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A Modica-Mortola approximation for branched

transport

Filippo Santambrogio ∗

September 16, 2009

Abstract

The M
α energy which is usually minimized in branched transport

problems among singular 1-dimensional rectifiable vector measures with
prescribed divergence is approximated (and convergence is proved) by
means of a sequence of elliptic energies, defined on more regular vector
fields. The procedure recalls the Modica-Mortola one for approximating
the perimeter, and the double-well potential is replaced by a concave
power.

1 Introduction

The name “branched transport” is now often used for addressing all the trans-
port problems where the cost for a massmmoving on a distance l is proportional
to l but not to m but sub-additive and typically proportional to a power mα

(0 < α < 1). The distributions of sources and destinations are given and one
looks for the path followed by each particle, sums up the mass which moves
together on each part of the path, and associates to every configuration its
total cost

∑

i lim
α
i . The adjective “branched” in the name stands for one of

the main features of the optimal solutions: they gather mass together, masses
tend to move jointly as long as possible, and then they branch towards different
destinations, thus giving rise to a tree-shaped structure.

In the case of finite graphs this kind of problems dates back to the ‘60 in the
community of operational research (the first paper on the subject is [16]). More
recently, several different approaches and results concerning the generalization
to continuous frameworks have been introduced by the community of optimal
transport. The first paper in this direction is the one by Q. Xia ([24]), which
will be our main reference. Other approaches have been proposed by Bernot,
Caselles, Maddalena, Morel and Solimini (see [17, 6]). The equivalences between
the different models as well as a survey on the whole theory are presented in a
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recent book by Bernot, Caselles and Morel, [7], who are responsible for most of
the results therein.

A satisfactory numerical treatment of these issues is far from being obtained
and this is one of the reasons for the need for approximation results. This paper
presents a precise approximation result, in terms of Γ−convergence (see [12]),
which can be the origin of possible numerical methods based on PDEs, after an
idea by Jean-Michel Morel. Actually, the continuous formulation of branched
transport problems passes through a divergence-constrained formulation (see
next session, where the model by Xia is quickly sketched) and it is natural to
approximate it by means of problems which concern more regular vector fields
(i.e. which are not measures concentrated on one-dimensional graphs, but have
a density that is at least weakly differentiable).

We propose an approximation based on functionals with a concave term and
a Dirichlet term, with coefficients which increase the weight of the first and
vanish on the latter as far the approximation parameter ε goes to 0. In this way
one would need to solve a problem of the kind

min

∫

F (|u|) + ε

∫

|∇u|2 (1)

under constraints or penalization on ∇ · u. The optimality conditions for this
problem read as an elliptic vector PDE (a system) with an unknown pressure
coming from the divergence constraint. In dimension two, the decomposition of
any vector field into a gradient plus an orthogonal gradient allows to translate
this into a system of scalar fourth-order elliptic equations. Local minima may
be found by a gradient descent method passing through a parabolic evolution
equations, while global ones are more difficult to detect due to the concavity of
F . Numerical methods for this kind of equations are much more developed and
efficient rather than the combinatory-based ones which characterize the study
of finite networks. A partial use of genetics algorithm could thereafter help in
avoiding local minima.

Besides possibles numerical applications, the interest of this Γ−convergence
result also comes from its comparison with the elliptic approximation of the
perimeter functional, proposed by Modica and Mortola ([18]) at the beginning
of Γ−convergence time. In their case u was scalar and F was a double-well
potential, enforcing at the limit u (after a suitable rescaling of the functional,
so that the F -part has a coefficient going to infinity and the Dirichlet part
a negligible one) to take values in {0, 1}. And the energy was, in the limit as
ε→ 0, concentrated on a lower-dimensional structure, i.e. the interface between
the two phases u = 0 and u = 1. The same will happen here: the concave power
F will play the role of a double well at u = 0 and |u| = ∞ and the energy will
concentrate on a one-dimensional graph.

Being u a vector, in our problem, one could also evoke Ginzburg-Landau
theory with its approximation (see [8, 9] where the problem of the convergence
for the minimizers of

min

∫

(1 − |u|)2 + ε

∫

|∇u|2
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is first addressed). Yet, it is easy to notice, due to the divergence which is a
bounded measure, that the problem is essentially scalar, as at the limit there
will be locally one direction only which will be relevant. Actually a singular
vector measure, concentrated on a lower-dimensional object, must be oriented
along a tangent direction if we want its divergence to be a measure (otherwise
it is a first-order distribution).

Moreover, in dimension two it is possible to take advantage of the usual
decomposition of a vector field into a gradient plus a rotated gradient so that
information on the divergence “fix” the gradient part and all the functional
may be expressed through the other gradient. In this way one would arrive to
consider the limits of something like

min

∫

F (∇u) + ε

∫

|D2u|2

which are functionals of the form of those studied by Aviles and Giga (Modica-
Mortola results for higher order energies, see [4, 5] where the second order term
only contains the Laplacian, and lately [1] with the whole Hessian).

Probably the main goal of the paper is creating a a bridge between two
different topics in Calculus of Variations: the approximation of free discontinu-
ity problems on the one hand and the optimization of transport networks. The
first one, much linked with elliptic PDEs has already been object of high-quality
researches for decades and is studied in relation with its applications in mate-
rial sciences and image segmentation. The second is, in its continuous version,
more recent and linked to the theory of optimal transport by Monge and Kan-
torovitch, with applications ranging from economics to biology and geophysics
(see [21]). Elliptic PDEs, dimensional reduction and geometric measure theory
are very much involved as well. See [2, 3, 11, 18] for the whole theory and the
main examples of Γ−convergence applied to free discontinuity problems: notice
that here, the discontinuities (or “jumps”) are replaced by a bilateral singular-
ity, in the sense that the rectifiable graphs in the limit problem vanish almost
everywhere and are concentrated on one-dimensional sets, thus having a double
jump, whose “intensity” (measured with respect to H1 instead of Ld) enters the
limit functional.

The paper will start with two short sections on preliminaries, Section 2 on
Xia’s formulation of branched transport problems, Section 3 on Γ−convergence.
Then, we will discuss briefly in Section 4 why to choose the form of the approx-
imation we will choose, mainly concentrating on the choice of the exponents,
since they are not obvious (in particular, the function F in (1) will be of the
form F (|u|) = |u|β with β 6= α). Section 5 will present the detailed proof of
the main result (Γ−convergence of the energies, in dimension two only, under
no divergence conditions). Section 6 will suggest how to apply the result for
producing interesting approximated variational problems, underlining what can
be done with the tools we have so far and what could be worthwhile to prove
in possible future investigations.
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2 Branched transport via divergence-constrained

optimization

We present here the framework of the optimization problem proposed by Xia
in [24, 25] and then studied by many authors (see for instance [7] for a whole
presentation of the theory).

Let Ω ⊂ R
d be an open set with compact closure Ω and M(Ω) the set of

finite vector measures on Ω with values in R
d and such that their divergence is

a finite scalar measure, i.e. such that

sup

{
∫

∇φ · du : φ ∈ C1(Ω), ||φ||L∞ ≤ 1

}

< +∞ (2)

(as you can see, we do not ask for φ vanishing at the boundary, i.e. we take into
account possible parts of ∇ · u on ∂Ω as well). The value of the supremum in
(2) will be denoted by |∇ · u|(Ω), i.e. the mass of the measure “total variation
of the divergence” of u. On this space we consider the convergence uε → u ⇔
uε ⇀ u and ∇ · uε ⇀ ∇ · u as measures. When a function is considered as an
element of this space, or a functional space as a subset of it, we always think
of absolutely continuous measures (with respect to the Lebesgue measure on Ω)
and the functions represent their densities.

When we take u ∈ M(Ω) and we write u = U(M, θ, ξ) we mean that u
is a rectifiable vector measure (it is the translation in the language of vector
measures of the concept of rectifiable currents) u = θξ ·H1

|M whose density with

respect to the H1−Hausdorff measure on M is given by the real multiplicity
θ : M → R

+ times the orientation ξ : M → R
d, ξ being a measurable vector

field of unit vectors belonging to the (approximate) tangent space to M at
H1−almost any point.

For 0 < α < 1, we consider the energy

Mα(u) =

{

∫

M θαdH1 if u = U(M, θ, ξ),

+∞ otherwise.
(3)

The problem of branched transport amounts to minimizing Mα under a
divergence constraint:

min
{

Mα(u) : ∇ · u = f := f+ − f−
}

. (4)

The divergence constraint is given in weak form and means
∫

∇φ · du =

∫

φ d(f−−f+) for all φ ∈ C0(Ω),

which actually corresponds to Neumann boundary conditions

∇ · u = f in Ω and u · n = 0 on ∂Ω.

From now on, we will always think of Neumann boundary conditions when
speaking about divergences, so that ∇ · u is the linear functional associating to
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every φ ∈ C1(Ω) (independently of the values on ∂Ω) the value
∫

∇φ · du: if u
is a regular function this corresponds to a measure which absolutely continuous
inside Ω with density given by the true divergence, and which has a H1−part
on the boundary with density given by u · n.

Remark 1. Notice that this is not the original definition by Xia of the Energy
Mα: Xia proposed it in [24] as a relaxation from the case of finite graphs, but
formula (3) can be seen as a representation formula for the relaxed energy

Mα(u) = inf
{

lim inf
n

Eα(Gn) : Gn finite graph, uGn → u
}

,

where
Eα(G) :=

∑

h

wα
hH1(eh), (5)

for a weighted oriented graph G = (eh, êh, wh)h (where eh are the edges, êh

their orientations, wh the weights), and uG is the associated vector measure
given by

uG :=
∑

h

whêhH1
|eh
,

(and the convergence is in the sense of M(Ω)). For the proof of the equivalences
between the two definition, look at [25] or at Chapter 9 in [7].

Notice that in general Problem (4) admits a solution with finite energy for
any pair of probability measures (f+, f−) (or, more generally, for any pair of
equal mass finite positive measures), provided α > 1 − 1/d (this is proven in
[24] by means of an explicit construction).

3 Variational approximation, preliminaries

The main result of the paper will be a Γ−convergence result for a sequence
of energies approximating Mα. We will see in Section 6 that for a complete
approximation of the problem, one would need to insert the “boundary con-
ditions” given by the divergence constraints and to prove compactness for a
suitable sequence of minimizers uε of the approximating problems.

For precising what we mean by “approximating the energy” and how to use
the result, let us sketch briefly the main outlines of Γ−convergence’s theory, as
introduced by De Giorgi (see [13] and [12]).

Definition 3.1. On a metric space X let Fn : X → R∪ {+∞} be a sequence of
functions. We define the the two lower-semicontinuous functions F− and F+

(called Γ − lim infand Γ − lim sup F+ of this sequence, respectively) by

F−(x) := inf{lim inf
n→∞

Fn(xn) : xn → x},

F+(x) := inf{lim sup
n→∞

Fn(xn) : xn → x}.

Should F− and F+ coincide, then we say that Fn actually Γ−converges to
the common value F = F− = F+.
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This means that, when one wants to prove Γ−convergence of Fn towards
a given functional F , one has actually to prove two distinct facts: first we
need F− ≥ F (i.e. we need to prove lim infn Fn(xn) ≥ F (x) for any approxi-
mating sequence xn → x; not only, it is sufficient to prove it when Fn(xn) is
bounded) and then F+ ≤ F (i.e. we need to find a sequence xn → x such that
lim supn Fn(xn) ≤ F (x)).

The definition of Γ−convergence for a continuous parameter ε→ 0 obviously
passes through the convergence to the same limit for any subsequence εn → 0.

Among the properties of Γ−convergence we have the following:

• if there exists a compact set K ⊂ X such that infX Fn = infK Fn for any
n, then F attains its minimum and inf Fn → minF ;

• if (xn)n is a sequence of minimizers for Fn admitting a subsequence con-
verging to x, then x minimizes F

• if Fn is a sequence Γ−converging to F , then Fn + G will Γ−converge to
F +G for any continuous function G : X → R ∪ {+∞}.

4 Elliptic approximation, intuition and heuris-

tics

As we partially mentioned, the result we will present in Section 5 is somehow
inspired by, or at least recalls most of the results in the elliptic approximation
of free discontinuity problems (Modica-Mortola, Ginzburg-Landau or Aviles-
Giga). We will only mention the following (see [18] and [11]) because of its
simplicity, even if it is probably not the closest one in this two-dimensional
setting where Aviles-Giga seems closer.

Theorem 4.1. Define the functional Fε on L1(Ω) through

Fε(u) =

{

1
ε

∫

W (u(x))dx + ε
∫

|∇u(x)|2dx if u ∈ H1(Ω);

+∞ otherwise.

Then, if W (0) = W (1) = 0 and W (t) > 0 for any t 6= 0, 1, the functionals Fε

Γ−converge towards the functional F given by

F (u) =

{

cPer(S) if u = 1 on S, u = 0 on Sc and S is a finite-perimeter set;

+∞ otherwise,

where the constant c is given by c = 2
∫ 1

0

√

W (t)dt.

We precised the value of the constant so that the reader will notice that
similar constants are involved in our case as well. For the same reason (the
analogy with the present paper) we precise also that one of the key-ingredient
in the proof of the above Theorem is the inequality

1

ε
W (u(x)) + ε|∇u(x)|2 ≥ 2

√

W (u(x)||∇u(x)| = 2|∇(H ◦ u)|,
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where H is the primitive of
√
W (so that one has Fε(u) ≥ 2TV (H ◦ u)).

In our study we will instead consider functionals of the form

Eε(u) = εγ1

∫

Ω

|u(x)|βdx+ εγ2

∫

Ω

|∇u(x)|2dx, (6)

defined on u ∈ H1(Ω; R2) and set to +∞ outsideH1 ⊂ M(Ω), for two exponents
γ1 < 0 < γ2.

As one can see the functional recalls Modica-Mortola’s functional to recover
the perimeter as a limit, where the double-well potential is replaced with a
concave power. Notice that concave powers, in their minimization, if the average
value for u is fixed in a region (which is in some sense the meaning of weak
convergence, i.e. the convergence we use on M(Ω)), prefer either u = 0 or |u|
being as large as possible, i.e. there is sort of a double well on zero and infinity.

We give here a heuristics for determining the exponents β, γ1 and γ2.
Suppose you want to approximate a measure u concentrated on a segment S,

with multiplicity m, and directed towards one of the direction of the segment,
via a measure uAwhose density is smooth and concentrated on a strip of width
A around S (for instance by convolution).

The values of uA will hence be of the order of m/Ad−1 and the values of its
gradient of the order of m/Ad. This gives a functional of the order of

Eε ≈ εγ1Ad−1
( m

Ad−1

)β

+ εγ2Ad−1
( m

Ad

)2

.

In the minimization one will choose the optimal width A, depending on m and
ε, and this gives

A ≈ ε
γ2−γ1

2d−β(d−1)m
2−β

2d−β(d−1) ; Eε ≈ εγ2−(γ2−γ1)
d+1

2d−β(d−1)m2−(2−β) d+1
2d−β(d−1) .

The correct choice for a possible convergence result towards the energy (3) which
is proportional to mα is obtained by imposing that the exponent of m is α and
the exponent of ε is zero, i.e.

β =
2 − 2d+ 2αd

3 − d+ α(d− 1)
;

γ1

γ2
=

(d− 1)(α− 1)

3 − d+ α(d − 1)
.

Notice that γ1 and γ2 may not both be determined since one can always replace ε
with a power of ε, thus changing the single exponents but not their ratio. Notice
also that the exponent β is positive and less than 1 as soon as α ∈]1 − 1/d, 1[,
which is the usual condition.

Finally, it is worthwhile to remark that for this choice of exponents the
dependence of A with respect to ε is of the form A ≈ εγ2/(d+1) (and γ2 > 0).
This implies limε→0A = 0, which gives weak convergence of the approximation
we chose (enlarging u a strip of width A without changing its mass) to u. It
proves nothing, but it is coherent with the convergence result we want to prove.

We conclude by underlining the case of dimension 2, since it will be the only
one we will solve: in this case one has β = 4α−2

α+1 and γ1/γ2 = (α − 1)/(α+ 1).
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Remark 2. From this heuristics and from the proof that we will present in the
following, the reader may see that the construction only works for α > 1−1/D.
This is quite astonishing if one thinks that, also for α ≤ 1 − 1/d, there are
measures f± which admit possible solution with finite energy (in particular
when both the measures are supported on a same lower-dimensional set). Yet,
the problem lies in the kind of approximation we require, which uses measures uε

which are more regular and in particular are absolutely continuous with respect
to Ld and may not be concentrated on lower-dimensional sets.

5 Our main Γ−convergence result

This Section will be devoted to the proof of the following theorem:

Theorem 5.1. Suppose d = 2 and α ∈]1/2, 1[: then we have Γ−convergence
of the functionals Mα

ε to cMα, with respect to the convergence of M(Ω), as
ε → 0, where c is a finite and positive constant (the value of c is actually

c = α−1 (4c0α/(1 − α))
1−α

, being c0 =
∫ 1

0

√
tβ − tdt).

As usual in several Γ−convergence proofs, we will work separately on the
two inequalities we need.

5.1 Γ − lim inf inequality

In this part we will consider an arbitrary sequence uε → u and we will suppose
that Mα

ε (uε) is bounded. This implies at first that all the uε are H1 functions,
and that

∫

|uε|β ≤ Cε1−α and

∫

|∇uε|2 ≤ Cε−1−α. (7)

Step 1 Lower bounds on Mα
ε

Consider a rectangle R ⊂ Ω. Suppose for simplicity that it is oriented
according to the x and y axes, i.e. R = [a, b] × [c, d], and set vε := [(uε)x]+
(the positive part of the x−component of uε) and v′ε := ∂vε/∂y. Consider
also a function φ1 : R → [0, 1], depending on y only, such that φ1 = 1 on
[a, b]× [c+ δ, d− δ] and φ1 = 0 for y ∈ {c, d}. For every x, set Rx := {x}× [c, d]
and R′

x := {x} × [c+ δ, d− δ].
Fix a value of x ∈ [a, b] and let Aε be the maximal value of vε on R′

x

(which is well-defined for a.e. x) and Lε = Aβ−1
ε , fε(t) =

√

(tβ − Lεt)+ and

Fε(t) =
∫ t

0
fε(s)ds. One can write

vβ
ε = f2

ε (vε)+Lεvε−(vβ
ε −Lεvε)− ≥ f2

ε (vε)+Lεvε−LεvεIRx\R′

x
= f2

ε (vε)+LεvεIR′

x

where the second inequality comes from the fact that vε ≤ Aε implies vβ
ε −Lεvε ≥

0 and Aε = maxR′

x
vε. Considering the other term as well one has

εα−1vβ
ε + εα+1(v′ε)

2 ≥ εα−1LεvεIR′

x
+ εα−1f2

ε (vε) + εα+1(v′ε)
2

≥ εα−1LεvεIR′

x
+ 2εαfε(vε)v

′
ε = εα−1LεvεIR′

x
+ 2εα(Fε(vε))

′.

8



By multiplying times φ1 and integrating on Rx with respect to y, one has
∫

Rx

(

εα−1vβ
ε + εα+1(v′ε)

2
)

φ1(y)dy

≥ εα−1Lε

∫

R′

x

vεdy + 2εαTV (Fε(vε)φ1) − 2εα

∫

Rx\R′

x

Fε(vε)|φ′1|dy. (8)

Since vεφ1 vanishes at both boundaries and reaches the value Fε(Aε) inside

R′
x, the total variation TV (Fε(vε)φ1) is at least 2Fε(Aε) = 2c0A

1+β/2
ε . This

value may be computed by a change of variable (t = Aεs):

Fε(Aε) =

∫ Aε

0

√

(tβ − Lεt)+dt =

∫ 1

0

√

Aβ
ε sβ − LεAεsAεds = A1+β/2

ε c0

(we used Lε = Aβ−1
ε and tβ ≥ Lεt for t ≤ Aε).

Notice that the last term in (8) will tend to zero as ε→ 0, after integration
with respect to x, thanks to Lemma 5.2 below, since φ1 is a fixed regular function
and hence φ′1 is bounded, Fε(t) ≤

∫ t

0
sβ/2ds = ct1+β/2 and |vε| ≤ |uε|.

Lemma 5.2. For any bounded energy sequence uε we have

lim
ε→0

εα

∫

R

|uε|1+β/2 = 0.

Proof. First of all write |uε| ≤ 1 + wε, where wε = (|uε| − 1)+ and then
∫

R

|uε|1+β/2 ≤ C + C

∫

R

w1+β/2
ε .

Notice than that |{|uε| > 1}| ≤
∫

R |uε|β ≤ Cε1−α → 0, thus wε vanishes on
a large part of R. This allows to apply standard Sobolev-Poincaré inequalities
||wε||Lr ≤ C||wε||H1 (in dimension two any exponent r < +∞ is admitted).
Remember wε ≤ |uε| and |∇wε| ≤ |∇uε|.

Now, for any pair of conjugate exponents p and q, we have

∫

R

w1+β/2
ε ≤

(
∫

Ω

|wε|β
)

1
p

(
∫

Ω

|wε|(1+β/2−β/p)q

)
1
q

≤ Cε(1−α)/p||uε||1+β/2−β/p

L(1+β/2−β/p)q ≤ Cε(1−α)/p||uε||1+β/2−β/p
H1

≤ Cε(1−α)/p−(1+β/2−β/p)(α+1)/2.

Hence we have

εα

∫

R

|uε|1+β/2 ≤ Cεα + Cεγp ,

where the exponent γp, from the previous computations, is given by

γp = α+
1 − α

p
− (2p+ β(p− 2))(α + 1)

4p
=
α(2 − p)

2p
.

It goes to zero provided γp > 0, and it is sufficient to choose p < 2 in order to
get the result.
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Remark 3. Notice that the proof would have been easier if one supposed that
uε · n = 0 (since one could have directly applied Sobolev-Poincaré to uε) on
∂Ω, which is quite natural. Yet, for the sake of generality, we admitted possible
divergences concentrated on the boundary, i.e.non vanishing values of the normal
component. Actually, in this H1 setting, the divergence of uε is seen as a
measure on Ω which belongs to L2(Ω) + L2(∂Ω).

Hence, we will ignore the last term and, for every x, we look at the quantity

εα−1Aβ−1
ε m′

ε(x) + 4c0ε
αA1+β/2

ε ,

where m′
ε(x) :=

∫

R′

x
vεdy. To estimate it from below, we will minimize over

possible values of Aε. We have

min
A∈]0,+∞[

εα−1Aβ−1m+ 4c0ε
αA1+β/2 = c2m

α, (9)

the minimum being realized by

A =

(

m(1 − β)

ε2c0(2 + β)

)2/(4−β)

. (10)

We do not precise here the coefficient c2 appearing in the minimal value but the
correct computation is the one in the statement of the theorem. Notice that the
exponent 2/(4− β) equals (α+ 1)/3. For computing the last equality in (9) we
need to use the relations between β and α.

This is the first point where we start seeing an expression recalling somehow
Mα.

Step 2 Comparison with Mα

One can call µε the positive measure
(

εα−1|uε|β + εα+1|∇uε|2
)

· L2. Since
∫

Ω dµε = Mα
ε (uε), the measures µε stay bounded in the set of positive Radon

measures on Ω. Hence we can suppose µε ⇀ µ.
As we did previously, take a rectangle R and keep the same notations. Keep-

ing the positive x−part only and the derivative with respect to y only one has
µε ≥

(

εα−1vβ
ε + εα+1|v′ε|2

)

· L2, hence we get

∫

R

φ1(y)dµε ≥
∫ b

a

[m′
ε(x)]

αdx− rε, (11)

rε being a negligible rest corresponding to the last term in (8).
We would like this estimate to pass to the limit as ε → 0, using uε → u.

This is not yet possible: to get it, take again a function φ2 : R → [0, 1], similar
to φ1, depending on y only, but such that φ2 = 1 on [a, b]× [c+ 2δ, d− 2δ] and
φ2(y) = 0 for y ∈ [c, c+ 2δ] ∪ [d− 2δ, d]. For every x, set

m′′
ε,+(x) :=

∫

Rx

vεφ2dy, m
′′
ε,−(x) :=

∫

Rx

[(uε)x]−φ2dy, mε(x) :=

∫

Rx

(uε)xφ2dy.

Notice that estimate (11) implies
∫

R φ1(y)dµε ≥
∫ b

a [m′′
ε,+(x)]αdx (up to the neg-

ligible term rε). Moreover, performing for every x the same proof as before with

10



the negative part instead of the positive one, and using max{m′′
ε,+(x),m′′

ε,−(x)} ≥
|mε(x)|, one gets

∫

R

φ1(y)dµε ≥
∫ b

a

|mε(x)|αdx. (12)

The measures mε(x)dx are the projections on [a, b] of φ2 · (uε)x. They
obviously weakly converge to the projection of φ2ux. Yet, this weak convergence
is not sufficient for getting the convergence (nor for lower semicontinuity) of the
right hand side of (12). This is due to the non-convex behavior of the function
m 7→ |m|α. To prove this convergence we need more compactness (and hence a
stronger convergence of (πx)#(φ2(uε)x)).

What we may prove is that the functions x 7→ mε(x) are uniformly BV in x
and this will allow for L1 and pointwise convergence. We will use the fact that
uε → u in M(Ω) implies a bound on ∇ · uε. Take a function ψ : [a, b] → R with
ψ(a) = ψ(b) = 0. Consider

∫ b

a

mε(x)ψ
′(x)dx =

∫

R

(uε)x(x, y)φ2(y)ψ
′(x) dydx

=

∫

R

uε(x, y) · ∇(φ2(y)ψ(x))dydx −
∫

R

(uε)y(x, y)φ′2(y)ψ(x) dydx

≤ |∇ · uε|(Ω)||ψ||L∞(a,b) + ||uε||L1 ||φ′2||L∞(a,b)||ψ||L∞(a,b) ≤ C||ψ||L∞(a,b).

This proves the BV bound we needed and implies that (πx)#(φux) is a
measure on [a, b] which “belongs to BV” (i.e. is absolutely continuous and has
a BV density). Let us call m(x) its density. Moreover, one has mε(x) → m(x)
for almost any x. Passing to the limit in (12) as ε → 0 one gets, by Fatou’s
Lemma,

∫

R

φ2(y)dµ ≥
∫ b

a

|m(x)|αdx.

It is quite straightforward that one can let δ go to 0 and get rid of the
functions φ1 and φ2 (which actually depend on δ). This gives

µ([a, b]×]c, d[) ≥
∫ b

a

|m̃(x)|αdx, (13)

where m̃(x) is defined as the density at x of the projection πx of the measure
ux restrained at [a, b]×]c, d[. Notice that this measure has a density as one can
realize by writing it as a series of measures with densities with finite series of L1

norms (i.e. we take a sequence of δn going to zero and see that the corresponding
mn are all L1 functions, and the series

∑

n ||mn+1 − mn||L1 converges since
∑

n

∫

|(φ2)n+1 − (φ2)n|d|ux| < +∞).
It is useful to see that this estimate implies that u, simply because of its

attainability as a limit of uε with bounded Mα
ε energies, is a rectifiable measure.

This is proven thanks to the following Lemmas 5.3, 5.4.

Lemma 5.3. Suppose uε → u in M(Ω) and Mα
ε (uε) ≤ C. Then u is a one-

dimensional rectifiable vector measure, i.e. it is of the form u = U(M, θ, ξ).

11



Proof. We will use the rectifiability theorem proved through different techniques
by Federer and White (see [14, 23]) and already used to prove rectifiability of
measures with finite Mα−mass (see also [25]). This theorem roughly states
that u is rectifiable if and only if almost all its (d − 1)−dimensional slices par-
allel to the coordinate axis are countable collections of Dirac masses. Take the
coordinate axis and disintegrate ux with respect to its projection m(x)dx on
the variable x, thus getting signed measures νx. For every n, divide Ω into
2n horizontal strips of equal width and call fi,n(x) the integral of νx on the
i-th interval strip (without its boundary). The estimate (13) that we already
established easily gives

µ(Ω) ≥
∫

m(x)α
∑

i

fi,n(x)αdx.

Up to choosing the levels where to put the boundary of the strips, we can ensure
that for almost any x no mass is given to the boundaries by |u| (if this is not
the case, simply translate a little bit the strips, and this will happen again for
a countable set of choices only). Hence, when we pass from n to n + 1, the
mass of the previous strip is exactly the sum of the mass of the two new strips.
Notice that, due to |a + b|α ≤ |a|α + |b|α, the sequence n 7→ ∑

i fi,n(x)α is
increasing. Call G(x) its limit: we have

∫

m(x)αG(x)dx < +∞. This implies
that G is finite almost everywhere. Thanks to Lemma 5.4, almost every νx is
purely atomic, and the same may be performed on the direction y. This allows
to apply the white’s criterion and proves that u is rectifiable.

Lemma 5.4. For α < 1 and a measure ν on a interval (say [0, 1[), set

G(sup)
α (ν) = sup

{

2n−1
∑

i=0

|ν (Ii,n)|α ; n ∈ N Ii,n =

[

i

2n
,
i+ 1

2n

[

}

and

Gα(ν) =

{

∑

k∈N
(ak)α if ν =

∑

k∈N
akδxk

+∞ otherwise
.

Then we have G
(sup)
α (ν) = Gα(ν), and in particular if G

(sup)
α (ν) < +∞ then ν

is purely atomic.

Proof. Let us start from proving G
(sup)
α (ν) ≥ Gα(ν): for any n, build a measure

νn which is purely atomic, with one atom at each point i2−n and choose the
mass of such an atom equal to that of ν on Ii,n. This measures converge weakly
to ν, hence we have

Gα(ν) ≤ lim inf Gα(νn) ≤ G(sup)
α (ν).

Then, we prove the opposite inequality. We can suppose Gα(ν) < +∞.
Hence ν =

∑

k∈N
akδxk

is purely atomic and for every pair (i, n) we have,

12



thanks to subadditivity,

|ν (Ii,n)|α ≤
∑

k : xk∈Ii,n

aα
k .

Summing up, we get
2n−1
∑

i=0

|ν (Ii,n)|α ≤ Gα(ν)

and the proof is obtained by taking the sup over n.

Once we know about u being rectifiable, one can choose rectangles R shrink-
ing around a tangent segment to the set M at a point x0 (this works for
H1−almost any point x0) and get µ ≥ θα · H1

|M , which implies the thesis.
This kind of proofs follow a standard scheme, i.e. considering measures µε

whose mass gives the value of the approximating energy, and providing estimates
on the limit measure µ. This estimates are obtained through local inequality on
∫

R dµ, so that shrinking R around a point one gets information on the density
of µ (here it is the density w.r.t. H1). Similar proofs (typically comparing µ to
Ld instead of H1), are quite used in Γ−convergence problems in the setting of
transport and location: see for instance [10] and [20]

5.2 Γ − lim sup inequality

Step 3 The case of a single segment
Consider the case u = θ · H1

|S , being S a segment (for simplicity, S =

[0, 1]×{0}). For producing a “recovery sequence” one can inspire himself at the
lower bound proof. We will look for a profile uε with the following properties:

• the x−component only of uε must be present and must have the same
sign, so that uε = vεe1;

• ∇vε = v′εe2 (i.e. vε only depends on y);

• the Cauchy-Schwartz inequality used in (8) must be an equality, i.e. one
needs

v′ε = ±1

ε

√

vβ
ε − Lεvε;

• the total variation must actually be given by twice the maximum (i.e. vε

must be monotone on the two separate intervals before and after reaching
the maximum: we will realize it by taking a maximal value at y = 0 and
symmetric monotone profiles around 0);

• vε must vanish at the boundary of a certain rectangle, so that one gan
avoid using the function φ1;

• the maximum Aε must be optimal in (9);
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• as ε → 0 weak convergence to the measure u = θ · H1
|S is needed: we will

realize it by taking different rescaling of the same profile z (say, vε(y) =
Aεz(Aεy)), so that Aε → ∞ and

∫

R
z(t)dt = θ will be sufficient.

Look at the conditions that the profile z must satisfy: we need z(0) = 1 and
z′(t)t ≤ 0, so that the maximum of vε will be Aε, realized at zero, and the
monotonicity conditions as well will be satisfied. Moreover, on t ≥ 0 (for t ≤ 0
just symmetrize), z must satisfy

z′(t) = −A
β/2
ε

εA2
ε

√

zβ − z.

Thanks to (10), the ratio A
β/2
ε /(εA2

ε) equals (1− β)θ/(2c0(2 + β)). This is very
good since there is no more ε.

Notice that this equation has a strong non-uniqueness, since the function
z 7→

√
zβ − z is non-Lipschitz. For instance the constant one is a solution, but

a solution going from 1 to 0 exists as well (just get it by starting from a different
starting point and see that it has to reach both 0 and 1 in finite time). This
means that there are several solutions, and

∫ ∞

0 z(t)dt may be any possible value

larger than
∫ ∞

0 z0(t)dt (z0 being the only solution with no flat part z = 1 around
t = 0).

We want now to check that θ is larger than the lower bound for the integrals,
and this gives the final property that z needed to satisfy.

We need
θ

2
≥

∫ ∞

0

z0(t)dt =

∫ 1

0

z (1 − β) θ√
zβ − z (2 + β) 2c0

dz

(the integral has been computed by change of variables z = z0(t), which is
possible for the solution z0 only, since it is injective). This means that we

must compare C0 :=
∫ 1

0
z√

zβ−z
dz and c0 =

∫ 1

0

√
zβ − zdz and prove C0 ≤

c0(2 + β)/(1 − β).
Compute c0 by integrating by part:

c0 =

∫ 1

0

1 ·
√

zβ − zdz = −
∫ 1

0

z
βzβ−1 − 1

2
√
zβ − z

dz =
(1 − β)

2
C0 −

β

2
c0,

which implies c0 = C0
1−β
2−β and is enough to get the desired inequality.

Obviously, one needs after that to perform a correction of uε near x =
0 and x = 1 so that the function actually belongs to H1 (in order to avoid
discontinuities at the two ends of the segment), and to control the extra energy
one pays, as well as the divergence.

One possibility for the case of the single segment is the following: the profile
we got for vε is of the form Aεz(Aεt) and one can simply replicate it radially on
a half disk, so as to ensure regularity. In this case we need to estimate. Denote
for simplicity by fε(r) the radial profile one performs and by Bε the half ball
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where it is non-null. We need to estimate

εα−1

∫

Bε

|fε|β + εα+1

∫

Bε

|f ′
ε|2,

∫

Bε

|f ′
ε|, and

∫

Bε

|fε|

Just use |fε| ≤ Aε, |fε| ≤ CA2
ε and |Bε| ≤ CA−2

ε (and the value of Aε which
is of the order of ε−2/(4−β)): both terms in the energy will be of the order of
ε(α+1)/3, the second term to be estimated (the divergence) will be bounded and
the last will be of the order of ε(α+1)/3 as well.

In this way we have produced a sequence uε that converges to u (weak
convergence is ensured by construction, weak convergence of ∇ · uε comes from
the bound we just proved).

Step 4 Conclusion by density
As we pointed out in Section 2, it is well known from the works by Q. Xia

on (see [24]) that the energy Mα is obtained as a relaxation of the same energy
defined on finite graphs. This implies that the class of finite graphs is “dense
in energy” in the space M(Ω) and Γ−convergence theory guarantees that it is
enough to build recovery sequences for such a class (see [12]). One can also
impose the condition G ∩ ∂Ω = ∅, so to avoid problems at the boundary.

For dealing with u = uG, where G is a finite graph, one can simply consider
separately the segments composing G and apply the previous construction of the
previous step. Possible superpositions of the part of uε coming from different
segments will happen only on regions whose size is of the order of A−1

ε and hence
negligible in the limit (and on such a region, one can use |u1+u2|β ≤ |u2|β+|u2|β
and |∇(u1 + u2)|2 ≤ 2|∇u1|2 + 2|∇u1|2). Not only, the number of nodes will be
finite and hence the bound on the divergence will stay valid.

Improvement Better connections at the junctions
The construction for the Γ−lim sup that we just detailed provides a sequence

uε converging to u in M(Ω) which works very well in the case of a single segment
but which could be improved in general. Actually, in the case of a single segment
the divergence of uε has the same mass as that of u, since it replaces two Dirac
masses at the two extremal points with two diffuse masses, concentrated on half-
balls of radius cA−1

ε around the points. The mass of uε itself is only slightly
larger of the mass of u, due to the part we added at the extremities.

This changes a lot when one considers more than one segment, since the
divergence of uε at the nodes will be given by the superposition of different
densities, each corresponding to a segment: the integral will vanish due to
compensations, but ||∇ · uε||L1 could have increased a lot.

This may be corrected thanks to the following lemma.

Lemma 5.5. If g ∈ C1(BR) is a function with zero mean on a ball of radius
R, then there exists a vector field in C1(BR) such that ∇· v = g, v = 0 on ∂BR

and

||v||L∞ ≤ C
(

R||g||L∞ +R2||∇g||L∞

)

; ||∇v||2L2 ≤ C
(

R2||g||2L∞ +R4||∇g||2L∞

)

,

where C is a universal constant.
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Proof. Take w the solution of the elliptic problem
{

∆w = g in BR,

w = 0 on ∂BR.

Thanks to
∫

g = 0 one has
∫

∂BR
∂w/∂n = 0. This allows to define a function

φ : ∂BR → R with φ′ = ∂u/∂n. Take then a cut-off function χ(r) such that
χ(r) = 1 if r ∈ [2R/3, R] and χ(r) = 0 if r ∈ [0, R/3], |χ| ≤ 1, |χ′| ≤ C/R,
|χ′′| ≤ C/R2 and define ψ(x) = χ(|x|)φ(Rx/|x|).

Now take v = ∇w + Rot(∇ψ), where Rot denotes a 90◦ clockwise rotation.
In this way ∇·v = ∇·∇w = g, since the rotated gradient part is divergence-free,
and both the normal and the tangential component of v on the boundary vanish
(since the tangential component of ∇ψ compensates the normal one of ∇ and
the tangential component of ∇w and the normal of ∇ψ are zero).

We only need to check the bounds on the norms. These bounds come from
standard elliptic regularity theory (see for instance [15]), since one has

||∇w||L∞ ≤ C
(

R||g||L∞ +R2||∇g||L∞

)

,

||φ||L∞ ≤ CR||∇φ||L∞ ≤ CR||∇w||L∞ ,

||D2w||2L2 ≤ C||∆w||2L2 = C||g||2L2 ,

||D2φ||2L2 ≤ CR||D2w||2L2(∂BR) ≤ CR2||D3w||2L2 + C||D2w||2L2

≤ CR2||∇g||2L2 + C||g||2L2 .

The last line of inequalities come from the combination of a trace inequality
in Sobolev spaces applied to D2w (where the two coefficients of the gradient
and the function part have different scaling with respect to R) with a regularity
estimate for Dirichlet problems (estimating the Hk+2 norm of the solution with
the Hk norm of the datum). Combining al the ingredients give the desired
estimate (we pass to the L∞ norms for the sake of simplicity).

With this lemma in mind, we can notice that at every node, the divergence
of the function uε we gave before is composed by the zero-mean sum of some
functions gi of the form f ′(r)(x · ei)/r (this is the divergence of the vector field
directed as ei with radial intensity we used above), where ei is the direction
of the corresponding segment. Each function is supported on a half ball whose
simmetry axes follows ei and the radius is of the order of A−1

ε ≈ ε2/(4−β).
Setting for each node g =

∑

i gi one has
∫

g = 0, the support of g is included in
BR with R ≈ ε2/(4−β) and ||g||L∞ ≤ CR−2 and ||∇g||L∞ ≤ CR−3.

Hence, one can add at every node a vector field v as in Lemma 5.5 so as
to erase the extra divergence. This would cost no more than something of the
order of

εα−1R2||v||βL∞ + εα+1||∇v||2L2 ≤ Cεα−1R2−β + Cεα+1 1

R2
= Cε(α+1)/3.

Also the mass of the vector field is not that changed, since we only added
R2||v||L∞ ≤ Cε(α+1)/3.
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6 Applications and perspectives

Besides the interesting comparison aspects of this result with respect to the
similar ones in the approximation of free discontinuity problems, one of the main
goal of this study concerned possible numerical applications, as we mentioned
in the introduction.

We want to replace the problem of minimizing Mα under divergence con-
straints with a simpler problem, i.e. minimizing Mα

ε .
The idea would be solving

min {Mα
ε (u) : ∇ · u = fε} , (14)

being fε a suitable approximation of f = f+ − f−., and proving that the mini-
mizers of (14) converge to the minimizers of (4).

Theorem 5.1 proves a Γ−convergence result, which should give the con-
vergence of the minimizers, but the problem is that we never addressed the
condition ∇ · u = fε, nor we discussed the choice of fε. We will come back to
this question, which is still open, later.

What we will consider here are penalization methods, which are quite natural
as far as numerics is concerned. One could decide to replace the (quite severe)
condition ∇·u = f at the limit with a weaker one, concerning a distance between
∇ · u and f , possibly with a very high penalization coefficient. Considering
problems of the form

min Mα
ε (u) +G(∇·u; f), (15)

where G is a functional defined on pairs of finite measures, which is continuous
w.r.t. weak convergence, and such that G((µ, ν), (f+, f−)) = 0 if and only if µ =
ν, would play the game, since the Γ−convergence result could be easily extended,
thanks to the last property of this kind of convergence that we presented in
Section 3.

Yet, this would converge to

min Mα(u) +G(∇·u; f), (16)

which in general is not exactly the same as imposing ∇ · u = f . If on the
contrary one wants a penalization of the kind ε−1G, so that at the limit one
needs G = 0, i.e. ∇ · u = f , then the whole Γ−convergence result would have
to be re-established (and would present some difficulties), since we are no more
in the same framework of adding a same continuous functional.

Hence, we will stick to the case of a single penalization and we will start from
the following consideration which works quite well if the divergence is given by
the difference of two fixed mass positive measures.

As explained in [24], the quantity dα(µ, ν) := min{Mα(u) : ∇·u = µ− ν}
is a distance on the set of positive measures with the same finite mass that
metrizes weak convergence.

As a consequence of dα being a distance, due to triangular inequality, solving

min
µ+,µ−∈P(Ω)

2dα(f+, µ+) + min{Mα(u) : ∇ · u = µ+ − µ−} + 2dα(f−, µ−)
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amount to choosing µ± = f± and solving min{Mα(u) : ∇ · u = f+ − f−}.
This means that choosing 2dα as a penalization is a clever strategy (even if

it only allows for considering probabilities or, in general, fixed mass measures).
To describe a precise problem where we can insert this penalization we need

to introduce a slightly different space. Consider the space Y (Ω) ⊂ M(Ω) ×
P(Ω) × P(Ω) defined by

Y (Ω) := {(u, µ, ν) ∈ M(Ω) × P(Ω) × P(Ω) : ∇ · u = µ− ν},
endowed with the obvious topology of componentwise weak convergence.

On this space consider the functionals

(u, µ, ν) 7→Mα
ε (u) + 2dα(f+, µ) + 2dα(f−, µ). (17)

It is an easy consequence of our previous Γ−convergence result and of the fact
that the quantity G((µ, ν), (f+, f−)) := 2dα(f+, µ) + 2dα(f−, µ) is continu-
ous on this space that we still have Γ−convergence to the functional Mα(u) +
G((µ, ν), (f+, f−)). The minimization of this last functional being equivalent
to the minimization of Mα(u) under the divergence constraint ∇·u = µ−ν one
has obtained a useful approximation of any branched transport problem.

Notice that in this framework the imprvement that we proposed at the end
of Section 5 is crucial: without this kind of correction on the divergence, one
would got approximating measures uε (in the Γ − lim sup construction) whose
divergence is no more the difference of two probabilities, since some extra mass
at every node is added both to the positive and to the negative part.

Nevertheless, the approximation is not satisfactory yet, especially for numer-
ical purposes: we are trying to suggest methods to approximate the minimiza-
tion of Mα and we propose to use the distance dα itself!! For computing it one
should probably solve a problem of the same kind and no progress would have
been done.

A possible escape we suggest is replacing dα with other quantities, which
are larger but still vanish when the two measures coincide. This is possible
for instance thanks to [19], where the inequality dα ≤ CW 2α−1

1 is proven, W1

being the usual Wasserstein distance on P(Ω). We will call G1 the functional
G1((µ, ν), (f

+, f−)) := CW 2α−1
1 (µ, f+) + CW 2α−1

1 (ν, f−). The distance W1

has the advantages of being independent of the branched transport problem
and of admitting more numerical methods for computing it (it is, by the way,
a dual Lipschitz norm). Notice that other possible attachment terms, easier to
compute, such as the L2 norm, are not adequate because they are not continuous
with respect to the convergence we have (and because in general we do not want
to require f ∈ L2).

It is anyway important to stress that, the approach on M(Ω) without penal-
ization stays useful for a lot of problems where the divergence is not prescribed
but enters the optimization (think at minµ dα(µ, ν)+F (µ)). Some of this prob-
lems are addressed in [22], for instance for urban planning or biological shape
optimization.

Yet, even if there are, as we showed, was to overcome the problem, we find
anyway interesting to ask the following question:
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Open question 1. Given f , is it possible to find a suitable sequence fε ⇀ f
so that one can prove Γ−convergence of the functionals u 7→ Mα

ε (u) + I∇·u=fε

to u 7→ Mα(u) + I∇·u=f (being I the indicator function in the convex analysis
sense, i.e. +∞ if the condition is not verified or zero if it is)? is it possible to
find fε explicitly, for instance as a convolution of f with a given kernel?

The second issue we want to address, after the one concerning divergence
constraints, deals with the convergence of the minimizers. Γ−convergence is
quite useless if we cannot deduce that the minimizers uε converge, at least up
to subsequences, to a minimizer u. Yet, this requires a little bit of compactness.
The compactness we need is compactness in M(Ω), i.e. we want bounds on the
mass of ∇·uε and of uε. The first bound, has been guaranteed by the fact that
we decided to stick to the case of difference of probability measures. On the
contrary, the bound on |uε|(Ω) has to be proven.

Notice that Mα
ε (uε) ≤ C will not be sufficient for such a bound, as one

can guess looking at the limit functional. Think at a finite graph with a circle
of length l and mass m on it: its energy is mαl which provides no bound on
ml (its mass), if m is allowed to be large. Actually, what happens on the
limit functional is “bounded energy configuration have not necessarily bounded
mass, but optimal configuration do have”. This is due to the fact that, if f+ and
f− are probabilities, then m ≤ 1 on optimal configurations (and no cycle are
possible, by the way). Notice that this statement does not depend on m 7→ mα

being concave, but simply increasing in m. The same kind of behavior is likely
to be true on the approximating problems, but after months of work a proof of
this fact did not appear.

Hence we conclude with two points: we ask a question and we give a final
suggestion for getting a useful Γ-convergence result.

The suggestion is quite näıve : just take a sufficiently large numberK so that
every minimizer u of the limit problem satisfies |u|(Ω) ≤ K and then restrict
the analysis to the compact subset YK(Ω) := {(u, µ, ν) ∈ Y (Ω) : |u|(Ω) ≤
K}. Unfortunately, there exists no continuous functional Ψ on Y (Ω) which is
coercive on the mass of u. If it was the case, one could have added a term f
the form F (u) = (Ψ(u) −K)2+ to the limit and approximating functionals. It
is on the contrary a reasonable question, simpler than the one we are going to
detail below, whether there exists a continuous functional Ψ such that, for the
minimizers uε, the condition Ψ(uε) ≤ C implies a bound on the mass (taking
advantage of possible extra estimates on uε).

Thus, the problems

min
{

Mα
ε (u) +G1((µ, ν)(f

+, f−)) (u, µ, ν) ∈ YK(Ω)
}

approximate (with Γ−convergence) the limit problem given by minYK(Ω) M
α(u)+

G1((µ, ν), (f
+, f−)), which is equivalent to min Mα(u) : ∇ · u = f .

Here as well a proper use of the estimate given in the last improvement in
Section 5 are important. Actually, one needs to produce a recovery sequence
uε for the Γ − lim sup construction which does not violate the mass constraint
given by K. This may be obtained in the following way: instead of considering
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as a dense subset the set of all vector measures u corresponding to finite graphs,
take the set of all such measures u satisfying |u| < K. This set is still dense
in energy. Afterwards, one notices that the construction which was provided
satisfied |uε|(Ω) ≤ |u|(Ω) + Cεα+1 (where the constant C depends actually on
u, but not on ε, since it depends on the number of nodes and of branches at
every node). This means that, if u satisfies the strict inequality |u| < K, this
will be true for uε as well for ε sufficiently small.

And, as obvious, the question is

Open question 2. Prove a bound on the L1 norm of the minimizers uε (or
on suitable minimizers uε, if needed). If possible, prove it for minimizers uε

which minimize Mα
ε under a divergence constraint ∇ · uε = fε (so that it will

be true even if we add penalizations on the divergence). Is is possible to do it
simply by writing and exploiting optimality conditions under the form of elliptic
(second or fourth order) PDEs? do we need to pass through more geometrical
tools such has some surrogate of the no-cycle condition? Is this bound equivalent
to a bound on some mα (being m the flux thrugh some segments or curves, as
in what we proved in Step 1, where m(x) is the flux through Rx) coupled with
some bound on the fluxes m?

For finishing this questioning section, here is the last natural one:

Open question 3. Prove the same results as in this paper or investigate what
happens in R

d, for d ≥ 3.

Notice that our proofs almost never used (up to the last improvement in
Section 5) any gradient decomposition of vector fields in R

2 such as u = ∇φ+
Rot∇ψ. Yet, this would have been a typical trick for managing divergences in
two dimensions. In our opinion the point where we used the most the fact that
we are in R

2 is when we disintegrate with respect to x and we estimate the total
variation in y by the oscillation (which is very one-dimensional).
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