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Abstract

Active contours are adapted to image segmentation
by energy minimization. The energies often exhibit
local minima, requiring regularization. Such an a
priori can be expressed as a shape prior and used
in two main ways: (1) a shape prior energy is com-
bined with the segmentation energy into a trade-off
between prior compliance and accuracy or (2) the
segmentation energy is minimized in the space defined
by a parametric shape prior. Methods (1) require
the tuning of a data-dependent balance parameter
and methods (1) and (2) are often dedicated to a
specific prior or contour representation, with the prior
and segmentation aspects often meshed together,
increasing complexity. A general framework for
category (2) is proposed: it is independent of the
prior and contour representations and it separates
the prior and segmentation aspects. It relies on the
relationship shown here between the shape gradient,
the prior-induced admissible contour transforma-
tions, and the segmentation energy minimization.

Keywords: Image segmentation, shape, optimization meth-

ods.

1 Introduction

Image or video segmentation can be formulated as an
energy minimization problem. The active contour tech-
nique [12, 2, 3] provides a convenient framework to
solve this problem iteratively. Usually, there exists lo-
cal minima due to noise (the energy is too sensitive) or
coarseness of the models of the objects of interest (the
energy is not specific enough). Therefore, regulariza-
tion must be used. For instance, in order to reduce the
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influence of noise on the solution active contour, it is
classical to impose a minimal length constraint, which
encourages smoothness of the contour. If the knowl-
edge on the solution is more specific, it can be expressed
in the form of a so-called shape prior. For instance,
the solution must be a circle or as close to a circle as
possible. There are two main approaches to imposing
such a constraint (called loose and strict hereafter, re-
spectively): (1) a shape prior energy is defined and lin-
early combined with the segmentation energy to form a
trade-off energy between prior compliance and segmen-
tation accuracy [18, 4, 7, 9] and (2) the segmentation
energy is minimized in the space defined by a paramet-
ric shape prior constraint, either directly [13, 17] or
using a projection strategy [5]. The advantage of the
loose constraint approach is that, if the shape prior can
only represent a small variety of shapes (for example,
if it has been learned using a limited training set), the
weight of the constraint can be reduced. Conversely, if
the data is extremely noisy or incomplete, the weight
of the constraint can be increased. However, this fea-
ture can also be seen as a requirement to tune a data-
dependent balance parameter. The strict constraint
approach does not have this requirement. Neverthe-
less, the methods based on this approach (and also
the methods based on the loose constraint approach
for that matter) are classically developed for a spe-
cific contour representation (e.g., polygonal active con-
tour [5] or level set representation [13, 17]) and/or for
a specific shape prior representation (e.g., point dis-
tribution models [5, 18, 7] or distance to a shape of
reference [4, 9]). Moreover, the shape prior and seg-
mentation aspects are usually meshed together, making
the development for complex shape priors and sophis-
ticated segmentation energies quite unpleasant.

Here, we propose a strict constraint framework inde-
pendent of the contour representation, independent of
the shape prior representation, and which completely
separates the shape prior aspect from the segmenta-
tion aspect, making the shape optimization part com-
mon to any shape prior. Therefore, with the same
framework, shape prior constraints can range from ex-
tremely restrictive such as “the contour is a circle” to
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quite soft such as “the contour is a closed spline with
n control points” [10]. If the framework is indepen-
dent of the contour and shape prior representations,
the implementation of methods that can be developed
within this framework are not. However, the specific
work that has to be done is minimal and straightfor-
ward. This framework relies on the notion of shape
gradient [15, 16, 8, 1, 11] from the shape optimization
theory and the relationship between (i) shape gradient,
(ii) the admissible contour transformations defined by
the shape prior constraint, and (iii) the minimization
of the segmentation energy. This relationship is shown
in Section 4 and results on the same image are provided
for different shape priors in Section 6.

2 Parametric active contour and

shape prior

By parametric active contour, we do not refer to an
active contour represented by a parametric curve but
rather to an active contour Γ defined by a set of pa-
rameters p = {pi, i ∈ [1,m]}. For example, if the active
contour is represented by a polygon with n edges, then
the parameters involved are the coordinates (ai, bi) of
each vertex Γi

p = {pj , j ∈ [1, 2n]} = {a1, b1, a2, b2 . . . an, bn} . (1)

The active contour can be a parametric curve, though.
For example, if it is a spline defined by n control
points, then the parameters involved are the coordi-
nates (ai, bi) of each control point qi and it is, by defi-
nition, a parametric curve.

This definition of parametric active contour is a way
to express a shape prior. For example, it fits the com-
bined use of a point distribution model and principal
component analysis (PCA) [5, 18] or level set model
and PCA [13, 17] since, in both cases, the active con-
tour is expressed as the linear combination of the aver-
age shape and the principal modes of variation. There-
fore, the parameters involved are the weights of the
different modes

Γ = Γ̄ + Q p (2)

where Γ̄ is the average shape, Q is the matrix of the
first n eigenvectors (sorted in descending order of their
respective eigenvalues) of the covariance matrix of the
deviations of the training set from the average shape,
and p is a weighting vector playing here the role of the n

parameters defining the active contour. If the active
contour is represented by a level set [13, 17], Γ and Γ̄
are replaced with u and ū, the level sets representing Γ
and Γ̄, respectively.

More generally, this definition of parametric active
contour fits any shape prior based on shape and pose
parameters.

3 From unconstrained to con-

strained segmentation

3.1 Segmentation as a minimization

problem

The general form of region-based energies for segmen-
tation is

Er(Ω) =

∫

Ω

φ(x,Ω) dx (3)

where Ω is the interior domain of the (oriented) active
contour Γ (namely, Γ = ∂Ω) and φ is a function used
to describe the object of interest. Ideally, it is equal
to zero for all x in Ω if Ω is the region of an object of
interest. Otherwise it is positive. For example,

φ(x,Ω) = (f(x) − µ(Ω))2 (4)

where f is a grayscale image and µ(Ω) is the average in-
tensity of f within Ω, can be used to describe an object
homogeneous in intensity. As a consequence, segmen-
tation is expressed as a problem of energy minimiza-
tion, which can be solved iteratively: an initial con-
tour Γ0 is defined and it is progressively deformed un-
til it minimizes the energy. Each applied deformation
is determined according to a notion of gradient which,
particularly for region-based energies, has been stud-
ied in shape optimization and is known as the shape
gradient [15, 16, 8, 1, 11]. Its general expression is

dEr(Ω, V ) =

∫

Ω

∂φ(x,Ω(τ))

∂τ

∣

∣

∣

∣

τ=0

dx (5)

−

∫

Γ

φ(s,Ω) V (s) · N(s) ds (6)

where vector V is by definition a velocity defined
on Ω, τ is a deformation parameter, s is the arc-length
parameterization of Γ, and vector N is the inward unit
normal of Γ. At a given iteration, the deformation is
equal to a velocity chosen so that the shape gradient is
negative times a constant or optimal step. Under some
conditions [11], which will be assumed to be fulfilled in
the following, derivative (6) can be rewritten as

dEr(Ω, V ) = −

∫

Γ

Ψ(s,Ω) V (s) · N(s) ds . (7)

The general form of boundary-based energies for seg-
mentation is

Eb(Ω) =

∫

Γ

ϕ(s) ds (8)

where ϕ is a function used to describe the boundary of
the object of interest. Ideally, it is equal to zero for all s

if Γ is the boundary of an object of interest. Otherwise
it is positive. For example,

ϕ(s) =
1

1 + |∇f(Γ(s))|
(9)
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where ∇f is the spatial gradient of f , can be used
to describe the boundary of an object with high con-
trast with respect to the background. The shape gra-
dient [16, 8] of (8) is equal to

dEb(Ω, V ) =

∫

Γ

(

∂ϕ(s)

∂N
− ϕ(s) κ(s)

)

V (s) N(s) ds

(10)

=

∫

Γ

ξ(s) V (s) N(s) ds (11)

where κ is the curvature of Γ.

Finally, the general form of energies for segmentation
is a linear combination of (3) and (8), leading to a shape
gradient verifying the same linear combination of (7)
and (11), which results in an expression of the form of
either one of them. To fix the ideas, Eq. (7) will be
used in the following to refer to the general expression
of the shape gradient.

3.2 Segmentation under constraint

Since the active contour is defined by a set of parame-
ters, the energy can actually be rewritten as a function
of R

n

E(p) = Er(p) + Eb(p) (12)

=

∫

Ω(p)

φ(x,Ω(p)) dx +

∫

Γ(p)

ϕ(s) ds . (13)

Therefore, the problem of minimizing the energy be-
comes classical. Starting from an initial estimate, a
gradient descent method can be applied to find the
minimizer. This requires computation of the deriva-
tive of the energy with respect to each parameter. As
mentioned in Section 1, it can be quite complex to do it
directly with a calculus of variation, depending on the
shape prior and function φ in the energy. For example,
if φ depends on Ω through integral terms, the complex-
ity might lead to purposely ignore the variation of these
terms with Ω, only accounting for the primary varia-
tion of the energy with Ω [10]. However, in Section 4,
it will be shown that the derivative of the energy with
respect to a parameter is given by the shape gradient
of the energy evaluated for the infinitesimal deforma-
tion (otherwise called velocity) induced to the active
contour by an infinitesimal change of the parameter.
Intuitively, the derivative of the energy is given by a
kind of chain rule between the derivative of the energy
with respect to the contour (the shape gradient) and
the derivative of the contour with respect to the pa-
rameter.

4 Link between the constraint

and the shape gradient

As mentioned in Section 3.2, the gradient of energy (12)
must be computed. Let us see how this gradient relates
to the shape gradient. By definition, the derivative
of (12) with respect to the ith parameter is

∂E

∂pi

def
= lim

τ→0

E(p + τ ei) − E(p)

τ
(14)

where ei is the ith element of the canonical basis of R
n.

This derivative involves the energies of Ω(p) and Ω(p+
τ ei). The latter can be considered as a transformation
of the former

Ω(p + τ ei) = Ti(τ,Ω(p)) . (15)

Note that domain Ω alone is mentioned here, Γ being
implicitly involved as a subset of Ω. Therefore, the
following development is valid for both integrals in (12).

Locally, transformation Ti is defined as follows

x(τ) = Ti(τ, x), x ∈ Ω(p) . (16)

By definition, the velocity at x, x ∈ Ω(p), is

Vi(x)
def
= lim

τ→0

x(τ) − x

τ
(17)

= lim
τ→0

Ti(τ, x) − Ti(0, x)

τ
(18)

def
=

∂T

∂τ
(τ = 0, x) . (19)

The energy of a transformed domain can be rewrit-
ten as

E(p + τ ei) = E(Ω(p + τ ei)) = E(Ω(p), Ti, τ) . (20)

With these notations, derivative (14) is equal to

∂E

∂pi

= lim
τ→0

E(Ω(p), Ti, τ) − E(Ω(p), Ti, 0)

τ
(21)

which is, by definition, equal to the shape gradi-
ent dE(Ω(p), Ti) at Ω(p) related to the domain trans-
formation Ti [15, 16, 8, 1, 11]. Developing the shape
gradient leads to an expression involving the deriva-
tive (19) of Ti. As a consequence, the shape gradient
is denoted by dE(Ω(p), Vi) instead of dE(Ω(p), Ti) (see
Eq. (7)). Eq. (7) only involves the restriction of Vi

to Γ(p). It is equal to

Vi|Γ(p)
def
=

∂Γ

∂pi

. (22)

Therefore, the derivative of (12) with respect to the ith

parameter is equal to

∂E

∂pi

= dE

(

Ω(p),
∂Γ

∂pi

)

(23)

i.e., it is equal to the shape gradient at Ω(p) related to
the domain transformation whose restriction to Γ(p) is
equal to ∂Γ

∂pi

.
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5 Minimization algorithm

Finally, the gradient of (12) with respect to p is equal to
(see (23))

∇pE =
(

· · · ∂E
∂pi

· · ·
)T

(24)

where MT is the transpose of M , and a possible itera-
tive minimization procedure is







p0

p+1 = p − α ∇pE

α = arg mina≥0 E (p − a ∇pE)
. (25)

The proposed framework for segmentation under a
parametric shape prior constraint leads to the following
algorithm

1. Define a constraint-free segmentation energy
with (3) and (8)

2. Determine the general expression (7) of its shape
gradient

3. Define, independently, a parametric shape
prior Ω(p), or equivalently Γ(p), with parame-
ters p = {pi, i ∈ [1, n]}

4. Determine the general expressions of the n induced
velocities Vi equal to ∂Γ

∂pi

5. Initialize the constrained segmentation by choos-
ing pk, k = 0

6. Compute the induced velocities V k
i of Γ(pk) for

the pk
i ’s

7. Form the gradient ∇pE(pk) of (12) from the V k
i ’s

(see (24))

8. Update pk according to (25)

9. Test if (12) kept approximately the same value
these last few iterations; if it is the case, Γ(pk) is
considered to be the minimizer of (12); otherwise,
go back to step 6.

Note that the shape prior is separate from the seg-
mentation aspect and that it requires minimal effort to
combine these two aspects together since it suffices to
determine the induced velocities, which is trivial given
the equation of Γ as a function of p, and to plug them
into the shape gradient expression. Changing the shape
prior is only a matter of computing the new induced
velocities.

6 Experiments

A simple, region-based energy was chosen to test the
proposed method

E(p) =

∫

Ω(p)

|f(x) − µ(Ω(p))|2 dx

+

∫

Ωc(p)

|f(x) − µ(Ωc(p))|2 dx (26)

where f is a color image to be segmented (a function
from R

2 to R
3), µ(Ω(p)) is the vector of R

3 of the
average intensities per component of f within Ω(p),
and Ωc(p) is the complement of Ω(p) in the image do-
main. The function φ used here is a color version of
example (4). The combination of an integral over Ω(p)
with an integral over Ωc(p) is known as region compe-
tition [14, 19, 6, 11]. If φ is equal to zero everywhere
in the region of an object of interest, the Ω(p)-energy
is the same on any subset of the region. Therefore,
the Ω(p)-minimization process might converge to one
of these subsets. Adding a description of the back-
ground (the Ωc(p)-energy) ensures that if a portion of
the object is left outside Ω(p), the mismatch with the
description of Ωc(p) will tend to deform the active con-
tour in order to include this portion. Here, the descrip-
tions are identical, leading to a solution with a maximal
separation of µ(Ω(p)) and µ(Ωc(p)) [19].

We segmented the same color image with several
shape priors, ranging from restrictive to soft: the ac-
tive contour was successively constrained to be a cir-
cle (parameters p being the coordinates of the center
and the radius), an ellipse (parameters p being the co-
ordinates of the center, the short and long axes, and
the tilt angle), and a cubic B-spline with 3, 6 and 9
control points (parameters p being the coordinates of
the 3, 6 and 9 control points, respectively). The ini-
tial contour Γ(p0) remained consistent throughout the
different shape priors. First, an initial circle was cho-
sen for the circle prior. Then, for the spline with 3
control points for example, the aforementioned initial
circle was regularly sampled by 3 points and the 3 con-
trol points corresponding to the uniform cubic B-spline
interpolating these points were determined and used as
the initial parameters of the spline prior. The results
are presented in Figs. 1 and 2.

7 Conclusion

The accuracy of the presented results mostly depends
on (i) whether energy (26) is a convex function of R

n

and, if not, (ii) whether the minimization algorithm is
able to escape from local minima in order to converge
to the global minimum. Concerning (i), intuitively, as
the number of parameters used to describe the shape
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prior increases, energy (26) will tend to exhibit more
and more local minima. Concerning (ii), the steepest
descent algorithm proposed in Section 5 does not guar-
antee that the minimum found is global. It could be
replaced by, e.g., a simulated annealing algorithm.
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(a1) (a2)

(b)

Figure 1: Circle (3 parameters) minimizing color homo-
geneity energy (26): (a1) initial estimate; (a2) obtained
solution. (b) Ellipse (5 parameters) minimizing color
homogeneity energy (26); the initial estimate was the
same as the one used for the circle-based minimization
(see (a1)) although represented as an ellipse with the
short and long axes equal in length.
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66:1–31, 1993.

[3] V. Caselles, R. Kimmel, and G. Sapiro. Geodesic
active contours. Int. J. Comput. Vision, 22:61–79,
1997.

[4] Y. Chen, H. D. Tagare, S. Thiruvenkadam,
F. Huang, D. Wilson, K. S. Gopinath, R. W.
Briggs, and E. A. Geiser. Using prior shapes in

(a1) (a2)

(b) (c)

Figure 2: Splines minimizing color homogeneity en-
ergy (26): (a1) initial spline with 3 control points (6
parameters) interpolating the initial circle used for the
circle-based minimization (see Fig. 1); (a2) obtained
spline with 3 control points; (b) spline with 6 control
points (12 parameters) obtained with a spline interpo-
lation of the aforementioned circle as the initial esti-
mate (this interpolation is virtually indistinguishable
from the circle); (c) spline with 9 control points (18
parameters) obtained with a spline interpolation of the
aforementioned circle as the initial estimate (again vir-
tually indistinguishable from the circle).

geometric active contours in a variational frame-
work. Int. J. Comput. Vision, 50:315–328, 2002.

[5] T. F. Cootes, C. J. Taylor, D. H. Cooper, and
J. Graham. Active shape models – their training
and application. Comput. Vis. Image Und., 61:38–
59, 1995.

[6] D. Cremers and C. Schnörr. Motion competi-
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