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Abstract We study the descriptive and the normative consequences of price
and/or other attributes changes in additive random utility models. We �rst
derive expressions for the transition choice probabilities associated to these
changes. A closed-form formula is obtained for the logit. We then use these
expressions to compute the cumulative distribution functions of the compensat-
ing variation conditional on ex-ante and/or ex-post choices. The unconditional
distribution is also provided. The conditional moments of the compensating
variation are obtained as a one-dimensional integral of the transition choice
probabilities. This framework allows us to derive a stochastic version of Shep-
hard�s lemma, which relates the expected conditional compensating variation
and the transition choice probabilities. We compute the compensating variation
for a simple binary linear in income choice model and show that the information
on the transitions leads to better estimates of the compensating variation than
those obtained when only ex-ante or ex-post information on individual choices is
observed. For the additive in income logit, we compute the conditional distrib-
ution of compensating variation, which generalizes the logsum formula. Finally,
we derive a new welfare formula for the disaggregated version of the represen-
tative consumer CES model.
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1 Introduction

Discrete choice models (DCM) describe the individual choices of one alternative
among a set of mutually exclusive alternatives. In the standard approach, each
alternative i is associated with a utility Ui = vi + "i, where vi containing price
and/or other attributes is the systematic utility and "i is an error term known by
the individual but treated as a random variable by the modeler. The individual
selects the alternative with the largest utility. The modeler assigns a probability
Pi that an individual selects alternative i, which is the probability that the
random variable Ui is larger than all the other random variables Uk, k 6= i. This
approach corresponds to the random utility maximization models (RUM). Here,
the systematic utility is �xed and the individual choices are static. Conversely,
the rationalization and consistency of choice probabilities with random utility
maximization probabilities is a well-known problem which is discussed e.g. in
McFadden (2005).
Such models have initially been studied in the transport literature (to de-

scribe the choice between private and public transportation) and in the urban
literature (to describe residential location; see the early contributions of Domen-
cich and McFadden 1975). Later on, RUM models have been used in many other
�elds, such as education, demography, industrial organization, public economics,
experimental economics, decision theory and marketing (see Anderson, de Palma
and Thisse 1992, who have discussed the neoclassical economic foundations of
RUM; see also the survey of McFadden 2001). Estimation of RUM (logit, pro-
bit, ordered probit, generalized extreme value models, mixed logit, etc.) has
attracted a lot of attention during the last half century (see, e.g. Train 2003).
The welfare properties of RUM�s are well known for the simplest model,

the multinomial logit, which leads to the �logsum� formula (in the standard
logit, "i are i.i.d. double-exponentially distributed and income enters the utility
function linearly with a uniform coe¢ cient, i.e. there are no income e¤ects). The
extensions including income e¤ects and using other error terms speci�cations are
more intricate.
Small and Rosen (1981) have addressed the question of income e¤ects in

RUM. They have derived an approximative expression of the expected compen-
sating variation for a price or other attributes change (they focus on taxation).
They extend the conventional welfare approach to the DCM framework and
show that the expected compensating variation can be computed as an integral
of the Hicksian choice probabilities (compensated choice probabilities). Using
a similar approach, Dadgsvik and Karlström (2005) derive an exact formula
for the compensating variation (CV) associated to a price (or other attributes)
changes. They provide an expression for the distribution of the CV conditional
on the ex-ante (i.e. before the change) individual choices, i.e. given that the
individual choices are only observed ex-ante.
Welfare measures with income e¤ects have also been studied via numerical

simulations by McFadden (1999), who has developed a sampler for computing
the CV caused by a change in the individual environment. For the general-
ized extreme value (GEV) models, which extends the multinomial logit model,
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he has provided an algorithm, the GEV sampler, to estimate welfare e¤ects.
However, even though this sampler leads to consistent results, it is time con-
suming since a large number of iterations must be performed in order to obtain
with a reasonable level of accuracy numerical approximations of the true welfare
impacts.
Von Haefen (2003) has worked out an application which suggests that the

observed choice behavior of the individuals ex ante improves the accuracy of
the calculation of consumer surplus. The scope of this paper is to analyze the
theoretical properties of demand and welfare of RUM when a price or attribute
change has occurred and when ex ante and/or ex post choices are observed.
As a consequence of price or attribute change, some individuals alter their ex

ante choices. It is assumed that individual error terms remain the same ex-ante
and ex-post (i.e. after the change). The expressions for the transition choice
probabilities are derived analytically in this paper. This information is useful
per se in order to evaluate the consequences of a policy but it is not su¢ cient to
observe only the choice probabilities ex-ante and/or ex-post. Via an example,
we show the information on transition choice probabilities is crucial to evaluate
the welfare consequences of this change. We compute the transition choice prob-
abilities and the distribution of the CV conditional on the transition choice. We
use a direct approach based on Marshalian transition choice probabilities while
Dagsvig and Karlström (2005) use Hicksian static choice probabilities relying on
unobservable information, since their values depend on the unobservable error
terms "i.
The structure of the paper is as follows. In Section 2, we provide the as-

sumptions on the utility functions and on the distribution of the error terms.
Theorem 1 provides an analytical formula for the transition choice probabilities
for additive random utility maximization models (ARUM). The logit special
case is handled in Proposition 2. In Section 3, we de�ne the CV for ARUM.
Theorem 4 provides an analytical expression (based on the transition choice
probabilities) for the distribution of the CV conditional on the transitions. The
various moments of the CV are given as a one-dimensional integral either of
the transition choice probabilities (Theorem 6) or of the choice probabilities
(Corollary 7). We also introduce a stochastic version of Shephard�s Lemma for
DCM (Proposition 8) in the context of transitions. In Section 4, we compute
the CV for a simple binary linear in income RUM and consider the impacts of a
change in one price. This example shows that the information on the transitions
leads to better estimates of the CV than the ones obtained when only ex-ante
or ex-post information on individual choices are observed. For the additive in
income logit, we compute directly the conditional distribution of CV which gen-
eralizes the celebrated logsum formula. Finally, for the disaggregated version of
the CES, we propose a new exact welfare measure. In Section 5 we discusses
further extensions. Proofs are relegated to the appendix.
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2 Transition choice probabilities

2.1 Model and notations

There are n alternatives and preferences are described by an ARUM. We con-
sider the impacts of a change and study the individual choices before (ex-ante)
and after (ex-post) the change. The ex-ante (conditional) utility Ui of an in-
dividual selecting i is given by Ui = vi + "i, where vi, the ex-ante systematic
component of the utility Ui of i is assumed to be observable and where "i is
an error term, which captures unobservable individual characteristics that are
modelled by the econometric investigator as a random variable. We assume that
the error terms remain the same ex-ante and ex-post.
Let F be the CDF of the vector of error terms ("1:::"n) which is assumed to

be absolutely continuous with respect to the Lebesgue measure over a convex
support. Therefore (see McFadden 1978) the probability Pi (v), that an individ-
ual selects ex-ante i can be written in an integral form (the function�s arguments
are omitted in the sequel when it is unambiguous)

Pi (v) � Pr (Ui > Uk; k 6= i) =

Z +1

�1
F i (u� v1:::u� vn) du; (1)

where v � (v1:::vn) is the systematic utility vector and where: F i (x1:::xn) �
@F (x1:::xn) /@xi . It can easily be veri�ed that:

P
i Pi = 1. Note that the

choice probabilities are invariant up to a shift: Pi (v1 + �:::vn + �) = Pi (v).
The expected individual demand Xi for alternative i can be obtained by using
Roy�s identity (see Section 4 for an illustration in the CES case).
Let �ji be minus the derivative of Pi with respect to vj . A derivation of (1)

under the integral sign (see Anderson et al. 1992) yields:

�ji � �
@Pi
@vj

=

Z +1

�1
F ij (u� v1:::u� vn) du; (2)

where F ij � @F i /@xj , i; j = 1:::n. Note the equality of the cross-derivatives:
�ji = �

i
j ; j 6= i.

The ex-post utility of an individual selecting j is �j = !j + "j , where !j
is the (observable) ex-post systematic component of �j . The probability of
selecting ex-post j is given by Pj (!), where ! � (!1:::!n) (see Eq. (1)).

2.2 Computation of transition probabilities

The (transition) choice probability that an individual selects i ex-ante and j
ex-post is

Pi,!j (v;!) � Pr (Ui > Uk; k 6= i; �j > �r; r 6= j) : (3)

Theorem 1 provides an integral form for these transition choice probabilities.
Let �k � �k�Uk = !k� vk, k = 1:::n, be the utility variation of k. We assume
without loss of generality the ranking �1 � ::: � �n. De�ne t+ = max(t; 0). We
have (see appendix):
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Theorem 1 For an ARUM, consider the change: v ! !. The transition choice
probabilities from i to j are given by:

Pi,!j (v;!) =

8>><>>:
Pi
�
v1 + (�1 � �i)+ :::vn + (�n � �i)+

�
; if j = i;R �j

�i
�ji

�
v1 + (�1 � z)+ :::vn + (�n � z)+

�
dz; if j > i;

0; if j < i.

(4)

The probability Pi,!i to select i ex-ante and ex-post is given by a choice
probability as de�ned by (1). We discuss the case 1 < i < n, with n > 2 (the
other cases are left to the reader). For k < i, �k � �i; therefore, if an individual
selects i (with utility vi) ex-ante, he will prefer i to k ex-post. Let k > i with
�k � �i. In this case, an individual who selects i ex-post (with utility !i) prefers
i to k ex-ante. Therefore,

Pi,!i = Pi(v1:::vi; !i+1 � �i:::!n � �i) = Pi(v1 + �i:::vi�1 + �i; !i:::!n) (5)

represents the probability that an individual selects i ex-ante and ex-post.
The transition choice probabilities from i to j, j 6= i are clearly zero if j

is weakly deteriorated in relative term with respect to i (�j � �i). For j � i,
we de�ne the transition i ,! j to be feasible if it occurs with a strictly positive
probability. The transition choice probabilities are explained intuitively below.
For �j > �i, these transition choice probabilities Pi,!j are given by an integral on
z = (!j + "j)� (vi + "i), which represents the utility variation of an individual
who shifts from i to j. Note that z > �i (the utility variation when staying
in i) and z < �j (otherwise j would have been preferred to i to ex ante).

The integrand �ji
�
v1 + (�1 � z)+ :::vn + (�n � z)+

�
represents the probability

density that the individual who experienced a utility change of z shifts from i to

j. Finally note that the argument z in
�
v1 + (�1 � z)+ :::vn + (�n � z)+

�
plays

a similar role than �i in the vector
�
v1 + (�1 � �i)+ :::vn + (�n � �i)+

�
.

When n = 2 or 3, transition choice probabilities reduce to choice proba-
bilities (using standard constraints on probabilities). For n > 3, there are a
priori n (n� 1) =2 integrals. However, using the 2n� 3 constraints, the compu-
tation of all transition choice probabilities requires the computation of at most
(n� 2) (n� 3) =2 integrals.
The constraints on the transition choice probabilities can be easily checked.

As expected, the ex-ante and ex-post choice probabilities can be recovered by
summation of the transition choice probabilities given in Theorem 1. More
precisely, using (4) it can be shown that:X

j

Pi,!j = Pi (v) and
X
i

Pi,!j = Pj (!) : (6)

Note that these expressions are straightforward to derive if one uses directly the
expressions in (3).
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2.3 Logit transition probabilities

The transition choice probabilities are explicit for the logit model. In this case,
the CDF is given by:

F (x1:::xn) = exp

 
�
X
i

e�xi

!
; (7)

which yields the following choice probabilities (see Domencich and McFadden
1975):

Pi (v) =
eviP
k e

vk
. (8)

We will use in the rest of the paper the following notations:8<:
sr �

P
k�r e

vk ;

�r � �0 �
P
k�r e

!k ; with �0 �
P
k e

!k ;


r � sr + �re
��r ; r = 1:::n:

(9)

We have (see appendix):

Proposition 2 For the logit speci�cation (7), consider the change: v ! !. The
transition choice probabilities from i to j are given by:

Pi,!j =

8><>:
evi


i
; if j = i;Pj�1

r=i

�
evi


r+1
� evi


r

�
e!j

�r
; if j > i;

0; if j < i.

(10)

First remark that in the case of Example 1 with !1 < v1, P1,!j
, with j 6= 1,

can be written, in the logit case, as:

P
1,!j

=

�
ev1P
k e

vk
� e!1

e!1 +
P
k>1 e

vk

�
� evjP

k>1 e
vk
;

where the �rst term on the RHS represents the probability that an individual
abandons 1, while the second term is the probability that j is the second best
choice (this independence results is speci�c to the logit). The other cases are
more involved and explained below.
Note that evi=
r, r � i represent the probability to choose i ex-ante and

to get a utility variation in [�i; �r]. The probability of this event can be writ-

ten as Pr
�
Ui > Uk + (�k � �r)+ ; k 6= i

�
; it corresponds to a choice probability

with the systematic utility given by (v1:::vr; !r+1 � �r:::!n � �r). In particu-
lar, if r = i, evi=
i is the probability to have a utility variation of exactly �i.
It corresponds to Pi,!i since the individual sticks to alternative i i¤ he has a
utility variation of �i. Note that

Pj�1
r=i [(e

vi=
r+1 � evi=
r)] = evi=
j � evi=
i
represents the probability that an individual chooses i ex-ante and incurs a
utility variation in [�i; �j ]. If the individual shifts from i to j, the associated
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utility variation lies within the interval [�i; �j ]. The term evi=
r+1 � evi=
r
represents the probability that an individual abandon i and has a utility varia-
tion in the interval [�r; �r+1]. He will choose an alternative k such that k > r.
The probability that he chooses j among the feasible choices k (with k > r) is
e!j=

P
k>r e

!k . The reader is also referred to de Palma and Kilani (2005) who
compute the conditional transition probabilities, where changes are conditional
to the ex-ante choice.

3 Welfare

In the previous section, we provided an expression for the transition choice
probabilities Pi,!j for a change v ! !. We study now the distribution of
individual compensations and the welfare impacts associated to this change.
We assume that the ex-ante (ex-post) indirect utility Uk (resp. �k ) of k is
a function of the individual�s income y. They are denoted as Uk (y) (resp. as
�k (y)) and assumed to be strictly increasing and continuous in y.

3.1 Welfare distributions and moments

The compensating variation cv is de�ned as the amount of income needed to
restore the ex-ante individual�s utility level ex-post change v ! !. In the DCM
literature (see, McFadden 1999), this means:

max
k
(Uk) = max

k
[�k (y � cv)] : (11)

Since the utilities are random due to the presence of the error terms (recall
Ui = vi + "i), cv is also a random variable.
In order to insure that Eq. (11) admits a unique solution, we should make

an additional assumption. Let �k (c) � �k (y � c) � Uk be the (deterministic)
utility variation of k ex-post and after compensation of �c, with �k (0) = �k.
We require that for any i, k, there exists a real  ik de�ned by:

�k ( ik) = (�k � �i)
+
: (12)

The interpretation of the ( ik)
0
s is provided in the following Lemma (see ap-

pendix):

Lemma 3 Given a feasible transition i ,! j, the support of cv is included in
[mij ;mj ], where mij � max

�
 ii;  ij

�
and where mj � maxk

�
 jk
�
.

As we have seen in Section 4.1, the CV conditional on the transitions i ,! i
can be stochastic. This is not the case in the absence of income e¤ects.
We wish to compute the distribution of cv using the information on the

individual transitions ex-post: v ! !. Consider a feasible transition i ,! j.
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The CDF of cv, conditional on a feasible transition i ,! j, denoted by �i,!j , is
given by:

�i,!j (c) �
Pr (c � cv;Ui > Uk; k 6= i; �j > �r; r 6= j)

Pi,!j (v; !)
: (13)

In Theorem 4, an analytic expression for �i,!j is provided. Let �+k (c) =
max (�k (c) ; 0) and recall that mij � max

�
 ii;  ij

�
and mj � maxk

�
 jk
�
.

We have (see appendix):

Theorem 4 For an ARUM, consider the change: v ! !. The CDF of the
compensating variation conditional on the transition i ,! j has support (mij ;mj ]
and is given by:

�i,!j (c) =
Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
Pi,!j (v; !)

; c � mij, (14)

where the transition choice probabilities Pi,!j (:; :) are given in Theorem 1.

This expression allows the computation of the distribution of cv when only
the ex-ante or the ex-post choice is observed. In this case, the conditional
distribution of cv depends on the choice probabilities and not on the transition
choice probabilities as in Theorem 4. We now compute �i,! (resp. �,!j) the
conditional CDF of cv given the ex-ante (resp. ex-post) choice of i (resp. j).
Let mj � mini (mij) and let Hmij (c) � 1 if c � mij and Hmij (c) � 0 otherwise
be the Heaviside function at mij . We obtain (see appendix):

Corollary 5 For an ARUM, consider the change: v ! !. The CDF of the
compensating variation
(a) conditional on the ex-ante choice of i has support [ ii;mn] and is:

�i,! (c) =
Pi
�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
Pi (v)

, c �  ii; (15)

(b) conditional on the ex-post choice of j, has support
�
mj ;mj

�
and is:

�,!j (c) =

P
iHmij

(c)� Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
Pj (!)

; c � mj : (16)

The CDF (15) coincides with the CDF derived by Dagsvik and Karlström
(2005) in the case where only the ex-ante choices are observed. Note that for
the logit model, the CDF of the CV conditional on the ex-ante choice of i is
given by:

�i,! (c) =

P
k e

vkP
k e

vk+�
+
k (c)

, c �  ii. (17)

Finally, the unconditional distribution of cv can be computed using Eq. (15) and
making use of the theorem on total probability (see also Dagsvik and Karlström
2005):

� (c) =
X
i

Hmii (c)� Pi
�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
.
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We now compute the conditional and the unconditional moments of the
distribution of cv (see appendix):

Theorem 6 For an ARUM, consider the change: v ! !. The pth moment
(p � 1) of the compensating variation conditional on the transition i ,! j is
given by:

Ei,!j [cv
p] = mp

j � p
Z mj

mij

cp�1
Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
Pi,!j (v; !)

dc. (18)

When p = 1, Eq. (18) provides the expected CV conditional on the ob-
served transitions. This is reminiscent of the standard treatment of surplus,
and involves the computation of areas under the compensated transition choice
probabilities curves. The conditional on the ex-ante or ex-post choices moments
are given by (see appendix):

Corollary 7 For an ARUM, consider the change: v ! !. The pth (p � 1)
moment of the compensating variation conditional is given for
(a) the ex-ante choice of i by:

Ei,! [cvp] = mp
n � p

Z mn

 ii

cp�1
Pi
�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
Pi (v)

dc; (19)

(b) the ex-post choice of j by:

E,!j [cv
p] = mp

j � p
X
i

Z mj

 ii

cp�1
Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
Pj (!)

dc. (20)

Equation (19) provides in particular the expected CV conditional on the
ex-ante choice (this expression is derived in Dagsvik and Karlström 2005). It
involves the computation of areas under the compensated choice probability
curves. Equation (20) is new and relies on the expression obtained in Theorem
6.
Using Corollary 7 with Eq. (6), the pth unconditional moment of the CV

veri�es:

E [cvp] = mp
n � p

X
i

Z mn

 ii

cp�1Pi
�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
dc. (21)

In particular, the expectation of cv is given by

E [cv] = mn �
X
i

Z mn

 ii

Pi
�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
dc. (22)

According to Eq. (22), E [cv] is the sum of the integrals of parametrized choice
probabilities Pi

�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
. An approximative expression for the

expected CV was also envisaged by Small and Rosen (1981).

9



3.2 Shephard�s lemma revisited

We assume that the systematic component of the utility (ex-ante and ex-post) of
k depends on income y and on price level pk and is given by Vk (y; pk). Assuming
that Vk (:; :) is di¤erentiable with respect to both arguments, the conditional
(individual) demand xk for good k is determined by using Roy�s identity:

xk = �
(@Vk=@pk)

(@Vk=@y)
; k = 1:::n:

Note that in ARUM, the conditional demands are deterministic, i.e. are inde-
pendent on the idiosyncratic taste parameters. Let �pk be a price change of
good k. The corresponding CV for an individual who sticks to good k is  kk.
Shephard�s Lemma, which is a direct application of the Envelope Theorem,
gives:

lim
�pk!0

 kk
�pk

= �xk:

In the RUM approach, when an individual modify her choice after an in�n-
itesimal price change, the corresponding CV is stochastic (i.e. depends on the
idiosyncratic terms of the initial and of the �nal good). Therefore, we compute
the expected CV, conditional of the transition in order to write the counterpart
of Shephard�s Lemma in the RUM models. We have (se appendix):

Proposition 8 For an ARUM, consider the in�nitesimal change of the price
of one good. The expected change in CV per dollar for an in�nitesimal price
increase of good 1, conditional on the ex-ante and the ex-post choices is:

lim
�p1!0+

E1,!j [cv]

�p1
=

8<:
�x1; if j = 1;
��1j

2 x1 if j > 1; �1j � 1;
�
�
1� �j1

2

�
x1 if j > 1; �j1 � 1;

(23)

where �ij � (@Vi=@y) = (@Vj=@y) :
The expected change in CV per dollar for an in�nitesimal price decrease of good
n, conditional on the ex-ante and the ex-post choices is:

lim
�pn!0�

Ei,!n [cv]

�pn
=

�
�xn=2; if i < n;
�xn; if i = n:

(24)

Consider a price increase. The result for the case if j = 1 is trivial, since
this is Sheppard�s Lemma. The intuition for the case if j > 1 is as follows.
First note that the consumer who are indi¤erent between 1 and j (i.e. the
�rst individual to shift) requires no compensation. Second, consider the �last�
individual ready to shift from 1 to j. She is indi¤erent between state 1 and state
j. The indi¤erence ex-post implies that: v1(p1 +�p1; y) + "1 = vj(pj ; y) + "j :
Since �p1 ! 0, we have: "j � "1 = v1 +�p1 (@V1=@p1) � vj (where argument
are omitted when unnecessary). The CV gives:

v1(p1; y) + "1 = vj(pj ; y � cv) + "j :

10



Since cv ! 0 as �p1 ! 0, v1 + "1 = vj � cv (@Vj=@y) + "j , so that, using the
expression for "j � "1 derived above, we get:

cv =
vj � v1 + ("j � "1)

@Vj=@y
= �p1

@V1=@p1
@Vj=@y

:

Using Roy�s identity ((@V1=@p1) = (@V1=@y) = �x1), we get, as required, that
the average (per dollar) CV is �x1�1j=2.
Finally, note that by applying the theorem on total probability to (23) and

(24), one obtains: lim�p1!0+ E [cv] =�p1 = X1 and lim�pn!0� E [cv] =�pn =
Xn, respectively. This weaker version of the Shephard�s has been obtained by
Dagsvik and Kalstrom (2005).

4 Examples

4.1 Welfare estimates with transition information

Consider two alternatives, denoted by 1 and 2, and we study the consequences of
a price change. We show that the econometric investigator can get much better
estimates of the welfare impacts of this change, when information concerning
ex-ante choice and ex-post choice are used.
Assume that the ex-ante utility of a given individual is Ui = �i (y � pi)+ "i,

where �i > 0 is the marginal utility of income (denoted by y) of good i, pi
is the prices of good i, and "i is an unobservable error term, i = 1; 2. Let
� � U1 � U2 = "1 � "2 uniformly distributed over [�1; 1]. Hence, good 1 is
chosen ex-ante i¤ � > 0. We study the transition when the price of good 1 is
raised by �p1 > 0, and we assume: 1 > max (�1; �2)�p1.
Three cases arise: (a) if � > �1�p1, the individual chooses 1 ex-ante and

ex-post; (b) if �1�p1 � � > 0, the individual chooses 1 ex-ante and 2 ex-post;
(c) if � < 0, the individual chooses 2 ex-ante and ex-post. The cv corresponding
to this price change is given by: cv = 0 if � � 0; cv = ��=�2 if 0 < � � �2�p1;
cv = ��p1 if �2�p1 < �.
Let �1 � �2. Three cases arise: (a) For a transition 1 ,! 1, we have

cv = ��p1 (b) For a transition 1 ,! 2, the support of cv is [��p1; 0]. There
is a mass at (��p1) corresponding to the probability that the individual shifts
from 1 to 2, and returns to 1 after being compensated by �cv. Otherwise, the
individual selects good 2 after being compensated by �=�2. (c) For a transition

11



2 ,! 2, cv = 0. The discussion is illustrated in Figure 1.

Figure 1: Transitions and CV with respect to � (case �1 > �2)

The case �1 < �2 is similar and left to the reader.
We can use the above discussion to compute the expected CV conditional to

the transition i ,! j, i; j = 1; 2, in the case: �1 = �2 = � (no income e¤ects).
We have: E1,!1 (cv) = ��p1; E1,!2 (cv) = ��p1=2; E2,!2 (cv) = 0.
We wish to compare the quality of the estimates of cv with respect to the

knowledge of the ex-ante and/or ex-post choice. Without ex-ante and/or ex-
post information concerning individual�s choice, an appropriate estimate of cv
is the expected CV: E (cv) = � (1� ��p1=2) (�p1=2).
First, assume that only the ex-ante choice is observed. If the individual

selects 2 ex-ante, cv is deterministic and equal to 0, so that the conditional
expectation denoted by E2,! (cv) veri�es: E2,! (cv) = 0. If the individual selects
1 ex-ante, cv is random and replaced by its conditional expectation given by:
E1,! (cv) = � (1� ��p1=2)�p1.
Second, assume that only the ex-post choice is observed. If the individual

selects 1 ex-post: E,!1 (cv) = ��p1. If the individual selects 1 ex-post, we get:
E,!2 (cv) = � [��p1= (��p1 + 1)] (�p1=2).
Third, assume that the ex-ante and the ex-post choices are observed. If 1

is selected ex-ante and ex-post, then cv = ��p1; if 2 is selected ex-ante and
ex-post, then cv = 0. If 1 is selected ex-ante and 2 is selected ex-post then cv is
random and replaced by its conditional expectation: E1,!2 (cv) = ��p1=2.
In summary: the individual in 2 ex-ante or in 1 ex-post receive a determin-

istic compensation. By contrast, the observation of the choice of 1 ex-ante only
or of 2 ex-post only is insu¢ cient: information on ex-ante and ex-post choices
(1 ,! 2) improves the quality of information on the CV.
We have computed the root-mean square errors (R.M.S.E.) � (cv jI ) for the

four estimators based on the information I on individual choice: �without�
information, with �ex-ante�, with �ex-post�and with �transitions�information.

12



The largest gains occur when transitions are observed. When only ex-post
information is available, the gain can be small. Figure 2 shows the impact of
the magnitude of the change �p1 for � = 1.

Figure 2: R.M.S.E. for various information regimes

These results suggest that the information on the ex-ante and/or ex-post individ-
ual choices lead to better estimates of the CV, but that an ex-ante information
only is better than ex-post information only. When �p1 = 1, there are no more
transitions so that �ex-ante� and �transitions� information regimes coincide.
Similarly, �without�and with �ex-post�information regimes also coincide.

4.2 Additive in income logit speci�cation

In this section, we concentrate our attention on the logit model where the tran-
sition choice probabilities have an explicit form (see Proposition 2). We assume
that the utility is additive in income, i.e. that Uk � v (y) (resp. �k � v (y)) is
independent on income, where v (:) is strictly increasing. In this case, the
We �rst provide the expressions for the CDF of cv conditional on the tran-

sition i ,! j which have closed forms (proof in appendix):

Proposition 9 For the logit speci�cation (7) with additive in income utility,
consider the change: v ! !. The compensating variation conditional on the

transition i ,! j has support
�
 ii;  jj

�
. For c 2

h
 ll;  (l+1)(l+1)

i
, j > l � i, the

CDF is given by:

�i,!j (c) =
1

�ij

�
�il +

1

�l

�
1

sl + �le��y(c)
� 1


l

��
, (25)

where �ii = 0 and �il =
Pl�1
r=i �

�1
r

�

�1r+1 � 
�1r

�
, l > i.
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The expected CV conditional on the transition i ,! j can be computed up
to (n� 1) integral terms (proof in appendix):

Proposition 10 For the additive in income logit, consider the change: v ! !.
The expected compensating variation conditional on the transition i ,! j, j > i,
is given by:

Ei,!j [cv] =

(
 ii; if j = i;

1
�ij

Pj�1
r=i

1
�r

h
 (r+1)(r+1)


r+1
�  rr


r
� �r

i
; if j > i,

(26)

where �ij �
Pj�1
r=i �

�1
r

�

�1r+1 � 
�1r

�
, j > i, and where

�r �
Z  (r+1)(r+1)

 rr

dc

sr + �re��y(c)
; r = 1:::n� 1; (27)

with sr, �r and 
r given by (9).

The formula (26) with (27) generalizes the standard logsum expression (dis-
cussed below) in many ways. It conditions the expected CV on both the ex-ante
and the ex-post choices and it captures income e¤ects.
Using the same integral terms �r (r = 1:::n � 1), it is possible to derive

expressions of the expected CV when the ex-ante or the ex-post (Corollary 11)
are observed. We have (see appendix):

Corollary 11 For the additive in income logit, consider the change: v ! !.
The expected compensating variation conditional on
(a) the ex-ante choice of i is:

Ei,! [cv] =
�
 nn � sn

Pn�1
r=i �r; if i < n;

 nn; if i = n;
(28)

(b) the ex-post choice of j is:

E,!j [cv] =

(
 11; if j = 1;

�0

n
 jj
�j�1

�
Pj�1
r=1

1
�r

�
e!r rr
�r

� sr�r
�o

; if j > 1,
(29)

with sr, �r and 
r given by (9).

Given that E [cv] =
Pn
i=1 Pi (v)Ei,! [cv], we get that for the additive in

income logit, the expected CV is:

E [cv] =  nn �
n�1X
r=1

sr�r: (30)

Using for example Eq. (28), we get E [cv] =  nn �
Pn�1
i=1

Pn�1
r=i e

vi�r. Eq. (30)
is obtained by inverting the two sum signs.
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Assume for example that for all initial choice, the individual has bene�ted
from the change. In this case,  nn is the maximal bene�t induced by this
change. This bene�t has to be reduced to take into account that the individual
with another ex-ante choice requires a smaller compensation.
Proposition 10, Corollary 11 and Eq. (30) show that the conditional and

the unconditional CV�s can be obtained from the same set of values �r. When
income is additive and linear or logarithmic, there exists an explicit formula for
the �0rs that will be exploited below.

4.3 The standard logit and the logsum formula

The logsum formula has been used extensively in transportation, location theory
and more recently in industrial organization (IO) as a simple welfare measure
for the logit model (see the recent survey of de long et al. 2007). We provide
below an extension of the standard model for conditional choices (see Eq. (26)).
If v (y) = (1=�) y, with � > 0, we have �y (c) = (1=�) c and  kk = ��k. We

get the following explicit expression of the integral term

�r = �

�
�r+1 � �r + ln
r+1 � ln
r

sr

�
; r = 1:::n� 1:

Using these expression of �r in (30) leads to the following formula for the un-
conditional expected CV:

E [cv] = � ln (�0=sn) = � ln

 X
k

e!k=
X
k

evk

!
: (31)

This expression (31) corresponds to the di¤erence between the ex-post and
ex-ante logsums. The well known log-sum formula has been derived by McFad-
den as a welfare measure. The formula for the conditional CV�s (see Proposition
10 and Corollary 11) are explicit in this case. Our analysis allows to compute
conditional logsums which provide more accurate evaluation of surplus when
ex-ante and/or ex-post choices are observed (see the numerical evaluations pro-
vided in Section 4.1). The reader is also referred to de Palma and Kilani (2007)
who focus on characterizations of the conditional (to the ex-ante) distributions
of maximum utility in RUM.

4.4 An alternative welfare measure for the CES

When the utility is additive but non linear in income, as for the CES model, we
can still derive an explicit formula for the expected CV�s. If v (y) = (1=�) ln y,
with � > 0, we have �y (c) = � (1=�) ln (1� c=y) and  kk = y

�
1� e���k

�
.

The integral term in this case is given by (Use the change of variable t =

sr=
h
sr + �r (1� c=y)1=�

i
)

�r = �y
s��1r

��r
B sr


r
; sr

r+1

(1� �; �) ; r = 1:::n� 1;
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where B denotes the generalized incomplete Beta function. The expected CV
for the logarithmic in income logit model is

E [cv] = y

"
1� e���n � 1

�

n�1X
r=1

�
sr
�r

��
B sr


r
; sr

r+1

(1� �; �)
#
: (32)

Assume for example that the systematic component of the utility has the
following speci�cation: vk = (1=�) (ln y � ln pk) where pk denotes the ex-ante
price of good k. Using the Roy�s identity, the ex-ante demand for good i is:

Xi =
p
� 1
��1

iP
k p

� 1
�

k

y:

Anderson, de Palma and Thisse (1987) have shown that the CES representa-
tive consumer model (see Dixit and Stiglitz 1977) can be derived as a logit
model with income additive logarithmic speci�cation and double-exponentially
distributed error terms. We provide below an expression for the conditional (and
unconditional) CV corresponding to the CES. Anderson et al. (1992, pp. 97-
100) show that �a rise in the CES indirect utility function does not necessarily
imply that all constituent consumers (...) can be made better o¤ by appropriate
redistribution of income.�This criticism of the representative consumer can be
handled when the CV is computed at the individual level and then aggregated
over the population. We provide this result below. Consider a change in prices
(p1:::pn) ! (�1:::�n), where �k is the ex-post price of good k. In this case, the
expected (aggregated) CV for the CES is given by

E [cv] = y

"
1� �n

pn
� �

n�1X
r=1

�r
Pr
�B sr


r
; sr

r+1

(1� �; �)
#
; (33)

where Pr =
�Pr

k=1 p
�1=�
k

���
and �r =

�Pn
k=r+1 �

�1=�
k

���
are respectively

the partial ex-ante and the ex-post CES price indices, and where in this case
the arguments of the Beta function are such that:8><>: sr=
r =

h
1 + (pr�r=�rPr)

�1=�
i�1

;

sr=
r+1 =
h
1 +

�
pr+1�r=�r+1Pr

��1=�i�1
:

(34)

These expressions di¤er from the aggregate standard welfare measures oh the
CES model. They provide alternative welfare measure to assess the policy im-
plication of price changes.

5 Concluding remarks

In this paper, we have presented a �rst step towards a dynamic choice model,
where individuals may alter their current choice after a change in the attributes
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of the alternatives. For ARUM, we have computed the transition choice proba-
bilities and the associated welfare measures (CV) and have provided analytical
functional forms. Using these formulae will ease the welfare analysis both at
the theoretical and empirical levels.
The proposed framework can be extended in several dimensions. The most

important extension involves the mixed logit model widely used in empirical
applications (see Berry, Levinsohn and Pakes 1999). In this case, some para-
meters are distributed so that the transition choice probabilities will involve a
kernel that we have computed in Section 2, while the various welfare measures
(conditional and unconditional distribution and moments of CV) will involve
kernels provided in Section 4. In this sense, the mixed logit would only add an
integral for each of the parameters that are being distributed.
We have concentrated our analysis on the case where only one series of change

occur at once, and individual choices are observed ex-ante and ex-post (i.e.
before and after this change). Moreover, we have assumed that the error terms
remain the same, but this is not necessary the case in a truly dynamic model. It
is easy to consider situations, and model situations where individuals have some
probability to inherit a new error term (for some alternatives) when a change
has occurred. Besides, practical situations may involve several changes staggered
over time. In this case, the exact dynamics of the error term is relevant. Indeed,
without change of the error terms, each change induces transitions which provide
information on the parameters of the systematic utility as well as on the value of
the error terms. As a consequence the model may lead to inconsistent sequence
of choice if the error terms are individual speci�c. The redraw of the error
terms allows to avoid these inconsistent situations. There is still a long way
to compute exact formulae for truly dynamic random utility models. We hope
that this paper provides a useful �rst step in these directions.

Acknowledgments: We would like to thank Simon Anderson, Moshe Ben-
Akiva, Denis Bolduc, Raymond Deneckere, Nicolas Gravel, Hervé Moulin, Daniel
McFadden, Robin Lindsey, Eric Renault, Jacques Thisse and Kenneth Train for
comments and suggestions on various stages of this paper. The �rst author
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Appendix. Proofs

Proof of Theorem 1. The probability Pi,!i (see Eq. (3)) given by
Pi,!i = Pr (Ui > Uk; k 6= i; �i > �r; r 6= i), can be rewritten as

Pi,!i = Pr (Ui > Uk; k 6= i;Ui > Ur + (�r � �i) ; r 6= i) ;

and further simpli�ed as

Pi,!i = Pr
�
Ui > Uk + (�k � �i)+ ; k 6= i

�
: (35)

Comparing (35) with (1), we deduce that

Pi,!i = Pi
�
v1 + (�1 � �i)+ :::vn + (�n � �i)+

�
:

If j 6= i, with �j > �i, Pi,!j given by (3) can be rewritten as

Pi,!j = Pr
�
Ui > Uk +

�
�k � �ij

�+
; k 6= i; j; �j > �ij > �i

�
; (36)

where the random variable �ij � �j�Ui represents the utility variation ex-post.
Clearly, if i > j and therefore �i � �j , then Pi,!j = 0 as required.
If j > i, we associate to Ui and to �j the variables of integration u and w,
respectively. Remark that if z � w � u veri�es �j � z � �i, then u � vi =

u � vi � (�i � z)+ and w � !j = u � vj � (�j � z)+. The transition choice
probability (36) can then be written in the following integral form:

Pi,!j =

Z 1

�1

Z u+�j

u+�i

F ij
�
u� v1 � (�1 � z)+ :::u� vn � (�n � z)+

�
dwdu:

Using the change of variable z = w � u within the inner integral, we get:

Pi,!j =

Z 1

�1

Z �j

�i

F ij
�
u� v1 � (�1 � z)+ :::u� vn � (�n � z)+

�
dzdu:

The Fubini�s theorem allows us to permute the integral signs so that:

Pi,!j =

Z �j

�i

Z 1

�1
F ij

�
u� v1 � (�1 � z)+ :::u� vn � (�n � z)+

�
dudz:

Thanks to Eq. (2), the inner integral is �ji
�
v1 + (�1 � z)+ :::vn + (�n � z)+

�
,

and therefore:

Pi,!j =

Z �j

�i

�ji

�
v1 + (�1 � z)+ :::vn + (�n � z)+

�
dz;

which is the required expression. �
Proof of Proposition 2. If j = i, using Eq. (5) with the logit choice proba-
bilities (8) we get Pi,!i = evi=
i, where 
i =

P
k�i e

vk +
P
k>i e

!k��i , i < n
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and where sn =
P
k e

vk .
If �j > �i, with n > j > i > 1, using Eq. (4), we have:

Pi,!j =

j�1X
r=i

Z �r+1

�r

�ji (v1:::vr; !r+1 � z:::!n � z)dz.

For the logit, �ji = PiPj so that

Pi,!j = evie!j
j�1X
r=i

Z �r+1

�r

e�z

(sr + �re�z)
2 dz.

We integrate in each interval [�r; �r+1] to get:

Pi,!j =

j�1X
r=i

�
evi


r+1
� evi


r

�
e!j

�r
;

since sr + �re��r = 
r and

sr + �re
��r+1 =

P
k�r e

vk +
P
k>r e

!k��r+1 =

(sr � evr+1) +
�
e!r+1��r+1 + �re

��r+1
�
= 
r+1:

The remaining cases i = 1 and j = n are left to the reader. �
Proof of Lemma 3. First note that  ii restores the utility of i to its ex-ante
level Ui, since �i (y �  ii) = �i ( ii) + Ui = Ui.
For a transition i ,! i, we have Ui � Uk + (�k � �i)+ (see (35)). As a con-
sequence, since �k (y � c) = Uk + �k (c), then  ik (which solves �k ( ik) =
(�k � �i)+) is the largest amount needed to restore the utility of alternative k
to the ex-ante level Ui. As a consequence,  ii = mi � cv � maxk ( ik) =Mi.
For a transition i ,! j, j > i, since Uj + (�j � �i) � Ui � Uj , then  ij (which
solves �j

�
 ij
�
= �j � �i) and  jj (which solves �j

�
 jj
�
= 0) are respectively

the lowest and the largest amount needed to restore the utility of alternative j to
the ex-ante level Ui, with necessarily  ij �  jj . Moreover, for k 6= i; j, we have

Uk +
�
�k � �ij

�+ � Ui, where �ij � �j �Ui (see (36)). Since �j � �ij � �i,  jk
(which solves �j

�
 jj
�
= (�k � �j)+) is the largest amount needed to restore the

utility of alternative k to the ex-ante level Ui. Altogether, the above conditions
imply:

max
�
 ii;  ij

�
= mij � cv � max

�
 ii;max

k 6=i

�
 jk
��
:

Since �i � �j , we have that  ji =  ii, we get: mij � cv � mj . �
Proof of Theorem 4. If i is chosen ex-ante, the event fc � cvg can also be
written as:�

max
k
[�k (y � cv)] � max

k
[�k (y � c)]

�
= fUi � �k (y � c) ;8kg ;
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using the fact that the�k�s are strictly increasing in y and recalling the de�nition
of cv. For c � mij �  ii, we have necessarily:
�i (y �  ii) = Ui � �i (y � c) ; so we get fc � cvg = fUi � �k (y � c) ; k 6= ig
or fc � cvg = fUi � Uk + �k (c) ; k 6= ig : Hence:

fc � cvg = fUi > Uk + �k (c) ; k 6= ig ; a.e.;

and we rewrite Eq. (13) as:

�i,!j (c) =
Pr (Ui > Uk + �k (c) ; k 6= i;Ui > Uk; k 6= i; �j > �r; r 6= j)

Pi,!j (v; !)
;

or further as:

�i,!j (c) =
Pr
�
Ui > Uk + �

+
k (c) ; k 6= i; �j > �r; r 6= j

�
Pi,!j (v; !)

: (37)

Comparing the numerator of Eq. (37) with Eq. (3), we deduce that it takes the
form of a transition probability of the type i ,! j corresponding to a change�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
! !. Therefore, according to Theorem 4, we get Eq.

(14).
According to Lemma 3, the support of cv conditional to transition i ,! j is
included in [mij ;mj ]. We proof here that the support is (mij ;mj ].
First, the ith component of

�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
is vi while the other com-

ponents are vk + �+k (c) � vk, k 6= i, with at least one strict inequality. As a
consequence,

Pi,!j (v; !) > Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
;

so that 1 > �i,!j (c). Therefore, the support of cv extends up to mj .
Second, if j = i, and c � mii =  ii, we necessarily have �i,!j (c) > 0 since we
always have

Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
> 0:

Third, if j > i (and �j > �i), let c > mij . We have �
+
i (c) = 0 since c >  ii and

�+j (c) < �j � �i since c >  ij . As a consequence, in both cases, a transition
i ,! j is feasible with a change

�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
! ! (see Theorem 1)

since
!i �

�
vi + �

+
i (c)

�
= �i < !j �

�
vj + �

+
j (c)

�
= �j � �+j (c) ; (38)

which implies that �i,!j (c) > 0. Finally, note that if mij =  ij , the previous
inequality (38) became an equality for c =  ij so that the (conditional on
i ,! j) distribution of cv has no jump at the lower bound of the support, i.e.
for c = mij . Otherwise, if mij =  ii >  ij , the inequality is still strict for
c = mij =  ii, so that the distribution has no jump at this point. �
Proof of Corollary 5. (a) Using Theorem 4, for feasible transitions, we have
mij �  ii. Moreover, since  jk solves �k

�
 jk
�
= (�k � �j)+, and since �k (c) is

decreasing in c, we have (recall that mj � maxk
�
 jk
�
) the ranking:

m1 � ::: � mn.
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Since �k ( nk) = (�k � �n)
+
= 0, we have  nk =  kk so that mn = maxk ( kk).

Therefore, the support of cv conditional to the ex-ante choice of i is [ ii;mn].
Moreover, according to Theorem 4, we get that:

�i,! (c) =

P
j2Fi,! Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
Pi (v)

; (39)

where Fi,! stands for the set of alternatives j such that i ,! j is feasible. For
non-feasible transitions i ,! j where �i � �j , if c �  ii the ith component of�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
is vi while its jth component is vj + �

+
j (c). We have

!i � vi = �i � !j �
�
vj + �

+
j (c)

�
= �j � �+j (c) ;

so that for a change
�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
! !, the transitions i ,! j is

non-feasible. Therefore,

Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
= 0:

This allows us to extent the sum sign in (39) to all alternatives to get:

�i,! (c) =

P
j Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
Pi (v)

:

Then, using Eq. (6), we get Eq. (15).
(b) According to Theorem 4, the support of cv conditional to the ex-post choice
of j is

�
mini2Fj (mij) ;mj

�
where Fj is the set of alternatives i such that i ,! j

is feasible. For non feasible transitions verifying �i � �j , we have  ij =  jj
and therefore that mij �  jj = mjj . As a consequence, mini2Fj (mij) =

mini (mij) = mj and the support is
�
mj ;mj

�
.

For c � mj , using Theorem 4, we get that

�,!j (c) =

P
i2Fj Hmij

(c)� Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
Pj (!)

: (40)

The sum can be extended to non feasible transitions i ,! j to get Eq. (16).
Indeed, either c < mij and therefore Hmij

(c) = 0 or, if c � mij , since
�j
�
 ij
�
= (�j � �i)+ = 0, we have that c � mij �  jj . The ith compo-

nent of
�
v1 + �

+
1 (c) :::vn + �

+
n (c)

�
is vi and its jth component is vj so that for�

v1 + �
+
1 (c) :::vn + �

+
n (c)

�
! !, the transitions i ,! j is non-feasible and hence

Pi,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!

�
= 0: �

Proof of Theorem 6. For 0 � � � 1, de�ne the conditional quantile func-
tion ��1i,!j (�) � sup fc 2 [mij ;mj ] j� � �i,!j (c)g, which is the inverse of the
conditional CDF of cv. By de�nition, the pth conditional moment of cv veri�es
Ei,!j [cv

p] �
R 1
0

�
��1i,!j (�)

�p
d�. For c 2 [mij ;mj ], the functions �i,!j (c) is

continuous and monotonic. It is therefore a.e. di¤erentiable according to the
Lebesgue theorem (cf. Rudin 1986). As a consequence, a PDF �i,!j can a.e.
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be de�ned. Using the change of variable: � = �i,!j (c), with:
c 2 [mij ;mj ], we get Ei,!j [cv

p] = mp
ij�i,!j (mij) +

Rmj

mij
zp�i,!j (c) dc. Then

using an integration by parts, we obtain:

Ei,!j [cv
p] = mp

j � p
Z mj

mij

cp�1�i,!j (c) dc;

which coincides with (18). �
Proof of Corollary 7. This proof uses the same technique as for the proof of
Theorem 6 by considering �i,! given by (15) instead of �i,!j or by considering
�,!j given by (16) instead of �i,!j . �
Proof of Proposition 8. Recall that (see Eq. (18)):

E1,!j [cv] = mj �
1

P1,!j (v;!1; v2:::vn)

Z mj

m1j

Ij (�1; c) dc, (41)

where Ij (�1; c) � P1,!j

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ;!1; v2:::vn

�
, j = 1:::n, and

where mj = maxk
�
 jk
�
, with  jk solving �k

�
 jk
�
= (�k � �j)+ ; k = 1:::n,

(see Eq. (12)).
Note that  11 < 0 since �1 < 0. The Roy�s Identity applied in the deterministic
case leads to: lim�p1!0+ ( 11=�p1) = �x1. Moreover, since �k = 0, k = 2:::n,
we have: �k ( 1k) = (0� �1)+ = ��1, k = 2:::n. Accordingly,  1k < 0, k =
2:::n, and lim�1!0� ( 1k=�1) = (@Vk=@y)

�1. Therefore, using again the Roy�s
Identity in the deterministic case we have:

lim
�p1!0+

�
 1k
�p1

�
= �x1�1k; k = 1:::n:

Therefore: lim�p1!0+ (m1=�p1) = �mink (�1k)x1. Now, since I1 (�1; c) is con-
tinuous in c, using the mean value theorem for integration, we get

E1,!1 [cv] = m1 �
(m1 �  11) I1 (�1;ec1)
P1,!1 (v;!1; v2:::vn)

,

where ec1 2 ( 11;m1). Now using the fact that lim�p1!0+ I1 (�1;ec1) = I1 (0; 0)
= P1,!1 (v; v) = P1 (v) and that lim�p1!0+ P1,!1 (v;!1; v2:::vn) = P1 (v), we
get:

lim
�p1!0+

E1,!1 [cv]

�p1
= �min

k
(�1k)x1 �

�
�min

k
(�1k)x1 � x1

�
= �x1:

Let j > 1. Since �k � 0, k = 1:::n; and �j = 0, we have: �k
�
 jk
�
= �+k = 0.

As a consequence,  j1 =  11 < 0 (since �1 ( 11) = �1
�
 j1
�
= 0) and  jk = 0;

k > 1. Hence, mj = 0 which allow us to rewrite (41) as:

E1,!j [cv] =
1

P1,!j (v;!1; v2:::vn)

Z m1j

0

Ij (�1; c) dc:
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Using Eq. (4) and applying the mean value theorem for integration we get:

E1,!j [cv] = �
Rm1j

0
Ij (�1; c) dc

�1�
j
1

�
v1; v2 � e�:::vn � e�� ;

where e� 2 (�1; 0). Using Eq. (4) we rewrite Ij (�1; c) as:
Ij (�1; c) =

Z ��j(c)

�1

�j1

�
v1; v2 + (��2 (c)� z)+ :::vn + (��n (c)� z)+

�
dz:

Let " > 0 small enough. Since the integrand tends towards �j1 as �1 and z tend
towards zero, we can �nd �1 and c arbitrarily small in order that

(��j (c)� �1)
�
�j1 � "

�
� Ij (�1; c) � (��j (c)� �1)

�
�j1 + "

�
:

Applying the Taylor�s theorem to �j (c), we get�
@Vj
@y

c�R� �1
��
�j1 � "

�
� Ij (�1; c) �

�
@Vj
@y

c�R� �1
��
�j1 + "

�
;

where R veri�es jRj �Mc2 with M a positive constant. Therefore, by integra-
tion and taking the limit "! 0, we get:

lim
�1!0�

1

�21

Z m1j

0

Ij (�1; c) dc = �
 
lj �

@Vj
@y

l2j
2

!
�j1:

where lj � lim�1!0� (m1j=�1). Recall that m1j = max
�
 11;  1j

�
. Now, using

the chain rule, we get:

lj = min

�
lim

�1!0�

 11
�1

; lim
�1!0�

 1j
�1

�
=

(
(@Vj=@y)

�1
; if �1j � 1;

(@V1=@y)
�1
; if �j1 � 1:

: (42)

Using again the chain rule and the Roy�s Identity, we get:

lim
�p1!0+

E1,!j [cv]

�p1
=
x1 (@V1=@y)

�j1
lim

�1!0�

1

�21

Z m1j

0

Ij (�1; c) dc:

Hence

lim
�p1!0+

E1,!j [cv]

�p1
=

�
��1j

2 x1; if �1j � 1;
�
�
1� �j1

2

�
x1; if �j1 � 1:

Now, recall that (see Eq. (18)):

Ei,!n [cv] = mn �
1

Pi,!n (v;!1; v2:::vn)

Z mn

min

Ji (�n; c) dc, (43)

where Ji (�n; c) � Pi,!n

�
v1 + �

+
1 (c) :::vn + �

+
n (c) ; v1:::vn�1; !n

�
, j = 1:::n, and

where mn = maxk ( nk), with  nk solving �k ( nk) = (�k � �n)+, with k =
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1:::n, (see Eq. (12)). Since �k � �n, then  nk is solving �k ( nk) = 0; with
k = 1:::n, (see Eq. (12)). Therefore,  nk = 0, k = 1:::n � 1 and  nn > 0.
Therefore, mn = maxk ( nk) =  nn. Moreover, we have:

min = max ( ii;  in) = max (0;  in) ; i = 1:::n� 1;

where  in is solving �n ( in) = (�n � �i)+ = �n. Therefore,  in = 0 and
min = 0. For c 2 (0;  nn), we have

Ji (�n; c) =

Z �n��n(c)

0

�ni (v1:::; vn�1; !n � z) dz

= (�n � �n (c))�ni (v1:::; vn�1; !n � ez) ;
where ez 2 (0; �n � �n (c)). Using the fact that �ni (v1:::; vn�1; !n � ez) tends
towards �ni as �n tends towards zero and applying the Taylor�s theorem to
�n (c), we get:

lim
�n!0+

1

�2n

Z  nn

0

Ji (�1; c) dc =
�ni
2

@Vn
@y

lim
�n!0+

 2nn
�2n

=
�ni
2
(@Vn=@y)

�1
:

Therefore, using the chain rule, we get:

lim
�pn!0�

Ei,!n [cv]

�pn
=
(@Vn=@pn)

2 (@Vn=@y)
= �xn

2

Now, since En,!n [cv] =  nn, we have lim�pn!0� (En,!n [cv] =�pn) = �xn. �
Proof of Proposition 9. We have: �k (c) = �k � �y (c), where we de�ne:
�y (c) � v (y) � v (y � c), is strictly increasing in c. The  0iks, de�ned by (12),
verify:

 ik =

�
��1y (�k) ; if k < i;
��1y (�i) ; if k � i.

Note that  ik �  ii since �
�1
y is increasing and since �k � �i for k � i. therefore,

the support of the distribution of cv conditional on the transition i ,! j, j � i,
is:
�
 ii;  jj

�
, since  ij =  ii = ��1y (�i) = mij and since mj = ��1y (�j) =  jj .

If c 2
h
 ll;  (l+1)(l+1)

i
, then v + �+ (c) = (v1:::vl; !l+1 � �y (c) :::!n � �y (c))

so that ! �
�
v + �+ (c)

�
= (�1:::�i:::�l; �y (c) :::�y (c)). Therefore, we have the

ranking �1 � ::: � �l � �y (c). Using Eq. (10) (see Proposition 2) we get

Pi,!j

�
v + �+ (c)

�
= evi+!j

Pj�1
r=i �

�1
r

h

�1(r+1)l (c)� 


�1
rl (c)

i
; where


rl (c) =

�

r; if r � l;

sl + �le
��y(c) if r > l.

As a consequence, for j > l � i, we have

Pi,!j

�
v + �+ (c)

�
= evi+!j

�
�il + �

�1
l

��
sl + �le

��y(c)
��1

� 
�1l
��

:
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Using the fact that Pi,!j (v) = evie!j�ij , j > i, we get Eq. (25). �
Proof of Proposition 10. Clearly, for a transition i ,! i, we have Ei,!i [cv] =
 ii. For a feasible transition i ,! j, with j > i, using Theorem (6) with p = 1,
we get

Ei,!j [cv] =  jj �
Z  jj

 ii

�i,!j (c) dc;

which can be rewritten as

Ei,!j [cv] =  jj �
j�1X
l=i

Z  (l+1)(l+1)

 ll

�i,!j (c) dc: (44)

Using (25) and (44), we get

Ei,!j [cv] =  jj �
1

�ij

j�1X
l=i

Z  (l+1)(l+1)

 ll

�
�il +

1

�l

�
1

sl + �le��y(c)
� 1


l

��
dc;

which can be rewritten as

Ei,!j [cv] =  jj �
1

�ij

j�1X
l=i

Z  (l+1)(l+1)

 ll

�i(l+1)dc

+
1

�ij

j�1X
l=i

��1l

h

�1l+1

�
 (l+1)(l+1) �  ll

�
� �l

i
:

Using the fact that �i(l+1) =
Pl
r=i �

�1
r

�

�1r+1 � 
�1r

�
and inverting the sign

sums we get

Ei,!j [cv] =  jj �
1

�ij

j�1X
r=i

Z  jj

 rr

��1r
�

�1r+1 � 
�1r

�
dc

+
1

�ij

j�1X
l=i

��1l

h

�1l+1

�
 (l+1)(l+1) �  ll

�
� �l

i
;

which can be simpli�ed

Ei,!j [cv] =  jj �
1

�ij

j�1X
r=i

Z  jj

 rr

��1r
�

�1r+1 � 
�1r

�
dc

+
1

�ij

j�1X
r=i

��1r

h

�1r+1

�
 (r+1)(r+1) �  rr

�
� �r

i
;

or further as

Ei,!j [cv] =  jj �
1

�ij

j�1X
r=i

��1r
�

�1r+1 � 
�1r

� �
 jj �  rr

�
+
1

�ij

j�1X
r=i

Z  (r+1)(r+1)

 rr

��1r 
�1r+1dc�
1

�ij

j�1X
lr=i

��1r �r:
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We further simplify this expression as:

Ei,!j [cv] =
1

�ij

j�1X
r=i

��1r
�

�1r+1 � 
�1r

�
 rr

+
1

�ij

j�1X
r=i

��1r 
�1r+1

�
 (r+1)(r+1) �  rr

�
� 1

�ij

j�1X
lr=i

��1r �r;

which is equivalent to Eq. (26). �
Proof of Corollary 11. (a) If i < n, we have

Ei,! [cv] =
nX
j=i

Pi,!j (v; !)

Pi (v)
Ei,!j [cv] . (45)

Using (8) and (10) (see Proposition 2), the ratio of probabilities are such that

Pi,!j (v; !)

Pi (v)
=

�
sn=
i; if j = i;
sne

!j�ij ; if j > i;
(46)

Therefore, using (46) and (26) (see Proposition 10), we write (45) as

Ei,! [cv] = sn

8<: ii
i +
nX

j=i+1

j�1X
r=i

e!j

�r

�
 (r+1)(r+1)


r+1
�  rr

r

� �r
�9=; ;

which can be rewritten by inverting the two sum signs as

Ei,! [cv] = sn

8<: ii
i +
n�1X
r=i

nX
j=r+1

e!j

�r

�
 (r+1)(r+1)


r+1
�  rr

r

� �r
�9=; ;

and simpli�ed as

Ei,! [cv] = sn

(
 ii

i

+
n�1X
r=i

�
 (r+1)(r+1)


r+1
�  rr

r

� �r
�)

:

This expression can be rewritten as in Eq. (28).
Finally, if i = n, clearly we have En,! [cv] =  nn.
(b) If i = 1 clearly we have E,!1 [cv] =  11.
If j > 1, we have

E,!j [cv] =

jX
i=1

Pi,!j

Pj
Ei,!j [cv] . (47)

Using (8) and (10) (see Proposition 2), we get the ratio of probabilities

Pi,!j

Pj
=

�
�0e

��j=
j ; if i = j;
�0e

vi�ij ; if i < j;
(48)
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From (48) and (26) we get

E,!j [cv] = �0

(
j�1X
i=1

j�1X
r=i

evi

�r

�
 (r+1)(r+1)


r+1
�  rr

r

� �r
�
+

 jj
e�j
j

)
:

Inverting the two sum signs we obtain

E,!j [cv] = �0

(
j�1X
r=1

rX
i=1

evi

�r

�
 (r+1)(r+1)


r+1
�  rr

r

� �r
�
+

 jj
e�j
j

)
;

which can be simpli�ed as

E,!j [cv] = �0

(
j�1X
r=1

sr
�r

�
 (r+1)(r+1)


r+1
�  rr

r

� �r
�
+

 jj
e�j
j

)
:

This expression can be rewritten as

E,!j [cv] = �0

(
jX
r=2

sr rr
�r
r

�
j�1X
r=1

sr rr
�r
r

�
j�1X
r=1

sr�r
�r

+
 jj

je�j

)
:

Noting that �rsr � �rsr = �e!r
r, that s1=�1
1 = e!1=�0�1 and moreover
that: sj�1 + e��j�j�1 = 
j , we obtain the required expression (29). �
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