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2-interval sets were used in [28,29℄ for establishing a general representation formarosopi desribers of RNA seondary strutures. In this ontext, we have a 2-interval for eah legal loal fold in a given RNA sequene, and a onstrained patternmade of disjoint 2-intervals represents a putative RNA seondary struture. We foushere on the problem of extrating a onstrained pattern in a set of 2-intervals. Morepreisely, given a set of 2-intervals D and a model R desribing if two disjoint 2-intervals in a solution an be in preedene order (<), be allowed to nest (⊏) and/orbe allowed to ross (≬), we onsider the problem of �nding a maximum ardinalitysubset D′ ⊆ D of disjoint 2-intervals suh that any two 2-intervals in D′ agree with

R. The di�erent ombinations of restritions on model R alter the omputationalomplexity of the problem, and need to be examined separately.In this paper, we improve the time omplexity of [29℄ for model R = {⊏} by givingan optimal O(n log n) time algorithm, where n is the ardinality of the 2-intervalset D. We also give a graph-like relaxation for model R = {⊏, ≬} that is solvablein O(n2√n) time. Finally, we prove that the onsidered problem is NP-ompletefor model R = {<, ≬} even for same-length intervals, and give a �xed-parametertratability result based on the rossing struture of D.Key words: 2-intervals, Pattern Mathing, Computational omplexityPreprint submitted to Elsevier Siene 4 July 2007



1 IntrodutionThe problem of establishing a general representation of strutured patterns,i.e., marosopi desribers of RNA seondary strutures, was onsidered in[28,29℄. The approah is to set up a geometri desription of helies by meansof a natural generalization of intervals, namely a 2-interval. A 2-interval isthe disjoint union of two intervals on the line. The geometri properties of
2-intervals provide a possible guide for understanding the omputational om-plexity of �nding strutured patterns in RNA sequenes. Using a model torepresent non sequential information allows us for varying restritions on theomplexity of the pattern struture. Indeed, two disjoint 2-intervals, i.e., two
2-intervals that do not interset in any point, an be in preedene order (<),be allowed to nest (⊏) or be allowed to ross (≬). Furthermore, the set of
2-intervals and the pattern an have di�erent restritions, e.g., all intervalshave the same length or all the intervals are disjoint. These di�erent om-binations of restritions alter the omputational omplexity of the problems,and need to be examined separately. This examination produes e�ient algo-rithms for more restritive strutured patterns, and hardness results for thoseless restritive.In this paper, we onsider the problem of �nding a onstrained patternin aset of 2-intervals. More preisely, given a set of 2-intervals D and a model Rdesribing if two disjoint 2-intervals in a solution an be in preedene order(<), be allowed to nest (⊏) and/or be allowed to ross (≬), we onsider theproblem of �nding a maximum ardinality subset D′ ⊆ D of disjoint 2-intervalssuh that any two 2-intervals in D′ agree with R. The problem of �nding thelargest 2-interval pattern in a set of 2-intervals D with respet to a givenabstrat model, referred hereafter as the 2-Interval Pattern problem, hasbeen introdued by Vialette [28,29℄. Vialette divided the problem in di�erentlasses based on the struture of the model and gave for most of them eitherNP-ompleteness results or polynomial-time algorithms. Dividing the problemin several lasses was later proved to be extremely useful for approximatingof the 2-Interval Pattern problem [8℄.
⋆ An extended abstrat of this work appeared in Proeedings of the 15th AnnualSymposium on Combinatorial Pattern Mathing (CPM 2004) [5℄. This work waspartially supported by the CNRS ACI Masse de Donnï¾1

2es �NavGraphe� projet.Email addresses: gblin�univ-mlv.fr (Guillaume Blin),fertin�lina.univ-nantes.fr (Guillaume Fertin), vialette�lri.fr (StéphaneVialette). 2



In the present paper, we fous on three speial ases of the 2-Interval Pat-tern problem:(1) The 2-intervals of the solution subset need to be pairwise nested,(2) Two 2-intervals in a solution an only be nested or rossing, and all theintervals involved in the 2-interval set D are disjoint, and(3) Two 2-intervals in a solution an only be nested or in preedene, and allthe intervals involved in the 2-interval set D have the same length.We give preise results for these three problems. Those three problems are ofimportane sine eah one is a straightforward extension of the problem of�nding a given 2-interval set in another 2-interval set introdued in [29℄ andfurther studied in [19℄ and [23℄, and hene is strongly related, in the ontext ofmoleular biology, to pattern mathing over RNA seondary strutures. Morepreisely, in this paper, we improve the time omplexity of the best knownalgorithm for R = {⊏} by giving an optimal O(n log n) time algorithm. Also,we give a graph-like relaxation for R = {⊏, ≬} that is solvable in O(n2
√

n)time. Finally, we prove that the problem is NP-omplete for R = {<, ≬}, and,we give a �xed-parameter tratability result based on the rossing strutureof D. Those results almost omplete the table proposed by Vialette [29℄ (seeTable 1) and provide an important step towards a better understanding of thepreise omplexity of 2-interval pattern mathing problems.There are basially two main lines of researh our results refer to: (i) ar-annotated sequenes and protein topologies, and (ii) t-intervals ombinatoris.
• For a sequene S, an ar-annotation of S is a set of unordered pairs of po-sitions in S. In this ontext, given two ar-annotated sequenes S1 and S2,the Ar-Preserving Subsequene (APS) problem asks to �nd an our-rene of S1 in S2, and the Longest Ar-Preserving Common Subse-quene (LAPCS) problems asks to �nd the longest ommon ar-annotatedsequene that ours both in S1 and S2. The APS and LAPCS problemsare useful in representing the strutural information of RNA and protein se-quenes [11,21,18,1℄. The basi idea is to provide a measure for similarity, notonly on the sequene level, but also on the strutural level (an ar-annotatedsequene is viewed as a RNA sequene together with phosphodiester bonds).Furthermore, a similar problem to ompare the three-dimensional strutureof proteins is the Contat Map Overlap problem desribed by in [16℄.Viksna and Gilbert desribed algorithms for pattern mathing and patternlearning in TOPS diagram (formal desription of protein topologies) [30℄.
• Our results are also related to the independent set problem in di�erentextensions of 2-interval graphs. A graph G is a t-interval graph if thereis an intersetion model whose objets onsist of olletions of t intervals,

t ≥ 1, suh that G is the intersetion graph of this model [26,20℄. Fromthis de�nition, it is lear that every interval graph is a 1-interval graph.3



Of partiular interest is the lass of 2-interval graphs. For example, linegraphs, trees and irular-ar graphs are 2-interval graphs. However, Westand Shmoys [31℄ have shown that the reognition problem for t-intervalgraphs is NP-omplete for every t ≥ 2 (this has to be ompared with lineartime reognition of 1-interval graphs). In the ontext of sequene similar-ity, [22℄ ontains an appliation of graphs having interval number at mosttwo. In [3℄, the authors onsidered the problem of sheduling jobs that aregiven as groups of non-interseting segments on the real line. Of partiularimportane, they showed that the maximum weighted independent set for
t-interval graphs (t ≥ 2) is APX-hard even for highly restrited instanesAlso, they gave a 2t-approximation algorithm for general instanes basedon a frational version of the Loal Ratio Tehnique [2℄. Finally, some om-plexity issues of standard optimization problems for t-interval sets are givenin [6℄.The remainder of the paper is organized as follows. In Setion 2 we brie�yreview the terminology introdued in [29℄. In Setion 3, we improve the timeomplexity of the best known algorithm for model R = {⊏}. In Setion 4, wegive a graph-like relaxation for model {⊏, ≬} that is solvable in polynomial-time. In Setion 5, we prove that the 2-interval pattern problem for model

R = {<, ≬} is NP-omplete even when all intervals involved in the input
2-interval set have the same length. Finally, we give in Setion 6 a �xed-parameter tratability result based on the rossing struture of D.2 PreliminariesAn interval and a 2-interval represent respetively a sequene of ontiguousbases and pairings between two intervals, i.e., stems, in RNA seondary stru-tures. Thus, 2-intervals an be seen as marosopi desribers of RNA stru-tures.Formally, a 2-interval is the disjoint union of two intervals on a line. Wedenote it by D = (I1, J1) where I1 and J1 are intervals suh that I1 < J1(here < is the strit preedene order between intervals) ; in that ase wealso write Left(D) = I1 and Right(D) = J1. If [x : y] and [x′ : y′] are twointervals suh that [x : y] < [x′ : y′], we will sometimes write D = ([x :
y], [x′ : y′]) to emphasize on the preise de�nition of the 2-interval D. Let
D1 = (I1, J1) and D2 = (I2, J2) be two 2-intervals. They are alled disjoint if
(I1∪J1)∩(I2∪J2) = ∅ (i.e., involved intervals do not interset). The overinginterval of a 2-interval D, written Cover(D), is the least interval overing both
Left(D) and Right(D).Of partiular interest is the relation between two disjoint 2-intervals D1 =4



(I1, J1) and D2 = (I2, J2). We will write D1 < D2 if I1 < J1 < I2 < J2,
D1 ⊏ D2 if I2 < I1 < J1 < J2 and D1 ≬ D2 if I1 < I2 < J1 < J2. Two
2-intervals D1 and D2 are τ -omparable for some τ ∈ {<, ⊏, ≬} if D1τD2 or
D2τD1. Let D be a set of 2-intervals and R ⊆ {<, ⊏, ≬} be non-empty. Theset D is R-omparable if any two distint 2-intervals of D are τ -omparable forsome τ ∈ R. Throughout the paper, the non-empty subset R is alled a model.Clearly, if a set of 2-intervals D is R-omparable then D is a set of disjoint
2-intervals. The ground set of a set of 2-intervals D, written GS(D), is the setof all simple intervals involved in D, i.e., GS(D) =

⋃

D∈D(Left(D)∪Right(D)).The leftmost (resp. rightmost) element of a set of disjoint 2-intervals D is the
2-interval Di ∈ D suh that Left(Di) < Left(Dj) (resp. Right(Dj) < Right(Di))for all Dj ∈ D − Di. Observe that it ould be the ase that Di is both theleftmost and rightmost element of D (this is indeed the ase if |D| = 1 or if
Dj ⊏ Di for all Dj ∈ D − Di).We de�ne hereafter two additional parameters on D. The depth of D, written
Depth(D), is the size of a maximum ardinality {≬}-omparable subset of D(aording to [29℄, this parameter is polynomial-time omputable). The for-ward rossing number ofD, written FCrossing(D), is de�ned by FCrossing(D) =
maxDi∈D |{Dj : Di ≬ Dj}|. Clearly, FCrossing(D) ≥ Depth(D) − 1 for any set
D of 2-intervals.Following [11℄, Vialette proposed in [29℄, two natural restritions on the groundset of D (a third restrition, i.e., balaned 2-intervals, well-suited for investi-gating RNA seondary strutures spae was introdued in [8℄):(1) all the intervals of the ground set GS(D) are of the same length,(2) all the intervals of the ground set GS(D) are disjoint, i.e., if two intervals

I, I ′ ∈ GS(D) overlap, then I = I ′.Using restritions on the ground set allows us for varying restritions on theomplexity of the 2-interval set struture, and hene on the omplexity of theproblems. These two restritions involve three levels of omplexity:
• unlimited: no restritions
• unit: restrition 1
• disjoint: restritions 1 and 2Given a set of 2-intervals D, a model R ⊆ {<, ⊏, ≬} and a positive integer
k, the 2-Interval Pattern problem onsists in �nding a subset D′ ⊆ D ofardinality at least k suh that D′ is R-omparable. For the sake of brevity, the
2-Interval Pattern problem with respet to a model R over an unlimited(resp. unit and disjoint) ground set is abbreviated in 2-IP-Unl-R (resp. 2-IP-Unit-R and 2-IP-Dis-R).Vialette proved in [29℄ that 2-IP-Unit-{<, ⊏, ≬} and 2-IP-Unit-{⊏, ≬} are5



NP-omplete. Moreover, he gave polynomial-time algorithms for the problemwith respet to the models {<}, {⊏}, {≬} and {<, ⊏} (f. Table 1).In this artile, we answer three open problems and we improve the omplexityof another one, as shown in Table 1. Moreover, we show that 2-IP-Unit-{<
, ≬} is �xed parameter tratable when parameterized by the forward rossingnumber of D.

2-Interval Pattern ProblemGround SetModel Unlimited Unit Disjoint
{<, ⊏, ≬} NP-omplete O(n

√
n)[24℄

{⊏, ≬} NP-omplete O(n2
√

n) ⋆

{<, ⊏} O(n2)

{<, ≬} NP-omplete ⋆ ?
{<} O(n log n)

{⊏} O(n log n) ⋆ •
{≬} O(n2 log n)Table 1

2-interval pattern problem omplexity where n = |D|. When not spei�ed, theomplexity omes from [29℄. ⋆ ontributions of the present paper. • improvement ofthe existing omplexity (whih was O(n2) in [29℄).3 Improving the omplexity of 2-IP-Unl-{⊏}The problem of �nding the largest {⊏}-omparable subset in a set of 2-intervals was onsidered in [29℄. Observing that this problem is equivalentto �nding a largest lique in a omparability graph (a linear time solvableproblem [17℄), an O(n2) time algorithm was thus proposed. We improve thatresult by giving an optimal O(n log n) time algorithm.The ine�ieny of the algorithm proposed in [29℄ lies in the e�etive on-strution of a omparability graph. We show that this onstrution an beavoided by onsidering trapezoids instead of 2-intervals. Reall that a trape-zoid graph is the intersetion graph of a �nite set of trapezoids between twoparallel lines [9℄ (it is easily seen that trapezoid graphs generalize both intervalgraphs and permutation graphs). Analogously to 2-intervals, we will denoteby T = ([x : y], [x′ : y′]) the trapezoid with top interval [x : y] and bottominterval [x′ : y′].Proposition 1 2-IP-Unl-{⊏} is solvable in O(n log n) time.PROOF. Let D = {D1, D2, . . . , Dn} be a olletion of 2-intervals of the real6



line. Construt a olletion of trapezoids T = {T1, T2, . . . , Tn} between twoparallel lines as follows. For eah 2-interval Di = ([x : y], [x′ : y′]) ∈ D, we addthe trapezoid Ti = ([x : y], [−y′ : −x′]) to T .Claim 2 For all 1 ≤ i ≤ j ≤ n, the 2-intervals Di and Dj are {⊏}-omparableif and only if the trapezoids Ti and Tj are non-interseting.PROOF. [of Claim℄ Let Di = ([xi : yi], [x
′
i : y′

i]) and Dj = ([xj : yj], [x
′
j : y′

j])be two 2-intervals of D, and Ti = ([xi : yi], [−y′
i : −x′

i]) and Tj = ([xj :
yj], [−y′

j : −x′
j ]) be the two orresponding trapezoids in T . Suppose that

Di and Dj are {⊏}-omparable. Without loss of generality, we may assume
Dj ⊏ Di. Thus, we have yi < xj and y′

j < x′
i. It follows immediately that

−x′
i < −y′

j , and hene the two trapezoids Ti and Tj are non-interseting. Theproof of the onverse is idential. 2Clearly, the olletion T an be onstruted in O(n) time. Based on a geo-metri representation of trapezoid graphs by boxes in the plane, Felsner et al.[12℄ have designed a O(n log n) algorithm for �nding a maximum ardinalitysubolletion of non-interseting trapezoids in a olletion of trapezoids, andthe proposition follows. 2Based on Fredman's bound for the number of omparisons needed to om-pute maximum inreasing subsequenes in permutation [13℄, Felsner et al. [12℄argued that their O(n log n) time algorithm for �nding a maximum ardinal-ity subolletion of non-interseting trapezoids in a olletion of trapezoidsis optimal. Then it follows from Proposition 1 that our O(n logn) time algo-rithm for �nding a maximum ardinality {⊏}-omparable subset in a set of
2-intervals is optimal as well.4 A polynomial-time algorithm for 2-IP-Dis-{⊏, ≬}In this setion, we give an O(n2

√
n) time algorithm for the 2-IP-Dis-{⊏, ≬}problem, where n is the ardinality of the set of 2-intervals D. Reall thatgiven a set of 2-intervals D over a disjoint ground set, the problem asks to �ndthe size of a maximum ardinality {⊏, ≬}-omparable subset D′ ⊆ D. Observethat the 2-IP-Dis-{⊏, ≬} problem has an interesting formulation in terms ofonstrained mathings in general graphs: Given a graph G together with alinear ordering π of its verties, the 2-IP-Dis-{⊏, ≬} problem is equivalent to�nding a maximum ardinality mathing M in G with the property that for7



any two distint edges {u, v} and {u′, v′} of M, neither max{π(u), π(v)} <

min{π(u′), π(v′)} nor max{π(u′), π(v′)} < min{π(u), π(v)} our.Roughly speaking, our algorithm is a three-step proedure. First, the intervalgraph of all the overing intervals of the 2-intervals in D is onstruted. Next,all the maximal liques of that graph are e�iently omputed. Finally, for eahmaximal lique we onstrut a new graph and �nd a solution using a maximumardinality mathing algorithm. The size of a best solution found in the thirdstep is thus returned. Clearly, the e�ieny of our algorithm relies upon ane�ient algorithm for �nding all the maximal liques in the intersetion of theovering intervals. We now proeed with the details of our algorithm.Let D = {Di : 1 ≤ i ≤ n} be a set of 2-intervals. Consider the set CD omposedof all the overing intervals of the 2-intervals in D, i.e., CD = {Cover(D) : D ∈
D}. Now, let Ω(CD) be the interval graph assoiated with CD. The graph
Ω(CD) has a vertex vi for eah interval Cover(Di) in CD and two verties viand vj of Ω(CD) are joined by an edge if the two assoiated intervals Cover(Di)and Cover(Dj) interset. An illustration of CD and Ω(CD) for a given set of
2-intervals D is given in Figure 1. Most in the interest in the interval graph
Ω(CD) stems from the following lemma.
Fig. 1. Illustration of CD and Ω(CD) for a given set of 2-intervals D on a disjointground set.Lemma 3 Let D be a set of 2-intervals and D′ be a {⊏, ≬}-omparable subsetof D. Then, {vi : Di ∈ D′} indues a omplete graph in Ω(CD).PROOF. Let Di and Dj be two distint 2-intervals of D′. Sine Di and
Dj are {⊏, ≬}-omparable then it follows that either intervals Cover(Di) and
Cover(Dj) overlap or one interval is ompletely ontained in the other. In bothases, intervals Cover(Di) and Cover(Dj) interset, and hene verties vi and
vj are joined by an edge in Ω(CD). Therefore {vi : Di ∈ D′} indues a ompletegraph in Ω(CD). 2Observe that the onverse is false sine the intersetion of two 2-intervals in Dresults in an edge in Ω(CD), and hene two 2-intervals assoiated to two distintverties in a lique may not be {⊏, ≬}-omparable. However, thanks to Lemma8



3 we now only need to fous on maximal liques of Ω(CD). Several problemsthat are NP-omplete on general graphs have polynomial-time algorithms forinterval graphs. The problem of �nding all the maximal liques of a graph isone suh example. Indeed, an interval graph G = (V, E) is a hordal graph andas suh has at most |V | maximal liques [14℄. Furthermore, all the maximalliques of a hordal graph an be found in O(n + m) time, where n = |V | and
m = |E|, by a modi�ation of Maximum Cardinality Searh (MCS) [25,4℄.Let C be a maximal lique of Ω(CD). As observed above, any two 2-intervalsassoiated to two distint verties in the maximal lique C may not be {⊏, ≬}-omparable. Let D′ ⊆ D be the set of all 2-intervals assoiated to verties inthe maximal lique C. Based on C, onsider the graph GC = (VC , EC) de�nedby VC = GS(D′) and EC = {{I, J} : D = (I, J) ∈ D′}. In other words, the setof verties of GC is the ground set of D′ and the edges of GC is the 2-intervalsubset D′ itself viewed as a set of subsets of size 2. Note that the onstrutionof GC is possible only beause D′ has disjoint ground set. The following lemmais an immediate onsequene of the de�nition of GC and Lemma 3.Lemma 4 Let C be a lique in Ω(CD) and GC = (VC , EC) be the graph on-struted as detailed above. Then, {(Ii1, Ji1), (Ii2 , Ji2), . . . , (Iik , Jik)} is a {⊏, ≬}-omparable subset if and only if {{Ii1 , Ji1}, {Ii2, Ji2}, . . . , {Iik , Jik}} is a math-ing in GC.Proposition 5 The 2-IP-Dis-{⊏, ≬} problem is solvable in O(n2

√
n) time,where n is the number of 2-intervals in D.PROOF. Consider the algorithm given in Figure 2. Corretness of this algo-rithm follows from Lemmas 3 and 4. What is left is to prove the time om-plexity. Clearly, the interval graph Ω(CD) an be onstruted in O(n2) time.All the maximal liques of Ω(CD) an be found in O(n + m) time, where m isthe number of edges in Ω(CD) [25,4℄. Summing up, the �rst two steps an bedone in O(n2) time sine m < n2. We now turn to the time omplexity of theloop (in fat the dominant term of our analysis). For eah maximal lique C of

Ω(CD), the graph GC an be onstruted in O(n) time sine |C| ≤ n. We nowonsider the omputation of a maximal mathing in GC . Miali and Vazirani[24℄ (see also [27℄) gave an O(
√

|V ||E|) time algorithm for �nding a maximalmathing in a graph G = (V, E). But GC has at most n edges (as eah edgeorresponds to a 2-interval) and hene has at most 2n verties. Then it fol-lows that a maximum mathingM in GC an be found in O(n
√

n) time. Sine
Ω(CD) is an interval graph with n verties, it has at most n maximal liques[14℄, we onlude that the algorithm as a whole runs in O(n2

√
n) time. 2

9



Max {⊏, ≬}-Comparable 2-Interval PatternInput: A set of 2-intervals D with disjoint ground setOutput: The size of a maximum ardinality {⊏, ≬}-omparable subset of
D1. Construt the interval graph Ω(CD)2. Compute all maximal liques in Ω(CD)3. For eah maximal lique C in Ω(CD)3.1. Construt the graph GC3.2. Compute a maximal mathing M in GC3.3. Store the ardinality of M in m(C)4. Return max{m(C) : C is a maximal lique of Ω(CD)}Fig. 2. Algorithm Max {⊏, ≬}-Comparable 2-Interval Pattern.5 2-IP-Unit-{<, ≬} is NP-ompleteTheorem 6 below ompletes the analysis of 2-IP-Unit-R and 2-IP-Unl-R forany model R ⊆ {<, ⊏, ≬} (see Table 1).Theorem 6 The 2-IP-Unit-{<, ≬} problem is NP-omplete.PROOF. First, we will present the two deision problems we will deal with(Exat 3-CNF-Sat and 2-IP-Unit-{<, ≬}). Then, we will give several in-termediate lemmas that will �nally be used in Proposition 14 to validate theproof of the NP-ompleteness of the 2-IP-Unit-{<, ≬} problem.We provide a polynomial-time redution from the Exat 3-CNF-Sat prob-lem: Given a set Vn of n variables and a set Cq of q lauses (eah omposedof three literals) over Vn, the problem asks to �nd a truth assignment for Vnthat satis�es all lauses of Cq. It is well-known that the Exat 3-CNF-Satproblem is NP-omplete [15℄. For the sake of larity, we now state formallythe 2-IP-Unit-{<, ≬} problem: Given a set of 2-intervals D, and a positiveinteger k, the problem asks to �nd a subset D′ ⊆ D of ardinality greater thanor equal to k, suh that D′ is {<, ≬}-omparable.Clearly, 2-IP-Unit-{<, ≬} problem is in NP. We show that given any instaneof Exat 3-CNF-Sat with q lauses on a set of n variables, we an onstrutin polynomial-time an instane of the 2-IP-Unit-{<, ≬} problem with k =

(7n− 2)q suh that there exists a satisfying truth assignment for the booleanformula i� there exists a {<, ≬}-omparable subset D′ ∈ D of size at least k.We detail this onstrution hereafter.10



Let Vn = {x1, x2, ...xn} be a set of n variables and Cq = {c1, c2, . . . , cq} be aolletion of q lauses. For the sake of larity, let us de�ne D on the integralline suh that any interval of the ground set is of size four. Let us start withthe preise de�nition of the representation of a single lause ci of Cq as illus-trated in Figure 4. The dotted retangle on the left (resp. right) is part of therepresentation of lause ci−1 (resp. ci+1). The preise adjustment of the rep-resentation of two onseutive lauses is illustrated in Figure 3 and formallyde�ned afterwards. For onveniene, we will split the representation of ci intoseven groups (represented in gray): Ai, Bi, Ci
L, Ci

R, Di, Ei and F i. Eah groupin turn is divided into bloks (represented in white). There are 11+ 2n bloksfor eah lause: n bloks for Ai; 3 bloks for Bi; 1 blok for Ci
L; n bloks for

Ci
R; 2 bloks for Di; 3 bloks for Ei; 2 bloks for F i.

Fig. 3. Juntion between the representation of lauses ci−1 and ciFor example, in Figure 4 we use three boolean variables and hene we haveseventeen bloks. For the sake of larity, in the �gures of this setion, theintervals of the ground set might be drawn on di�erent levels.We now turn to give a preise de�nition of eah group in the representationof a given lause ci. In the following, we will refer to an interval of the groundset as a simple interval. Let FP (ci) denote the smallest starting position ofany simple interval of the representation of lause ci. We set, for onveniene,
FP (c1) = 0. For any 1 < i ≤ q, we have FP (ci) = FP (ci−1) + 104n −
21. Moreover, let FP (α) denote the smallest starting position of any simpleinterval of group α ∈ {Ci

L, Ai, Bi, Ci
R, Di, Ei, F i|1 ≤ i ≤ q}.Group Ci

L is omposed of one blok ontaining 2n simple intervals (as illus-trated in Figure 5): {[FP (Ci
L)+ 7k, FP (Ci

L)+ 7k +4]|0 ≤ k ≤ 2n− 1}, where
FP (Ci

L) = FP (ci). The 2n simple intervals of the blok of group Ci
L representin the left to right order (x1, x1, x2, x2 . . . xn, xn). By de�nition, the simple in-terval representing xm in Ci

L is de�ned by [FP (Ci
L) + 14(m − 1), FP (Ci

L) +
14(m − 1) + 4]. And onsequently, the simple interval representing xm in Ci

Lis de�ned by [FP (Ci
L) + 14(m − 1) + 7, FP (Ci

L) + 14(m − 1) + 11].11



Fig. 4. Representation of lause ci = (x1 ∨ x2 ∨ x3) where n = 3.
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Fig. 5. Desription of the simple intervals (represented as bloks of four onseutivesquares) of group Ci
L.Group Di is omposed of two bloks (Di

1 and Di
2), eah ontaining 2n−1 simpleintervals (as illustrated in Figure 6): {[FP (Di) + 5k, FP (Di) + 5k + 4]|0 ≤

k ≤ 4n − 3} where FP (Di) = FP (ci) + 34n − 10. By onstrution, blok Di
1is omposed of the following simple intervals: {[FP (Di) + 5k, FP (Di) + 5k +

4]|0 ≤ k ≤ 2n−2} and blok Di
2 is omposed of the following simple intervals:

{[FP (Di) + 5k, FP (Di) + 5k + 4]|2n − 1 ≤ k ≤ 4n − 3}.
Fig. 6. Desription of the simple intervals of group Di.Group Ai is omposed of n bloks (one blok for eah boolean variable),eah ontaining four simple intervals (as illustrated in Figure 7): {[FP (Ai) +

7k, FP (Ai) + 7k + 4], [FP (Ai) + 2 + 14l, FP (Ai) + 6 + 14l], [FP (Ai) + 5 +
14l, FP (Ai) + 9 + 14l]|0 ≤ k ≤ 2n − 1, 0 ≤ l ≤ n − 1} where FP (Ai) =
FP (ci) + 54n − 20. The 4n simple intervals of group Ai represent in the leftto right order (x1, x1, x1, x1, x2, x2, x2, x2, . . . xn, xn, xn, xn). By onstrution,in any blok of group Ai the seond (resp. third) simple interval overlapsboth the �rst and the third (resp. the seond and the fourth) simple interval.By de�nition, the two simple intervals representing xm in Ai are de�ned by
[FP (Ai)+14(m−1)+7, FP (Ai)+14(m−1)+11] and [FP (Ai)+14(m−1)+
2, FP (Ai) + 14(m− 1) + 6]. And onsequently, the two simple intervals repre-senting xm in Ai are de�ned by [FP (Ai)+14(m−1), FP (Ai)+14(m−1)+4]and [FP (Ai) + 14(m − 1) + 5, FP (Ai) + 14(m − 1) + 9].

Fig. 7. Desription of the simple intervals of group Ai.Group Bi is omposed of three bloks (one for eah literal in a lause),eah ontaining 2n simple intervals (as illustrated in Figure 8): {[FP (Bi
1) +13



6k, FP (Bi
1)+6k+4], [FP (Bi

2)+6k, FP (Bi
2)+6k+4], [FP (Bi

3)+6k, FP (Bi
3)+

6k + 4]|0 ≤ k ≤ 2n − 1} where FP (Bi
1) = FP (ci) + 68n − 20, FP (Bi

2) =
FP (ci)+80n−20, FP (Bi

3) = FP (ci)+92n−20. The 2n simple intervals of eahblok of group Bi represent in the left to right order (x1, x1, x2, x2 . . . xn, xn).By de�nition, the simple interval representing xm in Bi
j, with j ∈ {1, 2, 3}, isde�ned by [FP (Bi

j) + 12(m− 1), FP (Bi
j) + 12(m− 1) + 4]. And onsequently,the simple interval representing xm in Bi

j , with j ∈ {1, 2, 3}, is de�ned by
[FP (Bi

j) + 12(m − 1) + 6, FP (Bi
j) + 12(m − 1) + 10].

Fig. 8. Desription of the simple intervals of group Bi. Due to spae onsiderations,the desription is divided in three lines. Eah line starts with the end part of theprevious line in order to indiate the on�guration of the whole desription.Group Ei is omposed of three bloks, eah ontaining 2n−1 simple intervals(as illustrated in Figure 9): {[FP (Ei
1) + 6k, FP (Ei

1) + 6k + 4], [FP (Ei
2) +

6k, FP (Ei
2) + 6k + 4], [FP (Ei

3) + 6k, FP (Ei
3) + 6k + 4]|0 ≤ k ≤ 2n − 2}where FP (Ei

1) = FP (ci)+68n−17, FP (Ei
2) = FP (ci)+80n−17, FP (Ei

3) =
FP (ci)+92n−17. Therefore, eah simple interval of blok Ei

j intersets exatlytwo simple intervals of blok Bi
j , for 1 ≤ j ≤ 3.Group Ci

R is omposed of n bloks (one blok for eah boolean variable),eah ontaining two simple intervals (as illustrated in Figure 10): {[FP (Ci
R)+

14k, FP (Ci
R) + 14k + 4], [FP (Ci

R) + 14k + 3, FP (Ci
R) + 14k + 7]|0 ≤ k ≤

n−1} where FP (Ci
R) = FP (ci)+104n−19. The 2n simple intervals of group

Ci
R represent in the left to right order (x1, x1, x2, x2 . . . xn, xn). By de�nition,the simple interval representing xm in Ci

R is de�ned by [FP (Ci
R) + 14(m −

1), FP (Ci
R)+14(m−1)+4]. And onsequently, the simple interval representing

xm in Ci
R is de�ned by [FP (Ci

R) + 14(m − 1) + 3, FP (Ci
R) + 14(m − 1) + 7].Therefore, by onstrution, in any blok of group Ci

R the two simple intervalsomposing this blok are overlapping.Finally, group F i is omposed of two bloks, eah ontaining 2n − 1 simpleintervals (as illustrated in Figure 11): {[FP (F i) + 5k, FP (F i) + 5k + 4]|0 ≤
k ≤ 4n−3} where FP (F i) = FP (ci)+118n−21. By onstrution, blok F i

1 is14



Fig. 9. Desription of the simple intervals of group Ei. As in Figure 8, due to spaeonsiderations, the desription is divided in three lines.
Fig. 10. Desription of the simple intervals of group Ci

R.omposed of the following simple intervals: {[FP (F i)+5k, FP (F i)+5k+4]|0 ≤
k ≤ 2n − 2} and blok F i

2 is omposed of the following simple intervals:
{[FP (F i) + 5k, FP (F i) + 5k + 4]|2n − 1 ≤ k ≤ 4n − 3}.

Fig. 11. Desription of the simple intervals of group F i.The set of simple intervals of the instane of 2-IP-Unit-{<, ≬} is obtained byassembling together in order the representation of the lauses c1 to cq. It iseasy to hek the following properties (whih are represented in Figure 12):
• for any 1 < i ≤ q, the smallest position of any simple interval of group C i

Lis greater than the biggest position of any simple interval of groups Ei−1and Bi−1;
• for any 1 < i ≤ q, the smallest position of any simple interval of group F i−1is greater than the biggest position of any simple interval of group Ci

L;
• for any 1 < i ≤ q, the biggest position of any simple interval of group F i−1is less than the smallest position of any simple interval of group Di;15



• for any 1 ≤ i ≤ q, the smallest position of any simple interval of group Aiis greater than the biggest position of any simple interval of group Di;
• for any 1 ≤ i ≤ q, the biggest position of any simple interval of group Ai isless than the smallest position of any simple interval of groups Bi and Ei;
• for any 1 ≤ i ≤ q, the smallest position of any simple interval of group C i

Ris greater than the biggest position of any simple interval of groups Bi and
Ei;

• for any 1 ≤ i ≤ q, the biggest position of any simple interval of group C i
R isless than the smallest position of any simple interval of group F i.Now that we have de�ned the ground set of D, let us de�ne formally the2-intervals of D (partially illustrated in Figure 4).For eah lause ci, D is omposed of 2n 2-intervals built with a simple intervalof group Ci

L and a simple interval of group Ai:
• {([FP (Ci

L) + r, FP (Ci
L) + r + 4], [FP (Ai) + s, FP (Ai) + s + 4]),

• ([FP (Ci
L) + s, FP (Ci

L) + s + 4], [FP (Ai) + r, FP (Ai) + r + 4])}with r = 14(k − 1), s = r + 7, 1 ≤ k ≤ nFor eah lause ci, D is omposed of 4n − 2 2-intervals built with a simpleinterval of group Di and a simple interval of group Ei:
• {([FP (Di) + 5k, FP (Di) + 5k + 4], [FP (Ei

1) + 6k′′, FP (Ei
1) + 6k′′ + 4]),

• ([FP (Di) + 5k′, FP (Di) + 5k′ + 4], [FP (Ei
2) + 6k′′, FP (Ei

2) + 6k′′ + 4])}with 0 ≤ k ≤ 2n − 2, 2n − 1 ≤ k′ ≤ 4n − 3, 0 ≤ k′′ ≤ 2n − 2.For eah lause ci, D is omposed of 6n 2-intervals built with a simple intervalof group Bi and a simple interval of group Ci
R:

• {([FP (Bi
j) + r, FP (Bi

j) + r + 4], [FP (Ci
R) + s, FP (Ci

R) + s + 4]),
• ([FP (Bi

j) + r + 6, FP (Bi
j) + r + 10], [FP (Ci

R) + s + 3, FP (Ci
R) + s + 7])}with r = 12(k − 1), s = 14(k − 1), j ∈ {1, 2, 3}, 1 ≤ k ≤ n.For eah lause ci, D is omposed of 4n − 2 2-intervals built with a simpleinterval of group Ei and a simple interval of group F i:

• {([FP (Ei
2) + 6k′, FP (Ei

2) + 6k′ + 4], [FP (F i) + 5k, FP (F i) + 5k + 4]),
• ([FP (Ei

3) + 6k′, FP (Ei
3) + 6k′ + 4], [FP (F i) + 5k′′, FP (F i) + 5k′′ + 4])}with 2n − 2 ≤ k ≤ 4n − 3, 0 ≤ k′ ≤ 2n − 2, 4n − 2 ≤ k′′ ≤ 6n − 4}.For eah lause ci, D is omposed of 6n 2-intervals built with a simple intervalof group Ai and a simple interval of group Bi:

• {([FP (Ai) + r + 2, FP (Ai) + r + 6], [FP (Bi
j) + s, FP (Bi

j) + s + 4]),
• ([FP (Ai) + r + 5, FP (Ai) + r + 9], [FP (Bi

j) + s + 6, FP (Bi
j) + s + 10])}16



Fig. 12. Shemati representation of the distanes between groups of a lause ci
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with r = 14(k − 1), s = 12(k − 1), j ∈ {1, 2, 3}, 1 ≤ k ≤ n.For eah lause ci, in order to represent the lause ci, we delete from D the2-interval ([FP (Ai) + r + 2, FP (Ai) + r + 6], [FP (Bi
j) + s, FP (Bi

j) + s + 4])with r = 14(m− 1), s = 12(m− 1) if xm is the value of the jth literal of ci. Ina similar way, if xm is the value of the jth literal of ci, we delete from D the2-interval ([FP (Ai)+r+5, FP (Ai)+r+9], [FP (Bi
j)+s+6, FP (Bi

j)+s+10])with r = 14(m − 1), s = 12(m − 1).Clearly, this onstrution an be arried out in polynomial-time. We now givean intuitive desription of the di�erent elements of the set of 2-intervals thatwe have built. Blok Bi
1 (resp. Bi

2 and Bi
3) represents the value of the �rst(resp. seond and third) literal, say xm (or xm), of the lause ci; for this, the2-interval between the simple interval of the mth blok of group Ai and thesimple interval of Bi

1 (resp. Bi
2 and Bi

3) orresponding to xm (or xm) is not in
D (still the simple intervals are in GS(D)). For instane, in Figure 13, the fatthat there is no 2-interval between the simple interval orresponding to x1 in
Bi

1 and a simple interval of group Ai indiates that the �rst literal of lause ciis x1. Similarly, the fat that there is no 2-interval between the simple intervalorresponding to x2 (resp. x3) in Bi
2 (resp. Bi

3) and a simple interval of group
Ai indiates that the seond (resp. third) literal of lause ci is x2 (resp. x3).

Fig. 13. Zoom on group Bi of the representation of a lause ci = (x1 ∨ x2 ∨ x3)The sequene of bloks (Ci−1
R , Ci

L, Ai, Bi, Ci
R) orresponds to a mehanismwhih propagates the value of eah variable of Vn. Bloks (Di, Ei, F i) orre-spond to a literal seleting mehanism that indiates, for eah lause ci, theliteral (i.e., the �rst, seond or third) whih satis�es ci. Notie that the twoprevious intuitive notions will be detailed and lari�ed afterwards.We start the proof by giving some properties (Lemmas 8 to 13) about themaximal ardinality of a set of {<, ≬}-omparable 2-intervals in D in ouronstrution. Then, these results will be used in Proposition 14 to prove thevalidity of the redution. In the rest of this paper, we will use the followingnotations:

• a 2-interval between bloks X and Y represents a 2-interval D = (I, J)18



where I is a simple interval belonging to blok X and J is a simple intervalbelonging to blok Y ;
• for any 1 ≤ i ≤ q and any set of groups α ⊆ {C i

L, Ai, Bi, Ci
R, Di, Ei, F i},

D(α) denotes a set of {<, ≬}-omparable 2-intervals between bloks of groupsbelonging to α (for example,D(Di, Ei, F i) denotes a set of {<, ≬}-omparable
2-intervals between bloks Di

1, Di
2, Ei

1, Ei
2, Ei

3, F i
1 and F i

2);
• for any 1 ≤ i ≤ q, D(ci) denotes a set of {<, ≬}-omparable 2-intervals inthe representation of lause ci.Lemma 7 For any set of groups α and β, |D(α)|+ |D(β)| ≥ |D(α

⋃

β)|.PROOF. The union of the sets α and β ould result in one of the followingases:(a) D(α) and D(β) have at least a 2-interval in ommon;(b) at least a 2-interval of D(α) and a 2-interval of D(β) are not disjoint;() at least a 2-interval of D(α) and a 2-interval of D(β) are not {<, ≬}-omparable.In ase (a) it is lear that the dupliated 2-interval will not be ounted morethan one in |D(α
⋃

β)|. In ase (b), only one of the two 2-intervals whihare not disjoint an be in D(α
⋃

β). In ase (), only one of the two 2-intervals whih are not {<, ≬}-omparable an be in D(α
⋃

β). If none ofthose three ases our then, D(α)
⋃D(β) is {<, ≬}-omparable, and thus,

|D(α)| + |D(β)| = |D(α
⋃

β)|. Therefore, |D(α)| + |D(β)| ≥ |D(α
⋃

β)|. 2By onstrution, a 2-interval an only exist between two bloks that orre-spond to a single lause (f. Figure 4). Thus, the maximum ardinality ofa set of {<, ≬}-omparable 2-intervals of D (i.e., the full representation ofthe boolean formula) an be dedued from the maximum ardinality of D(ci)where ci is a lause of Cq, for any 1 ≤ i ≤ q. Preisely, the maximum ardi-nality of a set of {<, ≬}-omparable 2-intervals in the representation of all thelauses is less than or equal to q · maxi∈[1,q] |D(ci)|.We �rst ompute the maximum ardinality of a set D(ci) of {<, ≬}-omparable
2-intervals between bloks orresponding to a single lause ci.Lemma 8 |D(α)| ≤ 3n for α = {Ci

L, Ai, Bi, Ci
R}.PROOF. By the disjuntion onstraint, at most one simple interval per blokof Ai an be involved in a 2-interval between bloks of Ai and Bi. As there are nbloks in Ai, we have |D(Ai, Bi)| ≤ n. Similarly, by the disjuntion onstraint,at most one simple interval per blok of Ci

R an be involved in a 2-interval19



between bloks of Bi and Ci
R. As there are n bloks in Ci

R, |D(Bi, Ci
R)| ≤ n.Thus, aording to Lemma 7, |D(Ai, Bi, Ci

R)| ≤ |D(Ai, Bi)| + |D(Bi, Ci
R)| ≤

2n.Moreover, at most one simple interval per blok of Ai an be involved in a
2-interval between bloks of Ai and Ci

L sine the two 2-intervals between agiven blok of Ai and Ci
L are {⊏}-omparable. As there are n bloks in Ai,

|D(Ci
L, Ai)| ≤ n. Thus, by Lemma 7, |D(Ci

L, Ai, Bi, Ci
R)| ≤ |D(Ai, Bi, Ci

R)| +
|D(Ci

L, Ai)| ≤ 3n. 2In the following, θ(i, j) will denote the set of all the simple intervals in Bi
j and

Ei
j , with 1 ≤ j ≤ 3. The set δ(i, j) ⊆ θ(i, j) will denote a set of disjoint simpleintervals and k(E, i, j) (resp. k(B, i, j)) will be the number of simple intervalsof blok Ei

j (resp. Bi
j) whih are in δ(i, j). By onstrution, eah simple intervalin blok Ei

j intersets two simple intervals of blok Bi
j (f. Figure 14 and page14).Observation 1 (a) If k(E, i, j) > 0 then at least k(E, i, j)+1 simple intervalsof blok Bi

j annot belong to δ(i, j). Thus, k(B, i, j) ≤ 2n − (k(E, i, j) + 1).Hene, |δ(i, j)| ≤ k(B, i, j) + k(E, i, j) ≤ 2n − (k(E, i, j) + 1) + k(E, i, j) ≤
2n − 1.(b) If k(E, i, j) = 0 then all the simple intervals (i.e., 2n) of blok Bi

j an belongto δ(i, j). Thus, k(B, i, j) ≤ 2n. Hene, |δ(i, j)| ≤ k(B, i, j) + k(E, i, j) ≤ 2n.
Fig. 14. If two simple intervals of blok Ei

j are part of δ(i, j) then at least threesimple intervals of blok Bi
j annot belong to δ(i, j), and thus |δ(i, j)| ≤ 2n − 1.Lemma 9 If |D(Di, Ei, F i)| > 4n − 2 then |D(ci)| < 7n − 2.PROOF. Assume that |D(Di, Ei, F i)| = 4n−2+γ with γ > 0. As eah blokof group Ei (i.e., Ei

1, E
i
2, E

i
3) is omposed of 2n − 1 simple intervals, there isat least one simple interval in eah blok of group Ei involved in a 2-intervalof D(Di, Ei, F i).Thus, onsidering only the simple intervals in groups Bi and Ei, there are atmost 6n − 3 (i.e., 3 · (2n − 1) by Observation 1 (a)) disjoint simple intervals.By onstrution, any 2-interval of D(Ai, Bi, Ci

R, Di, Ei, F i) is omposed of asimple interval of either group Bi or Ei. Thus, as there are at most 6n − 3disjoint simple intervals in groups Bi and Ei, there are at most 6n − 3 2-intervals in D(Ai, Bi, Ci
R, Di, Ei, F i). As |D(Ci

L, Ai)| ≤ n (f. proof of Lemma8), by Lemma 7, we an onlude that |D(Ci
L, Ai, Bi, Ci

R, Di, Ei, F i)| ≤ 7n −20



3 < 7n − 2. Thus, sine |D(ci)| annot exeed |D(Ci
L, Ai, Bi, Ci

R, Di, Ei, F i)|,if |D(Di, Ei, F i)| > 4n − 2 then |D(ci)| < 7n − 2. 2Lemma 10 |D(ci)| ≤ 7n − 2. Moreover, if |D(ci)| = 7n − 2 then |D(α′)| =
4n − 2 for α′ = {Di, Ei, F i} and |D(α)| = 3n for α = {Ci

L, Ai, Bi, Ci
R}.PROOF. Suppose, aiming to a ontradition, that |D(ci)| > 7n − 2. ByLemma 7, |D(ci)| ≤ |D(Di, Ei, F i)|+|D(Ci

L, Ai, Bi, Ci
R)|. Thus, |D(Di, Ei, F i)|+

|D(Ci
L, Ai, Bi, Ci

R)| > 7n − 2. As, by Lemma 8, |D(Ci
L, Ai, Bi, Ci

R)| ≤ 3n, wehave |D(Di, Ei, F i)| > 4n − 2. But, by Lemma 9, if |D(Di, Ei, F i)| > 4n − 2then |D(ci)| < 7n − 2, a ontradition. Therefore, we have |D(ci)| ≤ 7n − 2.Now, if |D(ci)| = 7n − 2 then, by Lemma 9, |D(Di, Ei, F i)| ≤ 4n − 2. Thus,
|D(Ci

L, Ai, Bi, Ci
R)| ≥ 3n. But, by Lemma 8, |D(Ci

L, Ai, Bi, Ci
R)| ≤ 3n. There-fore, |D(Ci

L, Ai, Bi, Ci
R)| = 3n and thus |D(Di, Ei, F i)| = 4n − 2. 2Lemma 11 If |D(ci)| = 7n−2 then the set D(Di, Ei, F i) ontains 2-intervalsbuilt with all the simple intervals from exatly two bloks of group Ei (i.e.,

(Ei
1, E

i
2), (Ei

1, E
i
3) or (Ei

2, E
i
3)).PROOF. Sine |D(ci)| = 7n− 2, by Lemma 10, we know that |D(C i

L, Ai, Bi,

Ci
R)| = 3n. Moreover, |D(Ci

L, Ai)| ≤ n (f. proof of Lemma 8). Thus, byLemma 7, we must have |D(Ai, Bi, Ci
R)| ≥ 2n. As |D(Ai, Bi, Ci

R)| ≤ 2n (f.proof of Lemma 8), |D(Ai, Bi, Ci
R)| = 2n.Sine |D(ci)| = 7n − 2, by Lemma 10, we have |D(Di, Ei, F i)| = 4n − 2.Moreover, by onstrution, eah 2-interval of D(Di, Ei, F i) is built with asimple interval of Ei. Thus, ∑3

j=1(k(E, i, j)) = 4n − 2.Suppose, for the sake of ontradition, that k(E, i, j) > 0 for all 1 ≤ j ≤ 3. ByObservation 1, we then have k(B, i, j) ≤ 2n− (k(E, i, j)+1) for all 1 ≤ j ≤ 3.Thus, ∑3
j=1 k(B, i, j) ≤ ∑3

j=1 2n−(k(E, i, j)+1) ≤ 6n−3−∑3
j=1 k(E, i, j). As

∑3
j=1 k(E, i, j) = 4n− 2, we onlude that ∑3

j=1 k(B, i, j) ≤ 2n− 1. Moreover,by onstrution, eah 2-interval of D(Ai, Bi, Ci
R) is built with a simple intervalof Bi. Therefore, |D(Ai, Bi, Ci

R)| ≤ 2n − 1, a ontradition.Therefore at least one of k(E, i, 1), k(E, i, 2) or k(E, i, 3) is equal to 0. Hene,
D(Di, Ei, F i) ontains 2-intervals built with all the simple intervals from ex-atly two bloks of the group Ei (i.e., (Ei

1, E
i
2), (E

i
1, E

i
3) or (Ei

2, E
i
3)). 2Corollary 12 If |D(ci)| = 7n − 2 then the set D(Ai, Bi, Ci

R) ontains all thesimple intervals of a unique blok of group Bi (i.e., Bi
1, Bi

2 or Bi
3).21



PROOF. By Lemma 10, if |D(ci)| = 7n − 2 then |D(Ci
L, Ai, Bi, Ci

R)| = 3n.Moreover, by onstrution, eah 2-interval of D(Ai, Bi, Ci
R) is built with asimple interval of Bi. As |D(Ai, Bi, Ci

R)| = 2n (f. proof of Lemma 11),
∑3

j=1(k(B, i, j)) = 2n. By Lemma 11, if |D(ci)| = 7n − 2 then D(Di, Ei, F i)ontains 2-intervals built with all the simple intervals from exatly two bloks
Ei

s and Ei
t of group Ei, for 1 ≤ s, t ≤ 3. By Observation 1, D(Ai, Bi, Ci

R)ontains 2-intervals built with all the simple intervals from exatly one blok
Bi

u of group Bi with 1 ≤ u ≤ 3, u 6= s and u 6= t. 2Lemma 13 If |D(ci)| = 7n − 2 then:(a) if j = 1 then D(Di, Ei, F i) is the set of all the 2-intervals between bloks
Ei

2, Ei
3, F i

1 and F i
2.(b) if j = 2 then D(Di, Ei, F i) is the set of all the 2-intervals between bloks

Ei
1, Ei

3, Di
1 and F i

2.() if j = 3 then D(Di, Ei, F i) is the set of all the 2-intervals between bloks
Ei

1, Ei
2, Di

1 and Di
2.PROOF. (a) By Lemma 10, if |D(ci)| = 7n−2 then |D(Di, Ei, F i)| = 4n−2.By Corollary 12, Lemma 11 and the disjuntion onstraint, if the 2n 2-intervalsof D(Ai, Bi, Ci

R) ontain 2-intervals built with all the simple intervals from Bi
1,then D(Di, Ei, F i) ontains 2-intervals built with all the simple intervals from

Ei
2 and Ei

3. Thus, D(Di, Ei, F i) is omposed of the 2n− 1 2-intervals betweenbloks Ei
3 and F i

2. Moreover, any 2-interval between bloks Ei
2 and Di

2 is {⊏}-omparable to any 2-interval between bloks Ai and Bi
1. Therefore, the set

D(Di, Ei, F i) of 4n − 2 2-intervals is also omposed of the 2n − 1 2-intervalsbetween bloks Ei
2 and F i

1.(b) Similarly to (a), if the 2n 2-intervals of D(Ai, Bi, Ci
R) ontain 2-intervalsbuilt with all the simple intervals from Bi

2, then D(Di, Ei, F i) ontains 2-intervals built with all the simple intervals fromEi
1 and Ei

3. Thus,D(Di, Ei, F i)is omposed of the 2n−1 2-intervals between bloks Ei
1 and Di

1 and the 2n−1
2-intervals between bloks Ei

3 and F i
2.() Similarly to (a) and (b), if the 2n 2-intervals of D(Ai, Bi, Ci

R) ontain
2-intervals built with all the simple intervals from Bi

3, then D(Di, Ei, F i) on-tains 2-intervals built with all the simple intervals from Ei
1 and Ei

2. Thus,
D(Di, Ei, F i) is omposed of the 2n − 1 2-intervals between bloks Ei

1 and
Di

1. Moreover, any 2-interval between bloks Ei
2 and F i

1 is {⊏}-omparableto any 2-interval between bloks Bi
3 and Ci

R. Therefore, D(Di, Ei, F i) is alsoomposed of the 2n − 1 2-intervals between bloks Ei
2 and Di

2. 2In the following, we denote by xm(U, V ) (resp. xm(U, V )), for 1 ≤ m ≤ n, the
2-interval omposed of the two simple intervals representing xm (resp. xm) in22



bloks U and V .Observation 2 Suppose |D(ci)| = 7n − 2.
• If, for a given 1 ≤ j ≤ 3, xm(Ci

L, Ai) ∈ D(ci) then xm(Ai, Bi
j) ∈ D(ci).

• If, for a given 1 ≤ j ≤ 3, xm(Ci
L, Ai) ∈ D(ci) then xm(Ai, Bi

j) ∈ D(ci).
Fig. 15. xm(Ci

L, Ai) ∈ D(ci) implies xm(Ai, Bi
j) ∈ D(ci).PROOF. An illustration of Observation 2 is given in Figure 15. Indeed,

|D(ci)| = 7n − 2, thus by Lemma 10 |D(Ci
L, Ai, Bi, Ci

R)| = 3n. We haveproved (f. proof of Lemma 8) that |D(Ai, Bi)| ≤ n, |D(Bi, Ci
R)| ≤ n, and

|D(Ci
L, Ai)| ≤ n. By Lemma 7, |D(Ai, Bi)| + |D(Bi, Ci

R)| + |D(Ci
L, Ai)| ≥

|D(Ci
L, Ai, Bi, Ci

R)|. Thus, |D(Ai, Bi)| = |D(Bi, Ci
R)| = |D(Ci

L, Ai)| = n.Moreover, we proved that |D(Ci
L, Ai)| = n implies that one simple intervalper blok of Ai is involved in a 2-interval between Ci

L and Ai (f . proof ofLemma 8). Consider the mth blok ofAi. Therefore, by the {<, ≬}-omparabilityonstraint, either xm(Ci
L, Ai) ∈ D(ci) or xm(Ci

L, Ai) ∈ D(ci).Similarly, we proved that |D(Ai, Bi)| = n implies that one simple interval perblok of Ai is involved in a 2-interval between Ai and Bi (f . proof of Lemma8). Consider the mth blok of Ai. We mentioned that, by onstrution, thesimple intervals of this blok represent in order (xm, xm, xm, xm).Therefore,either xm(Ai, Bi
j) ∈ D(ci) or xm(Ai, Bi

j) ∈ D(ci).Moreover, by the disjuntion onstraint and the adjustment of the simpleintervals of eah blok of Ai, if xm(Ci
L, Ai) ∈ D(ci) then xm(Ai, Bi

j) ∈ D(ci).Similarly, if xm(Ci
L, Ai) ∈ D(ci) then xm(Ai, Bi

j) ∈ D(ci). 2Observation 3 Suppose |D(ci)| = 7n − 2.
• If, for a given 1 ≤ j ≤ 3, xm(Ai, Bi

j) ∈ D(ci) then xm(Bi
j , C

i
R) ∈ D(ci).

• If, for a given 1 ≤ j ≤ 3, xm(Ai, Bi
j) ∈ D(ci) then xm(Bi

j , C
i
R) ∈ D(ci).PROOF. An illustration of Observation 3 is given in Figure 16. Suppose

xm(Ai, Bi
j0

) ∈ D(ci) for a given 1 ≤ j0 ≤ 3. By Corollary 12, as |D(ci)| = 7n−2,the set D(Ai, Bi, Ci
R) ontains all the simple intervals of a unique blok Bi

j ofgroup Bi. Thus, by the supposition we made, the set D(Ai, Bi, Ci
R) ontains allthe simple intervals of blok Bi

j0
. We proved (f. proof of Observation 2) that23



Fig. 16. xm(Ai, Bi
j) ∈ D(ci) implies xm(Bi

j , C
i
R) ∈ D(ci).either xm(Ai, Bi

j0
) ∈ D(ci) or xm(Ai, Bi

j0
) ∈ D(ci) for some 1 ≤ j0 ≤ 3. By thedisjuntion onstraint, as xm(Ai, Bi

j0
) ∈ D(ci) we have xm(Bi

j0
, Ci

R) 6∈ D(ci).Moreover, as the set D(Ai, Bi, Ci
R) ontains all the simple intervals of blok

Bi
j0
, xm(Bi

j0
, Ci

R) ∈ D(ci). Similarly, if xm(Ai, Bi
j0

) ∈ D(ci) then xm(Bi
j0

, Ci
R) ∈

D(ci) for any 1 ≤ j0 ≤ 3. 2Observation 4 Suppose |D(ci)| = |D(ci+1)| = 7n − 2.
• If, for a given 1 ≤ j ≤ 3, xm(Bi

j , C
i
R) ∈ D(ci) then xm(Ci+1

L , Ai+1) ∈
D(ci+1).

• If, for a given 1 ≤ j ≤ 3, xm(Bi
j , C

i
R) ∈ D(ci) then xm(Ci+1

L , Ai+1) ∈
D(ci+1).

Fig. 17. xm(Bi
j , C

i
R) ∈ D(ci) implies xm(Ci+1

L , Ai+1) ∈ D(ci+1)PROOF. An illustration of Observation 4 is given in Figure 17. If |D(ci+1)| =
7n − 2, then |D(Ci+1

L , Ai+1)| = n (f. proof of Observation 2). By the {<, ≬}-omparability onstraint, either xm(Ci+1
L , Ai+1) ∈ D(ci+1) or xm(Ci+1

L , Ai+1) ∈
D(ci+1) (f. proof of Observation 2). By the adjustment of bloks C i

R and Ci+1
L ,if |D(ci)| = |D(ci+1)| = 7n−2 and xm(Bi

j, C
i
R) ∈ D(ci), then xm(Ci+1

L , Ai+1) ∈
D(ci+1). Similarly, if |D(ci)| = |D(ci+1)| = 7n − 2 and xm(Bi

j , C
i
R) ∈ D(ci)then xm(Ci+1

L , Ai+1) ∈ D(ci+1). 2Lemmas 8 to 13 together with Observations 2 to 4 provide us all the neessaryintermediate results to show that the redution of Exat 3-CNF-Sat to the
2-IP-Unit-{<, ≬} problem is valid.Proposition 14 Given an instane of the problem Exat 3-CNF-Sat with
n variables and q lauses, there exists a satisfying true assignment i� there is24



a subset D′ ⊆ D suh that |D′| ≥ (7n − 2)q and D′ is {<, ≬}-omparable.PROOF. (⇒)Suppose we have an assignment AS of the n variables that satis�es the booleanformula. By de�nition, for eah lause there is at least one literal that satis�esit. We look for a set of {<, ≬}-omparable 2-intervals D′ in the representationof the boolean formula suh that the ardinality of D′ is greater than orequal to (7n − 2)q. By Lemma 10, for any lause ci, |D(ci)| ≤ 7n − 2. Thus,
|D′| ≤ (7n − 2)q. Therefore, the only solution to our problem is a set D′ suhthat |D′| = (7n − 2)q. As the boolean formula is omposed of q lauses, eahsubset D′(ci) of D′ for eah lause ci, 1 ≤ i ≤ q, must satisfy |D′(ci)| = 7n−2.Hereafter, ji will de�ne the smallest index of the literal of ci (i.e., 1, 2 or 3)whih, by its assignment, satis�es ci. For any 1 ≤ i ≤ q, we de�ne D′(ci) asfollows. For eah variable xm with 1 ≤ m ≤ n:(a) If xm = True then xm(Ci

L, Ai), xm(Ai, Bi
ji
) and xm(Bi

ji
, Ci

R) are in D′(ci);(b) If xm = False then xm(Ci
L, Ai), xm(Ai, Bi

ji
) and xm(Bi

ji
, Ci

R) are in D′(ci).Moreover, for any given 1 ≤ ji ≤ 3:() If ji = 1 then D′(ci) is also omposed of the set of all the 2-intervalsbetween bloks Ei
2, Ei

3, F i
1 and F i

2;(d) If ji = 2 then D′(ci) is also omposed of the set of all the 2-intervalsbetween bloks Ei
1, Ei

3, Di
1 and F i

2;(e) If ji = 3 then D′(ci) is also omposed of the set of all the 2-intervalsbetween bloks Ei
1, Ei

2, Di
1 and Di

2.An example of subset D′(ci) where ci = (x1∨x2∨x3) and suh that x1 = x2 =
x3 = True is illustrated in Figure 18.In the following, we will �rst prove that, for any 1 ≤ i ≤ q, D′(ci) is a set of
{<, ≬}-omparable 2-intervals. Then we will prove that D′ =

⋃q
1 D′(ci) is a setof {<, ≬}-omparable 2-intervals suh that |D′| = (7n − 2)q.By the way we de�ned D′(ci), it is easy to see that |D′(ci)| = 7n − 2. Indeed,by (a) or (b), three 2-intervals have been added to D′(ci) for eah variable

xm with 1 ≤ m ≤ n. Moreover, by (), (d) or (e), for any given 1 ≤ ji ≤ 3, aset of 4n − 2 2-intervals has been added to D′(ci).For any 1 ≤ i ≤ q, D′(ci) is a set of {<, ≬}-omparable 2-intervals i� there is noinlusion or disjuntion in D′(ci). First, we will prove that given a 1 ≤ ji ≤ 3,
D′(Ci

L, Ai, Bi
ji
, Ci

R) is a set of {<, ≬}-omparable 2-intervals. Then, we willprove that given a 1 ≤ ji ≤ 3, D′(Di, Ei, F i) is a set of {<, ≬}-omparable
2-intervals. Finally, we will prove that D′(ci), whih is the union of those two25



Fig. 18. D′(ci) where ci = (x1 ∨ x2 ∨ x3) and x1 = x2 = x3 = True
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sets, is a set of {<, ≬}-omparable 2-intervals.Considering only the 2-intervals of D′(Ci
L, Ai, Bi

ji
, Ci

R), by onstrution an in-lusion an only our between two 2-intervals built with simple intervals ofexatly two groups. For any 1 ≤ ji ≤ 3, by onstrution, any pair of 2-intervalsbetween Ai and Bi
ji
(resp. Bi

ji
and Ci

R) are rossing. Thus, an inlusion anonly our when two simple intervals of the same blok of Ai are both involvedin a 2-interval between Ci
L and Ai in D′(Ci

L, Ai, Bi
ji
, Ci

R).Clearly, either xm(Ci
L, Ai) ∈ D′(ci) or xm(Ci

L, Ai) ∈ D′(ci) for eah vari-able xm. Thus, only one simple interval per blok of Ai is involved in a
2-interval between Ci

L and Ai. Therefore, there annot be an inlusion in
D′(Ci

L, Ai, Bi
ji
, Ci

R).By the way we de�ned D′(ci) and the onstrution of the representation ofa lause, it is easy to see that there annot be non disjoint 2-intervals in
D′(Ci

L, Ai, Bi
ji
, Ci

R) (see for instane Figure 18). Thus, D′(Ci
L, Ai, Bi

ji
, Ci

R) is aset of 3n {<, ≬}-omparable 2-intervals.Considering only the 2-intervals of D′(Di, Ei, F i), by onstrution, there an-not be a problem of inlusion in D′(Di, Ei, F i). Moreover, a problem of dis-juntion an only our when a simple interval of blok Ei
2 is involved in two

2-intervals in D′(Di, Ei, F i). By the way we de�ned D′(ci), this situation neverappears. Thus, D′(Di, Ei, F i) is a set of 4n− 2 {<, ≬}-omparable 2-intervals.Now we onsider the 2-intervals of D′(ci). We proved upwards that for any
1 ≤ ji ≤ 3, both D′(Ci

L, Ai, Bi
ji
, Ci

R) and D′(Di, Ei, F i) are sets of {<, ≬}-omparable 2-intervals. Thus, we have to hek that assembling those two setsdoes not reate inlusion or disjuntion problems. To prove that D′(ci) is a setof {<, ≬}-omparable 2-intervals, we will examine the three following ases:(1) ji = 1. D′(ci) ontains n 2-intervals between Ci
L and Ai, n 2-intervalsbetween Ai and Bi

1, n 2-intervals between Bi
1 and Ci

R, 2n − 1 2-intervalsbetween Ei
2 and F i

1 and 2n − 1 2-intervals between Ei
3 and F i

2.By onstrution, all the 2-intervals are disjoint. Moreover, any 2-intervalbetween Ei
2 and F i

1 (resp. Ei
3 and F i

2) is rossing any 2-interval between
Bi

1 and Ci
R (see Figure 19). Thus, there is no inlusion problem in D′(ci).Thus, D′(ci) is a set of 7n−2 {<, ≬}-omparable 2-intervals in this ase.(2) ji = 2. D′(ci) ontains n 2-intervals between Ci

L and Ai, n 2-intervalsbetween Ai and Bi
2, n 2-intervals between Bi

2 and Ci
R, 2n − 1 2-intervalsbetween Di

1 and Ei
1 and 2n − 1 2-intervals between Ei

3 and F i
2.By onstrution, all the 2-intervals are disjoint. Moreover, any 2-intervalbetween Di

1 and Ei
1 is rossing any 2-interval between Ci

L and Ai (resp.
Ai and Bi

2). Moreover, any 2-interval between Ei
3 and F i

2 is rossing any
2-interval between Bi

2 and Ci
R (see Figure 20). Thus, D′(ci) is a set of

7n − 2 {<, ≬}-omparable 2-intervals in this ase.27



Fig. 19. Illustration of ase (1). Bold lines represents sets of 2-intervals betweengroups.
Fig. 20. Illustration of ase (2). Bold lines represents sets of 2-intervals betweengroups.(3) ji = 3. D′(ci) ontains n 2-intervals between Ci

L and Ai, n 2-intervalsbetween Ai and Bi
3, n 2-intervals between Bi

3 and Ci
R, 2n − 1 2-intervalsbetween Di

1 and Ei
1 and 2n − 1 2-intervals between Di

2 and Ei
2.By onstrution, all the 2-intervals are disjoint. Moreover, any 2-intervalbetween Di

1 and Ei
1 (resp. Di

2 and Ei
2) is rossing any 2-interval between

Ci
L and Ai. Similarly, any 2-interval between Di

1 and Ei
1 (resp. Di

2 and
Ei

2) is rossing any 2-interval between Ai and Bi
3 (see Figure 21). Thus,

D′(ci) is a set of 7n − 2 {<, ≬}-omparable 2-intervals in this ase.
Fig. 21. Illustration of ase (3). Bold lines represents sets of 2-intervals betweengroups.We just proved that we an �nd a {<, ≬}-omparable subset D(ci) of D′ foreah lause ci suh that |D(ci)| = 7n− 2. Finally, we have to verify that D′ =
⋃q

1 D′(ci) is {<, ≬}-omparable. By onstrution, there annot be inlusionproblems between two 2-intervals of di�erent lauses. What is left is to provethat the adjustment of bloks Ci
R and Ci+1

L for a any 1 ≤ i < q does not implynon disjoint 2-intervals (see Figure 3).By the adjustment of bloks Ci+1
L and Ci

R, a disjuntion problem an onlyour between the simple interval representing xm (resp. xm) in Ci
R and the28



simple interval representing xm (resp. xm) in Ci+1
L for some 1 ≤ m ≤ n.By the way we de�ned D′(ci), if xm = True then for any 1 ≤ i ≤ q, xm(Ci

L, Ai)and xm(Bi
ji
, Ci

R) are in D′(ci). Thus, if xm = True then xm(Bi
ji
, Ci

R) ∈ D′(ci)and xm(Ci+1
L , Ai+1) ∈ D′(ci+1). However, we know that, for any 1 ≤ ji ≤ 3,

xm(Bi
ji
, Ci

R) and xm(Ci+1
L , Ai+1) are disjoint (see Figure 3).By the way we de�ned D′(ci), if xm = False then for any 1 ≤ i ≤ q, xm(Ci

L, Ai)and xm(Bi
ji
, Ci

R) are in D′(ci). Thus, if xm = False then xm(Bi
ji
, Ci

R) ∈ D′(ci)and xm(Ci+1
L , Ai+1) ∈ D′(ci+1). However, we know that, for any 1 ≤ ji ≤ 3,

xm(Bi
ji
, Ci

R) and xm(Ci+1
L , Ai+1) are disjoint (see Figure 3).Thus, a disjuntion problem due to the adjustment of bloks Ci+1

L and Ci
Rfor a given 1 ≤ i < q in D′ annot exist. Therefore, there is a set of {<, ≬}-omparable 2-intervals in the representation of the boolean formula of ardi-nality (7n − 2)q.

(⇐)Suppose we have a {<, ≬}-omparable subset D′ ⊆ D of ardinality (7n− 2)q.By Lemma 10, D′ is omposed of a subset D′(ci) of at most 7n − 2 {<, ≬}-omparable 2-intervals for eah lause ci with 1 ≤ i ≤ q. Thus, for eah
1 ≤ i ≤ q, |D′(ci)| = 7n − 2. We de�ne the assignment AS of the n variablesas follows. For any 1 ≤ m ≤ n:
• If xm(C1

L, A1) ∈ D′ then the value of variable xm is True;
• If xm(C1

L, A1) ∈ D′ then the value of variable xm is False.We proved (f. proof of Observation 2) that for any 1 ≤ i ≤ q if |D(ci)| = 7n−2then |D(Ci
L, Ai)| = n. Thus, as |D′(c1)| = 7n − 2, D′(c1) is omposed of n 2-intervals between bloks of C1

L and A1. Moreover, we proved (f. proof ofObservation 2) that, for any 1 ≤ i ≤ q, if |D(ci)| = 7n − 2 then either
xm(Ci

L, Ai) ∈ D(ci) or xm(Ci
L, Ai) ∈ D(ci). Thus, either xm(C1

L, A1) ∈ D′(c1)or xm(C1
L, A1) ∈ D′(c1). Therefore, AS is an assignment of n variables suhthat eah variable have a unique value.Now, we have to verify that AS satis�es the boolean formula orrespondingto D (i.e., eah lause ci with 1 ≤ i ≤ q must be satis�ed). First, note thata diret onsequene of Observations 2 to 4 is that, for any 1 ≤ m ≤ n,if xm(Ci

L, Ai) ∈ D(ci), then xm(Ci+1
L , Ai+1) ∈ D(ci+1) for any 1 ≤ i < q.Similarly, for any 1 ≤ m ≤ n, if xm(Ci

L, Ai) ∈ D(ci), then xm(Ci+1
L , Ai+1) ∈

D(ci+1) for any 1 ≤ i < q.Thus, for any 1 ≤ m ≤ n if xm(C1
L, A1) ∈ D′(c1) then xm(Ci

L, Ai) ∈ D′(ci)for any 2 ≤ i ≤ q. Similarly, for any 1 ≤ m ≤ n if xm(C1
L, A1) ∈ D′(c1) then

xm(Ci
L, Ai) ∈ D′(ci) for any 2 ≤ i ≤ q.29



By Corollary 12, as |D′(ci)| = 7n − 2, the set D′(ci) ontains all the simpleintervals of a unique blok Bi
ji
of group Bi, for a given 1 ≤ ji ≤ 3. Moreover,as |D′(ci)| = 7n−2, D′(ci) is omposed of n 2-intervals between bloks Ai and

Bi
ji
(f. proof of Observation 2). More preisely, for any 1 ≤ m ≤ n, either

xm(Ai, Bi
ji
) or xm(Ai, Bi

ji
) is in D′(ci).Suppose xp is the literal of lause ci at position ji, with 1 ≤ ji ≤ 3. Then byonstrution, xp(A

i, Bi
ji
) does not exist. This implies that xp(A

i, Bi
ji
) ∈ D′(ci).Moreover, by Observations 2 and 3, if xp(A

i, Bi
ji
) ∈ D′(ci) then xp(B

i
ji
, Ci

R) ∈
D′(ci) and xp(C

i+1
L , Ai+1) ∈ D′(ci+1). Therefore, aording to AS, if xp(C

i+1
L ,

Ai+1) ∈ D′(ci+1) then the value of variable xp is True. Thus, as xp is the literalof lause ci at position ji, we onlude that ci is satis�ed.Suppose xp is the literal of lause ci at position ji, with 1 ≤ ji ≤ 3. By asimilar reasoning, we an verify that lause ci is satis�ed due to the literal xpat position ji.This reasoning an be applied to any lause ci of the boolean formula. Thus,
AS satis�es eah lause ci, 1 ≤ i ≤ q. Thus, from the {<, ≬}-omparablesubset D′ ⊆ D of ardinality equal to (7n − 2)q, we an �nd a satisfying trueassignment AS. 26 A �xed-parameter algorithm for 2-IP-Unit-{<, ≬}Aording to Theorem 6, �nding the largest {<, ≬}-omparable subset ina set of 2-intervals on a unit ground set is an NP-omplete problem. Inthis setion, we give an exat algorithm for that problem with strong em-phasis on the rossing struture of the set of 2-intervals. More preisely,we onsider the time omplexity of the problem with respet to the for-ward rossing number of the input. Indeed, in the ontext of 2-intervals,one may reasonably expet the forward rossing number to be small om-pared to the number of 2-intervals, and hene, a natural diretion seemsto be the question for the �xed-parameter tratability with respet to pa-rameter FCrossing(D). In response to that question, we show that the prob-lem an be solved for any ground set by means of dynami programming in
O(n2 · FCrossing(D) · 2FCrossing(D)(log(n) + FCrossing(D))) time where n is thenumber of 2-intervals inD, and hene is �xed-parameter tratable with respetto parameter FCrossing(D).For any Di ∈ D, let T (Di) denote the size of the largest {<, ≬}-omparablesubset D′ ⊆ D of whih the 2-interval Di is the rightmost element. Further-more, for any Di, Dj ∈ D suh that Dj ≬ Di, let T (Dj | Di) denotes the size30



of the largest {<, ≬}-omparable subset D′ ⊆ D suh that (1) the 2-interval
Dj is the rightmost element of D′ and (2) the 2-interval Di is not part of thesubset D′ but an safely be added to D′ to obtain a new {<, ≬}-omparablesubset of size |D′| + 1.Clearly, a maximum ardinality {<, ≬}-omparable subset D′ ⊆ D of whihthe 2-interval Di is the rightmost element an be obtained either (1) by adding
Di to a maximum ardinality {<, ≬}-omparable subset D′′ ⊆ D whose right-most 2-interval Dj preedes the 2-interval Di, i.e., Dj < Di, or (2) by adding
Di to a maximum ardinality {<, ≬}-omparable subset D′′ ⊆ D whose right-most 2-interval Dj rosses the 2-interval Di, i.e., Dj ≬ Di, and suh that Dirosses or preedes any 2-interval of D′′. Here is another way of stating theseobservations:

∀Di ∈ D, T (Di) = 1 + max







max{T (Dj) : Dj < Di}
max{T (Dj | Di) : Dj ≬ Di}

(1)What is left is thus to ompute T (Dj | Di). To this aim, we extend the notation
T (Dj | Di) as follows: for any {≬}-omparable subset {Di1, Di2 , . . . , Dik} ⊆ D,
k ≥ 1, satisfying Right(Di1) < Right(Di2) < . . . < Right(Dik), we let T (Di1 |
Di2 , . . . , Dik) stand for the size of a largest {<, ≬}-omparable subset D′ ⊆ Dsuh that (1) the 2-interval Di1 is the rightmost element of D′ and (2) the
2-intervals {Di2, Di3 , . . . , Dik} are not part of the subset D′ but an safelybe added to D′ to obtain a new {<, ≬}-omparable subset of size T (Di1 |
Di2 , . . . , Dik)+k−1. A straightforward extension of the alulation (1) yieldsthe following reurrene relation for omputing the entry T (Di1 | Di2 , . . . , Dik)of the dynami programming table:

T (Di1 | Di2, . . . , Dik) = 1+

max











































max {T (Dj) | Dj satis�es ondition (1)}
max {T (Dj | Di1) | Dj satis�es ondition (2)}
max {T (Dj | Di1, Di2) | Dj satis�es ondition (3)}...
max {T (Dj | Di1, Di2 , . . . , Dik) | Dj satis�es ondition (k + 1)} (2)where ondition (i), 1 ≤ i ≤ k + 1, is de�ned as follows:ondition (i)







Dj ≬ Dir for all 0 < r < i (rossing onditions)
Dj < Dis for all i ≤ s < k + 1 (preedene onditions)An illustration of the di�erent onditions of this reurrene relation is given31



in Figure 22. It follows from the above reurrene relation that entries of theform T (Di | ∗) depend only on entries of the form T (Dj | ∗) where Dj < Di or
Dj ≬ Di. From a omputational point of view, this implies that the alulationof entries of the form T (Di | ∗) depends only on the alulation of entries ofthe form T (Dj | ∗) where Right(Dj) < Right(Di). The following easy lemmagives an upper-bound on the size of the dynami programming table T withrespet to the forward rossing number of D.Lemma 15 The number of distint entries of the dynami programming table
T is upper-bounded by |D| · 2FCrossing(D).PROOF. For any 2-interval Di ∈ D, the number of distint {≬}-omparablesubsets of whih Di is the leftmost element is upper-bounded by 2FCrossing(D),and hene there exist at most 2FCrossing(D) distint entries of the form T (Di | ∗)in the dynami programming table T . 2The overall algorithm for �nding the size of the largest {<, ≬}-omparablesubset in a set of 2-intervals is given in Figure 23. Using a suitable datastruture for e�iently searhing 2-intervals, we have the following result.Proposition 16 Algorithm Max {<, ≬}-Comparable 2-Interval Pattern returnsthe size of a maximum ardinality {<, ≬}-omparable subset of a set of 2-intervals D in O(n2 · FCrossing(D) · 2FCrossing(D)(log(n) + FCrossing(D))) time,where n is the number of 2-intervals in D.Our approah is based on the following theorem.Theorem 17 ([10℄) Let I be a �nite olletion of n intervals on the realline. A data struture storing I using O(n log n) spae an be onstruted in
O(n log n) time. By querying this data struture one an report those intervalsin I that are ompletely ontained in a given interval in O(n log n + k) timewhere k is the number of reported 2-intervals.Lemma 18 Let D be a �nite olletion of n 2-intervals. After a preproessingstage whih takes O(n log n) time and uses O(n log n) spae, one an report(1) those 2-intervals in D that lie entirely to the left of a given 2-interval, or(2) those 2-intervals in D whose left and right intervals are ompletely on-tained in two given intervalsin O(n logn + k) time where k is the number of reported 2-intervals.PROOF. We use a data struture omposed of two separate data struturesas de�ned in Theorem 17. 32



Fig. 22. Illustration of the di�erent onditions of reurrene relation (2).(1) We assoiate to eah 2-interval D ∈ D its least overing interval Cover(D)and store all these overing intervals in the data struture of Theorem 17.Reporting those 2-intervals in D that lie entirely to the left of a given
2-interval D is equivalent to reporting those overing intervals that areompletely ontained in the left preeding interval of D. The time om-33



Max {<, ≬}-Comparable 2-Interval PatternInput: A �nite set D of n 2-intervals.Output: The maximum size of a {<, ≬}-omparable pattern in D.1. Sort the set D aording to their right interval. For the sake of larity,let us assume that the ordered 2-intervals set is now given by D =
{D1, D2, . . . , Dn}, i.e., Right(Di) < Right(Dj) implies i < j. All orderedsubsets onsidered in the following of the algorithm are to be understoodas ordered with respet to that order.2. For i from 1 to n2.1. Fill the entry T (Di).2.2. For any ordered non-empty set {Di1, Di2 , . . . , Diq} ⊆ D suh that
{Di} ∪ {Di1, Di2 , . . . , Diq} is an ordered subset of {≬}-omparable 2-intervals with Right(Di) < Right(Di1) < . . . < Right(Diq), �ll the entry
T (Di | Di1 , Di2, . . . , Diq) aording to the reurrene relation (2).3. Return the largest entry T (Di)Fig. 23. Algorithm Max {<, ≬}-Comparable 2-Interval Pattern.plexity follows from Theorem 17.(2) We store the left interval of eah 2-interval in the data struture of The-orem 17. Reporting is now a two step proedure. First, we �nd those

2-intervals whose left interval is ompletely ontained in the �rst queryinterval. Seond, we report those 2-intervals of step one whose right in-terval is ompletely ontained in the seond query interval. Clearly, the�rst step takes O(n logn+k) time and the seond step runs in O(k) time.
2Lemma 19 Let Dj ∈ D be suh that all entries of the dynami programmingtable of the form T (Dk|∗) with Right(Dk) ≤ Right(Dj) have already been om-puted in a previous run. Then, for any {≬}-omparable subset {Di1, Di2 , . . . ,

Dik} ⊆ D, k ≥ 1, satisfying Right(Dj) < Right(Di1) < Right(Di2) < . . . <

Right(Dik), one an ompute the entry of the dynami programming table
T (Di1 | Di2 , . . .Dik) aording to reurrene relation (2) in O(n ·FCrossing(D)
(log(n) + FCrossing(D))) time.PROOF. We �rst need an injetive mapping that assoiates to any {≬}-omparable subset {Di1 , Di2, . . . , Dik} ⊆ D, k ≥ 1, satisfying Right(Di1) <

Right(Di2) < . . . < Right(Dik), its index in the dynami programming table
T . Let π be a numbering of D suh that the 2-intervals are numbered aord-ing to their right interval, i.e., Right(Di) < Right(Dj) implies π(Di) < π(Dj)for all Di, Dj ∈ D. Let D≬ be the set of ordered subsequenes of {1, 2, . . . , n}de�ned as follows: for any {≬}-omparable subset {Di1 , Di2, . . . , Dik} ⊆ D,
k ≥ 1, satisfying Right(Di1) < Right(Di2) < . . . < Right(Dik), the set D≬34



ontains the ordered sequene (π(Di1), π(Di2), . . . , π(Dik)). Clearly, one anompare two sequenes of D≬, for example aording to lexiographi or-der, in O(FCrossing(D)) time ; this follows from the fat that sequenes of
D≬ are of length at most Depth(D) ≤ FCrossing(D) + 1. Therefore, usingany lassial data struture for searhing and inserting that guarantees log-arithmi time [7℄, one an insert or searh for a given sequene of D≬ in
O(FCrossing(D)(log(n) + FCrossing(D))) time. We now turn to the ompu-tation of T (Di1 | Di2 , . . .Dik). For eah ondition (i) of the reurrene re-lation (2), one has to �nd those 2-intervals Dj satisfying Dj ≬ {Dir : 0 ≤
r < i} and Dj < {Dis : i ≤ s < k + 1}. Aording to Lemma 18, thisan be done in O(log n + pi) where pi is the number of 2-intervals satis-fying ondition (i). Then it follows that one an �nd the maximum valueof ondition (i) in O(pi · FCrossing(D)(log(n) + FCrossing(D))) time. Sum-ming up over all onditions (i) and observing that ∑

1≤i≤k+1 pi ≤ n, we ob-tain an O(n · FCrossing(D)(log(n) + FCrossing(D)) time algorithm for om-puting the entry of the dynami programming table T (Di1 | Di2 , . . .Dik). Itremains to insert the ordered sequene (π(Di1), π(Di2), . . . , π(Dik)) into thedata struture for upoming queries. Aording to the above, this an be donein O(FCrossing(D)(log(n) + FCrossing(D))) time. 2PROOF. [of Proposition 16℄ Corretness of the algorithm follows from re-urrene relation (2). What is left is to prove the time omplexity. Sorting theset of 2-intervals D aording to their right interval an be done in O(n log n)time. Aording to Lemma 19, eah entry of the form T (Di | ∗) an be om-puted in O(n · FCrossing(D)(log(n) + FCrossing(D))) time. Sine the numberof distint entries of the dynami programming table T is upper-bounded by
n · 2FCrossing(D) (Lemma 15), it follows that the algorithm as a whole runs in
O(n2 · FCrossing(D) · 2FCrossing(D)(log(n) + FCrossing(D))) time. 2Corollary 20 The 2-IP-Unit-{⊏, ≬} problem is �xed-parameter tratable withrespet to parameter FCrossing(D).It remains open, however, whether the 2-IP-Unit-{⊏, ≬} problem is �xed-parameter tratable with respet to parameter Depth(D) (reall indeed that
FCrossing(D) ≥ Depth(D)).7 ConlusionIn the ontext of strutured pattern mathing, we onsidered the problem of�nding an ourrene of a given strutured pattern in a set of 2-intervals andsolved three open problems of [29℄. We gave an optimal O(n log n) algorithmfor model R = {⊏} thereby improving the omplexity of the best known35



algorithm. Also, we desribed a O(n2
√

n) time algorithm for model R = {⊏, ≬}over a disjoint ground set. Finally, we proved that the problem isNP-ompletefor model R = {<, ≬} over a unit ground set, and in addition to that, we gavea �xed parameter-tratability result based on the rossing struture of the setof 2-intervals. These results almost omplete the table of omplexity lassesfor the 2-interval pattern problem proposed by Vialette [29℄ (see Table 1).An interesting question would be to answer the last remaining open problemin that area, that is to determine whether there exists a polynomial time algo-rithm for 2-IP-Dis-{<, ≬}, i.e., �nding the largest {<, ≬}-omparable subsetof a set of 2-intervals over a disjoint ground set. Note that the 2-IP-Dis-{<, ≬}problem has an immediate formulation in terms of onstrained mathings ingeneral graphs: Given a graph G together with a linear ordering π of the ver-ties of G, the 2-IP-Dis-{<, ≬} problem is equivalent to �nding a maximumardinality mathing M in G with the property that for any two distintedges {u, v} and {u′, v′} of M neither max{π(u), π(v)} < min{π(u′), π(v′)}nor max{π(u′), π(v′)} < min{π(u), π(v)} our. We note that a related result,determining whether a given {<, ≬}-strutured pattern ours in a general lin-ear graph, has been studied in [19,23℄. Gramm [19℄ gave a polynomial-timealgorithm for this problem. Reently, Li and Li [23℄ proved that this algo-rithm was inorret and showed the problem was in fat NP-omplete. In thelight of Table 1, we however onjeture the 2-IP-Dis-{<, ≬} problem to bepolynomial-time solvable.Referenes[1℄ J. Alber, J. Gramm, J. Guo, and R. Niedermeier. Towards optimally solving thelongest ommon subsequene problem for sequenes with nested ar annotationsin linear time. In Proeedings of the 13th Annual Symposium on CombinatorialPattern Mathing (CPM 2002), volume 2373 of Leture Notes in ComputerSiene, pages 99�114. Springer-Verlag, 2002.[2℄ R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz. Loal ratio: A uni�edframework for approxmation algorithms. J ACM Comput. Surv., 36(4):422�463,2004.[3℄ R. Bar-Yehuda, M.M. Halldorsson, J. Naor, H. Shahnai, and I. Shapira.Sheduling split intervals. In Proeedings of the 13th Annual ACM-SIAMSymposium on Disrete Algorithms, pages 732�741, 2002.[4℄ J.R.S. Blair and B. Peyton. An introdution to hordal graphs and lique trees.Graph Theory and Sparse Matrix Computation, 56:1�29, 1993.[5℄ G. Blin, G. Fertin, and S. Vialette. New results for the 2-interval patternproblem. In In Pro. 15th Annual Symposium on Combinatorial Pattern36
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