequen
e is viewed as a RNA sequen
e together with phosphodiester bonds).Furthermore, a similar problem to 
ompare the three-dimensional stru
tureof proteins is the Conta
t Map Overlap problem des
ribed by in [16℄.Viksna and Gilbert des
ribed algorithms for pattern mat
hing and patternlearning in TOPS diagram (formal des
ription of protein topologies) [30℄.
• Our results are also related to the independent set problem in di�erentextensions of 2-interval graphs. A graph G is a t-interval graph if thereis an interse
tion model whose obje
ts 
onsist of 
olle
tions of t intervals,

t ≥ 1, su
h that G is the interse
tion graph of this model [26,20℄. Fromthis de�nition, it is 
lear that every interval graph is a 1-interval graph.3



Of parti
ular interest is the 
lass of 2-interval graphs. For example, linegraphs, trees and 
ir
ular-ar
 graphs are 2-interval graphs. However, Westand Shmoys [31℄ have shown that the re
ognition problem for t-intervalgraphs is NP-
omplete for every t ≥ 2 (this has to be 
ompared with lineartime re
ognition of 1-interval graphs). In the 
ontext of sequen
e similar-ity, [22℄ 
ontains an appli
ation of graphs having interval number at mosttwo. In [3℄, the authors 
onsidered the problem of s
heduling jobs that aregiven as groups of non-interse
ting segments on the real line. Of parti
ularimportan
e, they showed that the maximum weighted independent set for
t-interval graphs (t ≥ 2) is APX-hard even for highly restri
ted instan
esAlso, they gave a 2t-approximation algorithm for general instan
es basedon a fra
tional version of the Lo
al Ratio Te
hnique [2℄. Finally, some 
om-plexity issues of standard optimization problems for t-interval sets are givenin [6℄.The remainder of the paper is organized as follows. In Se
tion 2 we brie�yreview the terminology introdu
ed in [29℄. In Se
tion 3, we improve the time
omplexity of the best known algorithm for model R = {⊏}. In Se
tion 4, wegive a graph-like relaxation for model {⊏, ≬} that is solvable in polynomial-time. In Se
tion 5, we prove that the 2-interval pattern problem for model

R = {<, ≬} is NP-
omplete even when all intervals involved in the input
2-interval set have the same length. Finally, we give in Se
tion 6 a �xed-parameter tra
tability result based on the 
rossing stru
ture of D.2 PreliminariesAn interval and a 2-interval represent respe
tively a sequen
e of 
ontiguousbases and pairings between two intervals, i.e., stems, in RNA se
ondary stru
-tures. Thus, 2-intervals 
an be seen as ma
ros
opi
 des
ribers of RNA stru
-tures.Formally, a 2-interval is the disjoint union of two intervals on a line. Wedenote it by D = (I1, J1) where I1 and J1 are intervals su
h that I1 < J1(here < is the stri
t pre
eden
e order between intervals) ; in that 
ase wealso write Left(D) = I1 and Right(D) = J1. If [x : y] and [x′ : y′] are twointervals su
h that [x : y] < [x′ : y′], we will sometimes write D = ([x :
y], [x′ : y′]) to emphasize on the pre
ise de�nition of the 2-interval D. Let
D1 = (I1, J1) and D2 = (I2, J2) be two 2-intervals. They are 
alled disjoint if
(I1∪J1)∩(I2∪J2) = ∅ (i.e., involved intervals do not interse
t). The 
overinginterval of a 2-interval D, written Cover(D), is the least interval 
overing both
Left(D) and Right(D).Of parti
ular interest is the relation between two disjoint 2-intervals D1 =4



(I1, J1) and D2 = (I2, J2). We will write D1 < D2 if I1 < J1 < I2 < J2,
D1 ⊏ D2 if I2 < I1 < J1 < J2 and D1 ≬ D2 if I1 < I2 < J1 < J2. Two
2-intervals D1 and D2 are τ -
omparable for some τ ∈ {<, ⊏, ≬} if D1τD2 or
D2τD1. Let D be a set of 2-intervals and R ⊆ {<, ⊏, ≬} be non-empty. Theset D is R-
omparable if any two distin
t 2-intervals of D are τ -
omparable forsome τ ∈ R. Throughout the paper, the non-empty subset R is 
alled a model.Clearly, if a set of 2-intervals D is R-
omparable then D is a set of disjoint
2-intervals. The ground set of a set of 2-intervals D, written GS(D), is the setof all simple intervals involved in D, i.e., GS(D) =

⋃

D∈D(Left(D)∪Right(D)).The leftmost (resp. rightmost) element of a set of disjoint 2-intervals D is the
2-interval Di ∈ D su
h that Left(Di) < Left(Dj) (resp. Right(Dj) < Right(Di))for all Dj ∈ D − Di. Observe that it 
ould be the 
ase that Di is both theleftmost and rightmost element of D (this is indeed the 
ase if |D| = 1 or if
Dj ⊏ Di for all Dj ∈ D − Di).We de�ne hereafter two additional parameters on D. The depth of D, written
Depth(D), is the size of a maximum 
ardinality {≬}-
omparable subset of D(a

ording to [29℄, this parameter is polynomial-time 
omputable). The for-ward 
rossing number ofD, written FCrossing(D), is de�ned by FCrossing(D) =
maxDi∈D |{Dj : Di ≬ Dj}|. Clearly, FCrossing(D) ≥ Depth(D) − 1 for any set
D of 2-intervals.Following [11℄, Vialette proposed in [29℄, two natural restri
tions on the groundset of D (a third restri
tion, i.e., balan
ed 2-intervals, well-suited for investi-gating RNA se
ondary stru
tures spa
e was introdu
ed in [8℄):(1) all the intervals of the ground set GS(D) are of the same length,(2) all the intervals of the ground set GS(D) are disjoint, i.e., if two intervals

I, I ′ ∈ GS(D) overlap, then I = I ′.Using restri
tions on the ground set allows us for varying restri
tions on the
omplexity of the 2-interval set stru
ture, and hen
e on the 
omplexity of theproblems. These two restri
tions involve three levels of 
omplexity:
• unlimited: no restri
tions
• unit: restri
tion 1
• disjoint: restri
tions 1 and 2Given a set of 2-intervals D, a model R ⊆ {<, ⊏, ≬} and a positive integer
k, the 2-Interval Pattern problem 
onsists in �nding a subset D′ ⊆ D of
ardinality at least k su
h that D′ is R-
omparable. For the sake of brevity, the
2-Interval Pattern problem with respe
t to a model R over an unlimited(resp. unit and disjoint) ground set is abbreviated in 2-IP-Unl-R (resp. 2-IP-Unit-R and 2-IP-Dis-R).Vialette proved in [29℄ that 2-IP-Unit-{<, ⊏, ≬} and 2-IP-Unit-{⊏, ≬} are5



NP-
omplete. Moreover, he gave polynomial-time algorithms for the problemwith respe
t to the models {<}, {⊏}, {≬} and {<, ⊏} (
f. Table 1).In this arti
le, we answer three open problems and we improve the 
omplexityof another one, as shown in Table 1. Moreover, we show that 2-IP-Unit-{<
, ≬} is �xed parameter tra
table when parameterized by the forward 
rossingnumber of D.

2-Interval Pattern ProblemGround SetModel Unlimited Unit Disjoint
{<, ⊏, ≬} NP-
omplete O(n

√
n)[24℄

{⊏, ≬} NP-
omplete O(n2
√

n) ⋆

{<, ⊏} O(n2)

{<, ≬} NP-
omplete ⋆ ?
{<} O(n log n)

{⊏} O(n log n) ⋆ •
{≬} O(n2 log n)Table 1

2-interval pattern problem 
omplexity where n = |D|. When not spe
i�ed, the
omplexity 
omes from [29℄. ⋆ 
ontributions of the present paper. • improvement ofthe existing 
omplexity (whi
h was O(n2) in [29℄).3 Improving the 
omplexity of 2-IP-Unl-{⊏}The problem of �nding the largest {⊏}-
omparable subset in a set of 2-intervals was 
onsidered in [29℄. Observing that this problem is equivalentto �nding a largest 
lique in a 
omparability graph (a linear time solvableproblem [17℄), an O(n2) time algorithm was thus proposed. We improve thatresult by giving an optimal O(n log n) time algorithm.The ine�
ien
y of the algorithm proposed in [29℄ lies in the e�e
tive 
on-stru
tion of a 
omparability graph. We show that this 
onstru
tion 
an beavoided by 
onsidering trapezoids instead of 2-intervals. Re
all that a trape-zoid graph is the interse
tion graph of a �nite set of trapezoids between twoparallel lines [9℄ (it is easily seen that trapezoid graphs generalize both intervalgraphs and permutation graphs). Analogously to 2-intervals, we will denoteby T = ([x : y], [x′ : y′]) the trapezoid with top interval [x : y] and bottominterval [x′ : y′].Proposition 1 2-IP-Unl-{⊏} is solvable in O(n log n) time.PROOF. Let D = {D1, D2, . . . , Dn} be a 
olle
tion of 2-intervals of the real6



line. Constru
t a 
olle
tion of trapezoids T = {T1, T2, . . . , Tn} between twoparallel lines as follows. For ea
h 2-interval Di = ([x : y], [x′ : y′]) ∈ D, we addthe trapezoid Ti = ([x : y], [−y′ : −x′]) to T .Claim 2 For all 1 ≤ i ≤ j ≤ n, the 2-intervals Di and Dj are {⊏}-
omparableif and only if the trapezoids Ti and Tj are non-interse
ting.PROOF. [of Claim℄ Let Di = ([xi : yi], [x
′
i : y′

i]) and Dj = ([xj : yj], [x
′
j : y′

j])be two 2-intervals of D, and Ti = ([xi : yi], [−y′
i : −x′

i]) and Tj = ([xj :
yj], [−y′

j : −x′
j ]) be the two 
orresponding trapezoids in T . Suppose that

Di and Dj are {⊏}-
omparable. Without loss of generality, we may assume
Dj ⊏ Di. Thus, we have yi < xj and y′

j < x′
i. It follows immediately that

−x′
i < −y′

j , and hen
e the two trapezoids Ti and Tj are non-interse
ting. Theproof of the 
onverse is identi
al. 2Clearly, the 
olle
tion T 
an be 
onstru
ted in O(n) time. Based on a geo-metri
 representation of trapezoid graphs by boxes in the plane, Felsner et al.[12℄ have designed a O(n log n) algorithm for �nding a maximum 
ardinalitysub
olle
tion of non-interse
ting trapezoids in a 
olle
tion of trapezoids, andthe proposition follows. 2Based on Fredman's bound for the number of 
omparisons needed to 
om-pute maximum in
reasing subsequen
es in permutation [13℄, Felsner et al. [12℄argued that their O(n log n) time algorithm for �nding a maximum 
ardinal-ity sub
olle
tion of non-interse
ting trapezoids in a 
olle
tion of trapezoidsis optimal. Then it follows from Proposition 1 that our O(n logn) time algo-rithm for �nding a maximum 
ardinality {⊏}-
omparable subset in a set of
2-intervals is optimal as well.4 A polynomial-time algorithm for 2-IP-Dis-{⊏, ≬}In this se
tion, we give an O(n2

√
n) time algorithm for the 2-IP-Dis-{⊏, ≬}problem, where n is the 
ardinality of the set of 2-intervals D. Re
all thatgiven a set of 2-intervals D over a disjoint ground set, the problem asks to �ndthe size of a maximum 
ardinality {⊏, ≬}-
omparable subset D′ ⊆ D. Observethat the 2-IP-Dis-{⊏, ≬} problem has an interesting formulation in terms of
onstrained mat
hings in general graphs: Given a graph G together with alinear ordering π of its verti
es, the 2-IP-Dis-{⊏, ≬} problem is equivalent to�nding a maximum 
ardinality mat
hing M in G with the property that for7



any two distin
t edges {u, v} and {u′, v′} of M, neither max{π(u), π(v)} <

min{π(u′), π(v′)} nor max{π(u′), π(v′)} < min{π(u), π(v)} o

ur.Roughly speaking, our algorithm is a three-step pro
edure. First, the intervalgraph of all the 
overing intervals of the 2-intervals in D is 
onstru
ted. Next,all the maximal 
liques of that graph are e�
iently 
omputed. Finally, for ea
hmaximal 
lique we 
onstru
t a new graph and �nd a solution using a maximum
ardinality mat
hing algorithm. The size of a best solution found in the thirdstep is thus returned. Clearly, the e�
ien
y of our algorithm relies upon ane�
ient algorithm for �nding all the maximal 
liques in the interse
tion of the
overing intervals. We now pro
eed with the details of our algorithm.Let D = {Di : 1 ≤ i ≤ n} be a set of 2-intervals. Consider the set CD 
omposedof all the 
overing intervals of the 2-intervals in D, i.e., CD = {Cover(D) : D ∈
D}. Now, let Ω(CD) be the interval graph asso
iated with CD. The graph
Ω(CD) has a vertex vi for ea
h interval Cover(Di) in CD and two verti
es viand vj of Ω(CD) are joined by an edge if the two asso
iated intervals Cover(Di)and Cover(Dj) interse
t. An illustration of CD and Ω(CD) for a given set of
2-intervals D is given in Figure 1. Most in the interest in the interval graph
Ω(CD) stems from the following lemma.
Fig. 1. Illustration of CD and Ω(CD) for a given set of 2-intervals D on a disjointground set.Lemma 3 Let D be a set of 2-intervals and D′ be a {⊏, ≬}-
omparable subsetof D. Then, {vi : Di ∈ D′} indu
es a 
omplete graph in Ω(CD).PROOF. Let Di and Dj be two distin
t 2-intervals of D′. Sin
e Di and
Dj are {⊏, ≬}-
omparable then it follows that either intervals Cover(Di) and
Cover(Dj) overlap or one interval is 
ompletely 
ontained in the other. In both
ases, intervals Cover(Di) and Cover(Dj) interse
t, and hen
e verti
es vi and
vj are joined by an edge in Ω(CD). Therefore {vi : Di ∈ D′} indu
es a 
ompletegraph in Ω(CD). 2Observe that the 
onverse is false sin
e the interse
tion of two 2-intervals in Dresults in an edge in Ω(CD), and hen
e two 2-intervals asso
iated to two distin
tverti
es in a 
lique may not be {⊏, ≬}-
omparable. However, thanks to Lemma8



3 we now only need to fo
us on maximal 
liques of Ω(CD). Several problemsthat are NP-
omplete on general graphs have polynomial-time algorithms forinterval graphs. The problem of �nding all the maximal 
liques of a graph isone su
h example. Indeed, an interval graph G = (V, E) is a 
hordal graph andas su
h has at most |V | maximal 
liques [14℄. Furthermore, all the maximal
liques of a 
hordal graph 
an be found in O(n + m) time, where n = |V | and
m = |E|, by a modi�
ation of Maximum Cardinality Sear
h (MCS) [25,4℄.Let C be a maximal 
lique of Ω(CD). As observed above, any two 2-intervalsasso
iated to two distin
t verti
es in the maximal 
lique C may not be {⊏, ≬}-
omparable. Let D′ ⊆ D be the set of all 2-intervals asso
iated to verti
es inthe maximal 
lique C. Based on C, 
onsider the graph GC = (VC , EC) de�nedby VC = GS(D′) and EC = {{I, J} : D = (I, J) ∈ D′}. In other words, the setof verti
es of GC is the ground set of D′ and the edges of GC is the 2-intervalsubset D′ itself viewed as a set of subsets of size 2. Note that the 
onstru
tionof GC is possible only be
ause D′ has disjoint ground set. The following lemmais an immediate 
onsequen
e of the de�nition of GC and Lemma 3.Lemma 4 Let C be a 
lique in Ω(CD) and GC = (VC , EC) be the graph 
on-stru
ted as detailed above. Then, {(Ii1, Ji1), (Ii2 , Ji2), . . . , (Iik , Jik)} is a {⊏, ≬}-
omparable subset if and only if {{Ii1 , Ji1}, {Ii2, Ji2}, . . . , {Iik , Jik}} is a mat
h-ing in GC.Proposition 5 The 2-IP-Dis-{⊏, ≬} problem is solvable in O(n2

√
n) time,where n is the number of 2-intervals in D.PROOF. Consider the algorithm given in Figure 2. Corre
tness of this algo-rithm follows from Lemmas 3 and 4. What is left is to prove the time 
om-plexity. Clearly, the interval graph Ω(CD) 
an be 
onstru
ted in O(n2) time.All the maximal 
liques of Ω(CD) 
an be found in O(n + m) time, where m isthe number of edges in Ω(CD) [25,4℄. Summing up, the �rst two steps 
an bedone in O(n2) time sin
e m < n2. We now turn to the time 
omplexity of theloop (in fa
t the dominant term of our analysis). For ea
h maximal 
lique C of

Ω(CD), the graph GC 
an be 
onstru
ted in O(n) time sin
e |C| ≤ n. We now
onsider the 
omputation of a maximal mat
hing in GC . Mi
ali and Vazirani[24℄ (see also [27℄) gave an O(
√

|V ||E|) time algorithm for �nding a maximalmat
hing in a graph G = (V, E). But GC has at most n edges (as ea
h edge
orresponds to a 2-interval) and hen
e has at most 2n verti
es. Then it fol-lows that a maximum mat
hingM in GC 
an be found in O(n
√

n) time. Sin
e
Ω(CD) is an interval graph with n verti
es, it has at most n maximal 
liques[14℄, we 
on
lude that the algorithm as a whole runs in O(n2

√
n) time. 2

9



Max {⊏, ≬}-Comparable 2-Interval PatternInput: A set of 2-intervals D with disjoint ground setOutput: The size of a maximum 
ardinality {⊏, ≬}-
omparable subset of
D1. Constru
t the interval graph Ω(CD)2. Compute all maximal 
liques in Ω(CD)3. For ea
h maximal 
lique C in Ω(CD)3.1. Constru
t the graph GC3.2. Compute a maximal mat
hing M in GC3.3. Store the 
ardinality of M in m(C)4. Return max{m(C) : C is a maximal 
lique of Ω(CD)}Fig. 2. Algorithm Max {⊏, ≬}-Comparable 2-Interval Pattern.5 2-IP-Unit-{<, ≬} is NP-
ompleteTheorem 6 below 
ompletes the analysis of 2-IP-Unit-R and 2-IP-Unl-R forany model R ⊆ {<, ⊏, ≬} (see Table 1).Theorem 6 The 2-IP-Unit-{<, ≬} problem is NP-
omplete.PROOF. First, we will present the two de
ision problems we will deal with(Exa
t 3-CNF-Sat and 2-IP-Unit-{<, ≬}). Then, we will give several in-termediate lemmas that will �nally be used in Proposition 14 to validate theproof of the NP-
ompleteness of the 2-IP-Unit-{<, ≬} problem.We provide a polynomial-time redu
tion from the Exa
t 3-CNF-Sat prob-lem: Given a set Vn of n variables and a set Cq of q 
lauses (ea
h 
omposedof three literals) over Vn, the problem asks to �nd a truth assignment for Vnthat satis�es all 
lauses of Cq. It is well-known that the Exa
t 3-CNF-Satproblem is NP-
omplete [15℄. For the sake of 
larity, we now state formallythe 2-IP-Unit-{<, ≬} problem: Given a set of 2-intervals D, and a positiveinteger k, the problem asks to �nd a subset D′ ⊆ D of 
ardinality greater thanor equal to k, su
h that D′ is {<, ≬}-
omparable.Clearly, 2-IP-Unit-{<, ≬} problem is in NP. We show that given any instan
eof Exa
t 3-CNF-Sat with q 
lauses on a set of n variables, we 
an 
onstru
tin polynomial-time an instan
e of the 2-IP-Unit-{<, ≬} problem with k =

(7n− 2)q su
h that there exists a satisfying truth assignment for the booleanformula i� there exists a {<, ≬}-
omparable subset D′ ∈ D of size at least k.We detail this 
onstru
tion hereafter.10



Let Vn = {x1, x2, ...xn} be a set of n variables and Cq = {c1, c2, . . . , cq} be a
olle
tion of q 
lauses. For the sake of 
larity, let us de�ne D on the integralline su
h that any interval of the ground set is of size four. Let us start withthe pre
ise de�nition of the representation of a single 
lause ci of Cq as illus-trated in Figure 4. The dotted re
tangle on the left (resp. right) is part of therepresentation of 
lause ci−1 (resp. ci+1). The pre
ise adjustment of the rep-resentation of two 
onse
utive 
lauses is illustrated in Figure 3 and formallyde�ned afterwards. For 
onvenien
e, we will split the representation of ci intoseven groups (represented in gray): Ai, Bi, Ci
L, Ci

R, Di, Ei and F i. Ea
h groupin turn is divided into blo
ks (represented in white). There are 11+ 2n blo
ksfor ea
h 
lause: n blo
ks for Ai; 3 blo
ks for Bi; 1 blo
k for Ci
L; n blo
ks for

Ci
R; 2 blo
ks for Di; 3 blo
ks for Ei; 2 blo
ks for F i.

Fig. 3. Jun
tion between the representation of 
lauses ci−1 and ciFor example, in Figure 4 we use three boolean variables and hen
e we haveseventeen blo
ks. For the sake of 
larity, in the �gures of this se
tion, theintervals of the ground set might be drawn on di�erent levels.We now turn to give a pre
ise de�nition of ea
h group in the representationof a given 
lause ci. In the following, we will refer to an interval of the groundset as a simple interval. Let FP (ci) denote the smallest starting position ofany simple interval of the representation of 
lause ci. We set, for 
onvenien
e,
FP (c1) = 0. For any 1 < i ≤ q, we have FP (ci) = FP (ci−1) + 104n −
21. Moreover, let FP (α) denote the smallest starting position of any simpleinterval of group α ∈ {Ci

L, Ai, Bi, Ci
R, Di, Ei, F i|1 ≤ i ≤ q}.Group Ci

L is 
omposed of one blo
k 
ontaining 2n simple intervals (as illus-trated in Figure 5): {[FP (Ci
L)+ 7k, FP (Ci

L)+ 7k +4]|0 ≤ k ≤ 2n− 1}, where
FP (Ci

L) = FP (ci). The 2n simple intervals of the blo
k of group Ci
L representin the left to right order (x1, x1, x2, x2 . . . xn, xn). By de�nition, the simple in-terval representing xm in Ci

L is de�ned by [FP (Ci
L) + 14(m − 1), FP (Ci

L) +
14(m − 1) + 4]. And 
onsequently, the simple interval representing xm in Ci

Lis de�ned by [FP (Ci
L) + 14(m − 1) + 7, FP (Ci

L) + 14(m − 1) + 11].11



Fig. 4. Representation of 
lause ci = (x1 ∨ x2 ∨ x3) where n = 3.
12



Fig. 5. Des
ription of the simple intervals (represented as blo
ks of four 
onse
utivesquares) of group Ci
L.Group Di is 
omposed of two blo
ks (Di

1 and Di
2), ea
h 
ontaining 2n−1 simpleintervals (as illustrated in Figure 6): {[FP (Di) + 5k, FP (Di) + 5k + 4]|0 ≤

k ≤ 4n − 3} where FP (Di) = FP (ci) + 34n − 10. By 
onstru
tion, blo
k Di
1is 
omposed of the following simple intervals: {[FP (Di) + 5k, FP (Di) + 5k +

4]|0 ≤ k ≤ 2n−2} and blo
k Di
2 is 
omposed of the following simple intervals:

{[FP (Di) + 5k, FP (Di) + 5k + 4]|2n − 1 ≤ k ≤ 4n − 3}.
Fig. 6. Des
ription of the simple intervals of group Di.Group Ai is 
omposed of n blo
ks (one blo
k for ea
h boolean variable),ea
h 
ontaining four simple intervals (as illustrated in Figure 7): {[FP (Ai) +

7k, FP (Ai) + 7k + 4], [FP (Ai) + 2 + 14l, FP (Ai) + 6 + 14l], [FP (Ai) + 5 +
14l, FP (Ai) + 9 + 14l]|0 ≤ k ≤ 2n − 1, 0 ≤ l ≤ n − 1} where FP (Ai) =
FP (ci) + 54n − 20. The 4n simple intervals of group Ai represent in the leftto right order (x1, x1, x1, x1, x2, x2, x2, x2, . . . xn, xn, xn, xn). By 
onstru
tion,in any blo
k of group Ai the se
ond (resp. third) simple interval overlapsboth the �rst and the third (resp. the se
ond and the fourth) simple interval.By de�nition, the two simple intervals representing xm in Ai are de�ned by
[FP (Ai)+14(m−1)+7, FP (Ai)+14(m−1)+11] and [FP (Ai)+14(m−1)+
2, FP (Ai) + 14(m− 1) + 6]. And 
onsequently, the two simple intervals repre-senting xm in Ai are de�ned by [FP (Ai)+14(m−1), FP (Ai)+14(m−1)+4]and [FP (Ai) + 14(m − 1) + 5, FP (Ai) + 14(m − 1) + 9].

Fig. 7. Des
ription of the simple intervals of group Ai.Group Bi is 
omposed of three blo
ks (one for ea
h literal in a 
lause),ea
h 
ontaining 2n simple intervals (as illustrated in Figure 8): {[FP (Bi
1) +13



6k, FP (Bi
1)+6k+4], [FP (Bi

2)+6k, FP (Bi
2)+6k+4], [FP (Bi

3)+6k, FP (Bi
3)+

6k + 4]|0 ≤ k ≤ 2n − 1} where FP (Bi
1) = FP (ci) + 68n − 20, FP (Bi

2) =
FP (ci)+80n−20, FP (Bi

3) = FP (ci)+92n−20. The 2n simple intervals of ea
hblo
k of group Bi represent in the left to right order (x1, x1, x2, x2 . . . xn, xn).By de�nition, the simple interval representing xm in Bi
j, with j ∈ {1, 2, 3}, isde�ned by [FP (Bi

j) + 12(m− 1), FP (Bi
j) + 12(m− 1) + 4]. And 
onsequently,the simple interval representing xm in Bi

j , with j ∈ {1, 2, 3}, is de�ned by
[FP (Bi

j) + 12(m − 1) + 6, FP (Bi
j) + 12(m − 1) + 10].

Fig. 8. Des
ription of the simple intervals of group Bi. Due to spa
e 
onsiderations,the des
ription is divided in three lines. Ea
h line starts with the end part of theprevious line in order to indi
ate the 
on�guration of the whole des
ription.Group Ei is 
omposed of three blo
ks, ea
h 
ontaining 2n−1 simple intervals(as illustrated in Figure 9): {[FP (Ei
1) + 6k, FP (Ei

1) + 6k + 4], [FP (Ei
2) +

6k, FP (Ei
2) + 6k + 4], [FP (Ei

3) + 6k, FP (Ei
3) + 6k + 4]|0 ≤ k ≤ 2n − 2}where FP (Ei

1) = FP (ci)+68n−17, FP (Ei
2) = FP (ci)+80n−17, FP (Ei

3) =
FP (ci)+92n−17. Therefore, ea
h simple interval of blo
k Ei

j interse
ts exa
tlytwo simple intervals of blo
k Bi
j , for 1 ≤ j ≤ 3.Group Ci

R is 
omposed of n blo
ks (one blo
k for ea
h boolean variable),ea
h 
ontaining two simple intervals (as illustrated in Figure 10): {[FP (Ci
R)+

14k, FP (Ci
R) + 14k + 4], [FP (Ci

R) + 14k + 3, FP (Ci
R) + 14k + 7]|0 ≤ k ≤

n−1} where FP (Ci
R) = FP (ci)+104n−19. The 2n simple intervals of group

Ci
R represent in the left to right order (x1, x1, x2, x2 . . . xn, xn). By de�nition,the simple interval representing xm in Ci

R is de�ned by [FP (Ci
R) + 14(m −

1), FP (Ci
R)+14(m−1)+4]. And 
onsequently, the simple interval representing

xm in Ci
R is de�ned by [FP (Ci

R) + 14(m − 1) + 3, FP (Ci
R) + 14(m − 1) + 7].Therefore, by 
onstru
tion, in any blo
k of group Ci

R the two simple intervals
omposing this blo
k are overlapping.Finally, group F i is 
omposed of two blo
ks, ea
h 
ontaining 2n − 1 simpleintervals (as illustrated in Figure 11): {[FP (F i) + 5k, FP (F i) + 5k + 4]|0 ≤
k ≤ 4n−3} where FP (F i) = FP (ci)+118n−21. By 
onstru
tion, blo
k F i

1 is14



Fig. 9. Des
ription of the simple intervals of group Ei. As in Figure 8, due to spa
e
onsiderations, the des
ription is divided in three lines.
Fig. 10. Des
ription of the simple intervals of group Ci

R.
omposed of the following simple intervals: {[FP (F i)+5k, FP (F i)+5k+4]|0 ≤
k ≤ 2n − 2} and blo
k F i

2 is 
omposed of the following simple intervals:
{[FP (F i) + 5k, FP (F i) + 5k + 4]|2n − 1 ≤ k ≤ 4n − 3}.

Fig. 11. Des
ription of the simple intervals of group F i.The set of simple intervals of the instan
e of 2-IP-Unit-{<, ≬} is obtained byassembling together in order the representation of the 
lauses c1 to cq. It iseasy to 
he
k the following properties (whi
h are represented in Figure 12):
• for any 1 < i ≤ q, the smallest position of any simple interval of group C i

Lis greater than the biggest position of any simple interval of groups Ei−1and Bi−1;
• for any 1 < i ≤ q, the smallest position of any simple interval of group F i−1is greater than the biggest position of any simple interval of group Ci

L;
• for any 1 < i ≤ q, the biggest position of any simple interval of group F i−1is less than the smallest position of any simple interval of group Di;15



• for any 1 ≤ i ≤ q, the smallest position of any simple interval of group Aiis greater than the biggest position of any simple interval of group Di;
• for any 1 ≤ i ≤ q, the biggest position of any simple interval of group Ai isless than the smallest position of any simple interval of groups Bi and Ei;
• for any 1 ≤ i ≤ q, the smallest position of any simple interval of group C i

Ris greater than the biggest position of any simple interval of groups Bi and
Ei;

• for any 1 ≤ i ≤ q, the biggest position of any simple interval of group C i
R isless than the smallest position of any simple interval of group F i.Now that we have de�ned the ground set of D, let us de�ne formally the2-intervals of D (partially illustrated in Figure 4).For ea
h 
lause ci, D is 
omposed of 2n 2-intervals built with a simple intervalof group Ci

L and a simple interval of group Ai:
• {([FP (Ci

L) + r, FP (Ci
L) + r + 4], [FP (Ai) + s, FP (Ai) + s + 4]),

• ([FP (Ci
L) + s, FP (Ci

L) + s + 4], [FP (Ai) + r, FP (Ai) + r + 4])}with r = 14(k − 1), s = r + 7, 1 ≤ k ≤ nFor ea
h 
lause ci, D is 
omposed of 4n − 2 2-intervals built with a simpleinterval of group Di and a simple interval of group Ei:
• {([FP (Di) + 5k, FP (Di) + 5k + 4], [FP (Ei

1) + 6k′′, FP (Ei
1) + 6k′′ + 4]),

• ([FP (Di) + 5k′, FP (Di) + 5k′ + 4], [FP (Ei
2) + 6k′′, FP (Ei

2) + 6k′′ + 4])}with 0 ≤ k ≤ 2n − 2, 2n − 1 ≤ k′ ≤ 4n − 3, 0 ≤ k′′ ≤ 2n − 2.For ea
h 
lause ci, D is 
omposed of 6n 2-intervals built with a simple intervalof group Bi and a simple interval of group Ci
R:

• {([FP (Bi
j) + r, FP (Bi

j) + r + 4], [FP (Ci
R) + s, FP (Ci

R) + s + 4]),
• ([FP (Bi

j) + r + 6, FP (Bi
j) + r + 10], [FP (Ci

R) + s + 3, FP (Ci
R) + s + 7])}with r = 12(k − 1), s = 14(k − 1), j ∈ {1, 2, 3}, 1 ≤ k ≤ n.For ea
h 
lause ci, D is 
omposed of 4n − 2 2-intervals built with a simpleinterval of group Ei and a simple interval of group F i:

• {([FP (Ei
2) + 6k′, FP (Ei

2) + 6k′ + 4], [FP (F i) + 5k, FP (F i) + 5k + 4]),
• ([FP (Ei

3) + 6k′, FP (Ei
3) + 6k′ + 4], [FP (F i) + 5k′′, FP (F i) + 5k′′ + 4])}with 2n − 2 ≤ k ≤ 4n − 3, 0 ≤ k′ ≤ 2n − 2, 4n − 2 ≤ k′′ ≤ 6n − 4}.For ea
h 
lause ci, D is 
omposed of 6n 2-intervals built with a simple intervalof group Ai and a simple interval of group Bi:

• {([FP (Ai) + r + 2, FP (Ai) + r + 6], [FP (Bi
j) + s, FP (Bi

j) + s + 4]),
• ([FP (Ai) + r + 5, FP (Ai) + r + 9], [FP (Bi

j) + s + 6, FP (Bi
j) + s + 10])}16



Fig. 12. S
hemati
 representation of the distan
es between groups of a 
lause ci
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with r = 14(k − 1), s = 12(k − 1), j ∈ {1, 2, 3}, 1 ≤ k ≤ n.For ea
h 
lause ci, in order to represent the 
lause ci, we delete from D the2-interval ([FP (Ai) + r + 2, FP (Ai) + r + 6], [FP (Bi
j) + s, FP (Bi

j) + s + 4])with r = 14(m− 1), s = 12(m− 1) if xm is the value of the jth literal of ci. Ina similar way, if xm is the value of the jth literal of ci, we delete from D the2-interval ([FP (Ai)+r+5, FP (Ai)+r+9], [FP (Bi
j)+s+6, FP (Bi

j)+s+10])with r = 14(m − 1), s = 12(m − 1).Clearly, this 
onstru
tion 
an be 
arried out in polynomial-time. We now givean intuitive des
ription of the di�erent elements of the set of 2-intervals thatwe have built. Blo
k Bi
1 (resp. Bi

2 and Bi
3) represents the value of the �rst(resp. se
ond and third) literal, say xm (or xm), of the 
lause ci; for this, the2-interval between the simple interval of the mth blo
k of group Ai and thesimple interval of Bi

1 (resp. Bi
2 and Bi

3) 
orresponding to xm (or xm) is not in
D (still the simple intervals are in GS(D)). For instan
e, in Figure 13, the fa
tthat there is no 2-interval between the simple interval 
orresponding to x1 in
Bi

1 and a simple interval of group Ai indi
ates that the �rst literal of 
lause ciis x1. Similarly, the fa
t that there is no 2-interval between the simple interval
orresponding to x2 (resp. x3) in Bi
2 (resp. Bi

3) and a simple interval of group
Ai indi
ates that the se
ond (resp. third) literal of 
lause ci is x2 (resp. x3).

Fig. 13. Zoom on group Bi of the representation of a 
lause ci = (x1 ∨ x2 ∨ x3)The sequen
e of blo
ks (Ci−1
R , Ci

L, Ai, Bi, Ci
R) 
orresponds to a me
hanismwhi
h propagates the value of ea
h variable of Vn. Blo
ks (Di, Ei, F i) 
orre-spond to a literal sele
ting me
hanism that indi
ates, for ea
h 
lause ci, theliteral (i.e., the �rst, se
ond or third) whi
h satis�es ci. Noti
e that the twoprevious intuitive notions will be detailed and 
lari�ed afterwards.We start the proof by giving some properties (Lemmas 8 to 13) about themaximal 
ardinality of a set of {<, ≬}-
omparable 2-intervals in D in our
onstru
tion. Then, these results will be used in Proposition 14 to prove thevalidity of the redu
tion. In the rest of this paper, we will use the followingnotations:

• a 2-interval between blo
ks X and Y represents a 2-interval D = (I, J)18



where I is a simple interval belonging to blo
k X and J is a simple intervalbelonging to blo
k Y ;
• for any 1 ≤ i ≤ q and any set of groups α ⊆ {C i

L, Ai, Bi, Ci
R, Di, Ei, F i},

D(α) denotes a set of {<, ≬}-
omparable 2-intervals between blo
ks of groupsbelonging to α (for example,D(Di, Ei, F i) denotes a set of {<, ≬}-
omparable
2-intervals between blo
ks Di

1, Di
2, Ei

1, Ei
2, Ei

3, F i
1 and F i

2);
• for any 1 ≤ i ≤ q, D(ci) denotes a set of {<, ≬}-
omparable 2-intervals inthe representation of 
lause ci.Lemma 7 For any set of groups α and β, |D(α)|+ |D(β)| ≥ |D(α

⋃

β)|.PROOF. The union of the sets α and β 
ould result in one of the following
ases:(a) D(α) and D(β) have at least a 2-interval in 
ommon;(b) at least a 2-interval of D(α) and a 2-interval of D(β) are not disjoint;(
) at least a 2-interval of D(α) and a 2-interval of D(β) are not {<, ≬}-
omparable.In 
ase (a) it is 
lear that the dupli
ated 2-interval will not be 
ounted morethan on
e in |D(α
⋃

β)|. In 
ase (b), only one of the two 2-intervals whi
hare not disjoint 
an be in D(α
⋃

β). In 
ase (
), only one of the two 2-intervals whi
h are not {<, ≬}-
omparable 
an be in D(α
⋃

β). If none ofthose three 
ases o

ur then, D(α)
⋃D(β) is {<, ≬}-
omparable, and thus,

|D(α)| + |D(β)| = |D(α
⋃

β)|. Therefore, |D(α)| + |D(β)| ≥ |D(α
⋃

β)|. 2By 
onstru
tion, a 2-interval 
an only exist between two blo
ks that 
orre-spond to a single 
lause (
f. Figure 4). Thus, the maximum 
ardinality ofa set of {<, ≬}-
omparable 2-intervals of D (i.e., the full representation ofthe boolean formula) 
an be dedu
ed from the maximum 
ardinality of D(ci)where ci is a 
lause of Cq, for any 1 ≤ i ≤ q. Pre
isely, the maximum 
ardi-nality of a set of {<, ≬}-
omparable 2-intervals in the representation of all the
lauses is less than or equal to q · maxi∈[1,q] |D(ci)|.We �rst 
ompute the maximum 
ardinality of a set D(ci) of {<, ≬}-
omparable
2-intervals between blo
ks 
orresponding to a single 
lause ci.Lemma 8 |D(α)| ≤ 3n for α = {Ci

L, Ai, Bi, Ci
R}.PROOF. By the disjun
tion 
onstraint, at most one simple interval per blo
kof Ai 
an be involved in a 2-interval between blo
ks of Ai and Bi. As there are nblo
ks in Ai, we have |D(Ai, Bi)| ≤ n. Similarly, by the disjun
tion 
onstraint,at most one simple interval per blo
k of Ci

R 
an be involved in a 2-interval19



between blo
ks of Bi and Ci
R. As there are n blo
ks in Ci

R, |D(Bi, Ci
R)| ≤ n.Thus, a

ording to Lemma 7, |D(Ai, Bi, Ci

R)| ≤ |D(Ai, Bi)| + |D(Bi, Ci
R)| ≤

2n.Moreover, at most one simple interval per blo
k of Ai 
an be involved in a
2-interval between blo
ks of Ai and Ci

L sin
e the two 2-intervals between agiven blo
k of Ai and Ci
L are {⊏}-
omparable. As there are n blo
ks in Ai,

|D(Ci
L, Ai)| ≤ n. Thus, by Lemma 7, |D(Ci

L, Ai, Bi, Ci
R)| ≤ |D(Ai, Bi, Ci

R)| +
|D(Ci

L, Ai)| ≤ 3n. 2In the following, θ(i, j) will denote the set of all the simple intervals in Bi
j and

Ei
j , with 1 ≤ j ≤ 3. The set δ(i, j) ⊆ θ(i, j) will denote a set of disjoint simpleintervals and k(E, i, j) (resp. k(B, i, j)) will be the number of simple intervalsof blo
k Ei

j (resp. Bi
j) whi
h are in δ(i, j). By 
onstru
tion, ea
h simple intervalin blo
k Ei

j interse
ts two simple intervals of blo
k Bi
j (
f. Figure 14 and page14).Observation 1 (a) If k(E, i, j) > 0 then at least k(E, i, j)+1 simple intervalsof blo
k Bi

j 
annot belong to δ(i, j). Thus, k(B, i, j) ≤ 2n − (k(E, i, j) + 1).Hen
e, |δ(i, j)| ≤ k(B, i, j) + k(E, i, j) ≤ 2n − (k(E, i, j) + 1) + k(E, i, j) ≤
2n − 1.(b) If k(E, i, j) = 0 then all the simple intervals (i.e., 2n) of blo
k Bi

j 
an belongto δ(i, j). Thus, k(B, i, j) ≤ 2n. Hen
e, |δ(i, j)| ≤ k(B, i, j) + k(E, i, j) ≤ 2n.
Fig. 14. If two simple intervals of blo
k Ei

j are part of δ(i, j) then at least threesimple intervals of blo
k Bi
j 
annot belong to δ(i, j), and thus |δ(i, j)| ≤ 2n − 1.Lemma 9 If |D(Di, Ei, F i)| > 4n − 2 then |D(ci)| < 7n − 2.PROOF. Assume that |D(Di, Ei, F i)| = 4n−2+γ with γ > 0. As ea
h blo
kof group Ei (i.e., Ei

1, E
i
2, E

i
3) is 
omposed of 2n − 1 simple intervals, there isat least one simple interval in ea
h blo
k of group Ei involved in a 2-intervalof D(Di, Ei, F i).Thus, 
onsidering only the simple intervals in groups Bi and Ei, there are atmost 6n − 3 (i.e., 3 · (2n − 1) by Observation 1 (a)) disjoint simple intervals.By 
onstru
tion, any 2-interval of D(Ai, Bi, Ci

R, Di, Ei, F i) is 
omposed of asimple interval of either group Bi or Ei. Thus, as there are at most 6n − 3disjoint simple intervals in groups Bi and Ei, there are at most 6n − 3 2-intervals in D(Ai, Bi, Ci
R, Di, Ei, F i). As |D(Ci

L, Ai)| ≤ n (
f. proof of Lemma8), by Lemma 7, we 
an 
on
lude that |D(Ci
L, Ai, Bi, Ci

R, Di, Ei, F i)| ≤ 7n −20



3 < 7n − 2. Thus, sin
e |D(ci)| 
annot ex
eed |D(Ci
L, Ai, Bi, Ci

R, Di, Ei, F i)|,if |D(Di, Ei, F i)| > 4n − 2 then |D(ci)| < 7n − 2. 2Lemma 10 |D(ci)| ≤ 7n − 2. Moreover, if |D(ci)| = 7n − 2 then |D(α′)| =
4n − 2 for α′ = {Di, Ei, F i} and |D(α)| = 3n for α = {Ci

L, Ai, Bi, Ci
R}.PROOF. Suppose, aiming to a 
ontradi
tion, that |D(ci)| > 7n − 2. ByLemma 7, |D(ci)| ≤ |D(Di, Ei, F i)|+|D(Ci

L, Ai, Bi, Ci
R)|. Thus, |D(Di, Ei, F i)|+

|D(Ci
L, Ai, Bi, Ci

R)| > 7n − 2. As, by Lemma 8, |D(Ci
L, Ai, Bi, Ci

R)| ≤ 3n, wehave |D(Di, Ei, F i)| > 4n − 2. But, by Lemma 9, if |D(Di, Ei, F i)| > 4n − 2then |D(ci)| < 7n − 2, a 
ontradi
tion. Therefore, we have |D(ci)| ≤ 7n − 2.Now, if |D(ci)| = 7n − 2 then, by Lemma 9, |D(Di, Ei, F i)| ≤ 4n − 2. Thus,
|D(Ci

L, Ai, Bi, Ci
R)| ≥ 3n. But, by Lemma 8, |D(Ci

L, Ai, Bi, Ci
R)| ≤ 3n. There-fore, |D(Ci

L, Ai, Bi, Ci
R)| = 3n and thus |D(Di, Ei, F i)| = 4n − 2. 2Lemma 11 If |D(ci)| = 7n−2 then the set D(Di, Ei, F i) 
ontains 2-intervalsbuilt with all the simple intervals from exa
tly two blo
ks of group Ei (i.e.,

(Ei
1, E

i
2), (Ei

1, E
i
3) or (Ei

2, E
i
3)).PROOF. Sin
e |D(ci)| = 7n− 2, by Lemma 10, we know that |D(C i

L, Ai, Bi,

Ci
R)| = 3n. Moreover, |D(Ci

L, Ai)| ≤ n (
f. proof of Lemma 8). Thus, byLemma 7, we must have |D(Ai, Bi, Ci
R)| ≥ 2n. As |D(Ai, Bi, Ci

R)| ≤ 2n (
f.proof of Lemma 8), |D(Ai, Bi, Ci
R)| = 2n.Sin
e |D(ci)| = 7n − 2, by Lemma 10, we have |D(Di, Ei, F i)| = 4n − 2.Moreover, by 
onstru
tion, ea
h 2-interval of D(Di, Ei, F i) is built with asimple interval of Ei. Thus, ∑3

j=1(k(E, i, j)) = 4n − 2.Suppose, for the sake of 
ontradi
tion, that k(E, i, j) > 0 for all 1 ≤ j ≤ 3. ByObservation 1, we then have k(B, i, j) ≤ 2n− (k(E, i, j)+1) for all 1 ≤ j ≤ 3.Thus, ∑3
j=1 k(B, i, j) ≤ ∑3

j=1 2n−(k(E, i, j)+1) ≤ 6n−3−∑3
j=1 k(E, i, j). As

∑3
j=1 k(E, i, j) = 4n− 2, we 
on
lude that ∑3

j=1 k(B, i, j) ≤ 2n− 1. Moreover,by 
onstru
tion, ea
h 2-interval of D(Ai, Bi, Ci
R) is built with a simple intervalof Bi. Therefore, |D(Ai, Bi, Ci

R)| ≤ 2n − 1, a 
ontradi
tion.Therefore at least one of k(E, i, 1), k(E, i, 2) or k(E, i, 3) is equal to 0. Hen
e,
D(Di, Ei, F i) 
ontains 2-intervals built with all the simple intervals from ex-a
tly two blo
ks of the group Ei (i.e., (Ei

1, E
i
2), (E

i
1, E

i
3) or (Ei

2, E
i
3)). 2Corollary 12 If |D(ci)| = 7n − 2 then the set D(Ai, Bi, Ci

R) 
ontains all thesimple intervals of a unique blo
k of group Bi (i.e., Bi
1, Bi

2 or Bi
3).21



PROOF. By Lemma 10, if |D(ci)| = 7n − 2 then |D(Ci
L, Ai, Bi, Ci

R)| = 3n.Moreover, by 
onstru
tion, ea
h 2-interval of D(Ai, Bi, Ci
R) is built with asimple interval of Bi. As |D(Ai, Bi, Ci

R)| = 2n (
f. proof of Lemma 11),
∑3

j=1(k(B, i, j)) = 2n. By Lemma 11, if |D(ci)| = 7n − 2 then D(Di, Ei, F i)
ontains 2-intervals built with all the simple intervals from exa
tly two blo
ks
Ei

s and Ei
t of group Ei, for 1 ≤ s, t ≤ 3. By Observation 1, D(Ai, Bi, Ci

R)
ontains 2-intervals built with all the simple intervals from exa
tly one blo
k
Bi

u of group Bi with 1 ≤ u ≤ 3, u 6= s and u 6= t. 2Lemma 13 If |D(ci)| = 7n − 2 then:(a) if j = 1 then D(Di, Ei, F i) is the set of all the 2-intervals between blo
ks
Ei

2, Ei
3, F i

1 and F i
2.(b) if j = 2 then D(Di, Ei, F i) is the set of all the 2-intervals between blo
ks

Ei
1, Ei

3, Di
1 and F i

2.(
) if j = 3 then D(Di, Ei, F i) is the set of all the 2-intervals between blo
ks
Ei

1, Ei
2, Di

1 and Di
2.PROOF. (a) By Lemma 10, if |D(ci)| = 7n−2 then |D(Di, Ei, F i)| = 4n−2.By Corollary 12, Lemma 11 and the disjun
tion 
onstraint, if the 2n 2-intervalsof D(Ai, Bi, Ci

R) 
ontain 2-intervals built with all the simple intervals from Bi
1,then D(Di, Ei, F i) 
ontains 2-intervals built with all the simple intervals from

Ei
2 and Ei

3. Thus, D(Di, Ei, F i) is 
omposed of the 2n− 1 2-intervals betweenblo
ks Ei
3 and F i

2. Moreover, any 2-interval between blo
ks Ei
2 and Di

2 is {⊏}-
omparable to any 2-interval between blo
ks Ai and Bi
1. Therefore, the set

D(Di, Ei, F i) of 4n − 2 2-intervals is also 
omposed of the 2n − 1 2-intervalsbetween blo
ks Ei
2 and F i

1.(b) Similarly to (a), if the 2n 2-intervals of D(Ai, Bi, Ci
R) 
ontain 2-intervalsbuilt with all the simple intervals from Bi

2, then D(Di, Ei, F i) 
ontains 2-intervals built with all the simple intervals fromEi
1 and Ei

3. Thus,D(Di, Ei, F i)is 
omposed of the 2n−1 2-intervals between blo
ks Ei
1 and Di

1 and the 2n−1
2-intervals between blo
ks Ei

3 and F i
2.(
) Similarly to (a) and (b), if the 2n 2-intervals of D(Ai, Bi, Ci

R) 
ontain
2-intervals built with all the simple intervals from Bi

3, then D(Di, Ei, F i) 
on-tains 2-intervals built with all the simple intervals from Ei
1 and Ei

2. Thus,
D(Di, Ei, F i) is 
omposed of the 2n − 1 2-intervals between blo
ks Ei

1 and
Di

1. Moreover, any 2-interval between blo
ks Ei
2 and F i

1 is {⊏}-
omparableto any 2-interval between blo
ks Bi
3 and Ci

R. Therefore, D(Di, Ei, F i) is also
omposed of the 2n − 1 2-intervals between blo
ks Ei
2 and Di

2. 2In the following, we denote by xm(U, V ) (resp. xm(U, V )), for 1 ≤ m ≤ n, the
2-interval 
omposed of the two simple intervals representing xm (resp. xm) in22



blo
ks U and V .Observation 2 Suppose |D(ci)| = 7n − 2.
• If, for a given 1 ≤ j ≤ 3, xm(Ci

L, Ai) ∈ D(ci) then xm(Ai, Bi
j) ∈ D(ci).

• If, for a given 1 ≤ j ≤ 3, xm(Ci
L, Ai) ∈ D(ci) then xm(Ai, Bi

j) ∈ D(ci).
Fig. 15. xm(Ci

L, Ai) ∈ D(ci) implies xm(Ai, Bi
j) ∈ D(ci).PROOF. An illustration of Observation 2 is given in Figure 15. Indeed,

|D(ci)| = 7n − 2, thus by Lemma 10 |D(Ci
L, Ai, Bi, Ci

R)| = 3n. We haveproved (
f. proof of Lemma 8) that |D(Ai, Bi)| ≤ n, |D(Bi, Ci
R)| ≤ n, and

|D(Ci
L, Ai)| ≤ n. By Lemma 7, |D(Ai, Bi)| + |D(Bi, Ci

R)| + |D(Ci
L, Ai)| ≥

|D(Ci
L, Ai, Bi, Ci

R)|. Thus, |D(Ai, Bi)| = |D(Bi, Ci
R)| = |D(Ci

L, Ai)| = n.Moreover, we proved that |D(Ci
L, Ai)| = n implies that one simple intervalper blo
k of Ai is involved in a 2-interval between Ci

L and Ai (
f . proof ofLemma 8). Consider the mth blo
k ofAi. Therefore, by the {<, ≬}-
omparability
onstraint, either xm(Ci
L, Ai) ∈ D(ci) or xm(Ci

L, Ai) ∈ D(ci).Similarly, we proved that |D(Ai, Bi)| = n implies that one simple interval perblo
k of Ai is involved in a 2-interval between Ai and Bi (
f . proof of Lemma8). Consider the mth blo
k of Ai. We mentioned that, by 
onstru
tion, thesimple intervals of this blo
k represent in order (xm, xm, xm, xm).Therefore,either xm(Ai, Bi
j) ∈ D(ci) or xm(Ai, Bi

j) ∈ D(ci).Moreover, by the disjun
tion 
onstraint and the adjustment of the simpleintervals of ea
h blo
k of Ai, if xm(Ci
L, Ai) ∈ D(ci) then xm(Ai, Bi

j) ∈ D(ci).Similarly, if xm(Ci
L, Ai) ∈ D(ci) then xm(Ai, Bi

j) ∈ D(ci). 2Observation 3 Suppose |D(ci)| = 7n − 2.
• If, for a given 1 ≤ j ≤ 3, xm(Ai, Bi

j) ∈ D(ci) then xm(Bi
j , C

i
R) ∈ D(ci).

• If, for a given 1 ≤ j ≤ 3, xm(Ai, Bi
j) ∈ D(ci) then xm(Bi

j , C
i
R) ∈ D(ci).PROOF. An illustration of Observation 3 is given in Figure 16. Suppose

xm(Ai, Bi
j0

) ∈ D(ci) for a given 1 ≤ j0 ≤ 3. By Corollary 12, as |D(ci)| = 7n−2,the set D(Ai, Bi, Ci
R) 
ontains all the simple intervals of a unique blo
k Bi

j ofgroup Bi. Thus, by the supposition we made, the set D(Ai, Bi, Ci
R) 
ontains allthe simple intervals of blo
k Bi

j0
. We proved (
f. proof of Observation 2) that23



Fig. 16. xm(Ai, Bi
j) ∈ D(ci) implies xm(Bi

j , C
i
R) ∈ D(ci).either xm(Ai, Bi

j0
) ∈ D(ci) or xm(Ai, Bi

j0
) ∈ D(ci) for some 1 ≤ j0 ≤ 3. By thedisjun
tion 
onstraint, as xm(Ai, Bi

j0
) ∈ D(ci) we have xm(Bi

j0
, Ci

R) 6∈ D(ci).Moreover, as the set D(Ai, Bi, Ci
R) 
ontains all the simple intervals of blo
k

Bi
j0
, xm(Bi

j0
, Ci

R) ∈ D(ci). Similarly, if xm(Ai, Bi
j0

) ∈ D(ci) then xm(Bi
j0

, Ci
R) ∈

D(ci) for any 1 ≤ j0 ≤ 3. 2Observation 4 Suppose |D(ci)| = |D(ci+1)| = 7n − 2.
• If, for a given 1 ≤ j ≤ 3, xm(Bi

j , C
i
R) ∈ D(ci) then xm(Ci+1

L , Ai+1) ∈
D(ci+1).

• If, for a given 1 ≤ j ≤ 3, xm(Bi
j , C

i
R) ∈ D(ci) then xm(Ci+1

L , Ai+1) ∈
D(ci+1).

Fig. 17. xm(Bi
j , C

i
R) ∈ D(ci) implies xm(Ci+1

L , Ai+1) ∈ D(ci+1)PROOF. An illustration of Observation 4 is given in Figure 17. If |D(ci+1)| =
7n − 2, then |D(Ci+1

L , Ai+1)| = n (
f. proof of Observation 2). By the {<, ≬}-
omparability 
onstraint, either xm(Ci+1
L , Ai+1) ∈ D(ci+1) or xm(Ci+1

L , Ai+1) ∈
D(ci+1) (
f. proof of Observation 2). By the adjustment of blo
ks C i

R and Ci+1
L ,if |D(ci)| = |D(ci+1)| = 7n−2 and xm(Bi

j, C
i
R) ∈ D(ci), then xm(Ci+1

L , Ai+1) ∈
D(ci+1). Similarly, if |D(ci)| = |D(ci+1)| = 7n − 2 and xm(Bi

j , C
i
R) ∈ D(ci)then xm(Ci+1

L , Ai+1) ∈ D(ci+1). 2Lemmas 8 to 13 together with Observations 2 to 4 provide us all the ne
essaryintermediate results to show that the redu
tion of Exa
t 3-CNF-Sat to the
2-IP-Unit-{<, ≬} problem is valid.Proposition 14 Given an instan
e of the problem Exa
t 3-CNF-Sat with
n variables and q 
lauses, there exists a satisfying true assignment i� there is24



a subset D′ ⊆ D su
h that |D′| ≥ (7n − 2)q and D′ is {<, ≬}-
omparable.PROOF. (⇒)Suppose we have an assignment AS of the n variables that satis�es the booleanformula. By de�nition, for ea
h 
lause there is at least one literal that satis�esit. We look for a set of {<, ≬}-
omparable 2-intervals D′ in the representationof the boolean formula su
h that the 
ardinality of D′ is greater than orequal to (7n − 2)q. By Lemma 10, for any 
lause ci, |D(ci)| ≤ 7n − 2. Thus,
|D′| ≤ (7n − 2)q. Therefore, the only solution to our problem is a set D′ su
hthat |D′| = (7n − 2)q. As the boolean formula is 
omposed of q 
lauses, ea
hsubset D′(ci) of D′ for ea
h 
lause ci, 1 ≤ i ≤ q, must satisfy |D′(ci)| = 7n−2.Hereafter, ji will de�ne the smallest index of the literal of ci (i.e., 1, 2 or 3)whi
h, by its assignment, satis�es ci. For any 1 ≤ i ≤ q, we de�ne D′(ci) asfollows. For ea
h variable xm with 1 ≤ m ≤ n:(a) If xm = True then xm(Ci

L, Ai), xm(Ai, Bi
ji
) and xm(Bi

ji
, Ci

R) are in D′(ci);(b) If xm = False then xm(Ci
L, Ai), xm(Ai, Bi

ji
) and xm(Bi

ji
, Ci

R) are in D′(ci).Moreover, for any given 1 ≤ ji ≤ 3:(
) If ji = 1 then D′(ci) is also 
omposed of the set of all the 2-intervalsbetween blo
ks Ei
2, Ei

3, F i
1 and F i

2;(d) If ji = 2 then D′(ci) is also 
omposed of the set of all the 2-intervalsbetween blo
ks Ei
1, Ei

3, Di
1 and F i

2;(e) If ji = 3 then D′(ci) is also 
omposed of the set of all the 2-intervalsbetween blo
ks Ei
1, Ei

2, Di
1 and Di

2.An example of subset D′(ci) where ci = (x1∨x2∨x3) and su
h that x1 = x2 =
x3 = True is illustrated in Figure 18.In the following, we will �rst prove that, for any 1 ≤ i ≤ q, D′(ci) is a set of
{<, ≬}-
omparable 2-intervals. Then we will prove that D′ =

⋃q
1 D′(ci) is a setof {<, ≬}-
omparable 2-intervals su
h that |D′| = (7n − 2)q.By the way we de�ned D′(ci), it is easy to see that |D′(ci)| = 7n − 2. Indeed,by (a) or (b), three 2-intervals have been added to D′(ci) for ea
h variable

xm with 1 ≤ m ≤ n. Moreover, by (
), (d) or (e), for any given 1 ≤ ji ≤ 3, aset of 4n − 2 2-intervals has been added to D′(ci).For any 1 ≤ i ≤ q, D′(ci) is a set of {<, ≬}-
omparable 2-intervals i� there is noin
lusion or disjun
tion in D′(ci). First, we will prove that given a 1 ≤ ji ≤ 3,
D′(Ci

L, Ai, Bi
ji
, Ci

R) is a set of {<, ≬}-
omparable 2-intervals. Then, we willprove that given a 1 ≤ ji ≤ 3, D′(Di, Ei, F i) is a set of {<, ≬}-
omparable
2-intervals. Finally, we will prove that D′(ci), whi
h is the union of those two25



Fig. 18. D′(ci) where ci = (x1 ∨ x2 ∨ x3) and x1 = x2 = x3 = True

26



sets, is a set of {<, ≬}-
omparable 2-intervals.Considering only the 2-intervals of D′(Ci
L, Ai, Bi

ji
, Ci

R), by 
onstru
tion an in-
lusion 
an only o

ur between two 2-intervals built with simple intervals ofexa
tly two groups. For any 1 ≤ ji ≤ 3, by 
onstru
tion, any pair of 2-intervalsbetween Ai and Bi
ji
(resp. Bi

ji
and Ci

R) are 
rossing. Thus, an in
lusion 
anonly o

ur when two simple intervals of the same blo
k of Ai are both involvedin a 2-interval between Ci
L and Ai in D′(Ci

L, Ai, Bi
ji
, Ci

R).Clearly, either xm(Ci
L, Ai) ∈ D′(ci) or xm(Ci

L, Ai) ∈ D′(ci) for ea
h vari-able xm. Thus, only one simple interval per blo
k of Ai is involved in a
2-interval between Ci

L and Ai. Therefore, there 
annot be an in
lusion in
D′(Ci

L, Ai, Bi
ji
, Ci

R).By the way we de�ned D′(ci) and the 
onstru
tion of the representation ofa 
lause, it is easy to see that there 
annot be non disjoint 2-intervals in
D′(Ci

L, Ai, Bi
ji
, Ci

R) (see for instan
e Figure 18). Thus, D′(Ci
L, Ai, Bi

ji
, Ci

R) is aset of 3n {<, ≬}-
omparable 2-intervals.Considering only the 2-intervals of D′(Di, Ei, F i), by 
onstru
tion, there 
an-not be a problem of in
lusion in D′(Di, Ei, F i). Moreover, a problem of dis-jun
tion 
an only o

ur when a simple interval of blo
k Ei
2 is involved in two

2-intervals in D′(Di, Ei, F i). By the way we de�ned D′(ci), this situation neverappears. Thus, D′(Di, Ei, F i) is a set of 4n− 2 {<, ≬}-
omparable 2-intervals.Now we 
onsider the 2-intervals of D′(ci). We proved upwards that for any
1 ≤ ji ≤ 3, both D′(Ci

L, Ai, Bi
ji
, Ci

R) and D′(Di, Ei, F i) are sets of {<, ≬}-
omparable 2-intervals. Thus, we have to 
he
k that assembling those two setsdoes not 
reate in
lusion or disjun
tion problems. To prove that D′(ci) is a setof {<, ≬}-
omparable 2-intervals, we will examine the three following 
ases:(1) ji = 1. D′(ci) 
ontains n 2-intervals between Ci
L and Ai, n 2-intervalsbetween Ai and Bi

1, n 2-intervals between Bi
1 and Ci

R, 2n − 1 2-intervalsbetween Ei
2 and F i

1 and 2n − 1 2-intervals between Ei
3 and F i

2.By 
onstru
tion, all the 2-intervals are disjoint. Moreover, any 2-intervalbetween Ei
2 and F i

1 (resp. Ei
3 and F i

2) is 
rossing any 2-interval between
Bi

1 and Ci
R (see Figure 19). Thus, there is no in
lusion problem in D′(ci).Thus, D′(ci) is a set of 7n−2 {<, ≬}-
omparable 2-intervals in this 
ase.(2) ji = 2. D′(ci) 
ontains n 2-intervals between Ci

L and Ai, n 2-intervalsbetween Ai and Bi
2, n 2-intervals between Bi

2 and Ci
R, 2n − 1 2-intervalsbetween Di

1 and Ei
1 and 2n − 1 2-intervals between Ei

3 and F i
2.By 
onstru
tion, all the 2-intervals are disjoint. Moreover, any 2-intervalbetween Di

1 and Ei
1 is 
rossing any 2-interval between Ci

L and Ai (resp.
Ai and Bi

2). Moreover, any 2-interval between Ei
3 and F i

2 is 
rossing any
2-interval between Bi

2 and Ci
R (see Figure 20). Thus, D′(ci) is a set of

7n − 2 {<, ≬}-
omparable 2-intervals in this 
ase.27



Fig. 19. Illustration of 
ase (1). Bold lines represents sets of 2-intervals betweengroups.
Fig. 20. Illustration of 
ase (2). Bold lines represents sets of 2-intervals betweengroups.(3) ji = 3. D′(ci) 
ontains n 2-intervals between Ci

L and Ai, n 2-intervalsbetween Ai and Bi
3, n 2-intervals between Bi

3 and Ci
R, 2n − 1 2-intervalsbetween Di

1 and Ei
1 and 2n − 1 2-intervals between Di

2 and Ei
2.By 
onstru
tion, all the 2-intervals are disjoint. Moreover, any 2-intervalbetween Di

1 and Ei
1 (resp. Di

2 and Ei
2) is 
rossing any 2-interval between

Ci
L and Ai. Similarly, any 2-interval between Di

1 and Ei
1 (resp. Di

2 and
Ei

2) is 
rossing any 2-interval between Ai and Bi
3 (see Figure 21). Thus,

D′(ci) is a set of 7n − 2 {<, ≬}-
omparable 2-intervals in this 
ase.
Fig. 21. Illustration of 
ase (3). Bold lines represents sets of 2-intervals betweengroups.We just proved that we 
an �nd a {<, ≬}-
omparable subset D(ci) of D′ forea
h 
lause ci su
h that |D(ci)| = 7n− 2. Finally, we have to verify that D′ =
⋃q

1 D′(ci) is {<, ≬}-
omparable. By 
onstru
tion, there 
annot be in
lusionproblems between two 2-intervals of di�erent 
lauses. What is left is to provethat the adjustment of blo
ks Ci
R and Ci+1

L for a any 1 ≤ i < q does not implynon disjoint 2-intervals (see Figure 3).By the adjustment of blo
ks Ci+1
L and Ci

R, a disjun
tion problem 
an onlyo

ur between the simple interval representing xm (resp. xm) in Ci
R and the28



simple interval representing xm (resp. xm) in Ci+1
L for some 1 ≤ m ≤ n.By the way we de�ned D′(ci), if xm = True then for any 1 ≤ i ≤ q, xm(Ci

L, Ai)and xm(Bi
ji
, Ci

R) are in D′(ci). Thus, if xm = True then xm(Bi
ji
, Ci

R) ∈ D′(ci)and xm(Ci+1
L , Ai+1) ∈ D′(ci+1). However, we know that, for any 1 ≤ ji ≤ 3,

xm(Bi
ji
, Ci

R) and xm(Ci+1
L , Ai+1) are disjoint (see Figure 3).By the way we de�ned D′(ci), if xm = False then for any 1 ≤ i ≤ q, xm(Ci

L, Ai)and xm(Bi
ji
, Ci

R) are in D′(ci). Thus, if xm = False then xm(Bi
ji
, Ci

R) ∈ D′(ci)and xm(Ci+1
L , Ai+1) ∈ D′(ci+1). However, we know that, for any 1 ≤ ji ≤ 3,

xm(Bi
ji
, Ci

R) and xm(Ci+1
L , Ai+1) are disjoint (see Figure 3).Thus, a disjun
tion problem due to the adjustment of blo
ks Ci+1

L and Ci
Rfor a given 1 ≤ i < q in D′ 
annot exist. Therefore, there is a set of {<, ≬}-
omparable 2-intervals in the representation of the boolean formula of 
ardi-nality (7n − 2)q.

(⇐)Suppose we have a {<, ≬}-
omparable subset D′ ⊆ D of 
ardinality (7n− 2)q.By Lemma 10, D′ is 
omposed of a subset D′(ci) of at most 7n − 2 {<, ≬}-
omparable 2-intervals for ea
h 
lause ci with 1 ≤ i ≤ q. Thus, for ea
h
1 ≤ i ≤ q, |D′(ci)| = 7n − 2. We de�ne the assignment AS of the n variablesas follows. For any 1 ≤ m ≤ n:
• If xm(C1

L, A1) ∈ D′ then the value of variable xm is True;
• If xm(C1

L, A1) ∈ D′ then the value of variable xm is False.We proved (
f. proof of Observation 2) that for any 1 ≤ i ≤ q if |D(ci)| = 7n−2then |D(Ci
L, Ai)| = n. Thus, as |D′(c1)| = 7n − 2, D′(c1) is 
omposed of n 2-intervals between blo
ks of C1

L and A1. Moreover, we proved (
f. proof ofObservation 2) that, for any 1 ≤ i ≤ q, if |D(ci)| = 7n − 2 then either
xm(Ci

L, Ai) ∈ D(ci) or xm(Ci
L, Ai) ∈ D(ci). Thus, either xm(C1

L, A1) ∈ D′(c1)or xm(C1
L, A1) ∈ D′(c1). Therefore, AS is an assignment of n variables su
hthat ea
h variable have a unique value.Now, we have to verify that AS satis�es the boolean formula 
orrespondingto D (i.e., ea
h 
lause ci with 1 ≤ i ≤ q must be satis�ed). First, note thata dire
t 
onsequen
e of Observations 2 to 4 is that, for any 1 ≤ m ≤ n,if xm(Ci

L, Ai) ∈ D(ci), then xm(Ci+1
L , Ai+1) ∈ D(ci+1) for any 1 ≤ i < q.Similarly, for any 1 ≤ m ≤ n, if xm(Ci

L, Ai) ∈ D(ci), then xm(Ci+1
L , Ai+1) ∈

D(ci+1) for any 1 ≤ i < q.Thus, for any 1 ≤ m ≤ n if xm(C1
L, A1) ∈ D′(c1) then xm(Ci

L, Ai) ∈ D′(ci)for any 2 ≤ i ≤ q. Similarly, for any 1 ≤ m ≤ n if xm(C1
L, A1) ∈ D′(c1) then

xm(Ci
L, Ai) ∈ D′(ci) for any 2 ≤ i ≤ q.29



By Corollary 12, as |D′(ci)| = 7n − 2, the set D′(ci) 
ontains all the simpleintervals of a unique blo
k Bi
ji
of group Bi, for a given 1 ≤ ji ≤ 3. Moreover,as |D′(ci)| = 7n−2, D′(ci) is 
omposed of n 2-intervals between blo
ks Ai and

Bi
ji
(
f. proof of Observation 2). More pre
isely, for any 1 ≤ m ≤ n, either

xm(Ai, Bi
ji
) or xm(Ai, Bi

ji
) is in D′(ci).Suppose xp is the literal of 
lause ci at position ji, with 1 ≤ ji ≤ 3. Then by
onstru
tion, xp(A

i, Bi
ji
) does not exist. This implies that xp(A

i, Bi
ji
) ∈ D′(ci).Moreover, by Observations 2 and 3, if xp(A

i, Bi
ji
) ∈ D′(ci) then xp(B

i
ji
, Ci

R) ∈
D′(ci) and xp(C

i+1
L , Ai+1) ∈ D′(ci+1). Therefore, a

ording to AS, if xp(C

i+1
L ,

Ai+1) ∈ D′(ci+1) then the value of variable xp is True. Thus, as xp is the literalof 
lause ci at position ji, we 
on
lude that ci is satis�ed.Suppose xp is the literal of 
lause ci at position ji, with 1 ≤ ji ≤ 3. By asimilar reasoning, we 
an verify that 
lause ci is satis�ed due to the literal xpat position ji.This reasoning 
an be applied to any 
lause ci of the boolean formula. Thus,
AS satis�es ea
h 
lause ci, 1 ≤ i ≤ q. Thus, from the {<, ≬}-
omparablesubset D′ ⊆ D of 
ardinality equal to (7n − 2)q, we 
an �nd a satisfying trueassignment AS. 26 A �xed-parameter algorithm for 2-IP-Unit-{<, ≬}A

ording to Theorem 6, �nding the largest {<, ≬}-
omparable subset ina set of 2-intervals on a unit ground set is an NP-
omplete problem. Inthis se
tion, we give an exa
t algorithm for that problem with strong em-phasis on the 
rossing stru
ture of the set of 2-intervals. More pre
isely,we 
onsider the time 
omplexity of the problem with respe
t to the for-ward 
rossing number of the input. Indeed, in the 
ontext of 2-intervals,one may reasonably expe
t the forward 
rossing number to be small 
om-pared to the number of 2-intervals, and hen
e, a natural dire
tion seemsto be the question for the �xed-parameter tra
tability with respe
t to pa-rameter FCrossing(D). In response to that question, we show that the prob-lem 
an be solved for any ground set by means of dynami
 programming in
O(n2 · FCrossing(D) · 2FCrossing(D)(log(n) + FCrossing(D))) time where n is thenumber of 2-intervals inD, and hen
e is �xed-parameter tra
table with respe
tto parameter FCrossing(D).For any Di ∈ D, let T (Di) denote the size of the largest {<, ≬}-
omparablesubset D′ ⊆ D of whi
h the 2-interval Di is the rightmost element. Further-more, for any Di, Dj ∈ D su
h that Dj ≬ Di, let T (Dj | Di) denotes the size30



of the largest {<, ≬}-
omparable subset D′ ⊆ D su
h that (1) the 2-interval
Dj is the rightmost element of D′ and (2) the 2-interval Di is not part of thesubset D′ but 
an safely be added to D′ to obtain a new {<, ≬}-
omparablesubset of size |D′| + 1.Clearly, a maximum 
ardinality {<, ≬}-
omparable subset D′ ⊆ D of whi
hthe 2-interval Di is the rightmost element 
an be obtained either (1) by adding
Di to a maximum 
ardinality {<, ≬}-
omparable subset D′′ ⊆ D whose right-most 2-interval Dj pre
edes the 2-interval Di, i.e., Dj < Di, or (2) by adding
Di to a maximum 
ardinality {<, ≬}-
omparable subset D′′ ⊆ D whose right-most 2-interval Dj 
rosses the 2-interval Di, i.e., Dj ≬ Di, and su
h that Di
rosses or pre
edes any 2-interval of D′′. Here is another way of stating theseobservations:

∀Di ∈ D, T (Di) = 1 + max







max{T (Dj) : Dj < Di}
max{T (Dj | Di) : Dj ≬ Di}

(1)What is left is thus to 
ompute T (Dj | Di). To this aim, we extend the notation
T (Dj | Di) as follows: for any {≬}-
omparable subset {Di1, Di2 , . . . , Dik} ⊆ D,
k ≥ 1, satisfying Right(Di1) < Right(Di2) < . . . < Right(Dik), we let T (Di1 |
Di2 , . . . , Dik) stand for the size of a largest {<, ≬}-
omparable subset D′ ⊆ Dsu
h that (1) the 2-interval Di1 is the rightmost element of D′ and (2) the
2-intervals {Di2, Di3 , . . . , Dik} are not part of the subset D′ but 
an safelybe added to D′ to obtain a new {<, ≬}-
omparable subset of size T (Di1 |
Di2 , . . . , Dik)+k−1. A straightforward extension of the 
al
ulation (1) yieldsthe following re
urren
e relation for 
omputing the entry T (Di1 | Di2 , . . . , Dik)of the dynami
 programming table:

T (Di1 | Di2, . . . , Dik) = 1+

max











































max {T (Dj) | Dj satis�es 
ondition (1)}
max {T (Dj | Di1) | Dj satis�es 
ondition (2)}
max {T (Dj | Di1, Di2) | Dj satis�es 
ondition (3)}...
max {T (Dj | Di1, Di2 , . . . , Dik) | Dj satis�es 
ondition (k + 1)} (2)where 
ondition (i), 1 ≤ i ≤ k + 1, is de�ned as follows:
ondition (i)







Dj ≬ Dir for all 0 < r < i (
rossing 
onditions)
Dj < Dis for all i ≤ s < k + 1 (pre
eden
e 
onditions)An illustration of the di�erent 
onditions of this re
urren
e relation is given31



in Figure 22. It follows from the above re
urren
e relation that entries of theform T (Di | ∗) depend only on entries of the form T (Dj | ∗) where Dj < Di or
Dj ≬ Di. From a 
omputational point of view, this implies that the 
al
ulationof entries of the form T (Di | ∗) depends only on the 
al
ulation of entries ofthe form T (Dj | ∗) where Right(Dj) < Right(Di). The following easy lemmagives an upper-bound on the size of the dynami
 programming table T withrespe
t to the forward 
rossing number of D.Lemma 15 The number of distin
t entries of the dynami
 programming table
T is upper-bounded by |D| · 2FCrossing(D).PROOF. For any 2-interval Di ∈ D, the number of distin
t {≬}-
omparablesubsets of whi
h Di is the leftmost element is upper-bounded by 2FCrossing(D),and hen
e there exist at most 2FCrossing(D) distin
t entries of the form T (Di | ∗)in the dynami
 programming table T . 2The overall algorithm for �nding the size of the largest {<, ≬}-
omparablesubset in a set of 2-intervals is given in Figure 23. Using a suitable datastru
ture for e�
iently sear
hing 2-intervals, we have the following result.Proposition 16 Algorithm Max {<, ≬}-Comparable 2-Interval Pattern returnsthe size of a maximum 
ardinality {<, ≬}-
omparable subset of a set of 2-intervals D in O(n2 · FCrossing(D) · 2FCrossing(D)(log(n) + FCrossing(D))) time,where n is the number of 2-intervals in D.Our approa
h is based on the following theorem.Theorem 17 ([10℄) Let I be a �nite 
olle
tion of n intervals on the realline. A data stru
ture storing I using O(n log n) spa
e 
an be 
onstru
ted in
O(n log n) time. By querying this data stru
ture one 
an report those intervalsin I that are 
ompletely 
ontained in a given interval in O(n log n + k) timewhere k is the number of reported 2-intervals.Lemma 18 Let D be a �nite 
olle
tion of n 2-intervals. After a prepro
essingstage whi
h takes O(n log n) time and uses O(n log n) spa
e, one 
an report(1) those 2-intervals in D that lie entirely to the left of a given 2-interval, or(2) those 2-intervals in D whose left and right intervals are 
ompletely 
on-tained in two given intervalsin O(n logn + k) time where k is the number of reported 2-intervals.PROOF. We use a data stru
ture 
omposed of two separate data stru
turesas de�ned in Theorem 17. 32



Fig. 22. Illustration of the di�erent 
onditions of re
urren
e relation (2).(1) We asso
iate to ea
h 2-interval D ∈ D its least 
overing interval Cover(D)and store all these 
overing intervals in the data stru
ture of Theorem 17.Reporting those 2-intervals in D that lie entirely to the left of a given
2-interval D is equivalent to reporting those 
overing intervals that are
ompletely 
ontained in the left pre
eding interval of D. The time 
om-33



Max {<, ≬}-Comparable 2-Interval PatternInput: A �nite set D of n 2-intervals.Output: The maximum size of a {<, ≬}-
omparable pattern in D.1. Sort the set D a

ording to their right interval. For the sake of 
larity,let us assume that the ordered 2-intervals set is now given by D =
{D1, D2, . . . , Dn}, i.e., Right(Di) < Right(Dj) implies i < j. All orderedsubsets 
onsidered in the following of the algorithm are to be understoodas ordered with respe
t to that order.2. For i from 1 to n2.1. Fill the entry T (Di).2.2. For any ordered non-empty set {Di1, Di2 , . . . , Diq} ⊆ D su
h that
{Di} ∪ {Di1, Di2 , . . . , Diq} is an ordered subset of {≬}-
omparable 2-intervals with Right(Di) < Right(Di1) < . . . < Right(Diq), �ll the entry
T (Di | Di1 , Di2, . . . , Diq) a

ording to the re
urren
e relation (2).3. Return the largest entry T (Di)Fig. 23. Algorithm Max {<, ≬}-Comparable 2-Interval Pattern.plexity follows from Theorem 17.(2) We store the left interval of ea
h 2-interval in the data stru
ture of The-orem 17. Reporting is now a two step pro
edure. First, we �nd those

2-intervals whose left interval is 
ompletely 
ontained in the �rst queryinterval. Se
ond, we report those 2-intervals of step one whose right in-terval is 
ompletely 
ontained in the se
ond query interval. Clearly, the�rst step takes O(n logn+k) time and the se
ond step runs in O(k) time.
2Lemma 19 Let Dj ∈ D be su
h that all entries of the dynami
 programmingtable of the form T (Dk|∗) with Right(Dk) ≤ Right(Dj) have already been 
om-puted in a previous run. Then, for any {≬}-
omparable subset {Di1, Di2 , . . . ,

Dik} ⊆ D, k ≥ 1, satisfying Right(Dj) < Right(Di1) < Right(Di2) < . . . <

Right(Dik), one 
an 
ompute the entry of the dynami
 programming table
T (Di1 | Di2 , . . .Dik) a

ording to re
urren
e relation (2) in O(n ·FCrossing(D)
(log(n) + FCrossing(D))) time.PROOF. We �rst need an inje
tive mapping that asso
iates to any {≬}-
omparable subset {Di1 , Di2, . . . , Dik} ⊆ D, k ≥ 1, satisfying Right(Di1) <

Right(Di2) < . . . < Right(Dik), its index in the dynami
 programming table
T . Let π be a numbering of D su
h that the 2-intervals are numbered a

ord-ing to their right interval, i.e., Right(Di) < Right(Dj) implies π(Di) < π(Dj)for all Di, Dj ∈ D. Let D≬ be the set of ordered subsequen
es of {1, 2, . . . , n}de�ned as follows: for any {≬}-
omparable subset {Di1 , Di2, . . . , Dik} ⊆ D,
k ≥ 1, satisfying Right(Di1) < Right(Di2) < . . . < Right(Dik), the set D≬34




ontains the ordered sequen
e (π(Di1), π(Di2), . . . , π(Dik)). Clearly, one 
an
ompare two sequen
es of D≬, for example a

ording to lexi
ographi
 or-der, in O(FCrossing(D)) time ; this follows from the fa
t that sequen
es of
D≬ are of length at most Depth(D) ≤ FCrossing(D) + 1. Therefore, usingany 
lassi
al data stru
ture for sear
hing and inserting that guarantees log-arithmi
 time [7℄, one 
an insert or sear
h for a given sequen
e of D≬ in
O(FCrossing(D)(log(n) + FCrossing(D))) time. We now turn to the 
ompu-tation of T (Di1 | Di2 , . . .Dik). For ea
h 
ondition (i) of the re
urren
e re-lation (2), one has to �nd those 2-intervals Dj satisfying Dj ≬ {Dir : 0 ≤
r < i} and Dj < {Dis : i ≤ s < k + 1}. A

ording to Lemma 18, this
an be done in O(log n + pi) where pi is the number of 2-intervals satis-fying 
ondition (i). Then it follows that one 
an �nd the maximum valueof 
ondition (i) in O(pi · FCrossing(D)(log(n) + FCrossing(D))) time. Sum-ming up over all 
onditions (i) and observing that ∑

1≤i≤k+1 pi ≤ n, we ob-tain an O(n · FCrossing(D)(log(n) + FCrossing(D)) time algorithm for 
om-puting the entry of the dynami
 programming table T (Di1 | Di2 , . . .Dik). Itremains to insert the ordered sequen
e (π(Di1), π(Di2), . . . , π(Dik)) into thedata stru
ture for up
oming queries. A

ording to the above, this 
an be donein O(FCrossing(D)(log(n) + FCrossing(D))) time. 2PROOF. [of Proposition 16℄ Corre
tness of the algorithm follows from re-
urren
e relation (2). What is left is to prove the time 
omplexity. Sorting theset of 2-intervals D a

ording to their right interval 
an be done in O(n log n)time. A

ording to Lemma 19, ea
h entry of the form T (Di | ∗) 
an be 
om-puted in O(n · FCrossing(D)(log(n) + FCrossing(D))) time. Sin
e the numberof distin
t entries of the dynami
 programming table T is upper-bounded by
n · 2FCrossing(D) (Lemma 15), it follows that the algorithm as a whole runs in
O(n2 · FCrossing(D) · 2FCrossing(D)(log(n) + FCrossing(D))) time. 2Corollary 20 The 2-IP-Unit-{⊏, ≬} problem is �xed-parameter tra
table withrespe
t to parameter FCrossing(D).It remains open, however, whether the 2-IP-Unit-{⊏, ≬} problem is �xed-parameter tra
table with respe
t to parameter Depth(D) (re
all indeed that
FCrossing(D) ≥ Depth(D)).7 Con
lusionIn the 
ontext of stru
tured pattern mat
hing, we 
onsidered the problem of�nding an o

urren
e of a given stru
tured pattern in a set of 2-intervals andsolved three open problems of [29℄. We gave an optimal O(n log n) algorithmfor model R = {⊏} thereby improving the 
omplexity of the best known35



algorithm. Also, we des
ribed a O(n2
√

n) time algorithm for model R = {⊏, ≬}over a disjoint ground set. Finally, we proved that the problem isNP-
ompletefor model R = {<, ≬} over a unit ground set, and in addition to that, we gavea �xed parameter-tra
tability result based on the 
rossing stru
ture of the setof 2-intervals. These results almost 
omplete the table of 
omplexity 
lassesfor the 2-interval pattern problem proposed by Vialette [29℄ (see Table 1).An interesting question would be to answer the last remaining open problemin that area, that is to determine whether there exists a polynomial time algo-rithm for 2-IP-Dis-{<, ≬}, i.e., �nding the largest {<, ≬}-
omparable subsetof a set of 2-intervals over a disjoint ground set. Note that the 2-IP-Dis-{<, ≬}problem has an immediate formulation in terms of 
onstrained mat
hings ingeneral graphs: Given a graph G together with a linear ordering π of the ver-ti
es of G, the 2-IP-Dis-{<, ≬} problem is equivalent to �nding a maximum
ardinality mat
hing M in G with the property that for any two distin
tedges {u, v} and {u′, v′} of M neither max{π(u), π(v)} < min{π(u′), π(v′)}nor max{π(u′), π(v′)} < min{π(u), π(v)} o

ur. We note that a related result,determining whether a given {<, ≬}-stru
tured pattern o

urs in a general lin-ear graph, has been studied in [19,23℄. Gramm [19℄ gave a polynomial-timealgorithm for this problem. Re
ently, Li and Li [23℄ proved that this algo-rithm was in
orre
t and showed the problem was in fa
t NP-
omplete. In thelight of Table 1, we however 
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es[1℄ J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Towards optimally solving thelongest 
ommon subsequen
e problem for sequen
es with nested ar
 annotationsin linear time. In Pro
eedings of the 13th Annual Symposium on CombinatorialPattern Mat
hing (CPM 2002), volume 2373 of Le
ture Notes in ComputerS
ien
e, pages 99�114. Springer-Verlag, 2002.[2℄ R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz. Lo
al ratio: A uni�edframework for approxmation algorithms. J ACM Comput. Surv., 36(4):422�463,2004.[3℄ R. Bar-Yehuda, M.M. Halldorsson, J. Naor, H. Sha
hnai, and I. Shapira.S
heduling split intervals. In Pro
eedings of the 13th Annual ACM-SIAMSymposium on Dis
rete Algorithms, pages 732�741, 2002.[4℄ J.R.S. Blair and B. Peyton. An introdu
tion to 
hordal graphs and 
lique trees.Graph Theory and Sparse Matrix Computation, 56:1�29, 1993.[5℄ G. Blin, G. Fertin, and S. Vialette. New results for the 2-interval patternproblem. In In Pro
. 15th Annual Symposium on Combinatorial Pattern36



Mat
hing (CPM 2004), volume 3109 of Le
ture Notes in Computer S
ien
e,pages 311�322. Springer-Verlag, 2004.[6℄ A. Butman, D. Hermelin, M. Lewenstein, and D. Rawitz. Optimization problemsin multiple-interval graphs. In Pro
. ACM-SIAM Symposium on Dis
reteAlgorithms (SODA), 2007. To appear.[7℄ T.H. Cormen, C.E. Leiserson, and R.L. Rivest. Introdu
tion to algorithms. MITPress and M
Graw Hill, Cambridge, 1992.[8℄ M. Cro
hemore, D. Hermelin, G. Landau, D. Rawitz, and S. Vialette.Approximating the 2-interval pattern problem. Theoreti
al Computer S
ien
e(spe
ial issue for Alberto Apostoli
o), 2006. To appear.[9℄ I. Dagan, M.C. Golumbi
, and R.Y. Pinter. Trapezoid graphs and their 
oloring.Dis
rete Applied Mathemati
s, 21:35�46, 1988.[10℄ M. de Berg, M.van Kreveld, M. Overmars, and O. S
hwarzkopf. ComputationalGeometry: Algorithms and Appli
ations. Springer-Verlag, 2nd edition, 2000.[11℄ P. Evans. Finding 
ommon subsequen
es with ar
s and pseudoknots. InPro
eedings of the 10th Annual Symposium Combinatorial Pattern Mat
hing(CPM 1999), volume 1645 of Le
ture Notes in Computer S
ien
e, pages 270�280. Springer-Verlag, 1999.[12℄ S. Felsner, R. Müller, and L. Wernis
h. Trapezoid graphs and generalizations:Geometry and algorithms. Dis
rete Applied Math., 74:13�32, 1997.[13℄ M.L. Fredman. On 
omputing the length of longest in
reasing subsequen
es.Disrete Mathemati
s, 11:29�35, 1975.[14℄ D.R. Fulkerson and O.A. Gross. In
iden
e matri
es and interval graphs. Pa
i�
Journal of Math., 15:835�855, 1965.[15℄ M.R. Garey and D.S. Johnson. Computers and Intra
tability: a guide to thetheory of NP-
ompleteness. W.H. Freeman, San Fran
iso, 1979.[16℄ D. Goldman, S. Istrail, and C.H. Papadimitriou. Algorithmi
 aspe
ts ofprotein stru
ture similarity. In Pro
eedings of the 40th Annual Symposium ofFoundations of Computer S
ien
e (FOCS99), pages 512�522, 1999.[17℄ M.C. Golumbi
. Algorithmi
 Graph Theory and Perfe
t Graphs. A
ademi
Press, New York, 1980.[18℄ J. Gramm, J. Guo, and R. Niedermeier. Pattern mat
hing for ar
-annotatedsequen
es. In Pro
eedings of the the 22nd Conferen
e on Foundations of SoftwareTe
hnology and Theoreti
al Computer S
ien
e (FSTTCS 2002), volume 2556 ofLe
ture Notes in Computer S
ien
e, pages 182�193, 2002.[19℄ Jens Gramm. A polynomial-time algorithm for the mat
hing of 
rossing
onta
t-map patterns. In Pro
eedings of the 4th Workshop on Algorithms inBioinformati
s (WABI 2004), pages 38�49, 2004.37



[20℄ J.R. Griggs and D.B. West. Extremal values of the interval number of a graph,I. SIAM J. Alg. Dis
rete Methods, 1:1�7, 1979.[21℄ T. Jiang, G.-H. Lin, B. Ma, and K. Zhang. The longest 
ommon subsequen
eproblem for ar
-annotated sequen
es. In In Pro
. 11th Annual Symposium onCombinatorial Pattern Mat
hing (CPM 2000), volume 1848 of Le
ture Notes inComputer S
ien
e, pages 154�165. Springer-Verlag, 2000.[22℄ D. Joseph, J. Meidanis, and P. Tiwari. Determining DNA sequen
e similarityusing maximum independent set algorithms for interval graphs. In Pro
eedingsof the Third S
andinavian Workshop on Algorithm Theory (SWAT 92), Le
tureNotes in Computer S
ien
e, pages 326�337. Springer-Verlag, 1992.[23℄ S.C. Li and M. Li. On the 
omplexity of the 
rossing 
onta
t mappattern mat
hing problem. In Pro
. of the 6th Workshop on Algorithms inBioInformati
s (WABI), LNBI, 2006. To appear.[24℄ S. Mi
ali and V.V. Vazirani. An O(
√

|V ||E|) algorithm for �nding maximummat
hing in general graphs. In Pro
eedings of the 21st Annual Symposium onFoundation of Computer S
ien
e, pages 17�27. IEEE, 1980.[25℄ R.E. Tarjan and M Yannakakis. Simple linear-time algorithms to test
hordality of graphs, test a
y
li
ity of hypergraphs, and sele
tively redu
e a
y
li
hypergraphs. SIAM J. Comput., 13:566�579, 1984.[26℄ W.T. Trotter and F. Harary. On double and multiple interval graphs. J. GraphTheory, 3:205�211, 1979.[27℄ V.V. Vazirani. A theory of alternating paths and blossoms for proving
orre
tness of the O(
√

|V ||E|) maximum mat
hing algorithm. Combinatori
a,14(1):71�109, 1994.[28℄ S. Vialette. Pattern mat
hing over 2-intervals sets. In In Pro
. 13th AnnualSymposium Combinatorial Pattern Mat
hing (CPM 2002), volume 2373 ofLe
ture Notes in Computer S
ien
e, pages 53�63. Springer-Verlag, 2002.[29℄ S. Vialette. On the 
omputational 
omplexity of 2-interval pattern mat
hing.Theoreti
al Computer S
ien
e, 312(2-3):223�249, 2004.[30℄ J. Viksna and D.Gilbert. Pattern mat
hing and pattern dis
overy algorithmsfor protein topologies. In O. Gas
uel and B.M.E. Moret, editors, Pro
eedings ofthe 1st Workshop on Algorithms in Bioinformati
s (WABI 2001), volume 2149of Le
ture Notes in Computer S
ien
e, pages 98�111. Springer, 2001.[31℄ D.B. West and D.B. Shmoys. Re
ognizing graphs with �xed interval number isNP-
omplete. Dis
rete Applied Mathemati
s, 8:295�305, 1984.
38


