
HAL Id: hal-00417616
https://hal.science/hal-00417616

Submitted on 26 Nov 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Gradient based optimization of semi-numerical models
with symbolic sensitivity: Application to a simple

ferromagnetic MEMS switch device
Benoît Delinchant, Harijaona Lalao Rakotoarison, Vincent Ardon, Olivier

Chadebec, Orphée Cugat

To cite this version:
Benoît Delinchant, Harijaona Lalao Rakotoarison, Vincent Ardon, Olivier Chadebec, Orphée Cugat.
Gradient based optimization of semi-numerical models with symbolic sensitivity: Application to a
simple ferromagnetic MEMS switch device. International Journal of Applied Electromagnetics and
Mechanics, 2009, 30 (3-4), pp.189-200. �10.3233/JAE-2009-1021�. �hal-00417616�

https://hal.science/hal-00417616
https://hal.archives-ouvertes.fr


 

Gradient based optimization of semi-numerical models 

with symbolic sensitivity:  

Application to a simple ferromagnetic MEMS switch device 

B. Delinchant, H.L. Rakotoarison, V.Ardon, O. Chadebec, O. Cugat  

 
G2ELab : Grenoble Electrical Engineering Lab  

ENSIEG - BP 46 - 38402 Saint-Martin-d'Hères FRANCE 

E-mail: Benoit.Delinchant@G2ELab.inpg.fr 

 

Abstract: This paper deals with electromagnetic modeling dedicated to constrained optimization needs. 

A tool dedicated to simple shape magnetic devices is presented and applied on the field of magnetic 

MEMS design. It allows semi-numerical modelling and provides symbolic gradient computation. A multi-

level optimization strategy is used to ensure fast and global convergence. 
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I Introduction 

Designing an electromagnetic device requires optimization algorithms and adapted models. In this paper, the 

virtual design of a ferromagnetic MEMS switch -and especially its preliminary sizing- is addressed, using 

MacMMems software [1] for the modelling, and CADES framework [2] for the optimization. The modelling 

software can produce parameterized semi-analytical modelling of the device with symbolic sensitivity. Thanks to 

accuracy parameters, a multi-level strategy can be deployed in the optimization framework. 

The ferromagnetic switch (also called "magnetic latch") is used as an optical switch in our case ; it is based on 

the rocking actuation of a ferromagnetic plate under the influence of a magnetic field variation. In our device, the 

static magnetic field is produced by a permanent magnet and altered by planar coils, as sketched in Fig. 1. 
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Fig. 1- Picture of a Mag-Latch switch (©MicroLab / MagFusion Inc.) and schematics.  
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I. A software for semi-numerical modelling with formal sensitivity 

A. Semi-numerical modelling of magnetic MEMS 

1. Modelling magnetic fields from permanent magnets and coils 

Assumptions are constant magnetization of magnets and constant current density in conductors. 

For magnets, a Coulombian equivalent charge approach is used with the following surface and volume 

charges : 

nMS .                   (1) 

 MdivV                   (2) 

The resulting magnetic excitation is the following.  
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As div(M)=0, volume charges are equal to zero leading to quick surface integration instead of classical 

volume integration.         

For conductors, Biot and Savart law is used. 
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Magnetic excitations were symbolically computed, as far as possible, for some basic shapes and magnetization 

direction [3][4]. 

2. Computing forces and torques on magnet, coil and ferromagnetic bodies  

For magnet, an equivalent charge method is used. 
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For conductors, Laplace law is used. 

dvHjF
v
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For specifics configurations like parallelepiped magnets interaction [6], force can be fully analytical. In our 



 

software, due to space transformation between interacting objects, and the possibility of there displacement 

during an optimization, force and torque computation will use numerical integration method. 

For ferromagnetic material, a steady state Method of Moments (MoM) is applied. It consists in the meshed of 

ferromagnetic body along the X, Y and Z axes, with uniform induced magnetized elementary blocks [3].  This 

method doesn’t require to mesh air and is particularly performing for radiating system. The issue of such an 

integral method is it’s full matrices and then it’s computation memory limitation. 

Hext

 

Fig. 2- Magnetization of ferromagnetic blocs with external field (eg. magnets or coils).  

Figure 2 shows magnetization of each block which depends on the external field (Hext produced by field 

sources like magnets or conductors) and the field produced by other blocks depending on their own 

magnetization. 

MQHH ext                   (9) 

Blocks interaction is defined by the interaction matrix (Q in equation 9). Q is a square matrix of size 

(3m)x(3m) (m is the number of blocks), composed of 3x3 square matrices Qab. This matrix represented the 

magnetic excitation created by block (a) to the barycentre of block (b) and correpond to a well-known point 

matching approach. 
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In the case of parallelepiped block [10], Qjk are defined by the following equations:  
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with 
202,1
xw

c xxx  , y1,2 and z1,2 are similar. 

(xc, yc, zc) is barycentre of emitting block. 

(wx, wy, wz) is emitting block dimensions. 

(x0, y0, z0) is target block barycentre. 

Qyy, Qzz are deduced from Qxx and Qxz, Qyz are deduced from Qxy. 

The ferromagnetic material law is defined by H=f(M) curve, parameterized by the saturation induction and 

initial permeability as shown in equation 13. 
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The unknowns, ferromagnetic magnetizations, can then be found by solving the non-linear equation 14 : 

MHMf ext


 Q)(                 (14) 

To do it, a Newton-Raphson solver has been used with a relaxation method to ensure convergence. 

When magnetizations are known, each block can be seen as parallelepiped magnets, to compute magnetic 

field or force and torque as explained in figure 3. 
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Fig. 3- Surface charge approach, used to compute force and torque with the ferromagnetic magnetizations. 

B. Modelling Software 

1. MacMMems : an automated semi-numeric model generator 

These semi-numerical modeling techniques have been implemented in two software. The first is LOCAPI [9], 

a generic one based on a numeric solver where complex shapes can be introduced thanks to a meshing tool. The 

second, which is detailed in the following, is MacMMems [4][5] (Macro Modeller for Magnetic MEMS) 

dedicated to provide analytical models which aim to be derivate for optimization process. It is limited to simple 

shapes in order to produce symbolic derivates. 

In MacMMems, geometry and physics are described easily thanks to an intuitive GUI (Graphical User 

Interface). Each body owns its equations depending on the material (magnet, coil, ferromagnetic, diamagnetic) 

and its shape (parallelepiped block, part or full cylinder). Space transformations can be added (translations and 

rotations). Magnetic field, force and torques can be computed. Depending on desired computations, MacMMems 
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generates the global model by the assembly of equations given by bodies and space transformations.  

Dimensions, physics and spaces transformations can be parameterized leading to a very useful modeling. 

Since a fully parameterized model, constituted of equations and call to functions, a symbolic treatment can be 

done to express parameter sensitivities. This task is realized in CADES Generator detailed in section C. 

  

Fig. 4 - Left: MacMMems (Macro Modeller for Magnetic MEMS), Right: CADES Generator 

 

2. Comparison with FEM Modelling 

The modeling of our device with a FEM software is very uneasy because a new heavy air mesh generation is 

needed at each switch position.  For example, two hours are needed to plot the curve on figure 5 . In contrast, the 

semi-numerical model needs only 5 seconds for a ferromagnetic part decomposed in 6x3x1 blocks which 

sufficient accuracy for optimization needs. 
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Fig. 5 - Left: 3D FEM solver (Flux3D). Right: comparison between FEM and semi-numeric solvers 

 

C. Symbolic derivation 

The following details how pure analytical model as well as mixed numeric-analytic model can be derivate in 

the CADES Framework [2]. 

1. CADES Framework with pure algebraic models 

First of all, CADES framework is able to compute formal sensitivities from algebraic equations based on [7] 

work. To do so, model is analysed, treating equations and functions, finding parameters required for the 



 

computation (input parameters such as geometry or physics parameters) and the resulting output parameters 

(such as magnetic field forces and torques). Partial derivatives for each equation or function are symbolically 

determined thanks to derivation rules. Model partial derivatives are then determined by the composition of 

equations and functions. Model’s jacobian matrix is then explicitly defined by equations and functions. 

 

Fig. 6 - Modelling tools sequence diagram 

2. CADES Framework with semi-numerical models 

For numerical functions such as integrals (needed to compute torques and forces or fields produced by 

complex shapes) or numerical algorithm as previous ferromagnetic magnetization solver, it is easy to compute 

numerical sensitivities, but it is known that they brought optimization difficulties. For this reason, in CADES 

Framework, each numerical function is able to return partial derivatives determined symbolically as far as 

possible. 

In the case of integration functions, partial derivatives can be fully expressed. Indeed, considering function 

f(d,c,x) to integrate with ‘x’ variable, from ‘a’ to ‘b’ which can depend on geometric parameters like ‘d’. 
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Partial derivatives expression depends on the position of the varying parameter. For instance, ‘c’ parameter is 

only on the integrand part, the expression is defined by equation 16. 
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But for ‘d’ parameter, from which depends integration limits, the expression is defined by more complex 

equation 17. It can be noticed that the derivative of an integral can be computed without integral (this occurs, if 

the function f does not depend on parameter ‘d’) which is far faster than finite differences techniques. 
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In the case of moment method algorithm, a symbolic derivation can be expressed for field, force or torque 

calculation depending on optimizatable parameters (most of time geometric). This symbolic derivation is 

possible despite numerical algorithm, such as non linear equation solving to solve ferromagnetic magnetization 
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state. Indeed, torque, which can be constrained or optimized, is a function of the magnetization of the 

ferromagnetic material, the external field and system parameters. Its partial derivative is defined by equation 18. 
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dM/dp is the harder term to compute since it is obtained by numerical algorithm such as Newton-Raphson (see 

equation 14). But implicit theorem demonstrates that dM/dp can be symbolically expressed. 
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dM/dp can then be found by solving the following linear system. 
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Due to computation improvement requirements, the method used to compute d/dp is more complex [6]. 

dM/dp is not computed since it is not really necessary and it requires solving a linear system for each parameter 

‘p’. Instead of dM/dp, an adjoin state vector, as described in [14], is computed once by solving a linear system, 

and d/dp is computed quickly for each parameter ‘p’.  

II. Optimization 

A. Design specifications 
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Fig. 7 – geometrical design parameters 

 

Constant parameters are: 

 magnet magnetization : 1 T, 

 ferromagnetic plate dimensions : 1000x500x25 µm
3
  

 ferromagnetic saturation induction : 1T 

 ferromagnetic initial permeability : 10000 T/(A.m) 

 commutation angle : 5° 

 resistive beam torque 0.227 µN.m 

 

Table 1: Design specifications 

Objective Copper  losses To minimize 

Constraints Holding torque  < -0.1 µN.m 

 Actuation torque > 0.025 µN.m 

Optimizable parameters Magnet high [50 ;100] µm 

 Magnet width [1000 ;2000] µm 

 Magnet length [1000 ;2000] µm 

 Magnet gap [1 ;100] µm 



 

 Conductor high [10 ;100] µm 

 Conductor length [100 ;500] µm 

 Conductor gap [100 ;1000] µm 

 Conductor 1 current [1 ;10] A 

 Conductor 2 current [1 ;10] A 

B. Multi-level optimization 

To improve speed convergence and accuracy, optimization strategies often use several modelling level. A two 

level strategy consists on using a coarse model for its calculation speed, and a fine model for its calculation 

accuracy. Mixing both, in an optimization strategy leads to faster results. 

Our modeling method allows fine and coarse model thanks to meshing size of ferromagnetic part, and 

adaptive numerical integration accuracy parameter. A minimal accuracy of the coarse model has been validated 

in figure 5. Its calculation speed is 20 times faster than fin model calculation speed. 

The coarse model can be used to find a first solution which can be followed by the fine model optimization in 

order to adjust solution regarding accuracy approximation of the coarse model. 

     

Fig. 8 – discretizating for coarse model is 6x3x1=18 blocks, for fine model 12x6x2=144 blocks 

 

Thanks to the formal derivation of system modeling, gradient based optimization can be done on both coarse 

and fine model. Unfortunately, gradient based optimization algorithms have local convergence regarding 

parameters initialization. It means that a better solution can be found with other initial values. 

C. Global optimization strategies 

1. Evolutionary Strategy optimization 

 

Meta-heuristic algorithms, like genetic ones, try to find the global optimum but they lack of accuracy and need 

lot of model computations. To show this, an optimization has been done with an Evolutionary Strategy (ES) 

algorithm [13] (15 parents, 100 children, 75 generations leading to 7516 iterations during 47 minutes). The 

optimization converges to a quite good solution meeting constraints requirements, but the simulation of this 

solution with the fine model gave unfeasible constraints.  

Table 2: Evolutionary Strategy (ES) optimization 

 ES on coarse Computation of fine 

Copper losses (mW) 18,1 18,1 

Holding torque (µN.m) 0,10015 0,093 

Actuation torque (µN.m) 0,0254 0,0249 

Iterations number 7516 1 

Duration (sec) 2820 15 



 

In our study, this solution (Fig. 9) is good enough, but this methodology is not safe regarding constraints.  

 
Fig. 9 – Evolutionary Strategy solution geometry 

 

2. Multi-start gradient-based optimization 

 
Fig. 10 – gradient based solution geometry 

 

Figure 10 shows another solution (better) founded by another methodology. The previous optimization was 

done without gradients since any local information is needed for such an algorithm. The availability of gradients 

in our modeling allows good accuracy with gradient based algorithm such as SQP (Sequential Quadratic 

Programming) but its drawback is the initial configuration given to the algorithm. Considering a high speed 

convergence, several tries can be done with randomized initial configurations. 6 SQP were done independently 

and a good solution was found in few times with a so simple strategy. A good solution was founded in less than 

8 minutes (6 times better). Theses results highlight potentiality of gradient based strategies in the scope of global 

algorithm. 

Table 4: Multi-start SQP optimization strategy 

 Best of 6 SQP on coarse SQP on fine 

Copper losses (mW) 13,1 14,7 

Holding torque (µN.m) 0,1 0,1 

Actuation torque (µN.m) 0,025 0,025 

Iterations number 89 4 

Duration (sec) 235 227 

In the following figure, copper losses, holding torque and actuation torque are plotted during optimization 

iterations. 6 Solutions are marked with a circle. Each satisfies constraints but one has a better minimization than 

other at the iteration 47. 



 

 

Fig. 12 – Multi-start strategy, 6 minimizations of Copper Losses (best found at iteration 47) 

 

Fig. 13 – Multi-start strategy, Constraint validation (Holding torque  < -0.1 µN.m) 

 

Fig. 13 – Multi-start strategy, Constraint validation (Actuation torque > 0.025 µN.m) 

3. Mixed Genetic/SQP strategy 

Another solution regarding SQP initialization issue is a genetic/gradient mixed strategy 0. Instead of random 

starting configurations, a genetic algorithm solution can be given to SQP in order to improve it. For the genetic 

optimization, the generation number has been reduced as well as constraints satisfaction since precision will be 

reached with gradients (SQP algorithm). 

Table 3: Mixed Genetic-SQP optimization strategy 

 Genetic on coarse SQP on coarse SQP on fine 

Copper losses (mW) 14.1 13.1 14,7 

Holding torque (µN.m) 0,099 0.1 0,1 

Actuation torque (µN.m) 0,0253 0,025 0,025 

Iterations number 150 8 4 

Duration (sec) 400 42 227 

 

In this last strategy, ES part remains the most time consuming (80%). Indeed, SQP on coarse model converge 

to a good solution very quickly as it can be seen in the following figures. But mixing both global and local 



 

approaches allows finding a global accurate solution. 

  

Fig. 12 – Mixed Genetic-SQP strategy- Minimizations of Copper Losses 

 

  

Fig. 13 – Mixed Genetic-SQP strategy- Constraint validation (Holding torque  < -0.1 µN.m) 

 

  

Fig. 13 – Mixed Genetic-SQP strategy- Constraint validation (Actuation torque > 0.025 µN.m) 

 

III. Conclusion 

In this paper, the use of semi-numerical modeling with symbolic sensitivity has demonstrated its usefulness in 

the area of gradient based optimization to design electromagnetic devices based on simple shapes like MEMS. It 

has been shown how electromagnetic interactions can be semi-analytically modeled. It has been also shown how, 

from a semi-analytical (or semi-numerical) model, symbolic partial derivatives can be expressed depending on 

the analytical part and the numerical one. This knowledge has been capitalized in software to automatically 

produce modeling and sensitivities in few minutes with a simple device description. 

 Such a methodology, detailed on a model using integrals and method of moment solver, can be extended to 



 

much more numerical solver. Symbolic sensitivities calculation is a hard work to do but it leads to optimization 

improvements regarding direct optimizations like genetic algorithms. It can be interesting to compare our 

methodology with other derivation techniques like automatic differentiation [15]. 
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