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FACTORIZATION OF THE CANONICAL BASES FOR HIGHER LEVEL FOCK SPACES

The level l Fock space admits canonical bases Ge and G∞. They correspond to Uv( sle) and Uv(sl∞)-module structures. We establish that the transition matrices relating these two bases are unitriangular with coefficients in N[v]. Restriction to the highest weight modules generated by the empty lpartition then gives a natural quantization of a theorem by Geck and Rouquier on the factorization of decomposition matrices which are associated to Ariki-Koike algebras.

, one can reduce various important problems to the case when θ(q) = η e := exp( 2iπ e ) is a e-th root of unity, for e ∈ Z ≥2 , and θ(Q j ) = η sj e , for j = 1, . . . , l, where (s 1 , . . . , s l ) ∈ Z l . An important object of study in the modular case is the decomposition map. As H A is a cellular algebra [14], the decomposition map may be defined as follows. Let V K ∈ Irr(H K ). Then there exists a specific H A -module V A , which is called a cell module, such that V K = K ⊗ A V A . We can then associate to V K the H C -module V C = C ⊗ A V A . This gives a well-defined map between Grothendieck groups R 0 (H K ) of finitely

Introduction

In the classification of finite complex reflection groups by Shephard and Todd [START_REF] Shephard | Finite unitary reflection groups[END_REF], there is a single infinite family of groups G(lp, p, n) parametrized by the triples (l, p, n) ∈ N 3 and 34 other "exceptional" groups. If p = 1, the group G(l, 1, n) is the wreath product of the cyclic group of order l with the symmetric group S n . It generalizes both the Weyl group of type A n-1 (corresponding to the case l = 1) and the Weyl group of type B n (l = 2). To G(l, 1, n) we may associate its Hecke algebra over the ring A := C[q ±1 , Q ±1 1 , . . . , Q ±1 l ], where (q, Q 1 , . . . , Q l ) is an l + 1tuple of indeterminates. This algebra can be seen as a deformation of the group algebra of G(l, 1, n) and has applications to the modular representation theory of finite reductive groups (see for example the survey [START_REF] Mathas | The representation theory of the Ariki-Koike and cyclotomic q-Schur algebras[END_REF]). As an A-algebra, it has the set of generators {T 0 , . . . , T n-1 } such that the defining relations are generated H K -modules and R 0 (H C ) of finitely generated H C -modules. We denote the decomposition map by

d θ : R 0 (H K ) → R 0 (H C ).
We denote the associated decomposition matrix by D e . It is known that we may choose V A more general than the cell module and the decomposition map is still well defined [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF].

There exist algorithms to compute the map d θ , but it remains difficult to describe it in general. One useful tool here is a result by Geck and Rouquier [START_REF] Geck | Rouquier Centers and simple modules for Iwahori-Hecke algebras[END_REF], which gives information on the matrix D e by factorizing the decomposition map. Let θ q : A → C(q) be the specialization map defined by θ q (Q i ) = q si , for i = 1, . . . , l. Denote by H C(q) := C(q) ⊗ A H A the associated Hecke algebra. As above, we have the decomposition map

d θ q : R 0 (H K ) → R 0 (H C(q) )
and the associated decomposition matrix D ∞ . Then [START_REF] Geck | Rouquier Centers and simple modules for Iwahori-Hecke algebras[END_REF]Prop. 2.12] implies the following.

Theorem 1.1 (Geck-Rouquier). There exists a unique Z-linear map

d θ θ q : R 0 (H C(q) ) → R 0 (H C )
such that the following diagram commutes:

R 0 (H K ) - d θ R 0 (H C ) Q Q Q Q s d θ q 3 d θ θ q R 0 (H C(q) )
Thus, we have the factorization D e = D ∞ .D e ∞ of the decomposition matrices, where D e ∞ is the decomposition matrix for d θ θ q . We shall call D e ∞ the relative decomposition matrix. This result shows that a part of the representation theory of H C does not depend on e but only on the representation theory of H C(q) , which is "easier" to understand (for example, there are closed formulae for the entries of D ∞ when l = 2 [START_REF] Leclerc | H Miyachi Constructible characters and canonical bases[END_REF]). An example of its application is that one may give explicit relationship among various classifications of simple modules arising from the theory of canonical basic sets in type B n [START_REF] Jacon | Constructible representations and basic sets in type Bn[END_REF].

In view of the Fock space theory, which is now standard in the study of Hecke algebras, Theorem 1.1 naturally leads to several questions. As noted above, there is an algorithm for computing the decomposition matrices of H C and H C(q) . This algorithm relies on the first author's proof (see [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF]) of the Lascoux-Leclerc-Thibon conjecture [START_REF] Lascoux | Hecke algebras at roots of unity and crystal bases of quantum affine algebras[END_REF]. His theorem asserts that D e (resp. D ∞ ) is equal to the evaluation at v = 1 of the matrix D e (v) (resp. D ∞ (v)) which is obtained by expanding the canonical basis in a highest weight U v ( sl e )-module (resp. U v (sl ∞ )-module) into linear combination of the standard basis of a Fock space. Thus, Theorem 1.1 implies the existence of a matrix D e ∞ such that D e (1) = D ∞ [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF].D e ∞ . The entries of D e (v) and D ∞ (v) are known to be in N[v], i.e. polynomials with nonnegative integer coefficients. Hence it is natural to ask: (Q1) Does the matrix D e ∞ have a natural quantization ? Namely, is there a matrix D e ∞ (v) with entries in N [v] such that D e (v) = D ∞ (v).D e ∞ (v) ? (Q2) If D e ∞ (v) is known to exist, find a practical algorithm to compute D e ∞ (v). In other words, we ask if the matrix of the canonical basis for U v ( sl e )-modules factorizes through the matrix of the canonical basis for U v (sl ∞ )-modules.

Highest weight U v ( sl e )-modules and U v (sl ∞ )-modules are realized as irreducible components of Fock spaces of higher level. By Uglov's results [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF], these Fock spaces also admit canonical bases. So the above questions also make sense for the matrices ∆ e (v) and ∆ ∞ (v) which are associated to the canonical bases of the whole Fock space. Thus, instead of (Q1), we ask whether there exists a matrix ∆ e ∞ (v) with entries in

N[v] such that ∆ e (v) = ∆ ∞ (v).∆ e ∞ (v). The matrix ∆ e ∞ (v
) is expected to have several interpretations. Observe that recent conjectures and results [START_REF] Bonnafé | Cellular structures for Hecke algebras of type Bn[END_REF], [START_REF] Brundan | Graded decomposition numbers for cyclotomic Hecke algebras[END_REF], [START_REF] Brundan | Graded Specht modules[END_REF] show that D e (v) and D ∞ (v) should be interpreted as graded decomposition matrices of Hecke algebras. D e ∞ (v) might also be interpreted as a graded analogue of D e ∞ in this setting. According to conjectures of Yvonne [START_REF] Yvonne | A conjecture for q-decomposition matrices of cyclotomic v-Schur algebras[END_REF] and Rouquier [28, §6.4], ∆ e (1) and ∆ ∞ (1) are expected to be decomposition matrices of a generalized η e and q-Schur algebras, respectively. Thus, ∆ e ∞ (v) might have a similar meaning as D e ∞ (v) as well. In another direction, we interpret the factorization D e = D ∞ .D e ∞ in the context of parabolic BGG categories in the last section. This second interpretation should also have graded version, which is independent of the first (note that Hecke algebras are not positively graded.)

In this paper, we answer positively to the questions (Q1) and (Q2) for ∆ e ∞ (v). We first show the existence of the matrices D e ∞ (v) and ∆ e ∞ (v) with entries in Z[v]. In fact D e ∞ (v) is a submatrix of ∆ e ∞ (v) and we provide an efficient algorithm for computing it (and thus an algorithm for computing D e ∞ ). Then, we prove that the entries of ∆ e ∞ (v) are in N [v]. More precisely, we show that they can be expressed as sum of products of structure constants of the affine Hecke algebras of type A with respect to the Kazhdan-Lusztig basis and its generalization by Grojnowski-Haiman [START_REF] Grojnowski | Affine Hecke algebras and positivity of LLT and Macdonald polynomials[END_REF].

Let us briefly summarize the main ingredients of our proofs. The Fock space theory developed in [START_REF] Jimbo | Combinatorics of representations of Uq( sl(n)) at q = 0[END_REF] and the notion of canonical bases for these Fock spaces introduced in [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF] make apparent strong connections between the representation theories of U v ( sl e ) and U v (sl ∞ ). They permit us to prove the existence of a matrix ∆ e ∞ (v) with entries in

Z[v] such that ∆ e (v) = ∆ ∞ (v).∆ e ∞ (v)
. This factorization can be regarded as an analogue, at the level of canonical bases, of the compatibility of the crystal graph structures established in [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight Uv( sle)modules of higher level[END_REF]. It is achieved by introducing a new partial order on the set of l-partitions, which does not depend on e. This order differs from that used in [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF] and has the property that ∆ e (v) and ∆ ∞ (v) are simultaneously unitriangular. The compatibility between the U v ( sl e ) and U v (sl ∞ )-module structures on the Fock space then implies the factorization ∆ e (v) = ∆ ∞ (v).∆ e ∞ (v). To show the positivity, recall that the coefficients of the matrices ∆ ∞ (v) and ∆ e (v) are expressed by parabolic Kazhdan-Lusztig polynomials of the affine Hecke algebras of type A [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]. We see in a simpler manner than [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF] how the parabolic Kazhdan-Lusztig polynomials are related to the entries of ∆ ∞ (v) and ∆ e (v), for a fixed pair of l-partitions. The positivity result then follows from this and the positivity of the structure constants of the affine Hecke algebra.

Background on Fock spaces and canonical bases

We refer to [START_REF] Kashiwara | Bases cristallines des groupes quantiques[END_REF] and to [START_REF] Ariki | Representations of quantum algebras and combinatorics of Young tableaux[END_REF] for a detailed review on the canonical and crystal basis theory. [10, §7] also gives a nice survey on modular representation theory of Hecke algebras. Let v be an indeterminate, e > 1 an integer, and U v ( sl e ) the quantum group of type A

(1) e-1 . It is an associative Q(v)-algebra with Chevalley generators e i , f i , t i , t -1 i , for i ∈ Z/eZ, and ∂. We refer to [31, §2.1] for the precise definition. The bar-involution is the ring automorphism of U v ( sl e ) such that v = v -1 , ∂ = ∂ and,

e i = e i , f i = f i and t i = t -1 i , for i ∈ Z/eZ. We denote by U ′ v ( sl e ) the subalgebra generated by {e i , f i , t i , t -1 i | i ∈ Z/eZ}
. By slight abuse of notation, we identify the elements of Z/eZ with their corresponding labels in {0, . . . , e -1} when there is no risk of confusion. Write {Λ 0 , . . . , Λ e-1 } for the set of fundamental weights of U v ( sl e ), and δ for the null root. Let l ∈ Z ≥1 and consider s = (s 1 , . . . , s l ) ∈ Z l , which we call a multicharge. We set s = (s 1 (mod e), . . . , s l (mod e)) ∈ (Z/eZ) l and Λ s := Λ s1(mod e) + . . . + Λ s l (mod e) .

Similarly, let U v (sl ∞ ) be the quantum group of type A ∞ . It is an associative Q(v)-algebra with Chevalley generators E j , F j , T j , T -1 j , for j ∈ Z. We use the same symbol to denote its bar-involution, which is the ring automorphism of U v (sl ∞ ) such that v = v -1 and, E j = E j , F j = F j and T j = T -1 j , for j ∈ Z. Write {ω j , j ∈ Z} for its set of fundamental weights. To s = (s 1 , . . . , s l ) ∈ Z l , we associate the dominant weight Λ s := ω s1 + • • • + ω s l .

2.1. Fock spaces. Let Π l,n be the set of l-partitions with rank n, that is, the set of sequences λ =(λ (1) , . . . , λ (l) ) of partitions such that |λ| = λ (1) 

+ • • •+ λ (l) = n. Set Π l = ∪ n≥0 Π l,n .
We also write Π = ∪ n≥0 Π 1,n for short. The Fock space F of level l is a Q(v)-vector space which has the set of all l-partitions as the given basis, so that we write

F = λ∈Π l Q(v)λ.
The Fock space F may be endowed with a structure of U v ( sl e ) and U v (sl ∞ )-modules.

Let λ be an l-partition (identified with its Young diagram). Then, the nodes of λ are the triples γ = (a, b, c) where c ∈ {1, . . . , l} and a, b are the row and column indices of the node γ in λ (c) , respectively. The content of γ is the integer c (γ) = ba + s c and the residue res(γ) of γ is the element of Z/eZ such that (1) res(γ) ≡ c(γ)(mod e).

For i ∈ Z/eZ, we say that γ is an i-node of λ when res(γ) ≡ i(mod e). Similarly for j ∈ Z, we say that γ is a j-node of λ when c(γ) = j. We say that a node γ is removable when γ = (a, b, c) ∈ λ and λ\{γ} is an l-partition, and addable when γ = (a, b, c) / ∈ λ and λ ∪ {γ} is an l-partition.

Let i ∈ Z/eZ. In the sequel, we follow the convention of [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]. We define a total order on the set of i-nodes of λ. Consider two nodes γ 1 = (a 1 , b 1 , c 1 ) and γ 2 = (a 2 , b 2 , c 2 ) in λ. We define the order by

γ 1 ≺ s γ 2 ⇐⇒ c(γ 1 ) < c(γ 2 ) or c(γ 1 ) = c(γ 2 ) and c 1 < c 2 .
Let λ and µ be two l-partitions of rank n and n + 1 such that [µ] = [λ] ∪ {γ} where γ is an i-node. Define

N ≻ i (λ, µ) =♯{addable i-nodes γ ′ of λ such that γ ′ ≻ s γ} (2) -♯{removable i-nodes γ ′ of µ such that γ ′ ≻ s γ}, N ≺ i (λ, µ) =♯{addable i-nodes γ ′ of λ such that γ ′ ≺ s γ} -♯{removable i-nodes γ ′ of µ such that γ ′ ≺ s γ}, (3) 
N i (λ) =♯{addable i-nodes of λ} -♯{removable i-nodes of λ} and M 0 (λ) =♯{0-nodes of λ}.

Theorem 2.1. [START_REF] Jimbo | Combinatorics of representations of Uq( sl(n)) at q = 0[END_REF] Let s ∈ Z l . The Fock space F has a structure of an integrable U v ( sl e )-module F s e defined by

e i λ = res([λ]/[µ])=i v -N ≺ i (µ,λ) µ, f i λ = res([µ]/[λ])=i v N ≻ i (λ,µ) µ, t i λ = v Ni(λ) λ and ∂λ = -(∆ + M 0 (λ))λ,
for i ∈ Z/eZ, where ∆ is the rational number defined in [START_REF] Jimbo | Combinatorics of representations of Uq( sl(n)) at q = 0[END_REF]Thm 2.1]. The module structure on F s e depends on s and e.

We may consider F as a U ′ v ( sl e )-module by restriction. We denote it by the same F s e by abuse of notation. Let j ∈ Z. For l-partitions λ and µ of rank n and n + 1 such that [µ] = [λ] ∪ {γ} where γ is a j-node, we define N ≻ j (λ, µ), N ≺ j (λ, µ) and N j (λ) as in (2) except that we consider j-nodes, for e = ∞, instead of i-nodes, for e finite. Theorem 2.2. [START_REF] Jimbo | Combinatorics of representations of Uq( sl(n)) at q = 0[END_REF] Let s ∈ Z l . The Fock space F has a structure of an integrable U v (sl ∞ )-module F s ∞ defined by

E j λ = c([λ]/[µ])=j v -N ≺ j (µ,λ) µ, F j λ = c([µ]/[λ])=j v N ≻ j (λ,µ) µ, T j λ = v Nj (λ) λ,
for j ∈ Z. The module structure on F s e depends on s.

The following result is implicit in [START_REF] Jimbo | Combinatorics of representations of Uq( sl(n)) at q = 0[END_REF]Prop 3.5].

Proposition 2.3. The U ′ v ( sl e ) and U v (sl ∞ )-module structures F s e and F s ∞ are compatible in the sense that we may write the action of e i , f i and t i , for i ∈ Z/eZ, as follows:

e i = j∈Z,j≡i(mod e)   r≥1 T -1 j-re   E j , f i = j∈Z,j≡i(mod e)   r≥1 T j+re   F j , t i = j∈Z,j≡i(mod e) T j .
Remark 2.4. The infinite sums and products in the proposition reduce in fact to finite ones since the number of nodes in λ is finite.

The empty multipartition ∅ is a highest weight vector in F s e and F s ∞ of weight Λ s and Λ s , respectively. We then define V e (s) and V ∞ (s) as the highest weight modules U ′ v ( sl e ).∅ and U v (sl ∞ ).∅, respectively. Observe that the module structure on V e (s) really depends on s and not only on its class s modulo e. By the previous proposition, it follows that V ∞ (s) is endowed with the structure of a U ′ v ( sl e )-module and V e (s) coincides with the U ′ v ( sl e )-submodule of V ∞ (s) generated by the highest weight vector ∅.

2.2.

Uglov's canonical bases. We now briefly recall Uglov's plus canonical basis of the Fock spaces. Let A(v) be the ring of rational functions which have no pole at v = 0. Set

L := n≥0 λ∈Π l,n A(v)λ and B := {λ (mod vL) | λ ∈Π l }.
Theorem 2.5. [START_REF] Foda | Branching functions of A (1) n-1 and Jantzen-Seitz problem for Ariki-Koike algebras[END_REF] The pair (L, B) is a crystal basis for F s e and F s ∞ . Note that although the crystal lattice L and the basis B of L/vL are the same for F s e and F s ∞ , the induced crystal structures B e and B ∞ on B do not coincide. The crystal structure B e is obtained as follows. Let λ be an l-partition, and i ∈ Z/eZ. We consider the set of addable and removable i-nodes of λ. We read the nodes in the increasing order with respect to ≺ s , and let w i be the resulting word of the nodes. If a removable i-node appears just before an addable i-node, we delete both and continue the same procedure as many times as possible. In the end, we reach a word w i of nodes such that the first p nodes are addable and the last q nodes are removable, for some p, q ∈ N. If p > 0, let γ be the rightmost addable i-node in w i . The node γ is called the good i-node of λ. Then, the crystal B e may be read off from its crystal graph:

• vertices: l-partitions whose nodes are colored with residues.

• edges: λ i → µ if and only if µ is obtained by adding a good i-node to λ. We denote by B e (s) the connected component of B e which contains the highest weight vertex ∅. We may identify B e (s) with the crystal graph of V e (s). The crystal graph of B ∞ is obtained in a similar manner: we use j-nodes (j ∈ Z), for e = ∞, instead of i-nodes, for e finite. We may also identify the crystal graph of V ∞ (s) with B ∞ (s), the connected component of B ∞ which contains the highest weight vertex ∅.

Let e ∈ Z ≥2 ∪ {∞}. We denote

U v (g) = U ′ v ( sl e ) (if e < ∞) U v (sl ∞ ) (if e = ∞)
for short. We define a Z[v]-lattice L Z of L by

L Z := n≥0 λ∈Π l,n Z[v]λ.
In [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF], Uglov introduced a bar-involution on F s e , which is defined by u.f = u.f , for u ∈ U v (g) and f ∈ F s e , and ∅ = ∅. Such a bar-involution is easier to define for the Fock space F s ∞ as is explained in [4, §3.9]. In the two cases, this leads to the following Theorem-definition.

Theorem 2.6. [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF] Let s ∈ Z l and e ∈ Z ≥2 ∪ {∞}. There exists a unique basis

G e (s) = {G e (λ, s) | λ ∈Π l } of F s
e such that the basis elements are characterized by the following two conditions.

(1) G e (λ, s)=G e (λ, s),

(2) G e (λ, s) ≡ λ (mod vL Z ).
The basis G e (s) is called the plus canonical basis of F s e . It strongly depends on e ∈ Z ≥2 ∪ {∞}. The purpose of the next theorem is to identify the Kashiwara-Lusztig canonical basis of V e (s) with a subset of G e (s).

Theorem 2.7. [31] Let s ∈ Z l and e ∈ Z ≥2 ∪ {∞}. Define G • e (s) = G e (s) ∩ V e (s). Then G •
e (s) coincides with the canonical basis of the irreducible highest weight U v (g) -module V e (s). Moreover, G e (λ, s) ∈G • e (s) if and only if λ ∈B e (s).

Compatibility of canonical bases

In this section, we prove that each G e (λ, s) may be expanded into Z[v]-linear combination of the canonical basis G ∞ (s). A crucial observation for the proof is that we may define a partial order on multipartitions which is independent of e. Then, the transition matrix becomes unitriangular with respect to the partial order.

3.1. Some combinatorial preliminaries. A 1-runner abacus is a subset A of Z such that -k ∈ A and k / ∈ A for all large enough k ∈ N. To visualize a 1-runner abacus, we view Z as a horizontal runner and place a bead on the k-th position, for each k ∈ A. Thus, the runner is full of beads on the far left and has no beads on the far right. For l ≥ 1, an l-runner abacus is an l-tuple of 1-runner abaci. Let A l be the set of l-runner abaci. To each pair of an l-partition λ = (λ (1) , . . . , λ (l) ) and a multicharge s = (s 1 , . . . , s l ) ∈ Z l , we associate the l-runner abacus a(λ, s) := {(λ

(d) i + s d + 1 -i, d) | i ≥ 1, 1 ≤ d ≤ l}, which is a subset of Z × [1, l]. One checks easily that the map (λ, s) ∈ Π l × Z l → a(λ, s) ∈ A l
is bijective. To describe the embedding of Fock spaces into the space of semi-infinite wedge products and then cut semi-infinite wedge products to finite wedge products, we need to introduce a bijective map

τ l : Π × Z ∼ = A → A l ∼ = Π l × Z l . Definition 3.1. Let τ l : Z → Z × [1, l] be the bijective map defined by k → (φ(k), d(k)), where k = c(k) + e(d(k) -1) + elm(k) such that c(k) ∈ [1, e], d(k) ∈ [1, l] and m(k) ∈ Z, and φ(k) = c(k) + em(k). Then, we define τ l : Π × Z ∼ = A → A l ∼ = Π l × Z l by A → τ l (A) = {(φ(k), d(k)) | k ∈ A} ∈ A l , for A ∈ A. Remark 3.2. (1) If (λ, s) = τ l (λ, s) then s = s 1 + • • • + s l .
(2) To read off the multicharge s = (s 1 , . . . , s l ) from the l-runner abacus, we proceed as follows: if the left adjacent position of a bead on a runner is vacant, we move the bead to the left to occupy the vacant position, and we repeat this procedure as many times as possible. Then, s d is the column number of the rightmost bead of the d-th runner.

Example 3.3. Let e = 2 and l = 3. Then the preimage of (λ, s) = (((1.1), (1.1), ( 1)), (0, 0, -1)) 

is (λ, s) = ((4.3.3.2.1), -1). l -7 -6 -1 6 -5 -4 -3 - 
) = τ -1 l (λ, s) has the 1-runner abacus a(λ, s) = {(k i := λ i + s + 1 -i) | i ≥ 1},
and the semi-infinite sequence (k 1 , k 2 , . . . ) defines a semi-infinite wedge product. We fix a sufficiently large r such that (4)

λ i = 0, for i ≥ r.
Then (λ, s) is determined by the finite sequence k := (k 1 , . . . , k r ). For example, ((4.3.3.2.1), -1) is determined by k = (3, 1, 0, -2, -4, -6, -7). We write k = τ -1 l (λ, s) by abuse of notation. Then they give the wedge basis in the space of finite wedge products Λ r , which will be introduced in a different guise in §5.2.

We read the beads τ l (k 1 ), . . . , τ l (k r ) on the l-runner abacus a(λ, s) from right to left, starting with the l-th runner, and obtain a permutation w(k) = (w 1 , . . . , w r ) of k. In our example, we have w(k) = (0, -6, -7, 3, -2, 1, -4). We will need the ζ(λ) and b(λ) when we express ∆ e λ,µ (v) in Kazhdan-Lusztig polynomials. In this respect, the following remark is important. Remark 3.6. Suppose that we have fixed λ and s. Assume e and e ′ are two positive integers. Then k = τ -1 l (λ, s) does not coincide in general for distinct e and e ′ . Nevertheless, one can choose r such that ζ(λ) and b(λ) for e coincide with those for e ′ . For this to hold, it suffices that the r beads are the same for e and e ′ . Thus, it suffices to choose r as in ( 4) such that 1k r is divisible by e and e ′ . If we divide the l-runner abacus into cells with height l and width e (resp. e ′ ) so that the initial cell contains exactly the locations labelled by 1, 2 . . . , el (resp. 1, 2 . . . , e ′ l), it says that the finite sequence ends at the upper-left corner of a far left cell for both e and e ′ . In our running example, if we want to make ζ(λ) and b(λ) coincide for e = 2 and e ′ = 3, we read all the beads with labels greater or equal to -17 in Figure 1.

Definition 3.4. Let τ l (w i ) = (ζ i , b i ), for 1 ≤ i ≤ r, that is,
Let P = Z r and W the affine symmetric group which is the semidirect product of the symmetric group S r and the normal subgroup P. W acts on β = (β 1 , . . . , β r ) ∈ P on the right by

β • s i = (β 1 • • • , β i+1 , β i , . . . , β r ), for 1 ≤ i ≤ r -1, and (5) 
β • µ = β + eµ, for µ ∈ P . Then A r = {a = (a 1 , . . . , a r ) ∈ P | 1 ≤ a 1 ≤ • • • ≤ • • • a r ≤ e}
is a fundamental domain for the action. We denote the stabilizer of a ∈ A r by a W . It is clear that a W is a subgroup of S r . Let w a be the maximal element of a W. We denote by a W and a S r the set of minimal length coset representatives in a W \W and a W \S r , respectively. In a similar manner, W acts on β = (β 1 , . . . , β r ) ∈ P on the left by 

s i • β = (β 1 • • • , β i+1 , β i , . . . , β r ), for 1 ≤ i ≤ r -1, and 
µ • β = β + lµ, for µ ∈ P . Then B r = {b = (b 1 , . . . , b r ) ∈ P | l ≥ b 1 ≥ • • • ≥ • • • b r ≥ 1}
d(k) = (d(k 1 ), . . . , d(k r )), m(k) = (m(k 1 ), . . . , m(k r )), φ(k) = (φ(k 1 ), . . . , φ(k r )), for k = τ -1 l (λ, s) ∈ Z r . Then, • there exist a(k) ∈ A r and u(k) ∈ a(k) S r such that c(k) = a(k) • u(k). • there exist b(k) ∈ B r and v(k) ∈ S b(k) r such that d(k) = v(k) • b(k). It is clear that b(k) = b(λ). We define ζ(k) := φ(k) • v(k). Then, comparing it with b(k) = v(k) -1 • d(k) = d(k) • v(k), we have ζ(k) = ζ(λ).
In the sequel, we will use the notation b(λ) and ζ(λ). From the definitions, we have

ζ(λ) = a(k) • u(k)v(k) + e(m(k) • v(k)), which shows that ζ(λ) belongs to a(k)W . Example 3.7. With k = (3, 1, 0, -2, -4, -6, - 7 
), e = 2 and l = 3, we obtain

c(k) = (1, 1, 2, 2, 2, 2, 1), d(k) = (2, 1, 3, 2, 1, 3, 3), m(k) 
= (0, 0, -1, -1, -1, -2, -2), φ(k) = (1, 1, 0, 0, 0, -2, -3), a(k) = (1, 1, 1, 2, 2, 2, 2), b(k) = b(λ) = (3, 3, 3, 2, 2, 1, 1), ζ(k) = ζ(λ) = (0, -2, -3, 1, 0, 1, 0).

3.2.

Ordering multipartitions. Now we introduce the dominance order in a general setting. Let k ∈ N and u

= (u 1 , . . . , u k ) ∈ Q k , v = (v 1 , . . . , v k ) ∈ Q k . Then, we write u ⊲ v if u = v and a s=1 u s ≥ a s=1
v s , for a = 1, . . . , k.

We fix a decreasing sequence 1 > α 1 > α 2 > . . . > α l > 0 of rational numbers. Then, for each λ ∈ Π l,n , we read the rational numbers λ (i) jj + s iα i , for j = 1, . . . , n + s i and i = 1, . . . , l, in decreasing order and denote the resulting sequence by γ(λ) ∈ Q k where k = l i=1 s i + nl. Note that one can recover λ from γ(λ) = (γ 1 , . . . , γ k ). Hence, if γ(λ) = γ(µ) then λ = µ. This follows from the fact that for all i ∈ [1, l], the set

{γ k -s i + α i | γ k -[γ k ] = α i } is the set of β-numbers of λ i . Definition 3.8. Let λ, µ ∈ Π l,n . Then we write λ ≻ µ if γ(λ) ⊲ γ(µ).
One can check that this defines a partial order which depends on the choice of α but does not depend on e. This is a crucial remark in view of the following result. Theorem 3.9.

(1) For each λ ∈ Π l,n , there exist polynomials ∆ e λ,µ (v) ∈ Z[v], for µ ∈ Π l,n , such that we have the unitriangular expansion

G e (λ,s) = λ+ λ≻µ ∆ e λ,µ (v)µ. 
(2) For each λ ∈ Π l,n , there exist polynomials

∆ ∞ λ,µ (v) ∈ Z[v], for µ ∈ Π l,n
, such that we have the unitriangular expansion

G ∞ (λ,s) = λ+ λ≻µ ∆ ∞ λ,µ (v)µ.
(3) For each pair (λ, µ) ∈ Π l,n × Π l,n , ∆ e λ,µ (v) and ∆ ∞ λ,µ (v) are expressed by certain parabolic Kazhdan-Lusztig polynomials (see Section 5). In particular, they are polynomials with nonnegative integer coefficients.

Proof. We prove ( 1) and ( 2) by the arguments which are similar to those used in [START_REF] Jacon | Crystal Graphs of higher level q-deformed Fock spaces, Lusztig a-values and Ariki-Koike algebras[END_REF].

As in [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF], it suffices to show that the matrix of the bar-involution is unitriangular with respect to ≻. Then the results immediately follow from the characterization of the canonical basis. We recall the bar-involution on the space s+∞/2 V e,l , which is defined in [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF], where s = s 1 + . . . + s l . The space s+∞/2 V e,l is the Q(v)-vector space spanned by the semi-infinite monomials

u k = u k1 ∧ u k2 ∧ . . . ,
where k i ∈ Z, for all i ≥ 1, and

k i = s -i + 1 if i >> 0.
Its basis is given by the ordered monomials (i.e. the monomials with decreasing indices k 1 > k 2 > . . .) because any monomial may be expressed as a linear combination of ordered monomials by "straightening relations" in [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]Prop. 3.16]. Now, the procedure in §3.1 yields a bijection τ l from the set of ordered monomials to the set of pairs (λ, s) such that λ ∈ Π l,n and s = (s 1 , . . . , s l ) with s = s 1 + . . . + s l . This allows us to identify the space s+∞/2 V e,l with s1+...+s l =s F s e . Let u k be a semi-infinite (possibly non ordered) monomial. Let u k be the monomial obtained from u k by reordering the k i 's in strictly decreasing order. The bijection τ l then allows us to associate a pair (λ, s) with u k such that λ ∈ Π l,n and s = (s 1 , . . . , s l ). We define a map π on the set of semi-infinite monimials by π(u k ) = (λ, s).

In particular, τ l and π coincide on the set of ordered monomials. Uglov defined a bar-involution on s+∞/2 V e,l as follows : for all semi-infinite ordered monomials u k , we define

u k := v t u kr ∧ u kr-1 ∧ . . . ∧ u k1 ∧ u kr+1 ∧ u kr+2 ∧ . . .
where t is a certain integer (see [31, §3.4] for its explicit definition) and r is a sufficiently large integer. Hence, to compute λ in F s e , we set u k = τ -1 l (λ, s) and use the straightening relations to expand u k on the basis of the ordered monomials, and apply π to obtain the expression of λ as a linear combination of l-partitions. We note that λ appears with coefficient 1 by [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]Rk. 3.24]. Let u p be an arbitrary semi-infinite monomial and assume that this is non ordered. Then there exists i ∈ N such that k i < k i+1 . The straightening relations then show how to express u p in terms of semi-infinite monomials u p ′ with p ′ i > p ′ i+1 . Let us denote π(u p ) = (λ, s) and π(u p ′ ) = (λ ′ , s ′ ). A study of the straightening relations shows that we have s = s ′ and that λ and λ ′ are both obtained from the same l-partition ν by adding a ribbon of fixed size m (see [17, §4.2]). We consider the set : {β 1 , . . . , β h } := ν (i) jj + s iα i , for j = 1, . . . , n + s i and i = 1, . . . , l Then there exists a and b such that γ(λ) is the sequence obtained by reordering the elements of {β 1 , . . . , β h } \ {β a } ∪ {β a + m} in decreasing order and γ(λ ′ ) is the sequence obtained by reordering the elements {β 1 , . . . , β h } \ {β b } ∪ {β b + m} in decreasing order. Then, mimicking the argument in [17, p.581-583], one can prove by a careful study of the straightening rules that :

β a > β b .
This implies that λ ≻ λ ′ . In particular, all the ordered monomials u k ′ which appear in the expansion of u k satisfy the following property : if π(u ′ k ) = (λ ′ , s) then λ ≻ λ ′ . This proves (1) and ( 2). The third part is a result of Uglov [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]. Uglov proved that the coefficients ∆ e λ,µ (v) are expressed by parabolic Kazhdan-Lusztig polynomials as we will see in Section 5. By results of Kashiwara and Tanisaki [START_REF] Kashiwara | Parabolic Kazhdan-Lusztig polynomials and Schubert varieties[END_REF], this implies that they have nonnegative integer coefficients.

Remark 3.10. The order ≻ does not coincide with the partial order used by Uglov in [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]. His partial order depends on e, so that he could not use a common partial order in the statements (1) and (2) of Theorem 3.9. On the other hand, we have used the common partial order ≻ there.

As a direct consequence, we have the following theorem : Theorem 3.11. For each λ ∈ Π l , we may expand G e (λ, s) as follows.

(6) G e (λ, s) = ν∈Π l d λ,ν (v)G ∞ (ν, s)
where :

• d λ,λ (v) = 1, • d λ,ν (v) ∈ vZ[v] if λ = ν • d λ,ν (v) = 0 only if λ ν.
Proof. It follows from Theorem 3.9(1) and (2).

Corollary 3.12. For λ ∈ B e (s), the formula ( 6) has the form

(7) G e (λ, s) = ν∈B∞(s) d λ,ν (v)G ∞ (ν, s).
Proof. We have already observed that V e (s) may be regarded as a U ′ v ( sl e )-submodule of V ∞ (s) which shares the common highest weight vector ∅. Thus, we may expand G e (λ, s) ∈G • e (s) on the basis G • ∞ (s) ⊂ G ∞ (s), and Theorem 3.11 implies (7). Definition 3.13. We define

∆ e (v) = (∆ e λ,µ (v)) λ∈Π l ,µ∈Π l , ∆ ∞ (v) = (∆ ∞ λ,µ (v)) λ∈Π l ,µ∈Π l , ∆ e ∞ (v) = (d λ,ν (v)) λ∈Π l ,ν∈Π l .
They depend on s. Then, we have

∆ e (v) = ∆ ∞ (v)∆ e ∞ (v).
We also define the following submatrices

D e (v) = (∆ e λ,µ (v)) λ∈Be(s),µ∈B∞(s) , D ∞ (v) = (∆ ∞ λ,µ (v)) λ∈Be(s),µ∈B∞(s) , D e ∞ (v) = (d λ,ν (v)) λ∈Be(s),ν∈B∞(s) .
Then we have

D e (v) = D ∞ (v)D e ∞ (v). Remark 3.14. If l = 1, then the matrix D ∞ (v) is the identity and D e ∞ (v) = D e (v). 4. Computation of ∆ e ∞ (v)
and D e ∞ (v) Before proceeding further, we explain algorithmic aspects for computing ∆ e ∞ (v) and

D e ∞ (v). As ∆ e ∞ (v) = ∆ -1 ∞ (v)
.∆ e (v), we start with computing ∆ ∞ (v) and ∆ e (v). Two algorithms are already proposed: one by Uglov and the other by Yvonne. Both use a natural embedding of the Fock spaces F s e into the space of semi-infinite wedge products and compute the canonical bases G e (s) and G ∞ (s).

The algorithm described by Uglov [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF] needs steps to compute straightening laws of the wedge products, which soon starts to require enormous resources for the computation. It occurs especially in the case when the differences between two consecutive entries of s are large.

Yvonne's algorithm [START_REF] Yvonne | An algorithm for computing the canonical bases of higher-level q-deformed Fock spaces[END_REF] is much more efficient but it requires subtle computation related to the commutation relations of U v ( sl e ) ⊗ H ⊗ U -v -1 ( sl l ) on the space of semi-infinite wedge products, where H is the Heisenberg algebra. We do not pursue this direction and refer to [START_REF] Yvonne | An algorithm for computing the canonical bases of higher-level q-deformed Fock spaces[END_REF] for complete description of this algorithm.

Once G e (s) and G ∞ (s) are computed, we can efficiently compute ∆ e ∞ (v) from them: see §4.1 below.

The computation of D e ∞ (v) is easier. One may compute it directly from the canonical bases G • e (s) and G • ∞ (s) and we may compute the canonical bases by the algorithms proposed in [START_REF] Lascoux | Hecke algebras at roots of unity and crystal bases of quantum affine algebras[END_REF] or [START_REF] Jacon | An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras[END_REF]. The algorithm given in [START_REF] Jacon | An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras[END_REF] was originally suited for multicharges s such that 0 ≤ s 1 ≤ s 2 ≤ • • • ≤ s l < e. However, we will see in §4.2 that it also computes the canonical bases G • e (s) and G • ∞ (s) (and thus the matrix D e ∞ (v)) for arbitrary multicharge s. Observe that this only uses U v (g)-module structure of the Fock space.

4.1.

A general procedure. Assume that we have computed the canonical bases G e (s) and G ∞ (s). Using the unitriangularity of the decomposition matrices, one can obtain ∆ e ∞ (v) directly from the relation ∆ e

∞ (v) = ∆ -1 ∞ (v).∆ e (v)
. This can be done efficiently by applying the procedure below.

(1) Let λ ∈ Π l,n . We know by Theorem 3.11 that G e (λ,s) may be expanded on G ∞ (s). We denote

Λ(λ) := {ν ∈ Π l,n | d λ,ν (v) = 0}.
Our aim is to find the members of Λ(λ), and determine d λ,ν (v) when ν is a member. Set λ 0 := λ. Then λ 0 is a member and d λ,λ 0 (v) = 1.

(2) Let k ∈ N. Suppose that we already know k members λ 0 , . . . , λ k-1 of Λ(λ) and the polynomials d λ,λ i (v), for i = 0, . . . , k -1. Then, we expand

G e (λ,s) - k-1 i=0 d λ,λ i (v)G ∞ (λ i ,s)
into linear combination of the standard basis of l-partitions and write

ν∈Λ(λ)\{λ 0 ,...,λ k-1 } d λ,ν (v)G ∞ (ν,s) = µ∈Π l,n b µ (v)µ.
We have b µ (v) ∈ Z[v] by Theorem 3.9. If the right hand side is zero, we are done. Otherwise, let λ k be a maximal l-partition in {µ ∈ Π l,n | b µ (v) = 0}, with respect to the partial order ≻ . (3) Consider ν ∈ Λ(λ) \ {λ 0 , . . . , λ k-1 } which satisfies ν ≻ λ k . If such ν does not exist, then we have 4) We increment k and go to (2).

λ k ∈ Λ(λ) \ {λ 0 , . . . , λ k-1 }. Otherwise let ν k be maximal among them. If ν k in G ∞ (ν,s), for ν ∈ Λ(λ) \ {λ 0 , . . . , λ k-1 }, then ν ν k ≻ λ k , so that the maximality implies ν = ν k . Since ν k appears in G ∞ (ν k ,s), it follows that b ν k (v) = 0, which is impossible by the maximality of λ k and ν k ≻ λ k . Hence, λ k is a maximal element of Λ(λ)\{λ 0 , . . . , λ k-1 }. Therefore, λ k does not appear in G ∞ (ν,s), for ν ∈ Λ(λ)\{λ 0 , . . . , λ k }, and it follows that d λ,λ k (v) = b λ k (v). (

The computation of G

• e (s) and G • ∞ (s). Let e ∈ Z ≥2 ∪ {∞}. Assume first that 0 ≤ s 1 ≤ s 2 ≤ • • • ≤ s l < e.
It is proved in [START_REF] Lascoux | Hecke algebras at roots of unity and crystal bases of quantum affine algebras[END_REF] and [START_REF] Jacon | An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras[END_REF] that one may construct a sequence of elements in Z/eZ

(8) k 1 , • • • , k 1 u1 , k 2 , • • • , k 2 u2 , • • • , k s , • • • , k s us ,
for each λ ∈ B e (s), such that if we define

A e (λ,s) := f (u1) k1 • • • f (us) ks .∅ ∈ V e (s) then A e (s) = {A e (λ,s) | λ ∈ B e (s)} is a basis of V e (s). It is easy to obtain the coefficients γ λ,µ (v) ∈ Z[v, v -1 ] in the expansion (9) G e (λ, s) = µ∈Be(s) γ λ,µ (v)A e (µ, s).
When e ∈ Z ≥2 , we have seen in §3.1 that there is an action of the (extended) affine symmetric group W on Z l such that

B l := (s 1 , . . . , s l ) ∈ Z l | 0 ≤ s 1 ≤ • • • ≤ s l < e
is a fundamental domain for this action. Hence, for any v : = (v 1 , . . . , v l ) ∈ Z l , there exist s := (s 1 , . . . , s l ) ∈ B l and w ∈ W such that v = w.s. Since v and s yield the same dominant weight, we have an isomorphism φ s,v from V e (s) to V e (v). We can assume that φ s,v (∅) = ∅. For each λ ∈ B e (s), we set

A e (λ, v) = f (r1) k1 • • • f (rs) ks .∅ ∈ V e (v)
, where the pairs (k a , r a ) are defined by [START_REF] Fayers | An LLT-type algorithm for computing higher-level canonical bases[END_REF]. Then we have φ s,v (A e (λ, s)) = A e (λ, v). By the uniqueness of the crystal basis on V e (v) proved by Kashiwara, we also have φ s,v (G e (λ, s)) = G e (ϕ s,v (λ), v), where ϕ s,v is the crystal isomorphism from B e (s) to B e (v) (see [START_REF] Jacon | Crystal isomorphisms for irreducible highest weight Uv( sle)modules of higher level[END_REF] for a combinatorial description of ϕ s,v ). By applying φ s,v to (9), we obtain

G e (ν, v) = µ∈Be(s) γ ϕ -1 s,v (ν),µ (v)A e (µ, v),
for ν ∈B e (v), and it follows that

G e (v) =    µ∈Be(s) γ λ,µ (v)A e (µ, v) | λ ∈ B e (s)    .
Hence, the algorithms in [START_REF] Lascoux | Hecke algebras at roots of unity and crystal bases of quantum affine algebras[END_REF] and [START_REF] Jacon | Crystal Graphs of higher level q-deformed Fock spaces, Lusztig a-values and Ariki-Koike algebras[END_REF] compute the canonical basis G e (v) for any multicharge v = (v 1 , . . . , v l ) ∈ Z l . Applying the general procedure in §4.2 restricted to the canonical bases G • e (v) and G • ∞ (v), we may compute D e ∞ (v). Remark 4.1. Another algorithm is recently proposed by Fayers [START_REF] Fayers | An LLT-type algorithm for computing higher-level canonical bases[END_REF] for computing the canonical basis of the highest weight U ′ v ( sl e )-modules which is realized in the tensor product of level one Fock spaces.

Example.

We set e = 2, Then the matrix D e (v) of the canonical basis of the U v ( sl e )-module V e (0, 0) is:

(∅, (3)) ((3), ∅) ((1), (2)) ((2), (1) (∅, (2.1)) ((2.1), ∅) ((1), (1.1)) ((1.1), (1)) (∅, (1.1.1)) ((1.1.1), ∅)                 1 . . v . . v 1 . v 2 v . . . 1 . . v v v 2 . v 2 v 3 . v 2 . . v 3 . .                
where dots mean 0 and each row is labeled by a 2-partition of rank 3. The matrix

D ∞ (v) of the canonical basis of the U v (sl ∞ )-module V ∞ (0, 0) is: (∅, (3)) ((3), ∅) ((1), (2)) ((2), (1) (∅, (2.1)) ((2.1), ∅) ((1), (1.1)) ((1.1), (1)) (∅, (1.1.1)) ((1.1.1), ∅)                 1 . . . . v . . . . . 1 . . . . v . . . . . 1 . . . . v . . . . . 1 . . . . v . . . . . 1 . . . . v                
The matrix D e ∞ (v) obtained from our algorithm is:

      1 . . v 1 . . . 1 v v 2 . v 2 . .      
and one can check that we have

D e (v) = D ∞ (v).D e ∞ (v).

Positivity of the coefficients in

d λ,ν (v) 
The aim of this section is to study the entries of the matrix D e ∞ (v). The main result asserts that they are polynomials with nonnegative integer coefficients. 5.1. Some notation on KL-polynomials. Let H be the extended affine Hecke algebra of the symmetric group S r . Namely, it is generated by T 1 , . . . , T r-1 and X λ , for λ ∈ ⊕ r i=1 Zǫ i , such that the defining relations are

(T i -v -1 )(T i + v) = 0, X λ T i = T i X siλ + (v -v -1 ) X siλ -X λ 1 -X αi X λ X µ = X µ X λ , X λ X -λ = 1
and the Artin braid relations for T 1 , . . . , T r-1 . The affine Hecke algebra admits a canonical basis

{C ′ w | w ∈ W } such that C ′ w = v ℓ(w) y∈W,y≤w P y,w (v -2 )v -ℓ(y) T y
where ≤ is the Bruhat order on W. We refer the reader to [START_REF] Ram | Nelsen Kostka-Foulkes polynomials and Macdonald spherical functions[END_REF] and [START_REF] Kashiwara | Parabolic Kazhdan-Lusztig polynomials and Schubert varieties[END_REF] for a detailed review on affine Hecke algebras, the definition of the relevant length function and the Kazhdan-Lusztig basis. The polynomials P y,w (v -2 ) are the affine KL-polynomials. They admit nonnegative integer coefficients. We also recall the following property (10) P y,w = P siy,w for any y < w in W and i = 1, . . . , r such that s i w < w.

Expression of the coefficients ∆ e

λ,µ (v) in terms of KL-polynomials. The aim of this paragraph is to recall Uglov's construction of finite wedge product [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF] and to show in a simpler manner than [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF] that the entries ∆ e λ,µ (v) are expressed in terms parabolic Kazhdan-Lusztig polynomials.

We want to introduce the space of finite wedge products. Consider a ∈ A r and b ∈ B r . We define a W, W b , w a , w b as in §3.1. The subgroups a W and W b define parabolic subalgebras H a and H b of the affine Hecke algebra H. If we denote

J = {i | 1 ≤ i ≤ r -1, b i = b i+1 }, then the parabolic subgroup W J is nothing but the subgroup W b . Let 1 + a (resp. 1 - b ) be the right H a -module (resp. left H b -module) such that (11) 1 + a T i = v -1 1 + a (s i ∈ a W ) T i 1 - b = -v1 - b (s i ∈ W b ). We define Λ r (a, b) = 1 + a ⊗ Ha H ⊗ H b 1 - b .
Then, the space of finite wedges Λ r is the direct sum of the Λ r (a, b), for a ∈ A r and b ∈ B r . We define the bar-involution on Λ r by 1

+ a ⊗ h ⊗ 1 - b = 1 + a ⊗ h ⊗ 1 - b . Definition 5.1. Let ξ ∈ P.
Then, there are unique a ∈ A r and x ∈ a W such that ξ = ax. We denote this x by x(ξ).

We say that ξ is J-dominant and write ξ ∈ P ++ By [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]Lem. 3.19,Prop. 3.20], the wedge basis of Λ r (a, b) is given by 

{|λ = 1 + a ⊗ T x(ζ(λ))w b ⊗ 1 - b = (-v) -ℓ(w b ) 1 + a ⊗ T x(ζ(λ)) ⊗ 1 - b | ζ(λ) ∈ aW }.
C ′ wax = v ℓ(wax) y∈W P y,wax (v -2 )v -ℓ(y) T y is bar-invariant. As (12) W ≃ a W × {x(η) | η ∈ aW }
we have

C ′ wax = v ℓ(wax) η∈aW u∈aW P ux(η),wax (v -2 )v -ℓ(u)-ℓ(x(η)) T u T x(η) = v ℓ(wax) η∈aW u∈aW P wax(η),wax (v -2 )v -ℓ(u)-ℓ(x(η)) T u T x(η)
where the last equality is a consequence of [START_REF] Geck | Modular representations of Hecke algebras[END_REF]. Set

C + e (λ) = v -ℓ(wa) u∈aW v -2ℓ(u) 1 + a ⊗ C ′ wax ⊗ 1 - b
where x = x(ξ)w b and ξ = ζ(λ). Then, using [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF], we have that

C + e (λ) = η∈aW v ℓ(x)-ℓ(x(η)) P wax(η),wax (v -2 )1 + a ⊗ T x(η) ⊗ 1 - b
is bar-invariant. When η admits repeated entries, one can verify that 1 + a ⊗T x(η) ⊗1 - b is equal to 0. Here we refer the reader to §3.3 of [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF] for a detailed proof (which justifies the terminology of Fock space used). Now, we rewrite C + e (λ) into the expression

C + e (λ) = η∈aW ∩P ++ b u∈W b v ℓ(x)-ℓ(x(η)w b u) P wax(η)w b u,wax (v -2 )(-v) ℓ(u) 1 + a ⊗ T x(η)w b ⊗ 1 - b .
Recall that

P J,-1 wax(η)w b ,wax(ξ)w b (v -2 ) = u∈W b (-1) ℓ(u) P wax(η)w b u,wax(ξ)w b (v -2 )
is a parabolic Kazhdan-Lusztig polynomial. These polynomials were introduced by Deodhar [START_REF] Deodhar | On some geometric aspects of Bruhat orderings II[END_REF]. As x = x(ξ)w b and v ℓ(x)-ℓ(x(η)w b u) = v ℓ(x(ξ))-ℓ(x(η))-ℓ(u) , we have

(13) C + e (λ) = η∈aW ∩P ++ b v ℓ(x(ξ))-ℓ(x(η)) P J,-1 wax(η)w b ,wax(ξ)w b (v -2 )1 + a ⊗ T x(η)w b ⊗ 1 - b .
It satisfies the defining properties of the plus canonical basis introduced by Uglov in [START_REF] Uglov | Canonical bases of higher-level q-deformed Fock spaces and Kazhdan-Lusztig polynomials[END_REF]. Thus, we have recovered Uglov's result Theorem 3.9(3). To be more precise, let λ, µ ∈ Π l,n . Choose r ∈ N as in § 3. 

(λ) = b(µ) then ∆ e λ,µ (v) = 0. (2) If a(k) = a(l) = a ∈ A r and b(λ) = b(µ) = b ∈ B r , then (14) 
∆ e λ,µ (v) = v ℓ(x(ξ))-ℓ(x(η)) P J,-1 wax(η)w b ,wax(ξ)w b (v -2 ).

5.3.

Stabilization for e = ∞. Now we assume that s ∈ Z l and λ ∈ Π l are fixed and we increase e. By Remark 3.6, we have seen that for any e ′ > e, one can choose r such that ξ = ζ(λ) coincide for e and e ′ . Since s and λ are fixed, when e ′ is sufficiently large, there exist x(ξ) ∈ S r and ã = (ã 1 , . . . , ãr ) such that

(15) ã1 ≤ • • • ≤ ãr , x(ξ) ∈ ãS r and ξ = ãx(ξ).
This only means that we do not need translations by e ′ µ, for µ ∈ P , to reach the fundamental domain when e ′ is sufficiently large. In the sequel, we refer to this stabilization phenomenon as the e = ∞ case. By Remark 3.6 we have the following expression for the e = ∞ case :

∆ ∞ λ,µ (v) = v ℓ(x(ζ(λ)))-ℓ(x(ζ(µ))) P J,-1 wã x(ζ(µ))w b ,wã x(ζ(λ))w b (v -2
), for λ, µ ∈ Π l . Moreover, one can assume that r is adjusted such that b and ξ = ζ(λ) are the same for e finite (fixed) and e = ∞. In particular, we have ξ ∈ ãS r , for λ ∈ Π l , as before. Then, Theorem 5.2(2) implies that we may assume ηS r = ãS r for η = ζ(µ).

Recall that ξ = ζ(λ) and η = ζ(µ) belong to P ++ b . Then Theorems 3.11 and 5.2 imply that there exist polynomials

d γξ (v) ∈ Z[v], for γ ∈ P ++ b , such that v ℓ(x(ξ))-ℓ(x(η)) P J,-1 wax(η)w b ,wax(ξ)w b (v -2 ) = γ∈ãSr∩P ++ b v ℓ(x(γ))-ℓ(x(η)) P J,-1 wã x(η)w b ,wã x(γ)w b (v -2 )d γξ (v). Define a linear map ψ : Λ(ã, b) ֒→ Λ(a, b) by 1 + ã ⊗ T x(ξ)w b ⊗ 1 - b → 1 + a ⊗ T x(ξ)w b ⊗ 1 - b = 1 + a ⊗ T x(ã) T x(ξ)w b ⊗ 1 - b .
Then, in view of (13), the above equality is equivalent to [START_REF] Jacon | An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras[END_REF] C

+ e (λ) = ã∈aW ∩P -γ:=ζ(ν)∈ãSr∩P ++ b d γξ (v)ψ(C + ∞ (ν)),
where

(17) C + ∞ (ν) = v -ℓ(wã) u∈ãW v -2ℓ(u) 1 + ã ⊗ C ′ wã x(ζ(ν))w b ⊗ 1 - b .
5.4. Proof of the positivity. The idea of the proof is to expand C + e (λ) into a linear combination of ψ(C + ∞ (µ)) and compare it with [START_REF] Jacon | An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras[END_REF]. The famous positivity result of the multiplicative structure constants with respect to the Kazhdan-Lusztig basis and its generalization in [START_REF] Grojnowski | Affine Hecke algebras and positivity of LLT and Macdonald polynomials[END_REF] then yields the desired positivity 1 . Recall the basis

C ′ w = v ℓ(w) y∈W P y,w (v -2 )v -ℓ(y) T y .
For y ∈ W , we write y = y ′ y ′′ , where y ′′ ∈ S r and y ′ is the minimal length coset representative of yS r . Then we define ( 18)

U y = T y ′ C ′ y ′′ .
It is clear that we may write

(19) C ′ w = y∈W A y,w (v)U y , where A y,w (v) ∈ Z[v, v -1 ]. By [13, Cor. 3.9], we have in fact A y,w (v) ∈ N[v, v -1 ].
We write y = ux(γ), for u ∈ a W and γ ∈ aW , by [START_REF] Geck | Rouquier Centers and simple modules for Iwahori-Hecke algebras[END_REF]. Then we have

U y = U ux(γ) = T u U x(γ)
and it implies that

T i U y = U siy (s i y > y) (v -1 -v)U y + U siy (s i y < y).
Let w = w a x(ξ)w b and ξ = ζ(λ). As s i w < w, for s i ∈ a W , we deduce

v -1 C ′ w = T i C ′ w = siy>y A y,w (v)U si y + siy<y A y,w (v) (v -1 -v)U y + U siy = siy<y A siy,w (v) + (v -1 -v)A y,w (v) U y + siy>y A siy,w (v)U y .
Thus, A siy,w (v) = v -1 A y,w (v) if s i y > y, and it follows that

A y,w (v) = v -ℓ(u) A x(γ),w (v), for y = ux(γ).
Therefore, we have (20

) u∈aW v -ℓ(u) T u   γ∈aW A x(γ),w (v)U x(γ)   = C ′ w .
1 One purpose of [START_REF] Grojnowski | Affine Hecke algebras and positivity of LLT and Macdonald polynomials[END_REF] is to introduce LLT polynomials for general root systems. Note that LLT polynomials for finite root systems other than type A had been introduced independently in [START_REF] Lecouvey | Parabolic Kazhdan-Lusztig polynomials, plethysm and generalized Hall-Littlewood functions for classical types[END_REF].

It is interesting to compare the two definitions.

Hence, for any λ ∈ Π l , the plus canonical basis is given by

C + e (λ) = v -ℓ(wa) u∈aW v -2ℓ(u) 1 + a ⊗ C ′ w ⊗ 1 - b (21) = γ∈aW v -ℓ(wa) A x(γ),wax(ξ)w b (v)1 + a ⊗ U x(γ) ⊗ 1 - b = ã∈aW ∩P -z∈Sr v -ℓ(wa) A x(ã)z,wax(ξ)w b (v)1 + a ⊗ T x(ã) C ′ z ⊗ 1 - b
where the second equality follows from w = w a x(ξ)w b , ( 11) and ( 20), the third from [START_REF] Jacon | Constructible representations and basic sets in type Bn[END_REF]. Note that ãW = S r ∩ x(ã) -1 a W x(ã) by ã = ax(ã). Then [START_REF] Geck | Representations of Hecke algebras at roots of unity[END_REF] allows us to write

1 + a ⊗ T x(ã) C ′ z ⊗ 1 - b = 1 u∈ãW v -2ℓ(u) 1 + a ⊗ T x(ã) ( u∈ãW v -ℓ(u) T u )C ′ z ⊗ 1 - b .
As the left multiplication by u∈ãW v -ℓ(u) T u gives the subspace of dimension |S r |/| ãW | in the Hecke algebra H(S r ), it has the basis {C ′ wãy | y ∈ ãW \S r }. By the positivity of the structure constants, we may write

( u∈ãW v -ℓ(u) T u )C ′ z = y∈ãW \Sr B y,z (v)C ′ wãy where B y,z (v) ∈ N[v, v -1 ]. Thus, 1 + a ⊗ T x(ã) C ′ z ⊗ 1 - b = γ∈ãSr B x(γ),z (v) 1 u∈ãW v -2ℓ(u) 1 + a ⊗ T x(ã) C ′ wã x(γ) ⊗ 1 - b .
For each γ ∈ ãS r , define

d ′ γ,ξ (v) = v -ℓ(wa) z∈Sr v ℓ(wã) A x(ã)z,wax(ξ)w b (v)B x(γ),z (v). Then, d ′ γ,ξ (v) ∈ N[v, v -1 ] and we have z∈Sr v -ℓ(wa) A x(ã)z,wax(ξ)w b (v)1 + a ⊗ T x(ã) C ′ z ⊗ 1 - b = γ∈ãSr d ′ γ,ξ (v) v -ℓ(wã) u∈ãW v -2ℓ(u) 1 + a ⊗ T x(ã) C ′ wã x(γ) ⊗ 1 - b = γ∈ãSr∩P + b t∈W b d ′ γw b t,ξ (v) v -ℓ(wã) u∈ãW v -2ℓ(u) 1 + a ⊗ T x(ã) C ′ wã x(γ)w b t ⊗ 1 - b (22) 
where we slightly abuse the notation by using the same index γ in the last two expressions. If xs i < x, for some s i ∈ W b , then By using [START_REF] Jacon | Crystal Graphs of higher level q-deformed Fock spaces, Lusztig a-values and Ariki-Koike algebras[END_REF], this can also be rewritten Then the fundamental weights Λ 0 , . . . , Λ r-1 remain linearly independent on

v -1 C ′ x ⊗ 1 - b = C ′ x T i ⊗ 1 - b = -vC ′ x ⊗ 1 -
C + e (λ) =
h ′ = r-1 i=0
Cα ∨ i and we may write its dual space as follows.

h ′ * = h * /Cδ = r-1 i=0 CΛ i .
We identify the weight lattice P of sl r (C) with the set of level zero integral weights in h ′ * by

P = r i=1 Zǫ i Z(ǫ 1 + • • • + ǫ r ) = r-1 i=1 Z(Λ i -Λ 0 ) ⊆ h ′ *
where ξ = r i=1 ξ i ǫ i → r-1 i=1 (ξ iξ i+1 )(Λ i -Λ 0 ). 2 For ξ ∈ P , we define ξ = -ξ + eΛ 0 ∈ h ′ * .

The Weyl group action on h ′ * preserves P + eΛ 0 . Moreover, if we define wξ for w ∈ W and ξ ∈ P by w ξ = -wξ + eΛ 0 where ξ → w ξ is the Weyl group action on h ′ * , then s i ξ = ξ i+1 ǫ i + ξ i ǫ i+1 + j =i,i+1 ξ j ǫ j , for 1 ≤ i ≤ r -1, and s 0 ξ = (ξ re)ǫ 1 + (ξ 1 + e)ǫ r + j =1,r ξ j ǫ j .

Thus, ξ • w := w -1 ξ, for ξ ∈ P and w ∈ W , is nothing but the right action of W . Let J ⊂ {1, . . . , r -1} and µ the composition of r defined by J. Write p µ (C) for the parabolic subalgebra of g defined by µ and l µ (C) for the standard Levi subalgebra of p µ (C). For η ∈ P ++ b , we denote by V (w b η) the finite dimensional irreducible l µ (C) ⊕ Cc-module with highest weight w b ηρ, where ρ is such that ρ, α ∨ i = 1, for 0 ≤ i ≤ r -1. Thus, the canonical central element c acts as the scalar e-r. We view V (w b η) as a p µ (C)⊕Cc-module. Then, through the evaluation homomorphism

p µ = {X ∈ sl r (C[t]) | X| t=0 ∈ p µ (C)} ⊕ Cc → p µ (C) ⊕ Cc
we may view it as a p µ -module as well. We define the following g ′ -module. It would be desirable to understand d λ,ν (v) in terms of Jantzen filtration. In the case when W b is trivial, we expect that the Verma module is rigid and Jantzen conjecture holds.

M µ (w b η) = U (g ′ ) ⊗ U(pµ) V (w b η). If X ∈ p µ , then Xu ⊗ v = [X, u] ⊗ v + u ⊗ Xv (u ∈ U (g ′ ), v ∈ V (w b η)).

  ζ i and b i are the column number and the row number of the bead τ l (w i ) on the l-runner abacus a(λ, s), respectively. Then, we define ζ(λ) = (ζ 1 , . . . , ζ r ) and b(λ) = (b 1 , . . . , b r ). Example 3.5. In our example, we have ζ(λ) = (0, -2, -3, 1, 0, 1, 0) and b(λ) = (3, 3, 3, 2, 2, 1, 1).

  is a fundamental domain for the action. We denote the stabilizer of b ∈ B r by W b , its maximal element by w b , and the set of minimal length coset representatives in W/W b and S r /W b by W b and S b r , respectively. Write k = c(k) + e(d(k) -1) + elm(k) and φ(k) = c(k) + em(k), for k ∈ Z, as before, and define c(k) = (c(k 1 ), . . . , c(k r )),

b,

  if ξ i > ξ i+1 whenever b i = b i+1 . Similarly, we say that ξ ∈ P + b if ξ i ≥ ξ i+1 whenever b i = b i+1 . Note that ζ(λ) ∈ P ++ b , for λ ∈ Π l . If ξ ∈ P ++b , it follows by [31, Prop. 3.8] that x(ξ)s < x(ξ) in the Bruhat order, for any s ∈ W b . So x(ξ)w b is the minimal length coset representative of a W x(ξ)W b .

  Here we have written for short, a = a(k) and b = b(k) = b(λ) where k = τ -1 l (λ, s). We put x = x(ζ(λ))w b . Then, by the Kazhdan-Lusztig theory,

1 ,Theorem 5 . 2 . 1 )

 1521 and define k, l ∈ Z r by k = τ -1 l (λ, s) and l = τ -1 l (µ, s). Define a(k), a(l) and b(λ), b(µ) as in § 3.1, and set ξ = ζ(λ) and η = ζ(µ). With the above notation, we have (If a(k) = a(l), or b

b and C ′ x ⊗ 1

 1 - b = 0. Thus, we have in factv -ℓ(wa) A x(ã)z,wax(ξ)w b (v)1 + a ⊗ T x(ã) C ′ z ⊗ 1 - b = γ∈ãSr∩P + b d ′ γw b ,ξ (v) v -ℓ(wã) u∈ãW v -2ℓ(u) 1 + a ⊗ T x(ã) C ′ wã x(γ)w b ⊗ 1 - b .By using the last expression in[START_REF] Kashiwara | Bases cristallines des groupes quantiques[END_REF] , we deriveC + e (λ) = ã∈aW ∩P -γ∈ãSr∩P ++ b d ′ γw b ,ξ (v) v -ℓ(wã) u∈ãW v -2ℓ(u) 1 + a ⊗ T x(ã) C ′ wã x(γ)w b ⊗ 1 - b .

5 . 5 .

 55 ã∈aW ∩P -γ=ζ(ν)∈ãSr∩P ++ b d ′ γw b ,ξ (v)ψ(C + ∞ (ν))Hence, comparing it with[START_REF] Jacon | An algorithm for the computation of the decomposition matrices for Ariki-Koike algebras[END_REF], we obtaind γξ (v) = d ′ γw b ,ξ (v) ∈ N[v, v -1 ].We have established the desired positivity result: Theorem 5.3. The polynomials d λ,ν (v) which appear in[START_REF] Deodhar | On some geometric aspects of Bruhat orderings II[END_REF] have nonnegative integer coefficients. The case v = 1. The proof of the positivity we have obtained does not properly yield a geometric interpretation of the coefficients d γξ (v). The purpose of this section is to show that their specializations d γξ (1) may be interpreted as composition multiplicities. Let us rewrite the right action in a more coordinate free manner. For this, we considerg ′ = [g, g] = sl r (C) ⊗ C[t, t -1 ] ⊕ Cc,where g = sl r (C) ⊗ C[t, t -1 ] ⊕ Cc ⊕ Cd is the Kac-Moody Lie algebra of type A

  Hence M µ (w b η) is isomorphic to the tensor product representation of the adjoint representation on U (g ′ ) and V (w b η) as a p µ -module. Thus M µ (w b η) is an integrable p µ -module.For any ζ in h ′ * , we denote by M (ζ) the Verma g ′ -module with highest weight ζρ. Then, by the Weyl character formula, we have forη ∈ P ++ b M µ (w b η) = u∈W b (-1) ℓ(u) M (uw b η).We consider the following maximal parabolic subalgebra of g ′ .g ′ 0 = sl r (C[t]) ⊕ Cc ⊆ g ′ . We define M 0 (w b η) = U (g ′ ) ⊗ U(g ′ 0 ) L(w b η) where L(w b η) is the irreducible highest weight g ′ 0 -module whose highest weight is w b ηρ. Now, with the notation of § 5.3, observe that ã, α ∨ i ≤ 0, for 1 ≤ i ≤ r -1. Moreover, we have -uw b η = -uw b x(η) -1 ã such that w ã x(η)w b u -1 is the maximal length coset representative of W ã x(η)w b u -1 . Now we apply the classical Kazhdan-Lusztig conjecture for semisimple Lie algebras, which is the theorem by Beilinson-Bernstein and Brylinski-Kashiwara. Here, the Lie algebra is sl r (C) and it gives M (uw b η) = γ∈ãSr P wã x(η)w b u -1 ,wã x(γ)w b (1)M 0 (w b γ),

  Computation of the bijection τ l using abaci.
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We drop "modulo Z(ǫ 1 + • • • + ǫr) "by abuse of notation.
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By the integrality as a p µ -module, we have

Note also that â = -

and we have