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Congested traffic dynamics, weak flows and

very degenerate elliptic equations

Lorenzo Brasco12, Guillaume Carlier23, Filippo Santambrogio2

Abstract

Starting from a model of traffic congestion, we introduce a minimal-flow–like variational problem whose

solution is characterized by a very degenerate elliptic PDE. We precisely investigate the relations between

these two problems, which can be done by considering some weak notion of flow for a related ODE. We

also prove regularity results for the degenerate elliptic PDE, which enables us in some cases to apply the

DiPerna-Lions theory.

Keywords: traffic congestion, weak flows, superposition solutions, DiPerna-Lions theory, de-
generate PDE’s, regularity.

AMS subject classifications: 35D10, 35J70, 49K10.

1 Introduction

Traffic congestion issues have received a lot of attention from engineers since the 50’s mainly in
network models (see [22], [5] and the references therein). In such (finite-dimensional) network
models, congestion effects are captured through the fact that the travel time of each arc of the
network is an increasing function of the flow on this arc. In [22], Wardrop defined a concept of
equilibrium for such congested networks that has been very popular since. Roughly speaking, a
Wardrop equilibrium is a flow configuration that satisfies natural mass preservation constraints
(Kirchhoff’s law and compatibility with the given distribution of sources and sinks) and such that
every actually used (i.e. where the flow is positive) path connecting a source and destination should
be a shortest path (taking into account the congestion effects). Recently, in [8], a model of continuous
congested traffic equilibrium has been proposed as well as a generalization of Wardrop’s equilibrium
to a continuous setting. In this model, an equilibrium is a probability measure over a set of paths
that gives full mass to geodesics for a metric that itself depends on the measure due to congestion
effects.

1Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo, 5, 56127 Pisa, ITALY,

brasco@mail.dm.unipi.it
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One aim of the present paper is to construct such equilibria as measures supported in some sense
on the integral curves of some non-autonomous vector field (not regular in general). For the sake of
completeness and to motivate what follows, we will briefly explain the model and some of the results
of [8]. In [8], a domain Ω ⊂ R

N and two probability measures µ0 and µ1 on Ω are given (distribution
of sources and sinks or residents and services, say, in a urban region). In the framework of [8], an
equilibrium is in fact a probability measure Q on C([0, 1]; Ω) that solves the following variational
problem:

inf
Q∈Qp(µ0,µ1)

∫

Ω
H(iQ(x)) dx (1.1)

where H : R+ → R+ is some convex increasing function with a p−th power growth at infinity,
Qp(µ0, µ1) is the set of probability measures on C([0, 1]; Ω) concentrated on absolutely continuous
curves satisfying compatibility conditions with the distributions of sources and sinks (i.e. (e0)#Q =
µ0 and (e1)#Q = µ1, where the maps et : C([0, 1]; Ω) → Ω are the evaluation maps at time t) and
such that iQ is an Lp function, where iQ is the traffic intensity associated to Q defined by

∫

Ω
ϕ(x) diQ(x) :=

∫

C([0,1];Ω)

(∫ 1

0
ϕ(γ(t))|γ′(t))|dt

)
dQ(γ), ∀ϕ ∈ C(Ω).

In this formulation, iQ represents the total cumulated traffic and H is defined by H(0) = 0, H ′(i) =
g(i) where g is an increasing function that models the congestion effect (that is, in some sense, if
the intensity of traffic is iQ then the congested metric is g(iQ)). Once again, we refer to [8] for more
details and in particular the existence of a solution to (1.1) as soon as Qp(µ0, µ1) 6= ∅ and the precise
sense in which the Euler-Lagrange equation of (1.1) corresponds to the fact that Q is a Wardrop
equilibrium (i.e. Q-a.e. γ is a geodesic for the metric g(iQ), a metric which, by the way, is typically
given by an Lq function only, with q = p/(p − 1), so that one has to properly define distances and
geodesics in such a non-continuous setting, and this is one of the main issues solved by [8]).

As already mentioned, one aim of this paper is to construct solutions of (1.1). A first ingredient
to achieve this goal, is to introduce a minimal-flow–like problem and to relate it to the scalar problem
(1.1) as follows. First, for Q ∈ Qp(µ0, µ1), define the vector-valued measure σQ by:

∫

Ω
ϕ(x) dσQ(x) :=

∫

C([0,1];Ω)

(∫ 1

0
ϕ(γ(t)) · γ′(t))dt

)
dQ(γ), ∀ϕ ∈ C(Ω,RN ),

i.e. sort of a vector version of iQ. It is immediate to check that |σQ| ≤ iQ so that σQ ∈ Lp(Ω,RN )
and that

divσQ = µ0 − µ1, σQ · ν = 0 on ∂Ω

since H is increasing, this implies that the infimum of (1.1) is larger than that of the minimal flow
problem:

inf
σ∈Lp(Ω;RN )

{∫

Ω
H(σ) dx : divσ = µ0 − µ1, σ · ν = 0 on ∂Ω

}
, (1.2)

where H(σ) := H(|σ|). In the sequel, problem (1.2) will be often referred to as the “vector” problem
while problem (1.1) as the “scalar” problem.
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If, conversely, σ solves (1.2) and if we are able to construct Q ∈ Qp(µ0, µ1) such that iQ = |σ|
then Q will be a solution to (1.1). Heuristically (i.e. ignoring regularity issues) a natural candidate
Q is Q := δX(.,x) ⊗ µ0 where X(., x) is the flow of the non-autonomous ODE:

∂tX(t, x) = σ̂(X(t, x), t), X(0, x) = x, σ̂(x, t) :=
σ(x)

(1 − t)µ0(x) + tµ1(x)
(1.3)

with σ solving (1.2), according to a deformation argument which essentially dates back to Moser
(see [18]) and which has also been exploited by Evans and Gangbo ([14]) in the context of mass
transportation problems. If σ̂ is Lipschitz, this flow can be defined in a classical sense and the
situation is relatively easy to understand. This leads us to the study of the regularity of σ̂ and
hence of σ and we will see that unfortunately, requiring σ to be Lipschitz will be unrealistic for
the models of traffic congestion we are interested in. Formally (see section 2 for details and precise
assumptions), by duality, the solution of (1.2) is σ = ∇H∗(∇u) where H∗ is the Legendre transform
of H and u solves the PDE:

{
div∇H∗(∇u) = µ0 − µ1, in Ω,
∇H∗(∇u) · ν = 0, on ∂Ω,

(1.4)

Hence, the question immediately becomes a question on regularity properties for the solutions of
this equation.

For instance, if one takes H(σ) = |σ|p/p, then it is easy to see that we have ∇H∗(z) = |z|q−2z,
so that (1.4) simply becomes a homogeneous Neumann problem for the q-Laplacian operator. This
degenerate elliptic equation has been widely studies in literature and in general one cannot hope for
better results than C1,α regularity for u (i.e. σ ∈ C0,α, see for instance [11, 16]).

Yet, the situation in the cases which are motivated by traffic congestion is even worse. Indeed,
let us recall that H ′ = g where g is the congestion function related the metric to the traffic intensity.
It is therefore natural to have g(0) > 0 : the metric is positive even if there is no traffic, so that
the radial function H is not differentiable at 0 and then its subdifferential at 0 contains a ball. By
duality, this implies ∇H∗ = 0 on this ball which makes (1.4) very degenerate. A reasonable model
of congestion is g(t) = λ+ tp−1 for t ≥ 0, with p > 1 and λ > 0, so that

H(σ) =
1

p
|σ|p + λ|σ|, H∗(z) =

1

q
(|z| − λ)q

+, with q =
p

p− 1
. (1.5)

In this very degenerate case, one will not look for the regularity of u but only of σ = ∇H∗(∇u).
Regularity for this term should not be astonishing, as far as one notices that Ω can be, roughly
speaking, divided into two zones, one where σ = 0, the other where the equation is less degenerate
(but obviously the two regions are not open sets and one has to make rigorous this idea). Assuming
µ0 and µ1 are Lipschitz functions bounded from below by positive constants, if one can prove Sobolev
regularity of ∇H∗(∇u) as well as an L∞ bound on ∇u for the PDE (1.4), then one can define a flow
for (1.3) in the sense of the DiPerna-Lions theory. Such regularity results have, in our opinion, their
own interest and are proved respectively in section 4 (Sobolev regularity of ∇H∗(∇u)) and 5 (global
Lipschitz regularity of u). In general, as explained in subsection 3.2, when very little regularity is
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available on the velocity field σ̂, it is still possible to relate (1.1) to (1.2) and (1.3) by using the notion
of superposition solutions and the superposition principle (see [3]). Surprisingly, the results which
are less expected in the framework of Elliptic Regularity theory are those of Section 4, but they are
proven by simple variants of usual schemes for the p−Laplacian; on the other hand, the L∞ result
of Section 5 could be easily guessed by subsolution arguments, but, for the sake of completeness, we
provide here a self-contained proof with some ideas that to our knowledge are new.

Section 2 is devoted to a precise characterization of the minimal flow problem. In section 3,
different notions of flows for (1.3) are considered and the precise connection between the scalar
problem (1.1) to (1.2) and (1.3) is given as well as the proof of the equality of the values of (1.1)
and (1.2) by using superposition solutions. Then, focusing on the case of (1.5), we prove Sobolev
regularity of ∇H∗(∇u) in section 4 and Lipschitz regularity of u in section 5 for the degenerate PDE
(1.4).

2 Minimal flow model

Let Ω ⊂ R
N be a bounded open set with Lipschitz boundary and let µ0, µ1 ∈ P(Ω) be two given

probability measures over its closure. We consider the following minimization problem

inf
σ∈Lp(Ω;RN )

{∫

Ω
H(σ(x)) dx : divσ = µ0 − µ1, σ · ν = 0 on ∂Ω

}
, (2.1)

where H : R
N → R satisfies:

(i) H is a strictly convex radially symmetric function, with H(0) = 0;

(ii)
a|σ|p ≤ H(σ) ≤ b(|σ|p + 1), σ ∈ R

N ,

for some p ∈ (1,∞) and a, b positive constants;

(iii) H is differentiable in R
N \ {0} and there exists a positive constant c such that

|∇H(σ)| ≤ c(|σ|p−1 + 1), σ ∈ R
N \ {0}.

Example 1. Taking H(σ) = |σ|, then (2.1) becomes the continuous transportation model

inf
σ∈M(Ω;RN )

{‖σ‖L1 : divσ = µ0 − µ1, σ · ν = 0 on ∂Ω} ,

which is nothing but an equivalent formulation of the Monge’s problem, with cost equal to the
distance (see [4, 21]).

Example 2. Another interesting case, more related to the case of congested dynamics, is given by
the choice H(σ) = |σ|2, for which the minimal value (2.1) is given by (see [9] for the details)

C(µ0, µ1) =

{
‖µ0 − µ1‖2

X∗ , if µ0 − µ1 ∈ X∗

+∞, otherwise.
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where X∗ indicates the dual of the Hilbert space X = W 1,2
⋄ (Ω) = {ϕ ∈ W 1,2(Ω) :

∫
Ω ϕ = 0},

equipped with the scalar product

〈ϕ,ψ〉X =

∫
∇ϕ · ∇ψ.

Even for this simple problem with quadratic cost, it is only thanks to the results in the present
paper that one gets a rigorous equivalence between the “vector” problem used in [9] and the models
suggested by Beckmann ([4]) which are better interpreted with a “scalar” construction.

In what follows, we will mainly confine our analysis to the case in which

H(σ) =
1

p
|σ|p + λ|σ|, σ ∈ R

N , (2.2)

with p ∈ (1, 2] and λ > 0 a positive constant. The reasons for the restriction on the exponent p are
twofolds: on the one hand, the scalar problem of [8] is fully understood under the extra assumption
p < N/(N − 1) (i.e. p < 2 in two dimensions, which is the most relevant case in applications); on
the other hand we will see extra difficulties arise concerning elliptic regularity whenever we are in
the singular case q = p/(p− 1) < 2.

Theorem 2.1. Suppose that the infimum in (2.1) is finite and let σ0 be its unique optimizer, then
there exists ϕ0 ∈W 1,q(Ω) such that

σ0 = ∇H∗(∇ϕ0), (2.3)

and ϕ0 is a weak solution of

{
div∇H∗(∇u) = µ0 − µ1, in Ω,
∇H∗(∇u) · ν = 0, on ∂Ω,

(2.4)

where H∗ is the Legendre transform of H and q = p/(p− 1).

Proof. We first observe that problem (2.1) consists in minimizing a strictly convex and coercive
functional on Lp subject to a convex and closed constraint: then an optimizer σ0 exists and must
be unique.

It is well known that problem (2.1) has a dual formulation, given by the convex analysis formula
(see for instance [13])

sup

{∫

Ω
ϕ d(µ1 − µ0) −

∫

Ω
H∗(∇ϕ) dx

}
= inf

{∫

Ω
H(σ) : divσ = µ0 − µ1, σ · ν = 0

}
.

Due to the superlinear growth and the strict convexity of H, we get that H∗ ∈ C1 and it verifies
the following growth conditions

B(|z|q − 1) ≤ H∗(z) ≤ A|z|q,
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where q = p/(p− 1), then using the Direct Methods of the Calculus of Variations it is not difficult
to show that the dual problem admits at least a solution ϕ0 belonging to W 1,q

⋄ (Ω), where

W 1,q
⋄ =

{
ϕ ∈W 1,q(Ω) :

∫

Ω
ϕ(x) dx = 0

}
.

We observe further that the Euler-Lagrange equation of

F(ϕ) =

∫

Ω
H∗(∇ϕ(x)) dx−

∫

Ω
ϕ(x) d(µ1 − µ0),

is given by (2.4), so that ϕ0 solves it, in distributional sense. Moreover, ϕ0 and σ0 verifies

∫

Ω
H(σ0) =

∫

Ω
ϕ0(µ1 − µ0) −

∫

Ω
H∗(∇ϕ0)

=

∫

Ω
∇ϕ0 · σ0 −

∫

Ω
H∗(∇ϕ0),

where we have used the fact that divσ0 = µ0 − µ1 and σ0 · ν = 0. The previous can be written as
∫

Ω
H(σ0) +

∫

Ω
H∗(∇ϕ0) =

∫

Ω
∇ϕ0 · σ0,

which, by means of the so called Legendre reciprocity formula, implies that

σ0(x) ∈ ∂H∗(∇ϕ0(x)), for L N -a.e. x ∈ Ω.

Using the fact that H∗ ∈ C1, we obtain that actually the subgradient set ∂H∗ is made of just an
element, namely the gradient ∇H∗, concluding the proof.

3 Different meanings and equivalences

In this section we discuss how to connect the “scalar” problem on measures on paths to the “vector”
problem on fields with prescribed divergence: in which sense and when they are equivalent and how
to pass from one minimizer to the other.

3.1 Cauchy-Lipschitz flow

Let us consider a non-autonomous vector field v : [0, 1]×Ω → R
N such that v ·ν = 0, where ν stands

for the outer normal vector to ∂Ω. It is well-known that if v is sufficiently smooth, say Lipschitz
with respect to the spatial variable, then for every µ0 the unique solution of the Cauchy problem






∂

∂t
µ(t, x) + divx(v(t, x)µ(t, x)) = 0, (t, x) ∈ [0, 1] × Ω,

µ(0, x) = µ0(x), x ∈ Ω,

(3.1)
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is given by
µ(t, ·) = (X(t, ·))♯µ0, (3.2)

where X : [0, 1] × Ω → Ω is the flow of v, that is X is the map that to every (s, x) ∈ [0, 1] × Ω
assigns the position at time s of the curve γ satisfying

{
γ′(s) = v(s, γ(s))
γ(0) = x

(3.3)

This is a particular case of the method of characteristics which basically says that the solution of
(3.1) is given by the evolution, through the flow of v, of the initial measure µ0 (see [3] for a clarifying
exposition of this theory).

We now take two probability measures µ0 and µ1 on Ω, absolutely continuous w.r.t to L N and
having density given by f0 and f1, respectively.

Using the above remarks on ODEs and the continuity equation, we now illustrate our general
strategy to prove the equivalence between the two problems

inf
Q∈Qp(µ0,µ1)

∫

Ω
H(iQ) dx and inf

σ∈Lp(Ω;RN )

{∫

Ω
H(σ) dx : divσ = f0 − f1, σ · ν = 0

}
. (3.4)

We already know that in general the value of the vector minimization problem (right hand side of
(3.4)) is less than or equal to the value of the scalar one. The key point is to show that, given the
optimizer σ of the vector problem, we can construct a Q ∈ Qp(µ0, µ1) such that |σ| ≤ iQ. Then
(3.4) is a straightforward consequence on the monotonicity assumptions on H.

As we already mentioned, the main idea will be the use of the deformation argument due to
Moser and used later by Evans and Gangbo: for the moment we make the further assumption that
f0 and f1 are Lipschitz continuous and bounded from below, that is f0, f1 ≥ c > 0 on Ω.

If σ is the unique solution of the convex optimization problem (2.1), we construct the non-
autonomous vector field

σ̂(t, x) =
σ(x)

(1 − t)f0(x) + tf1(x)
, (t, x) ∈ [0, 1] × Ω. (3.5)

The latter will not have any Lipschitz continuity property in general, unless the optimizer σ itself
is regular: anyway, if we assume that one can prove σ ∈ Lip(Ω), then the flow X : [0, 1] × Ω → Ω
of σ̂ is well-defined and we can take µt as in (3.2). In this way, we have obtained the solution of
(3.1), with v = σ̂ and initial datum f0. Moreover, the same Cauchy problem is solved by the linear
interpolating curve

ρt(·) := (1 − t)f0(·) + tf1(·), (3.6)

which implies, due to well-posedness of (3.1), that ρt and µt must coincide. This in turn yields that

(X(1, ·))♯f0 = f1, (3.7)
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which ensures that X(1, ·) transports µ0 on µ1. If we now consider the probability measure concen-
trated on the flow, i.e.

Q = δX(·,x) ⊗ µ0,

then thanks to (3.7) Q is admissible and it is not difficult to see that iQ = |σ| (we will give all
the details in Theorem 3.2 below), which finally implies that the minimum of the two problems
coincide. Moreover, this construction provides a transport map (that is X(1, ·)) from µ0 to µ1,
whose transport “rays” evidently do not cross and which is monotone on transport “rays” (as a
consequence of Cauchy-Lipschitz Theorem).

Remark 1. We point out that in this setting, where everything is sufficiently smooth, property
(3.7) can be proved at a Lagrangian level, without mentioning the well-posedness of the continuity
equation: indeed one can use a trick of Dacorogna and Moser (see [10]) to show that the quantity

h(t, x) = det∇xX(t, x)[(1 − t)f0(X(t, x)) + tf1(X(t, x))],

is actually constant in time. Then using the fact that X(0, x) = x we get that

f0(x) = f1(X(1, x)) det∇xX(1, x),

which in turn implies (3.7) by means of the area formula.

Anyway, recalling the optimality condition for σ provided by Theorem 2.1, the reader can easily
convince himself that our choice for the function H rules out any possibility of Lipschitz regularity
for σ. So the previous construction of Q is purely formal: we will see in the next subsections how
(and in what sense) one can still construct a flow X and make this construction a rigorous one.

Remark 2. On the contrary, when one takes H(z) = |z|2, standard elliptic theory allows to prove
Lipschitz regularity for σ and this concept of Cauchy-Lipschitz flows may be used.

3.2 Superposition of flows

For a general vector field v under very mild assumptions, the most general meaning that we can
give to the flow of v is in terms of the so-called superposition principle, that we now explain in some
details. As far as we can see, this provides a very weak concept of flow, which anyway is strong
enough to still give sense to the construction of the previous subsection.

Definition 1. Let Q ∈ P(C([0, 1]; Ω)) be concentrated on the absolutely continuous solutions of
(3.3), in the sense that

∫

C([0,1];Ω)

∣∣∣∣γ(t) − γ(0) −
∫ t

0
v(s, γ(s)) ds

∣∣∣∣ dQ(γ) = 0. (3.8)

If we define the curve of measures µQ
t through

∫

Ω
ϕ(x) dµQ

t (x) :=

∫

C([0,1];Ω)
ϕ(γ(t)) dQ(γ) for every ϕ ∈ C(Ω), (3.9)

8



then this curve µQ
t is called superposition solution of Problem (3.1): µQ

t is actually a distributional

solution of the continuity equation, with initial datum µ0 = µQ
0 .

Remark 3. It is not hard to see that when v is smooth, formula (3.9) is exactly equivalent to
(3.2). Indeed in this case, for every x ∈ Ω, there exists a unique curve X(·, x) solving (3.3), so that
Q = Qx ⊗ µ0 with Qx a Dirac mass concentrated on this curve, that is

Qx = δX(·,x),

and (3.9) now becomes

∫

Ω
ϕ(x) dµQ

t (x) =

∫

Ω
ϕ(X(x, t)) dµ0(x) =

∫

Ω
ϕ(x) d(X(t, ·))♯µ0(x).

In this way, we can think of the concept of superposition solutions as a probabilistic version of the
method of characteristics.

The most valuable fact of this theory is that every positive measure-valued distributional solution
of (3.1) can be realized as a superposition solution: a proof can be found in [3] (Theorem 12).

Theorem 3.1 (Superposition principle). Let µt be a positive measure-valued solution of the conti-
nuity equation

∂

∂t
µt + div(vµt) = 0,

with the vector field v satisfying the following condition

∫ 1

0

∫

Ω

|v(t, x)|
1 + |x| dµt(x) dt < +∞, (3.10)

then µt is a superposition solution.

Using the concept of superposition solution, it is now a straightforward fact to provide a rigorous
proof of the equivalence between the two problems in (3.4).

Theorem 3.2. Let µ0, µ1 ∈ P(Ω) having Lp density w.r.t. to L N , given by f0 and f1, respectively.
Then equality of values of the two problems in (3.4) holds true.

Proof. As before, we take the minimizer σ of the vector problem and we consider the non-autonomous
vector field defined by (3.5). We point out that the Lp assumption on the densities has been chosen
in order to guarantee finiteness of the infima of both problems (see [8]). With this choice of σ̂, the
linear interpolating curve µt = (1 − t)µ0 + tµ1 is a positive measure-valued distributional solution
of the continuity equation

∂

∂t
µt + div(σ̂µt) = 0,
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with initial datum µ0. Moreover, σ̂ satisfies hypothesis (3.10), so that µt is a superposition solution:
this means that there exists a probability measure Q ∈ P(C([0, 1]; Ω)) such that (3.8) holds and

∫

Ω
ϕ(x) dµt(x) =

∫

Ω
ϕ(x) dµQ

t (x), for every ϕ ∈ C(Ω),

with µQ
t given by (3.9) (observe that in the Cauchy-Lipschitz case, this amounted to say that ρt

defined by (3.6) had to coincide with the solution given by (3.2)). This Q is admissible, that is
Q ∈ Q(µ0, µ1) and moreover, using Fubini Theorem and the disintegration Q = Qx ⊗ µ0, we get

∫

Ω
ϕ(x) diQ(x) =

∫

C

∫ 1

0
ϕ(γ(t))|γ′(t)| dt dQ(γ)

=

∫ 1

0

∫

C
ϕ(γ(t))|γ′(t)| dQ(γ) dt

=

∫ 1

0

∫

Ω

∫

C
ϕ(γ(t))|γ′(t)| dQx(γ)dµ0(x)dt

=

∫ 1

0

∫

Ω
ϕ(x)|σ̂(t, x)| dµt(x) dt =

∫ 1

0

∫

Ω
ϕ(x)|σ(x)| dx dt,

so that ∫

Ω
ϕ(x) diQ(x) =

∫

Ω
ϕ(x)|σ(x)| dx, for every ϕ ∈ C(Ω).

This clearly implies that iQ = |σ| and thus Q ∈ Qp(µ0, µ1) and it solves the scalar problem in (3.4),
concluding the proof.

Notice that the regularity of the curves which are charged by the measure Q corresponding to
a superposition solution is very poor. On the contrary, if one knows that v is continuous, these
curves are C1 and they solve their ODE in a classical sense. The forthcoming paper [20] will prove
a C0 result in two spatial dimensions for the vector field we are interested in. Obviously, continuity
without Lipschitz continuity or similar conditions is not sufficient for ensuring any kind of uniqueness
result. We will see in a while that some kind of uniqueness may be recovered by an intermediate
concept of solution.

3.3 DiPerna-Lions flow

As far as now, we have seen that everything goes well if we face a Lipschitz vector field v and that
we can at least prove equality of the minima if, instead, v is only integrable. In the latter case, it is
not evident to add anything else to this equality and in particular one has no real clue to construct a
minimizer for the scalar problem from a minimizer for the vector one. The problem is mainly linked
to the lack of uniqueness. We will see in this section an intermediate concept, for vector fields which
are not Lipschitz but much better than just integrable.

If v(t, ·) ∈W 1,1(Ω) and the vector field has bounded divergence, we can enforce the conclusion of
Theorem 3.2 and guarantee that the optimal Q associated to the optimizer σ is actually concentrated
on a uniquely defined flow X (possibly in a.e. sense), trasporting µ0 to µ1.
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In fact in this setting, it is still possible to give sense to formula (3.2), through the DiPerna-Lions
theory of flows of weakly differentiable vector fields: we recall the following fundamental result (see
Theorem III.2 of [12]; the same results are also presented in [3] where the language is more similar
to ours).

Theorem 3.3. Let v ∈ L1([0, 1];W 1,1(Ω)) and such that divxv ∈ L1([0, 1];L∞(Ω)). Then there
exists a unique X ∈ C0([0, 1] × [0, 1];L1(Ω; RN )) which leaves Ω invariant and such that:

(i) if we set A(t) =
∫ t
0 ‖divxv(τ, ·)‖∞ dτ , then

e−|A(t)−A(s)|
L

N ≤ (X(t, s, ·))♯L
N ≤ e|A(t)−A(s)|

L
N , for every t ∈ [0, 1];

(ii) X satisfies the group property

X(t3, t1, x) = X(t3, t2, X(t2, t1, x)), for L N -a.e. x ∈ Ω, for every t1 < t2 < t3 ∈ [0, 1];

(iii) for every s ≥ 0 and for L N -a.e. x ∈ Ω, X is an absolutely continuous integral solution of
(3.3), that is

X(t, s, x) = x+

∫ t

s
v(r,X(r, s, x)) dr, for L N -a.e. x ∈ Ω, t ≥ s.

Moreover, if µ0 = ρ0L
N with ρ0 ∈ Lp(Ω), then for every s ∈ [0, 1)

µ(t, ·) = X(t, s, ·)♯µ0, s ≤ t ∈ [0, 1],

is the unique renormalized solution in C0([s, 1];Lp(Ω)) of the continuity equation, with initial datum
µ(s, x) = µ0(x).

Definition 2. We recall that µ is said to be a renormalized solution of the continuity equation if
there holds

∂

∂t
β(µ) + v · ∇xβ(µ) + (divxv)µβ′(µ) = 0, in (0, 1) × Ω, (3.11)

in the sense of distributions, for every β ∈ C1(R).

Clearly, every renormalized solution is a distributional solution (just take β ≡ 1 in (3.11)), while
in general the converse does not hold true. It is a remarkable fact of the DiPerna-Lions theory
that when v has a Sobolev regularity in x, then v has the renormalization property, that is every
distributional solution is actually a renormalized one. Moreover, renormalized solutions are the
right class in which existence, uniqueness and stability of solutions to the continuity equation can
be proved: this is crucial for our construction. Indeed, as already observed in the subsection on
Cauchy-Lipschitz flow, well-posedness of the continuity equation guarantees that the flow at time 1
transports µ0 on µ1, so that the measure Q associated to σ is admissible.

Finally, we just point out that the renormalization property can be proved also for vector fields
with BV regularity (with respect to the space variable), as shown by Ambrosio ([2]): some L∞

bounds on the divergence of the vector field are again essential.

Due to the previous facts, the rest of the paper is devoted to provide Sobolev and L∞ estimates
for the optimizer σ under the following assumptions:

11



(i) µi = fiL
N , with fi ∈ Lip (Ω) and fi ≥ c > 0, for i = 0, 1;

(ii) Ω open connected bounded subset of R
N having Lipschitz boundary.

In fact with these assumptions, the vector field σ̂ given by (3.5) is well-defined and satisfies the
hypotheses of DiPerna-Lions Theorem, once we know that σ ∈W 1,r ∩ L∞, for some r ≥ 1. Indeed,
the Sobolev regularity of σ̂ is equivalent to that of σ, once f0 and f1 are Lipschitz. For the condition
on the divergence one may see that we have

divσ̂ =
divσ

ρt
− σ · ∇ρt

ρ2
t

.

Lipschitz regularity and lower bounds on ρt = (1− t)f0 + tf1 (i.e. on f0 and f1) and L∞ on σ seem
compulsory for getting the assumption on the divergence of σ̂.

Moreover, (i) guarantees that then (1 − t)µ0 + tµ1 is a renormalized solution of (3.1) and so it
must coincide with X♯µ0.

We will achieve these results strongly relying on the optimality condition for σ provided by
Theorem 2.1, which ensures that

σ = ∇H∗(∇u),
where u ∈W 1,q(Ω) is a distributional solution of the degenerate elliptic equation

div(∇H∗(∇u)) = f0 − f1, (3.12)

under homogeneus Neumann boundary conditions.

4 Sobolev regularity of the vector field

In order to apply the DiPerna-Lions theory, first of all we have to show that σ is weakly differentiable:
we will indeed show that σ ∈ W 1,r(Ω), for a suitable r. Observe that in general no more than C0,1

regularity should be expected for solutions of equation (3.12). Actually, with the choice

H(σ) =
1

p
|σ|p + |σ|, σ ∈ R

N ,

we get

∇H∗(z) = (|z| − 1)q−1
+

z

|z| , z ∈ R
N ,

so that every 1−Lipschitz function is a solution of the homogeneous equation. Moreover, we have

(|∇u| − 1)q−1
+

|∇u| |ξ|2 ≤ 〈D2H∗(∇u)ξ, ξ〉 ≤ (q − 1)(|∇u| − 1)q−2
+ |ξ|2, ξ ∈ R

N ,

that is the ellipticity constants degenerate in the region {|∇u| ≤ 1}.
We will confine our analysis to the non-singular case q ≥ 2, which is anyway relevant for the

applications to minimization problems in traffic congestion.
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First of all, we need the following pointwise inequalities. This is the main point where the precise
structure of H∗ plays a role.

Lemma 4.1. For every q ≥ 2, let us define the following vector field

G(z) = |∇H∗(z)| p

2
z

|z| = (|z| − 1)
q

2
+

z

|z| , z ∈ R
N . (4.1)

Then for every z, w ∈ R
N we get

(∇H∗(z) −∇H∗(w)) · (z − w) ≥ 4

q2
|G(z) −G(w)|2 , (4.2)

|∇H∗(z) −∇H∗(w)| ≤ (q − 1)
(
|G(z)|

q−2
q + |G(w)|

q−2
q

)
|G(z) −G(w)| . (4.3)

Proof. We first observe that if
max{|z|, |w|} ≤ 1,

then (4.2) and (4.3) are trivially true. Secondly, in the case

min{|z|, |w|} ≤ 1,

supposing for example that |w| ≤ 1 and |z| > 1, using Cauchy-Schwarz inequality we get

∇H∗(z) · (z − w) = (|z| − 1)q−1
+

z

|z| · (z − w)

≥ (|z| − 1)q−1
+ |z| − (|z| − 1)q−1

+ = (|z| − 1)q
+,

which proves (4.2), while (4.3) is easily seen to be true in this case, too.
Let us now suppose that |z| > 1 and |w| > 1. Now, we recall the inequality (see [17])

(|s|q−2s− |t|q−2t) · (s− t) ≥ 4

q2

∣∣∣|s|
q−2
2 s− |t| q−2

2 t
∣∣∣
2
, s, t ∈ R

N , (4.4)

and we see that if we are able to prove the following

(|s|q−2s− |t|q−2) ·
(

(|s| + 1)
s

|s| − (|t| + 1)
t

|t|

)
≥ (|s|q−2s− |t|q−2t) · (s− t), (4.5)

then choosing

s = (|z| − 1)+
z

|z| , t = (|w| − 1)+
w

|w| ,

and using (4.5) in combination with (4.4), we obtain (4.2). So, let us prove inequality (4.5): one
sees that this is equivalent to

|s|q−1 + |t|q−1 − s · t
[ |s|q−2

|t| +
|t|q−2

|s|

]
≥ 0,
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which is just a simple consequence of Cauchy-Schwarz inequality s · t ≤ |s||t|.

In order to prove (4.3), it is enough to start from the inequality

||s|q−2s− |t|q−2t| ≤ (q − 1)(|s| q−2
2 + |t| q−2

2 )
∣∣∣|s|

q−2
2 s− |t| q−2

2 t
∣∣∣ ,

which is valid for every t, s ∈ R
N and then take s and t as before.

We are ready to prove the main result of this section: the proof is an adaption of an argument
originally used by Bojarski and Iwaniec (see [6]) for the p-Laplacian operator.

Theorem 4.2. Let us suppose that Ω has a Lipschitz boundary and take f ∈ W 1,p
⋄ (Ω), with p =

q/(q − 1). If u ∈W 1,q
⋄ (Ω) is a weak solution of the following Neumann boundary problem

{
−div (∇H∗(∇u)) = f, in Ω,
∇H∗(∇u) · ν = 0, on ∂Ω,

(4.6)

then we get G ∈W 1,2(Ω), where the function G is defined by

G(x) := G(∇u(x)) = (|∇u(x)| − 1)
q

2
+

∇u(x)
|∇u(x)| , x ∈ Ω. (4.7)

Proof. First of all, we observe that if u is a weak solution of (4.6), then

∫

Ω
∇H∗(∇u) · ∇ϕ dx =

∫

Ω
fϕ dx, for every ϕ ∈W 1,q(Ω).

Then, if for a given function g we denote

gh(x) := g(x+ h), x ∈ R
N ,

for every h ∈ R
N such that

L
N (Ω ∩ (Ω − h)) > 0,

and for every ϕ ∈W 1,q(Ω) having support in Ω ∩ (Ω − h), we have

∫

Ω
∇H∗(∇uh) · ∇ϕ dx =

∫

Ω
fhϕ dx,

hence subtracting, we obtain

∫

Ω
(∇H∗(∇uh) −∇H∗(∇u)) · ∇ϕ dx =

∫

Ω
(fh − f)ϕ dx, (4.8)

for every ϕ supported in Ω ∩ (Ω − h).
We now exploit (4.8) in order to prove (4.7): we need to select a suitable test function ϕ.
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We confine our analysis to W 1,2 estimates near the boundary of Ω: then it should be clear how
to apply the same techniques in order to obtain interior W 1,2 estimates. Let us fix δ > 0 small
enough and define

Ωδ = {x ∈ Ω : dist(x, ∂Ω) ≤ δ},
then we can cover this set with a finite number of balls, having center on ∂Ω. Let B(x0, 4ρ) be one
of these balls: we set

B+(x0, 4ρ) = B(x0, 4ρ) ∩ Ω = {x ∈ Ω : |x− x0| < 4ρ}.

We consider a smooth cut-off function ζ ∈ C1
0 (B+(x0, 2ρ)), such that

(i) 0 ≤ ζ ≤ 1;

(ii) ζ ≡ 1 on B+(x0, ρ);

(iii) ‖∇ζ‖∞ ≤ Cρ−1.

Then we make the following choice for ϕ

ϕ(x) = ζ2(x)(uh(x) − u(x)), x ∈ Ω,

for every h ∈ R
N such that |h| < ρ and B+(x0, 2ρ) + h ⊂ Ω: the existence of at least such a vector

h is a consequence of having assumed ∂Ω Lipschitz. Moreover, the set of these h contains at least
a cone at the origin with non empty interior, for the same reason. We observe that

supp ϕ ⊂ Ω ∩ (Ω − h),

so that (4.8) is valid in this case.
We now develop ϕ and use Cauchy-Schwarz inequality, getting

∫

Ω
(∇H∗(∇uh) −∇H∗(∇u)) · (∇uh −∇u)ζ2 dx ≤ 2

∫

Ω
|∇H∗(∇uh) −∇H∗(∇u)|

× ζ|∇ζ||uh − u| dx

+

∫

Ω
ζ2|f − fh||uh − u| dx.

An application of the pointwise inequalities (4.2) and (4.3) yields

∫

Ω
|Gh − G|2 ζ2 dx ≤ C

∫

Ω

(
|Gh|

q−2
q + |G|

q−2
q

)
|Gh − G| ζ|∇ζ||uh − u| dx

+

(∫

Ω
ζp|fh − f |p dx

) 1
p
(∫

Ω
ζq|uh − u|q

) 1
q

where the constant C depends on q only. We can apply Hölder inequality with exponents

1

2
+

1

q
+
q − 2

2q
= 1,
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obtaining

∫

Ω
|Gh − G|2ζ2 dx ≤ C

(∫

B+(x0,2ρ)

(
|Gh|

q−2
q + |G|

q−2
q

) 2q

q−2
dx

) q−2
2q

×
(∫

Ω
|∇ζ|q|uh − u|q dx

) 1
q
(∫

Ω
|Gh − G|2ζ2 dx

) 1
2

+

(∫

Ω
ζp|fh − f |p dx

) 1
p
(∫

Ω
ζq|uh − u|q

) 1
q

.

(4.9)

It is now sufficient to observe that

(∫

B+(x0,2ρ)

(
|G|

q−2
q + |Gh|

q−2
q

) 2q

q−2
dx

) q−2
2q

≤
(∫

B+(x0,2ρ)
|G|2 dx

) q−2
2q

+

(∫

B+(x0,2ρ)
|Gh|2 dx

) q−2
2q

≤ 2

(∫

Ω
|G|2 dx

) q−2
2q

,

so that inserting the latter in (4.9), we easily get

∫

B+(x0,2ρ)
|Gh − G|2ζ2 dx ≤ C

ρ

(∫

Ω
|G|2 dx

) q−2
2q

(∫

B+(x0,2ρ)
|uh − u|q dx

) 1
q

×
(∫

B+(x0,2ρ)
|Gh − G|2ζ2 dx

) 1
2

+

(∫

B+(x0,2ρ)
|fh − f |p dx

) 1
p
(∫

B+(x0,2ρ)
|uh − u|q

) 1
q

,

which in turn implies the following

(∫

B+(x0,ρ)
|Gh − G|2 dx

) 1
2

≤ C

ρ

(∫

Ω
|G|2 dx

) q−2
2q

(∫

B+(x0,2ρ)
|uh − u|q dx

) 1
q

+

(∫

B+(x0,2ρ)
|fh − f |p dx

) 1
2p
(∫

B+(x0,2ρ)
|uh − u|q dx

) 1
2q

,
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We now divide both members by |h|, so to obtain

(∫

B+(x0,ρ)

∣∣∣∣
Gh − G
h

∣∣∣∣
2

dx

) 1
2

≤ C

ρ

(∫

Ω
|G|2 dx

) q−2
2q

(∫

B+(x0,2ρ)

∣∣∣∣
uh − u

h

∣∣∣∣
q

dx

) 1
q

+

(∫

B+(x0,2ρ)

∣∣∣∣
fh − f

h

∣∣∣∣
p

dx

) 1
2p
(∫

B+(x0,2ρ)

∣∣∣∣
uh − u

h

∣∣∣∣
q

dx

) 1
2q

Finally, we just observe that, by means of the characterization of Sobolev spaces in terms of inte-
grated difference quotients (see [7]), we have

∫

B+(x0,2ρ)

∣∣∣∣
uh − u

h

∣∣∣∣
q

dx ≤ CN

∫

Ω
|∇u|q dx,

and ∫

B+(x0,2ρ)

∣∣∣∣
fh − f

h

∣∣∣∣
p

dx ≤ CN

∫

Ω
|∇f |p dx,

this allows us to conclude that

(∫

B+(x0,ρ)

∣∣∣∣
Gh − G
h

∣∣∣∣
2

dx

) 1
2

≤ C

ρ

(∫

Ω
|∇u|q dx

) 1
2

+ CN

(∫

Ω
|∇f |p

) 1
2p
(∫

Ω
|∇u|q

) 1
2q

, (4.10)

that is G has a square-integrable weak derivative along the direction given by h. The same result
applies choosing N linear independent direction h1, . . . , hN satisfying B+(x0, 2ρ) + λhi ⊂ Ω, for
λ > 0 small enough. This finally gives G ∈W 1,2(B+(x0, ρ)), concluding the proof.

As a consequence of Theorem 4.2 we get the following:

Corollary 4.3.

σ = ∇H∗(∇u) = |G|
q−2

q G ∈W 1,r(Ω), (4.11)

for suitable exponents r = r(N, q) given by

r(N, q) =






2, if N = q = 2,

any value < 2, if N = 2, q > 2,
Nq

(N−1)q+2−N , if N > 2.

Proof. This is a consequence of the fact that the composition of a W 1,2 function (in our case G)
with a locally Lipschitz continuous function F : R

N → R
N that satisfies an estimate of the type

|∇F (z)| ≤ C|z|α (in our case z 7→ |z|1−2/qz), belongs to a Sobolev space whose summability may
be computed explicitely thanks to the summability of the original function (which is in fact in L2∗)
and of its gradient.
Notice also that, should G be bounded, one would automatically get σ ∈W 1,2.
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Remark 4. We observe that if we take q > N − 2, then Theorem 4.2 and Sobolev Imbedding
Theorems give that u ∈ C0,α, with α = 1 − (N − 2)/q. Indeed (4.7) implies that G ∈ L2∗(Ω) and
then ∫

Ω
(|∇u(x)| − 1)

qN

N−2
+ dx =

∫

Ω
|G(x)| 2N

N−2 dx < +∞,

which ensures that ∇u ∈ L
qN

N−2 (Ω).

Remark 5. The same arguments in the proof of Theorem 4.2 may obviously be applied to the case
of uniformly elliptic equations, such as div(∇K(∇u)) = f with cIN ≤ D2K ≤ CIN . In this case
they provide global H2 regularity results on Lipschitz domains.

Remark 6. Notice that we asked for a stronger regularity assumption on f than what is usually
considered in standard elliptic regularity (where ∇u is Sobolev as soon as f ∈ Lp). Actually, in non-
degenerate equations, when we arrive to the term

∫
(fh − f)(uh − u), we can pass all the increments

on the function u, thus getting something that may be estimated again by the norm of ∇uh −∇u
(but to the power of one, while at the left hand side it is to the power of two). Yet, here this is no
more useful, since ∇u may not be obtained from G. This is why we asked for a better regularity on
f which could somehow shock the reader who is more familiar with the standard theory.

5 L
∞ estimate for the gradient

In this section we will prove that every solution u ∈W 1,q
⋄ (Ω) of (4.6) is actually a Lipschitz function.

The main ingredient is, as usual in Elliptic regularity, the fact that partial derivatives of u solve a
linear elliptic equation and that convex functions of these partial derivatives are subsolutions of a
similar equation. In this case the interesting quantity will be (∂u/∂x1 − 2)+, so that the equation
becomes uniformly elliptic. We develop in this section all the techniques we need, so as to have
a self-contained exposition and to show some interesting tools that allow to give elliptic regularity
results and to expose them in a simple way.

We will start by approximating the problem (and hence the equation). The goal is twofold: get
non-quantified regularity on the solution, so that one is allowed to differentiate it, and simplify the
shape of Ω. Indeed, by taking only horizontal and vertical boundaries, we will directly consider the
partial derivatives ∂u/∂xi of u, instead of considering “local” derivative fields such as b · ∇u, for a
vector field b which is either tangent or normal to ∂Ω. This second method (using b) is usual in
Neumann regularity but in our case, we saw that we got some extra terms in the equation whose
summability was not known a priori. In order to get the L∞ result we wanted, we would have been
forced to add assumptions on the exponent q and 2∗, getting in the end restrictions on the dimension
N . The method we give is on the contrary dimension-independent.

Lemma 5.1. Let Ωε ⊃ Ω be a sequence of domains converging to Ω in the sense |Ωε \ Ω| → 0, all
contained in a large bounded domain U ⊂ R

d. Let H̃∗
ε be a sequence of convex functions increasingly

converging to H∗ and whose second derivatives are bounded from above, and set Kε(z) = ε|z|2+H̃∗
ε(z)
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and fε a sequence of functions in L2(U) converging to f1Ω. Then, the functionals Jε defined on
L2(U) by

Jε(u) =

{∫
Ωε

Kε(∇u) − fεu if u = 0 on Ωc
ε and u is W 1,2 on Ωε

+∞ otherwise

Γ−converge with respect to the strong convergence in L2(U) to the functional

J(u) =

{∫
Ω H∗(∇u) − fu if u = 0 on Ωc and u is W 1,2 on Ω

+∞ otherwise.

Proof. For the Γ− lim inf inequality take a sequence uε → u: if each uε vanishes on Ωc
ε is is evident

by pointwise convergence that u = 0 in Ωc. By strong convergence, it is clear that
∫
Ωε
fεuε →

∫
Ω fu.

Moreover, one can use ∫

Ωε

Kε(∇uε) ≥
∫

Ω
H∗

ε0
(∇uε)

to get, thanks to the semicontinuity of this integral functional on Ω (which is a consequence of the
convexity with respect to the gradient) and to the fact that uε → u in L2(Ω),

lim inf
ε→0

∫

Ωε

Kε(∇uε) ≥
∫

Ω
H∗

ε0
(∇u).

This proves that u ∈W 1,2(Ω) and, passing to supremum in ε0 → 0 and combining with the previous
observations, one gets

lim inf
ε→0

Jε(uε) ≥ J(u).

For the opposite inequality, one takes a function u such that J(u) < +∞ and observe that this
clearly means that u ∈ W 1,q(Ω). By standard extension theorems (see [1], Theorem 4.32), being
Ω regular enough, one may find a function ũ ∈ W 1,q(Rd) such that ũ = u on Ω. Hence take
uε = ũ1Ωε

, where 1Ωε
stands for the characteristic function of Ωε. Since ũ ∈ W 1,2(U) it is easy

to see that ε
∫
Ωε

|∇ũ|2 → 0 and that uε → u in L2(U): this implies the convergence of the term∫
fεuε to

∫
fu. For the other terms, notice that

∫
Ωε\Ω

H∗
ε(∇uε) ≤

∫
Ωε\Ω

H∗(∇ũ) → 0 and that∫
Ω H∗

ε(∇uε) ≤
∫
Ω H∗(∇u). In the end one gets

lim sup
ε→0

Jε(uε) ≤ lim
ε→0

ε

∫

Ωε

|∇ũ|2 − lim
ε→0

∫

U
fεuε + lim

ε→0

∫

Ωε\Ω
H∗

ε(∇uε) + lim sup
ε→0

∫

Ω
H∗

ε(∇uε)

≤ −
∫

Ω
fu+

∫

Ω
H∗(∇u) = J(u),

concluding.

The previous Lemma allows us to pass to the limit in estimates which are valid under additional
assumptions on Ω (which will be replaced by Ωε with boundaries on a square grid) and on the
regularity of u (since the solution uε of the perturbated problems will be regular).

The other tools we need are the following.
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Lemma 5.2. Suppose ∂Ω is composed by faces which are parallel to the coordinate axes and that u
is a solution of a problem {

div(∇K(∇u)) = f in Ω
∂u
∂ν = 0 on ∂Ω

where K is a C∞ convex function with cIN ≤ D2K ≤ CIN and D2K(z) ≥ c1IN for |z| ≥ 2 and
f ∈ C∞(Ω).

Then u is C∞(Ω) ∩H2(Ω) and its norms ||∂u/∂xi||L∞(Ω) are uniformly bounded by a constant
depending on ||∇u||L2(Ω), ||f ||Lip(Ω), on c1 and on the constant cΩ of the immersion of W 1,2(Ω) into
Lp̄(Ω) (for a fixed exponent p̄ ≤ 2∗).

Proof. The regularity of u comes from standard elliptic theory (see for instance [15]), while H2

regularity can be obtainde by the same methods as in the previous section (see Remark 5) In
particular, ∇u has a trace on the boundary and the Neumann condition is true in a pointwise
almost everywhere meaning.

Now consider v = ∂u/∂x1 (or, equivalently, any other coordinate derivative): this function
satisfies an elliptic boundary problem of the form

{
div(a∇v)) = f ′ in Ω

v ∂v
∂ν = 0 on ∂Ω

The mixed boundary conditions come from the fact that either the direction of ν is the direction of
x1 (and in this case we have Dirichlet, say on a part ΓD ⊂ ∂Ω of the boundary), either the direction
is orthogonal, and this means that

∂

∂ν
v =

∂

∂x1

∂

∂ν
u = 0

(i.e. Neumann on the remainding part ΓN ). The function f ′ is the derivative of f with respect to
x1 and a(x) is the Hessian matrix of K computed at ∇u(x). In particular one has a(x) ≥ c1IN if
v(x) ≥ 2. As usual, convex functions of the solution are subsolutions of the same equation in the
sense that, if w = h(v) and h is convex, one has

∫

Ω
a∇w · ψ ≤

∫
−f ′h′(v)ψ, for all ψ ≥ 0, ψ = 0 on ΓD.

Now take a function h ≥ 0 so that h(t) = 0 for t ≤ 2. This implies two important facts: first, the
matrix a will be considered in its ellipticity region only, since w = 0 on a < c1IN ; second, the test
function ψ = w itself is admissible. By considering wp = (v − 2)p

+ (setting w = w1 and wp = wp)
one gets (using h′(v) = pwp−1)

c1

∫
|∇wp|2 ≤ p

∫
|f ′|wp−1wp ≤ p C

∫
w2p−1.

Then one can use Sobolev Imbedding Theorem to get

||wp||2Lp̄ ≤ C(c1, cΩ)||wp||2W 1,2(Ω) ≤ p C(c1, cΩ, ||f ||Lip(Ω))
(
||w||2p−1

L2p−1 + ||wp||2L2

)

≤ p C(c1, cΩ, ||f ||Lip(Ω))||w||2p
L2p ,
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for an exponent p̄ > 2 admitted by the Sobolev immersion, that is p̄ ≤ 2∗ = 2N/(N − 2). This in
turn implies

||w||2p
Lpp̄ ≤ p C||w||2p

L2p .

Taking a sequence pn with pn+1 = pnp̄/2 and p0 = 2, setting yn = log ||w||Lpn one gets

yn+1 ≤ log pn + C

pn
+ yn

and proving an L∞ bound on w (and then on v and on |∇u|) means proving that these sequences
(yn)n are uniformly bounded. To do this, the summability of

∑

n

log pn + C

pn
< +∞

is sufficient and this comes from the exponential behavior of pn. The dependence of the bound on
the L2 norm comes from the starting datum y0.

Remark 7. The same proof could have worked under weaker assumptions on f , but f ′ ∈ L∞ was
the easiest one to get easily a result which only requires 2∗ > 2.

Definition 3. Once fixed an exponent p̄ ≤ 2∗, we say that Ω has the bounded Sobolev cubic
approximation property (BSCAP for short) if the family of approximating sets Ωε has a bounded
Sobolev immersion constant for ε << 1, i.e. there exists a constant C such that

||w||Lp̄(Ωε) ≤ C||w||W 1,2(Ωε) for all w ∈W 1,2(Ωε),

where the sets Ωε are defined as follows:

Ωε =
⋃

{j∈ZN : εj+ε[0,1]N∩Ω 6=∅}

εj + ε[0, 1]N .

From now on, we will denote by Gridε the set of all cubes of size ε having their vertices on the
regular grid εZN .

The following proofs and definitions will be devoted to getting a uniform bounds on the constant
cΩε

of the Sobolev immersions for the domains Ωε. This will be accomplished under the assumption
of cone condition on Ω. Notice that it is well-known (see [1], Lemma 5.10) that the constant in the
Sobolev immersion for a domain Ω which satisfies such a condition may be chosen so that it only
depends on this cone. Yet, it is not so easy to get a uniform cone condition on all the Ωε from the
condition on Ω. This is why we will develop a slightly different strategy, where obviously the cone
condition will play a crucial role.

Definition 4. For given J ∈ N, we call Tetris piece of order J any connected union of cubes in
Grid1 which is included in [0, J ]N (“connected” meaning that the interior is connected). We will
denote by TJ the set of all Tetris pieces of order J .
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We may prove that an interior cone condition is sufficient for having the BSCAP: in order to do
this, we first need a technical result.

Lemma 5.3. Suppose that Ω ⊂ R
N satisfies the interior cone condition: then there exists a number

J ∈ N such that, if Q ∈ Gridε is a cube of size ε with Q ∩ Ω 6= ∅, then at least one Tetris piece
S ∈ TJ has the property that, once translated and dilated so that Q coincides with a cube of εS, then
all the other cubes of εS are included in Ωε and at least one of them is included in Ω.

Proof. This fact is quite obvious, once we know that Ω satisfies the cone condition for a certain cone
C. Indeed, for every ε > 0 small enough, there exists a number k such that C ∩ B(0, kε) includes a
ball of size 2

√
Nε in its interior and hence any possible rototranslation of C ∩ B(0, kε) includes at

least one cube of Gridε: then take J = k + 1. Hence, if Q ∈ Gridε is such that a point x0 belongs
to Q ∩ Ω (and hence it is included in Ωε), just take the Tetris piece S composed by those cubes in
Gridε that intersect x0 + ε(C ∩B(0, k)). All the cubes in this configuration intersect this cone and
hence Ω and one of them is included in x0 + C ⊂ Ω.

Q

C

Ω

ε

Figure 1: A cube Q and a Tetris piece (of order 4) containing it as in Lemma 5.3.

In order to go on, we will notice that, for every 2 ≤ p̄ ≤ 2∗, there exist a universal constant
C = C(J) such that the following Sobolev-type inequality holds:

||u||Lp̄(rS) ≤ CrN/p̄−N/2+1||∇u||L2(rS) + C||u||Lp̄(rQ), for every u ∈W 1,2(rS), (5.1)

for any tetris piece S ∈ TJ , any cube Q ∈ Grid1 with Q ⊂ S and any r > 0. This is true because
one can prove (5.1) for any pair of domains (S,Q ⊂ S) and then take the worst constant among all
pairs (S,Q) we are interested in. The dependence on r may be easily got by scaling.
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To prove (5.1) on a fixed pair of bounded domains, there are several strategies: for p̄ < 2∗ one
can argue by contradiction, taking advantage of the compact immersion of W 1,2 into Lp̄. For p̄ = 2∗

one can first use the standard Sobolev inequality (with the L2 norm of u on the whole domain at
the right hand side) and then compose with a Poincaré-type inequality to get rid of the norm on
the whole domain.

Hence we can prove the following:

Proposition 5.4. Suppose that Ω ⊂ R
N satisfies an interior cone condition: then Ω has the BSCAP.

Proof. Fix ε > 0 and let u belong to W 1,2(Ωε): for any cube Qi ∈ Gridε composing Ωε take the
rescaled Tetris piece εSi coming from Lemma 5.3 and use inequality (5.1) to get

∫

εSi

|u|p̄ ≤ CεN+p̄−Np̄/2

(∫

εSi

|∇u|2
)p̄/2

+ C

∫

Qk(i)

|u|p̄,

choosing the cube Qk(i) so that it is included in Ω. Then sum up over i and notice that each cube

of Ωε is used at most (2J − 1)N times by the tetris pieces εSi and each cube of Ω is used at most
(2J − 1)N times as a cube Qk(i) as well. On the contrary, each cube Qi of Ωε is entirely covered by
at least one tetris piece (exactly by Si), and then one may write (with constants C dendending on
J and N only)

∫

Ωε

|u|p̄ ≤ CεN+p̄−Np̄/2
∑

i

(∫

εSi

|∇u|2
)p̄/2

+ C

∫

Ω
|u|p̄.

By using the elementary inequality
∑

i t
p̄/2
i ≤ (

∑
i ti)

p̄/2 (which holds true since p̄/2 > 1), and,
again, the fact that every cube is used no more than (2J − 1)N times, one has

∑

i

(∫

εSi

|∇u|2
)p̄/2

≤
(
∑

i

∫

εSi

|∇u|2
)p̄/2

≤ C(J)

(∫

Ωε

|∇u|2
)p̄/2

≤ C(J)||u||p̄
W 1,2(Ωε)

.

Then one goes on with εN+p̄−Np̄/2 ≤ 1 (due to p̄ ≤ 2∗) and ||u||Lp̄(Ω) ≤ cΩ||u||W 1,2(Ω), and gets

∫

Ωε

|u|p̄ ≤ C||u||p̄
W 1,2(Ωε)

+ C||u||p̄
W 1,2(Ω)

which proves the thesis.

Theorem 5.5. Suppose that Ω has Lipschitz boundary and that f is Lipschitz continuous: then any
solution of problem (4.6) is a Lipschitz function.

Proof. First define the sets Ωε as in Definition 3 and the functions Kε as in Lemma 5.1. Notice
that, since Ω is Lipschitz, then one obviously has |Ωε \ Ω| → 0.
On the approximating problems one may apply Lemma 5.2 and get uniform estimates on the solu-
tions uε. These estimates are uniform since they give

||∇uε||L∞ ≤ C(||f ||Lip, cΩε
, ||∇uε||L2)
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and all these quantities are bounded as ε → 0, thanks to the W 1,2 bounds on uε and to the bound
on cΩε

(here we use the fact that Ω has the BSCAP, by means of Lemma 5.4).
After that, one notices that uε converge in L2(U) to a solution ū of the limit problem, whose

Euler-Lagrange equation in given by (4.6). The latter in general is not uniquely solvable: anyway,
all the solutions of (4.6) share the same ∇H∗(∇u). In particular if ∇ū ∈ L∞(Ω), then the same
happens for any other solutions.
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