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We study the descriptive and the normative consequences of price and/or other attributes changes in additive random utility models. We …rst derive expressions for the transition choice probabilities associated to these changes. A closed-form formula is obtained for the logit. We then use these expressions to compute the cumulative distribution functions of the compensating variation conditional on ex-ante and/or ex-post choices. The unconditional distribution is also provided. The conditional moments of the compensating variation are obtained as a one-dimensional integral of the transition choice probabilities. This framework allows us to derive a stochastic version of Shephard's lemma, which relates the expected conditional compensating variation and the transition choice probabilities. We compute the compensating variation for a simple binary linear in income choice model and show that the information on the transitions leads to better estimates of the compensating variation than those obtained when only ex-ante or ex-post information on individual choices is observed. For the additive in income logit, we compute the conditional distribution of compensating variation, which generalizes the logsum formula. Finally, we derive a new welfare formula for the disaggregated version of the representative consumer CES model.

Introduction

Discrete choice models (DCM) describe the individual choices of one alternative among a set of mutually exclusive alternatives. In the standard approach, each alternative i is associated with a utility U i = v i + " i , where v i containing price and/or other attributes is the systematic utility and " i is an error term known by the individual but treated as a random variable by the modeler. The individual selects the alternative with the largest utility. The modeler assigns a probability P i that an individual selects alternative i, which is the probability that the random variable U i is larger than all the other random variables U k , k 6 = i. This approach corresponds to the random utility maximization models (RUM). Here, the systematic utility is …xed and the individual choices are static. Conversely, the rationalization and consistency of choice probabilities with random utility maximization probabilities is a well-known problem which is discussed e.g. in [START_REF] Mcfadden | Revealed stochastic preference: a synthesis[END_REF].

Such models have initially been studied in the transport literature (to describe the choice between private and public transportation) and in the urban literature (to describe residential location; see the early contributions of Domencich and [START_REF] Domencich | Urban Travel Demand: A Behavioral Analysis[END_REF]. Later on, RUM models have been used in many other …elds, such as education, demography, industrial organization, public economics, experimental economics, decision theory and marketing (see Anderson, de Palma and Thisse 1992, who have discussed the neoclassical economic foundations of RUM; see also the survey of [START_REF] Mcfadden | Economic choices[END_REF]. Estimation of RUM (logit, probit, ordered probit, generalized extreme value models, mixed logit, etc.) has attracted a lot of attention during the last half century (see, e.g. [START_REF] Train | Discrete Choice Methods with Simulation[END_REF].

The welfare properties of RUM's are well known for the simplest model, the multinomial logit, which leads to the "logsum" formula (in the standard logit, " i are i.i.d. double-exponentially distributed and income enters the utility function linearly with a uniform coe¢ cient, i.e. there are no income e¤ects). The extensions including income e¤ects and using other error terms speci…cations are more intricate. [START_REF] Small | Applied welfare analysis with discrete choice models[END_REF] have addressed the question of income e¤ects in RUM. They have derived an approximative expression of the expected compensating variation for a price or other attributes change (they focus on taxation). They extend the conventional welfare approach to the DCM framework and show that the expected compensating variation can be computed as an integral of the Hicksian choice probabilities (compensated choice probabilities). Using a similar approach, Dadgsvik and Karlström (2005) derive an exact formula for the compensating variation (CV) associated to a price (or other attributes) changes. They provide an expression for the distribution of the CV conditional on the ex-ante (i.e. before the change) individual choices, i.e. given that the individual choices are only observed ex-ante.

Welfare measures with income e¤ects have also been studied via numerical simulations by [START_REF] Mcfadden | Computing willingness-to-pay in random utility models[END_REF], who has developed a sampler for computing the CV caused by a change in the individual environment. For the generalized extreme value (GEV) models, which extends the multinomial logit model, he has provided an algorithm, the GEV sampler, to estimate welfare e¤ects. However, even though this sampler leads to consistent results, it is time consuming since a large number of iterations must be performed in order to obtain with a reasonable level of accuracy numerical approximations of the true welfare impacts.

Von [START_REF] Von Haefen | Incorporating observed choice into the construction of welfare measures from random utility models[END_REF] has worked out an application which suggests that the observed choice behavior of the individuals ex ante improves the accuracy of the calculation of consumer surplus. The scope of this paper is to analyze the theoretical properties of demand and welfare of RUM when a price or attribute change has occurred and when ex ante and/or ex post choices are observed.

As a consequence of price or attribute change, some individuals alter their ex ante choices. It is assumed that individual error terms remain the same ex-ante and ex-post (i.e. after the change). The expressions for the transition choice probabilities are derived analytically in this paper. This information is useful per se in order to evaluate the consequences of a policy but it is not su¢ cient to observe only the choice probabilities ex-ante and/or ex-post. Via an example, we show the information on transition choice probabilities is crucial to evaluate the welfare consequences of this change. We compute the transition choice probabilities and the distribution of the CV conditional on the transition choice. We use a direct approach based on Marshalian transition choice probabilities while Dagsvig and Karlström (2005) use Hicksian static choice probabilities relying on unobservable information, since their values depend on the unobservable error terms " i .

The structure of the paper is as follows. In Section 2, we provide the assumptions on the utility functions and on the distribution of the error terms. Theorem 1 provides an analytical formula for the transition choice probabilities for additive random utility maximization models (ARUM). The logit special case is handled in Proposition 2. In Section 3, we de…ne the CV for ARUM. Theorem 4 provides an analytical expression (based on the transition choice probabilities) for the distribution of the CV conditional on the transitions. The various moments of the CV are given as a one-dimensional integral either of the transition choice probabilities (Theorem 6) or of the choice probabilities (Corollary 7). We also introduce a stochastic version of Shephard's Lemma for DCM (Proposition 8) in the context of transitions. In Section 4, we compute the CV for a simple binary linear in income RUM and consider the impacts of a change in one price. This example shows that the information on the transitions leads to better estimates of the CV than the ones obtained when only ex-ante or ex-post information on individual choices are observed. For the additive in income logit, we compute directly the conditional distribution of CV which generalizes the celebrated logsum formula. Finally, for the disaggregated version of the CES, we propose a new exact welfare measure. In Section 5 we discusses further extensions. Proofs are relegated to the appendix.

Transition choice probabilities 2.1 Model and notations

There are n alternatives and preferences are described by an ARUM. We consider the impacts of a change and study the individual choices before (ex-ante) and after (ex-post) the change. The ex-ante (conditional) utility U i of an individual selecting i is given by U i = v i + " i , where v i , the ex-ante systematic component of the utility U i of i is assumed to be observable and where " i is an error term, which captures unobservable individual characteristics that are modelled by the econometric investigator as a random variable. We assume that the error terms remain the same ex-ante and ex-post.

Let F be the CDF of the vector of error terms (" 1 :::" n ) which is assumed to be absolutely continuous with respect to the Lebesgue measure over a convex support. Therefore (see [START_REF] Mcfadden | Modelling the choice of residential location[END_REF] the probability P i (v), that an individual selects ex-ante i can be written in an integral form (the function's arguments are omitted in the sequel when it is unambiguous)

P i (v) Pr (U i > U k ; k 6 = i) = Z +1 1 F i (u v 1 :::u v n ) du; (1) 
where v (v 1 :::v n ) is the systematic utility vector and where: F i (x 1 :::x n ) @F (x 1 :::x n ) /@x i . It can easily be veri…ed that:

P i P i = 1.
Note that the choice probabilities are invariant up to a shift: P i (v 1 + :::v n + ) = P i (v). The expected individual demand X i for alternative i can be obtained by using Roy's identity (see Section 4 for an illustration in the CES case).

Let j i be minus the derivative of P i with respect to v j . A derivation of (1) under the integral sign (see [START_REF] Anderson | Discrete Choice Theory of Product Di¤erentiation[END_REF]) yields:

j i @P i @v j = Z +1 1 F ij (u v 1 :::u v n ) du; (2) 
where F ij @F i /@x j , i; j = 1:::n. Note the equality of the cross-derivatives: j i = i j ; j 6 = i. The ex-post utility of an individual selecting j is j = ! j + " j , where ! j is the (observable) ex-post systematic component of j . The probability of selecting ex-post j is given by P j (!), where ! (! 1 :::! n ) (see Eq. ( 1)).

Computation of transition probabilities

The (transition) choice probability that an individual selects i ex-ante and j ex-post is

P i,!j (v; !) Pr (U i > U k ; k 6 = i; j > r ; r 6 = j) : (3) 
Theorem 1 provides an integral form for these transition choice probabilities. Let k k U k = ! k v k , k = 1:::n, be the utility variation of k. We assume without loss of generality the ranking 1 :::

n . De…ne t + = max(t; 0). We have (see appendix):

Theorem 1 For an ARUM, consider the change: v ! !. The transition choice probabilities from i to j are given by:

P i,!j (v; !) = 8 > > < > > : P i v 1 + ( 1 i ) + :::v n + ( n i ) + ; if j = i; R j i j i v 1 + ( 1 z) + :::v n + ( n z) + dz; if j > i; 0; if j < i. (4) 
The probability P i,!i to select i ex-ante and ex-post is given by a choice probability as de…ned by [START_REF] Anderson | The CES is a discrete choice model?[END_REF]. We discuss the case 1 < i < n, with n > 2 (the other cases are left to the reader). For k < i, k i ; therefore, if an individual selects i (with utility v i ) ex-ante, he will prefer i to k ex-post. Let k > i with k i . In this case, an individual who selects i ex-post (with utility ! i ) prefers i to k ex-ante. Therefore,

P i,!i = P i (v 1 :::v i ; ! i+1 i :::! n i ) = P i (v 1 + i :::v i 1 + i ; ! i :::! n ) (5)
represents the probability that an individual selects i ex-ante and ex-post. The transition choice probabilities from i to j, j 6 = i are clearly zero if j is weakly deteriorated in relative term with respect to i ( j i ). For j i, we de…ne the transition i ,! j to be feasible if it occurs with a strictly positive probability. The transition choice probabilities are explained intuitively below. For j > i , these transition choice probabilities P i,!j are given by an integral on z = (! j + " j ) (v i + " i ), which represents the utility variation of an individual who shifts from i to j. Note that z > i (the utility variation when staying in i) and z < j (otherwise j would have been preferred to i to ex ante).

The integrand j i v 1 + ( 1 z) + :::v n + ( n z) + represents the probability density that the individual who experienced a utility change of z shifts from i to j. Finally note that the argument z in v 1 + ( 1 z) + :::v n + ( n z) + plays a similar role than i in the vector

v 1 + ( 1 i ) + :::v n + ( n i ) + .
When n = 2 or 3, transition choice probabilities reduce to choice probabilities (using standard constraints on probabilities). For n > 3, there are a priori n (n 1) =2 integrals. However, using the 2n 3 constraints, the computation of all transition choice probabilities requires the computation of at most (n 2) (n 3) =2 integrals.

The constraints on the transition choice probabilities can be easily checked. As expected, the ex-ante and ex-post choice probabilities can be recovered by summation of the transition choice probabilities given in Theorem 1. More precisely, using (4) it can be shown that:

X j P i,!j = P i (v) and X i P i,!j = P j (!) : (6) 
Note that these expressions are straightforward to derive if one uses directly the expressions in (3).

Logit transition probabilities

The transition choice probabilities are explicit for the logit model. In this case, the CDF is given by:

F (x 1 :::x n ) = exp X i e xi ! ; (7) 
which yields the following choice probabilities (see [START_REF] Domencich | Urban Travel Demand: A Behavioral Analysis[END_REF]:

P i (v) = e vi P k e v k . ( 8 
)
We will use in the rest of the paper the following notations: 8 < :

s r P k r e v k ; r 0 P k r e ! k ; with 0 P k e ! k ;
r s r + r e r ; r = 1:::n:

We have (see appendix):

Proposition 2 For the logit speci…cation [START_REF] De Palma | Invariance of conditional maximum utility[END_REF], consider the change: v ! !. The transition choice probabilities from i to j are given by:

P i,!j = 8 > < > : e v i i ; if j = i; P j 1 r=i e v i r+1 e v i r e ! j r ; if j > i; 0; if j < i. (10) 
First remark that in the case of Example 1 with ! 1 < v 1 , P 1,!j , with j 6 = 1, can be written, in the logit case, as:

P 1,!j = e v1 P k e v k e !1 e !1 + P k>1 e v k e vj P k>1 e v k ;
where the …rst term on the RHS represents the probability that an individual abandons 1, while the second term is the probability that j is the second best choice (this independence results is speci…c to the logit). The other cases are more involved and explained below.

Note that e vi = r , r i represent the probability to choose i ex-ante and to get a utility variation in [ i ; r ]. The probability of this event can be written as

Pr U i > U k + ( k r ) + ; k 6 = i ; it corresponds to a choice probability
with the systematic utility given by (v 1 :::v r ; ! r+1 r :::! n r ). In particular, if r = i, e vi = i is the probability to have a utility variation of exactly i . It corresponds to P i,!i since the individual sticks to alternative i i¤ he has a utility variation of i . Note that P j 1 r=i [(e vi = r+1 e vi = r )] = e vi = j e vi = i represents the probability that an individual chooses i ex-ante and incurs a utility variation in [ i ; j ]. If the individual shifts from i to j, the associated utility variation lies within the interval [ i ; j ]. The term e vi = r+1 e vi = r represents the probability that an individual abandon i and has a utility variation in the interval [ r ; r+1 ]. He will choose an alternative k such that k > r. The probability that he chooses j among the feasible choices k (with k > r) is e !j = P k>r e ! k . The reader is also referred to de Palma and Kilani (2005) who compute the conditional transition probabilities, where changes are conditional to the ex-ante choice.

Welfare

In the previous section, we provided an expression for the transition choice probabilities P i,!j for a change v ! !. We study now the distribution of individual compensations and the welfare impacts associated to this change. We assume that the ex-ante (ex-post) indirect utility U k (resp.

k ) of k is a function of the individual's income y. They are denoted as U k (y) (resp. as k (y)) and assumed to be strictly increasing and continuous in y.

Welfare distributions and moments

The compensating variation cv is de…ned as the amount of income needed to restore the ex-ante individual's utility level ex-post change v ! !. In the DCM literature (see, McFadden 1999), this means:

max k (U k ) = max k [ k (y cv)] : (11) 
Since the utilities are random due to the presence of the error terms (recall

U i = v i + " i ), cv is also a random variable.
In order to insure that Eq. ( 11) admits a unique solution, we should make an additional assumption. Let k (c) k (y c) U k be the (deterministic) utility variation of k ex-post and after compensation of c, with k (0) = k . We require that for any i, k, there exists a real ik de…ned by:

k ( ik ) = ( k i ) + : (12) 
The interpretation of the ( ik ) 0 s is provided in the following Lemma (see appendix):

Lemma 3 Given a feasible transition i ,! j, the support of cv is included in [m ij ; m j ],
where m ij max ii ; ij and where m j max k jk .

As we have seen in Section 4.1, the CV conditional on the transitions i ,! i can be stochastic. This is not the case in the absence of income e¤ects.

We wish to compute the distribution of cv using the information on the individual transitions ex-post: v ! !. Consider a feasible transition i ,! j.

The CDF of cv, conditional on a feasible transition i ,! j, denoted by i,!j , is given by:

i,!j (c) Pr (c cv; U i > U k ; k 6 = i; j > r ; r 6 = j) P i,!j (v; !) : (13) 
In Theorem 4, an analytic expression for i,!j is provided. Let + k (c) = max ( k (c) ; 0) and recall that m ij max ii ; ij and m j max k jk . We have (see appendix):

Theorem 4 For an ARUM, consider the change: v ! !. The CDF of the compensating variation conditional on the transition i ,! j has support (m ij ; m j ] and is given by:

i,!j (c) = P i,!j v 1 + + 1 (c) :::v n + + n (c) ; ! P i,!j (v; !) ; c m ij , (14) 
where the transition choice probabilities P i,!j (:; :) are given in Theorem 1.

This expression allows the computation of the distribution of cv when only the ex-ante or the ex-post choice is observed. In this case, the conditional distribution of cv depends on the choice probabilities and not on the transition choice probabilities as in Theorem 4. We now compute i,! (resp. ,!j ) the conditional CDF of cv given the ex-ante (resp. ex-post) choice of i (resp. j). Let m j min i (m ij ) and let H mij (c) 1 if c m ij and H mij (c) 0 otherwise be the Heaviside function at m ij . We obtain (see appendix):

Corollary 5 For an ARUM, consider the change: v ! !. The CDF of the compensating variation (a) conditional on the ex-ante choice of i has support [ ii ; m n ] and is:

i,! (c) = P i v 1 + + 1 (c) :::v n + + n (c) P i (v) , c ii ; (15) 
(b) conditional on the ex-post choice of j, has support m j ; m j and is:

,!j (c) = P i H mij (c) P i,!j v 1 + + 1 (c) :::v n + + n (c) ; ! P j (!) ; c m j : (16) 
The CDF [START_REF] Small | Applied welfare analysis with discrete choice models[END_REF] coincides with the CDF derived by [START_REF] Dagsvik | Compensating variation and hicksian choice probabilities in random utility models that are nonlinear in income[END_REF] in the case where only the ex-ante choices are observed. Note that for the logit model, the CDF of the CV conditional on the ex-ante choice of i is given by:

i,! (c) = P k e v k P k e v k + + k (c) , c ii . ( 17 
)
Finally, the unconditional distribution of cv can be computed using Eq. ( 15) and making use of the theorem on total probability (see also [START_REF] Dagsvik | Compensating variation and hicksian choice probabilities in random utility models that are nonlinear in income[END_REF]:

(c) = X i H mii (c) P i v 1 + + 1 (c) :::v n + + n (c) .
We now compute the conditional and the unconditional moments of the distribution of cv (see appendix):

Theorem 6 For an ARUM, consider the change: v ! !. The pth moment (p 1) of the compensating variation conditional on the transition i ,! j is given by:

E i,!j [cv p ] = m p j p Z mj mij c p 1 P i,!j v 1 + + 1 (c) :::v n + + n (c) ; ! P i,!j (v; !) dc. (18) 
When p = 1, Eq. ( 18) provides the expected CV conditional on the observed transitions. This is reminiscent of the standard treatment of surplus, and involves the computation of areas under the compensated transition choice probabilities curves. The conditional on the ex-ante or ex-post choices moments are given by (see appendix):

Corollary 7 For an ARUM, consider the change: v ! !. The pth (p 1) moment of the compensating variation conditional is given for (a) the ex-ante choice of i by:

E i,! [cv p ] = m p n p Z mn ii c p 1 P i v 1 + + 1 (c) :::v n + + n (c) P i (v) dc; (19) 
(b) the ex-post choice of j by:

E ,!j [cv p ] = m p j p X i Z mj ii c p 1 P i,!j v 1 + + 1 (c) :::v n + + n (c) ; ! P j (!) dc. ( 20 
)
Equation ( 19) provides in particular the expected CV conditional on the ex-ante choice (this expression is derived in [START_REF] Dagsvik | Compensating variation and hicksian choice probabilities in random utility models that are nonlinear in income[END_REF]. It involves the computation of areas under the compensated choice probability curves. Equation ( 20) is new and relies on the expression obtained in Theorem 6.

Using Corollary 7 with Eq. ( 6), the pth unconditional moment of the CV veri…es:

E [cv p ] = m p n p X i Z mn ii c p 1 P i v 1 + + 1 (c) :::v n + + n (c) dc. (21) 
In particular, the expectation of cv is given by

E [cv] = m n X i Z mn ii P i v 1 + + 1 (c) :::v n + + n (c) dc. (22) 
According to Eq. ( 22), E [cv] is the sum of the integrals of parametrized choice probabilities

P i v 1 + + 1 (c) :::v n + + n (c
) . An approximative expression for the expected CV was also envisaged by Small and Rosen (1981).

Shephard' s lemma revisited

We assume that the systematic component of the utility (ex-ante and ex-post) of k depends on income y and on price level p k and is given by V k (y; p k ). Assuming that V k (:; :) is di¤erentiable with respect to both arguments, the conditional (individual) demand x k for good k is determined by using Roy's identity:

x k = (@V k =@p k ) (@V k =@y) ; k = 1:::n:
Note that in ARUM, the conditional demands are deterministic, i.e. are independent on the idiosyncratic taste parameters. Let p k be a price change of good k. The corresponding CV for an individual who sticks to good k is kk . Shephard's Lemma, which is a direct application of the Envelope Theorem, gives:

lim p k !0 kk p k = x k :
In the RUM approach, when an individual modify her choice after an in…nitesimal price change, the corresponding CV is stochastic (i.e. depends on the idiosyncratic terms of the initial and of the …nal good). Therefore, we compute the expected CV, conditional of the transition in order to write the counterpart of Shephard's Lemma in the RUM models. We have (se appendix):

Proposition 8 For an ARUM, consider the in…nitesimal change of the price of one good. The expected change in CV per dollar for an in…nitesimal price increase of good 1, conditional on the ex-ante and the ex-post choices is:

lim p1!0 + E 1,!j [cv] p 1 = 8 < : x 1 ; if j = 1; 1j 2 x 1 if j > 1; 1j 1; 1 j1 2 x 1 if j > 1; j1 1; (23)
where ij (@V i =@y) = (@V j =@y) :

The expected change in CV per dollar for an in…nitesimal price decrease of good n, conditional on the ex-ante and the ex-post choices is:

lim pn!0 E i,!n [cv] p n = x n =2; if i < n; x n ; if i = n: (24) 
Consider a price increase. The result for the case if j = 1 is trivial, since this is Sheppard's Lemma. The intuition for the case if j > 1 is as follows. First note that the consumer who are indi¤erent between 1 and j (i.e. the …rst individual to shift) requires no compensation. Second, consider the "last" individual ready to shift from 1 to j. She is indi¤erent between state 1 and state j. The indi¤erence ex-post implies that: v 1 (p 1 + p 1 ; y) + " 1 = v j (p j ; y) + " j : Since p 1 ! 0, we have: " j " 1 = v 1 + p 1 (@V 1 =@p 1 ) v j (where argument are omitted when unnecessary). The CV gives:

v 1 (p 1 ; y) + " 1 = v j (p j ; y cv) + " j :
Since cv ! 0 as p 1 ! 0, v 1 + " 1 = v j cv (@V j =@y) + " j , so that, using the expression for " j " 1 derived above, we get:

cv = v j v 1 + (" j " 1 ) @V j =@y = p 1 @V 1 =@p 1 @V j =@y :
Using Roy's identity ((@V 1 =@p 1 ) = (@V 1 =@y) = x 1 ), we get, as required, that the average (per dollar) CV is x 1 1j =2.

Finally, note that by applying the theorem on total probability to (23) and (24), one obtains:

lim p1!0 + E [cv] = p 1 = X 1 and lim pn!0 E [cv] = p n = X n ,
respectively. This weaker version of the Shephard's has been obtained by Dagsvik and Kalstrom (2005).

Examples

Welfare estimates with transition information

Consider two alternatives, denoted by 1 and 2, and we study the consequences of a price change. We show that the econometric investigator can get much better estimates of the welfare impacts of this change, when information concerning ex-ante choice and ex-post choice are used.

Assume that the ex-ante utility of a given individual is U i = i (y p i ) + " i , where i > 0 is the marginal utility of income (denoted by y) of good i, p i is the prices of good i, and " i is an unobservable error term, i = 1; 2. Let U 1 U 2 = " 1 " 2 uniformly distributed over [ 1; 1]. Hence, good 1 is chosen ex-ante i¤ > 0. We study the transition when the price of good 1 is raised by p 1 > 0, and we assume:

1 > max ( 1 ; 2 ) p 1 .
Three cases arise: (a) if > 1 p 1 , the individual chooses 1 ex-ante and ex-post; (b) if 1 p 1 > 0, the individual chooses 1 ex-ante and 2 ex-post; (c) if < 0, the individual chooses 2 ex-ante and ex-post. The cv corresponding to this price change is given by: cv = 0 if 0 The case 1 < 2 is similar and left to the reader.

; cv = = 2 if 0 < 2 p 1 ; cv = p 1 if 2 p 1 < . Let
We can use the above discussion to compute the expected CV conditional to the transition i ,! j, i; j = 1; 2, in the case: 1 = 2 = (no income e¤ects). We have:

E 1,!1 (cv) = p 1 ; E 1,!2 (cv) = p 1 =2; E 2,!2 (cv) = 0.
We wish to compare the quality of the estimates of cv with respect to the knowledge of the ex-ante and/or ex-post choice. Without ex-ante and/or expost information concerning individual's choice, an appropriate estimate of cv is the expected CV:

E (cv) = (1 p 1 =2) ( p 1 =2
). First, assume that only the ex-ante choice is observed. If the individual selects 2 ex-ante, cv is deterministic and equal to 0, so that the conditional expectation denoted by E 2,! (cv) veri…es: E 2,! (cv) = 0. If the individual selects 1 ex-ante, cv is random and replaced by its conditional expectation given by: E 1,! (cv) = (1 p 1 =2) p 1 . Second, assume that only the ex-post choice is observed. If the individual selects 1 ex-post: E ,!1 (cv) = p 1 . If the individual selects 1 ex-post, we get:

E ,!2 (cv) = [ p 1 = ( p 1 + 1)] ( p 1 =2).
Third, assume that the ex-ante and the ex-post choices are observed. If 1 is selected ex-ante and ex-post, then cv = p 1 ; if 2 is selected ex-ante and ex-post, then cv = 0. If 1 is selected ex-ante and 2 is selected ex-post then cv is random and replaced by its conditional expectation: E 1,!2 (cv) = p 1 =2. In summary: the individual in 2 ex-ante or in 1 ex-post receive a deterministic compensation. By contrast, the observation of the choice of 1 ex-ante only or of 2 ex-post only is insu¢ cient: information on ex-ante and ex-post choices (1 ,! 2) improves the quality of information on the CV.

We have computed the root-mean square errors (R.M.S.E.) (cv jI ) for the four estimators based on the information I on individual choice: "without" information, with "ex-ante", with "ex-post"and with "transitions"information.

The largest gains occur when transitions are observed. When only ex-post information is available, the gain can be small. Figure 2 shows the impact of the magnitude of the change p 1 for = 1. 

E. for various information regimes

These results suggest that the information on the ex-ante and/or ex-post individual choices lead to better estimates of the CV, but that an ex-ante information only is better than ex-post information only. When p 1 = 1, there are no more transitions so that "ex-ante" and "transitions" information regimes coincide. Similarly, "without" and with "ex-post" information regimes also coincide.

Additive in income logit speci…cation

In this section, we concentrate our attention on the logit model where the transition choice probabilities have an explicit form (see Proposition 2). We assume that the utility is additive in income, i.e. that U k v (y) (resp. k v (y)) is independent on income, where v (:) is strictly increasing. In this case, the We …rst provide the expressions for the CDF of cv conditional on the transition i ,! j which have closed forms (proof in appendix): Proposition 9 For the logit speci…cation [START_REF] De Palma | Invariance of conditional maximum utility[END_REF] with additive in income utility, consider the change: v ! !. The compensating variation conditional on the transition i ,! j has support ii ; jj . For c 2

h ll ; (l+1)(l+1) i
, j > l i, the CDF is given by:

i,!j (c) = 1 ij il + 1 l 1 s l + l e y (c) 1 l , ( 25 
)
where ii = 0 and il = P l 1 r=i 1 r

1 r+1 1 r , l > i.
The expected CV conditional on the transition i ,! j can be computed up to (n 1) integral terms (proof in appendix):

Proposition 10 For the additive in income logit, consider the change: v ! !. The expected compensating variation conditional on the transition i ,! j, j > i, is given by: (27) with s r , r and r given by ( 9).

E i,!j [cv] = ( ii ; if j = i; 1 ij P j 1 r=i 1 r h (r+1)(r+1) r+1 rr r r i ; if j > i, ( 26 
)
where ij P j 1 r=i 1 r 1 r+1 1 r , j > i,
The formula ( 26) with ( 27) generalizes the standard logsum expression (discussed below) in many ways. It conditions the expected CV on both the ex-ante and the ex-post choices and it captures income e¤ects.

Using the same integral terms r (r = 1:::n 1), it is possible to derive expressions of the expected CV when the ex-ante or the ex-post (Corollary 11) are observed. We have (see appendix):

Corollary 11 For the additive in income logit, consider the change: v ! !. The expected compensating variation conditional on (a) the ex-ante choice of i is:

E i,! [cv] = nn s n P n 1 r=i r ; if i < n; nn ; if i = n; (28) 
(b) the ex-post choice of j is:

E ,!j [cv] = ( 11 ; if j = 1; 0 n jj j 1 P j 1 r=1 1 r e !r rr r s r r o ; if j > 1, (29) 
with s r , r and r given by [START_REF] Domencich | Urban Travel Demand: A Behavioral Analysis[END_REF].

Given that E [cv] = P n i=1 P i (v) E i,! [cv],
we get that for the additive in income logit, the expected CV is:

E [cv] = nn n 1 X r=1 s r r : (30) 
Using for example Eq. ( 28), we get E [cv] = nn P n 1 i=1

P n 1 r=i e vi r . Eq. ( 30) is obtained by inverting the two sum signs.

Assume for example that for all initial choice, the individual has bene…ted from the change. In this case, nn is the maximal bene…t induced by this change. This bene…t has to be reduced to take into account that the individual with another ex-ante choice requires a smaller compensation.

Proposition 10, Corollary 11 and Eq. ( 30) show that the conditional and the unconditional CV's can be obtained from the same set of values r . When income is additive and linear or logarithmic, there exists an explicit formula for the 0 r s that will be exploited below.

The standard logit and the logsum formula

The logsum formula has been used extensively in transportation, location theory and more recently in industrial organization (IO) as a simple welfare measure for the logit model (see the recent survey of de long et al. 2007). We provide below an extension of the standard model for conditional choices (see Eq. ( 26)).

If v (y) = (1= ) y, with > 0, we have y (c) = (1= ) c and kk = k . We get the following explicit expression of the integral term r = r+1 r + ln r+1 ln r s r ; r = 1:::n 1:

Using these expression of r in (30) leads to the following formula for the unconditional expected CV:

E [cv] = ln ( 0 =s n ) = ln X k e ! k = X k e v k ! : (31) 
This expression (31) corresponds to the di¤erence between the ex-post and ex-ante logsums. The well known log-sum formula has been derived by McFadden as a welfare measure. The formula for the conditional CV's (see Proposition 10 and Corollary 11) are explicit in this case. Our analysis allows to compute conditional logsums which provide more accurate evaluation of surplus when ex-ante and/or ex-post choices are observed (see the numerical evaluations provided in Section 4.1). The reader is also referred to de Palma and Kilani (2007) who focus on characterizations of the conditional (to the ex-ante) distributions of maximum utility in RUM.

An alternative welfare measure for the CES

When the utility is additive but non linear in income, as for the CES model, we can still derive an explicit formula for the expected CV's. If v (y) = (1= ) ln y, with > 0, we have y (c) = (1= ) ln (1 c=y) and kk = y 1 e k . The integral term in this case is given by (Use the change of variable t where B denotes the generalized incomplete Beta function. The expected CV for the logarithmic in income logit model is

= s r = h s r + r (1 c=y) 1= i ) r = y
E [cv] = y " 1 e n 1 n 1 X r=1 s r r B sr r ; sr r+1 ( 1 
; ) # : (32) 
Assume for example that the systematic component of the utility has the following speci…cation: v k = (1= ) (ln y ln p k ) where p k denotes the ex-ante price of good k. Using the Roy's identity, the ex-ante demand for good i is:

X i = p 1 1 i P k p 1 k y:
Anderson, de Palma and Thisse (1987) have shown that the CES representative consumer model (see [START_REF] Dixit | Monopolistic competition and optimum product diversity[END_REF] can be derived as a logit model with income additive logarithmic speci…cation and double-exponentially distributed error terms. We provide below an expression for the conditional (and unconditional) CV corresponding to the CES. Anderson et al. (1992, pp. 97-100) show that "a rise in the CES indirect utility function does not necessarily imply that all constituent consumers (...) can be made better o¤ by appropriate redistribution of income." This criticism of the representative consumer can be handled when the CV is computed at the individual level and then aggregated over the population. We provide this result below. Consider a change in prices (p 1 :::

p n ) ! ( 1 ::: n ),
where k is the ex-post price of good k. In this case, the expected (aggregated) CV for the CES is given by

E [cv] = y " 1 n p n n 1 X r=1 r P r B sr r ; sr r+1 ( 1 
; ) # ; (33) 
where

P r = P r k=1 p 1= k and r = P n k=r+1 1= k
are respectively the partial ex-ante and the ex-post CES price indices, and where in this case the arguments of the Beta function are such that: 8 > < > :

s r = r = h 1 + (p r r = r P r ) 1= i 1 ; s r = r+1 = h 1 + p r+1 r = r+1 P r 1= i 1 : (34) 
These expressions di¤er from the aggregate standard welfare measures oh the CES model. They provide alternative welfare measure to assess the policy implication of price changes.

Concluding remarks

In this paper, we have presented a …rst step towards a dynamic choice model, where individuals may alter their current choice after a change in the attributes of the alternatives. For ARUM, we have computed the transition choice probabilities and the associated welfare measures (CV) and have provided analytical functional forms. Using these formulae will ease the welfare analysis both at the theoretical and empirical levels.

The proposed framework can be extended in several dimensions. The most important extension involves the mixed logit model widely used in empirical applications (see [START_REF] Berry | Voluntary export restraints on automobiles: evaluating a strategic trade policy[END_REF]. In this case, some parameters are distributed so that the transition choice probabilities will involve a kernel that we have computed in Section 2, while the various welfare measures (conditional and unconditional distribution and moments of CV) will involve kernels provided in Section 4. In this sense, the mixed logit would only add an integral for each of the parameters that are being distributed.

We have concentrated our analysis on the case where only one series of change occur at once, and individual choices are observed ex-ante and ex-post (i.e. before and after this change). Moreover, we have assumed that the error terms remain the same, but this is not necessary the case in a truly dynamic model. It is easy to consider situations, and model situations where individuals have some probability to inherit a new error term (for some alternatives) when a change has occurred. Besides, practical situations may involve several changes staggered over time. In this case, the exact dynamics of the error term is relevant. Indeed, without change of the error terms, each change induces transitions which provide information on the parameters of the systematic utility as well as on the value of the error terms. As a consequence the model may lead to inconsistent sequence of choice if the error terms are individual speci…c. The redraw of the error terms allows to avoid these inconsistent situations. There is still a long way to compute exact formulae for truly dynamic random utility models. We hope that this paper provides a useful …rst step in these directions. and where s n = P k e v k . If j > i , with n > j > i > 1, using Eq. ( 4), we have:

P i,!j = j 1 X r=i Z r+1 r j i (v 1 :::v r ; ! r+1 z:::! n z)dz.
For the logit, j i = P i P j so that

P i,!j = e vi e !j j 1 X r=i Z r+1 r e z (s r + r e z ) 2 dz.
We integrate in each interval [ r ; r+1 ] to get: The remaining cases i = 1 and j = n are left to the reader. Proof of Lemma 3. First note that ii restores the utility of i to its ex-ante level U i , since i (y ii ) = i ( ii ) + U i = U i . For a transition i ,! i, we have

P i,!j =
U i U k + ( k i ) + (see (35)
). As a consequence, since k (y c) = U k + k (c), then ik (which solves k ( ik ) = ( k i ) + ) is the largest amount needed to restore the utility of alternative k to the ex-ante level U i . As a consequence, ii = m i cv max k ( ik ) = M i . For a transition i ,! j, j > i, since U j + ( j i ) U i U j , then ij (which solves j ij = j i ) and jj (which solves j jj = 0) are respectively the lowest and the largest amount needed to restore the utility of alternative j to the ex-ante level U i , with necessarily ij jj . Moreover, for k 6 = i; j, we have

U k + k ij + U i , where ij j U i (see (36)). Since j ij i , jk (which solves j jj = ( k j ) + )
is the largest amount needed to restore the utility of alternative k to the ex-ante level U i . Altogether, the above conditions imply:

max ii ; ij = m ij cv max ii ; max k6 =i jk :
Since i j , we have that ji = ii , we get: m ij cv m j . Proof of Theorem 4. If i is chosen ex-ante, the event fc cvg can also be written as:

max k [ k (y cv)] max k [ k (y c)] = fU i k (y c) ; 8kg ;
using the fact that the k 's are strictly increasing in y and recalling the de…nition of cv. For c m ij ii , we have necessarily: i (y ii ) = U i i (y c) ; so we get fc cvg = fU i k (y c) ; k 6 = ig or fc cvg = fU i U k + k (c) ; k 6 = ig : Hence:

fc cvg = fU i > U k + k (c) ; k 6 = ig ; a.e.;
and we rewrite Eq. ( 13) as:

i,!j (c) = Pr (U i > U k + k (c) ; k 6 = i; U i > U k ; k 6 = i; j > r ; r 6 = j) P i,!j (v; !) ;
or further as:

i,!j (c) = Pr U i > U k + + k (c) ; k 6 = i; j > r ; r 6 = j P i,!j (v; !) : (37) 
Comparing the numerator of Eq. (37) with Eq. ( 3), we deduce that it takes the form of a transition probability of the type i ,! j corresponding to a change v 1 + + 1 (c) :::v n + + n (c) ! !. Therefore, according to Theorem 4, we get Eq. ( 14). According to Lemma 3, the support of cv conditional to transition i ,! j is included in [m ij ; m j ]. We proof here that the support is (m

ij ; m j ]. First, the ith component of v 1 + + 1 (c) :::v n + + n (c) is v i while the other com- ponents are v k + + k (c) v k , k 6 
= i, with at least one strict inequality. As a consequence, P i,!j (v; !) > P i,!j v 1 + + 1 (c) :::v n + + n (c) ; ! ; so that 1 > i,!j (c). Therefore, the support of cv extends up to m j . Second, if j = i, and c m ii = ii , we necessarily have i,!j (c) > 0 since we always have P i,!j v 1 + + 1 (c) :::v n + + n (c) ; ! > 0:

Third, if j > i (and j > i ), let c > m ij . We have + i (c) = 0 since c > ii and + j (c) < j i since c > ij . As a consequence, in both cases, a transition i ,! j is feasible with a change v 1 + + 1 (c) :::

v n + + n (c) ! ! (see Theorem 1) since ! i v i + + i (c) = i < ! j v j + + j (c) = j + j (c) ; (38) 
which implies that i,!j (c) > 0. Finally, note that if m ij = ij , the previous inequality (38) became an equality for c = ij so that the (conditional on i ,! j) distribution of cv has no jump at the lower bound of the support, i.e. for c = m ij . Otherwise, if m ij = ii > ij , the inequality is still strict for c = m ij = ii , so that the distribution has no jump at this point. 

= i,!j (c), with: c 2 [m ij ; m j ], we get E i,!j [cv p ] = m p ij i,!j (m ij ) + R mj mij z p i,!j (c) dc.
Then using an integration by parts, we obtain:

E i,!j [cv p ] = m p j p Z mj mij c p 1 i,!j (c) dc;
which coincides with (18). Proof of Corollary 7. This proof uses the same technique as for the proof of Theorem 6 by considering i,! given by ( 15) instead of i,!j or by considering ,!j given by ( 16) instead of i,!j . Proof of Proposition 8. Recall that (see Eq. ( 18)):

E 1,!j [cv] = m j 1 P 1,!j (v; ! 1 ; v 2 :::v n ) Z mj m1j I j ( 1 ; c) dc, (41) 
where I j ( 1 ; c) P 1,!j v 1 + + 1 (c) :::v n + + n (c) ; ! 1 ; v 2 :::v n , j = 1:::n, and where m j = max k jk , with jk solving k jk = ( k j ) + ; k = 1:::n, (see Eq. ( 12)). Note that 11 < 0 since 1 < 0. The Roy's Identity applied in the deterministic case leads to: lim p1!0 + ( 11 = p 1 ) = x 1 . Moreover, since k = 0, k = 2:::n, we have: k ( 1k ) = ( 01 ) + = 1 , k = 2:::n. Accordingly, 1k < 0, k = 2:::n, and lim 1!0 ( 1k = 1 ) = (@V k =@y)

1 . Therefore, using again the Roy's Identity in the deterministic case we have:

lim p1!0 + 1k p 1 = x 1 
1k ; k = 1:::n:

Therefore: lim p1!0 + (m 1 = p 1 ) = min k ( 1k ) x 1 . Now, since I 1 ( 1 ; c) is continuous in c, using the mean value theorem for integration, we get

E 1,!1 [cv] = m 1 (m 1 11 ) I 1 ( 1 ; e c 1 ) P 1,!1 (v; ! 1 ; v 2 :::v n )
, where e c 1 2 ( 11 ; m 1 ). Now using the fact that lim p1!0

+ I 1 ( 1 ; e c 1 ) = I 1 (0; 0) = P 1,!1 (v; v) = P 1 (v) and that lim p1!0 + P 1,!1 (v; ! 1 ; v 2 :::v n ) = P 1 (v), we get: lim p1!0 + E 1,!1 [cv] p 1 = min k ( 1k ) x 1 min k ( 1k ) x 1 x 1 = x 1 :
Let j > 1. Since k 0, k = 1:::n; and j = 0, we have: k jk = + k = 0. As a consequence, j1 = 11 < 0 (since 1 ( 11 ) = 1 j1 = 0) and jk = 0; k > 1. Hence, m j = 0 which allow us to rewrite (41) as: Using Eq. ( 4) and applying the mean value theorem for integration we get: Let " > 0 small enough. Since the integrand tends towards j 1 as 1 and z tend towards zero, we can …nd 1 and c arbitrarily small in order that ( j (c) 1 ) j 1 " I j ( 1 ; c) ( j (c) 1 ) j 1 + " :

Applying the Taylor's theorem to j (c), we get @V j @y c R

1 j 1 " I j ( 1 ; c) @V j @y c R 1 j 1 + " ;
where R veri…es jRj M c 2 with M a positive constant. Therefore, by integration and taking the limit " ! 0, we get: where l j lim 1!0 (m 1j = 1 ). Recall that m 1j = max 11 ; 1j . Now, using the chain rule, we get: (@V j =@y) 1 ; if 1j 1;

l j =
(@V 1 =@y) 1 ; if j1 1: :

Using again the chain rule and the Roy's Identity, we get:

lim p1!0 + E 1,!j [cv] p 1 = x 1 (@V 1 =@y) j 1 lim 1!0 1 2 1 Z m1j 0 I j ( 1 ; c) dc:
Hence

lim p1!0 + E 1,!j [cv] p 1 = 1j 2 x 1 ; if 1j 1; 1 j1 2 x 1 ; if j1 1:
Now, recall that (see Eq. ( 18)):

E i,!n [cv] = m n 1 P i,!n (v; ! 1 ; v 2 :::v n ) Z mn min J i ( n ; c) dc, (43) 
where J i ( n ; c) P i,!n v 1 + + 1 (c) :::v n + + n (c) ; v 1 :::v n 1 ; ! n , j = 1:::n, and where m n = max k ( nk ), with nk solving k ( nk ) = ( k n ) + , with k = Using the fact that P i,!j (v) = e vi e !j ij , j > i, we get Eq. (25). Proof of Proposition 10. Clearly, for a transition i ,! i, we have E i,!i [cv] = ii . For a feasible transition i ,! j, with j > i, using Theorem (6) with p = 1, we get Noting that r s r r s r = e !r r , that s 1 = 1 1 = e !1 = 0 1 and moreover that: s j 1 + e j j 1 = j , we obtain the required expression (29).

1 2 .

 2 Three cases arise: (a) For a transition 1 ,! 1, we have cv = p 1 (b) For a transition 1 ,! 2, the support of cv is [ p 1 ; 0]. There is a mass at ( p 1 ) corresponding to the probability that the individual shifts from 1 to 2, and returns to 1 after being compensated by cv. Otherwise, the individual selects good 2 after being compensated by = 2 . (c) For a transition 2 ,! 2, cv = 0. The discussion is illustrated in Figure 1.

Figure 1 :

 1 Figure 1: Transitions and CV with respect to (case 1 > 2 )

Figure 2 :

 2 Figure 2: R.M.S.E. for various information regimes

  and where r Z (r+1)(r+1) rr dc s r + r e y (c) ; r = 1:::n 1;

1 ;

 1 ) ; r = 1:::n 1;

;

  since s r + r e r = r and s r + r e r+1 = P k r e v k + P k>r e ! k r+1 = (s r e vr+1 ) + e !r+1 r+1 + r e r+1 = r+1 :

Proof of Corollary 5 .

 5 (a) Using Theorem 4, for feasible transitions, we have m ij ii . Moreover, since jk solves k jk = ( k j ) + , and since k (c) is decreasing in c, we have (recall that m j max k jk ) the ranking: m 1 ::: m n . be de…ned. Using the change of variable:

E 1 ,

 1 !j [cv] = 1 P 1,!j (v; ! 1 ; v 2 :::v n ) Z m1j 0 I j ( 1 ; c) dc:

E 1 , 1 j 1 v 1

 1111 !j [cv] = R m1j 0 I j ( 1 ; c) dc 1 j 1 v 1 ; v 2 e :::v n e;where e 2 ( 1 ; 0). Using Eq. (4) we rewrite I j ( 1 ; c) as:I j ( 1 ; c) = Z j (c) ; v 2 + ( 2 (c) z) + :::v n + ( n (c) z) + dz:

E 1 X::

 1 i,!j [cv] = jj Z jj ii i,!j (c) dc;which can be rewritten asE i,!j [cv] = jj j and (44), we get E i,!j [cv] = jj 1Inverting the two sum signs we obtainE ,!j [cv] = 0This expression can be rewritten asE ,!j [cv] = 0
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Appendix. Proofs

Proof of Theorem 1. The probability P i,!i (see Eq. ( 3)) given by P i,!i = Pr (U i > U k ; k 6 = i; i > r ; r 6 = i), can be rewritten as P i,!i = Pr (U i > U k ; k 6 = i; U i > U r + ( r i ) ; r 6 = i) ;

and further simpli…ed as

Comparing ( 35) with (1), we deduce that

If j 6 = i, with j > i , P i,!j given by (3) can be rewritten as

where the random variable ij j U i represents the utility variation ex-post. Clearly, if i > j and therefore i j , then P i,!j = 0 as required. If j > i, we associate to U i and to j the variables of integration u and w, respectively. Remark that if z w u veri…es j z i , then

+ and w ! j = u v j ( j z) + . The transition choice probability (36) can then be written in the following integral form:

Using the change of variable z = w u within the inner integral, we get:

The Fubini's theorem allows us to permute the integral signs so that:

Thanks to Eq. ( 2), the inner integral is

and therefore:

which is the required expression.

Proof of Proposition 2. If j = i, using Eq. ( 5) with the logit choice probabilities (8) we get P i,!i = e vi = i , where i =

we have nk = kk so that m n = max k ( kk ). Therefore, the support of cv conditional to the ex-ante choice of i is [ ii ; m n ]. Moreover, according to Theorem 4, we get that:

where F i,! stands for the set of alternatives j such that i ,! j is feasible. For non-feasible transitions i ,! j where i j , if c ii the ith component of

We have

This allows us to extent the sum sign in (39) to all alternatives to get:

i,! (c) =

Then, using Eq. ( 6), we get Eq. ( 15). (b) According to Theorem 4, the support of cv conditional to the ex-post choice of j is min i2Fj (m ij ) ; m j where F j is the set of alternatives i such that i ,! j is feasible. For non feasible transitions verifying i j , we have ij = jj and therefore that m ij jj = m jj . As a consequence, min i2Fj (m ij ) = min i (m ij ) = m j and the support is m j ; m j . For c m j , using Theorem 4, we get that

The sum can be extended to non feasible transitions i ,! j to get Eq. ( 16). Indeed, either c < m ij and therefore

c) ! !, the transitions i ,! j is non-feasible and hence P i,!j v 1 + + 1 (c) :::v n + + n (c) ; ! = 0: Proof of Theorem 6. For 0 1, de…ne the conditional quantile function

sup fc 2 [m ij ; m j ] j i,!j (c) g, which is the inverse of the conditional CDF of cv. By de…nition, the pth conditional moment of cv veri…es

the functions i,!j (c) is continuous and monotonic. It is therefore a.e. di¤erentiable according to the Lebesgue theorem (cf. [START_REF] Rudin | Real and Complex Analysis[END_REF]). As a consequence, a PDF i,!j can a.e.

1:::n, (see Eq. ( 12)). Since k n , then nk is solving k ( nk ) = 0; with k = 1:::n, (see Eq. ( 12)). Therefore, nk = 0, k = 1:::n 1 and nn > 0. Therefore, m n = max k ( nk ) = nn . Moreover, we have:

where in is solving n ( in ) = ( n i ) + = n . Therefore, in = 0 and m in = 0. For c 2 (0; nn ), we have

where e z 2 (0; n n (c)). Using the fact that n i (v 1 :::; v n 1 ; ! n e z) tends towards n i as n tends towards zero and applying the Taylor's theorem to n (c), we get:

Therefore, using the chain rule, we get:

Proof of Proposition 9. We have: k (c) = k y (c), where we de…ne: y (c) v (y) v (y c), is strictly increasing in c. The 0 ik s, de…ned by [START_REF] Mcfadden | Economic choices[END_REF], verify:

Note that ik

ii since 1 y is increasing and since k i for k i. therefore, the support of the distribution of cv conditional on the transition i ,! j, j i, is:

ii ; where

As a consequence, for j > l i, we have

il + 1 l s l + l e y (c) 1 1 l

:

We further simplify this expression as:

which is equivalent to Eq. ( 26). Proof of Corollary 11. (a) If i < n, we have

Using ( 8) and ( 10) (see Proposition 2), the ratio of probabilities are such that

Therefore, using ( 46) and (26) (see Proposition 10), we write (45) as 

Using ( 8) and [START_REF] Mcfadden | Modelling the choice of residential location[END_REF] (see Proposition 2), we get the ratio of probabilities P i,!j P j = 0 e j = j ; if i = j; 0 e vi ij ; if i < j;

(48)