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Continuity in two dimensions for a very degenerate elliptic equation

Filippo Santambrogio∗, Vincenzo Vespri†

September 15, 2009

Abstract: An elliptic equation ∇· (F (∇u)) = f whose ellipticity strongly degenerates for small
values of ∇u (say, F = 0 on B(0, 1)) is considered. The aim is to prove regularity for F (∇u). The
paper proves a continuity result in dimension two and presents some applications.

1 Introduction

We consider in this paper an elliptic equation of the form

∇ · (F (∇u)) = f, (1.1)

where F is the gradient of a convex function H : R
d → R. This is one of the most classical

non-linear elliptic equations, which arises as an optimality condition for the minimization of the
functional

∫

H(∇u) +
∫

fu. When H(z) = |z|2 or H(z) = |z|p we get the usual Laplace and
p−Laplace equations, respectively, which have been investigated intensively in the literature and
have provided a lot of regularity results on the solution u (which is a priori supposed to belong to
H1 or W 1,p only) according to the regularity of f . Most of the results have been extended to the
case of variable coefficients (see the book by Gilbarg and Trudinger [6] for a compendium of the
theory of elliptic regularity and the original paper by De Giorgi, [3], where he proved a key Hölder
regularity result) or of different functions H, which share anyway some properties of the square or
of the p−th power. This latter case is much more difficult than that of the square (which gives a
linear equation), mainly because of the degeneracy of D2H near z = 0. Actually, lower bounds on
D2H are often useful to give estimates on the norms of the solution in terms of the norms of f
and if D2H is allowed to tend to zero for small values for ∇u (which is the case fro p > 2), extra
difficulties arise. Yet, this is - roughly speaking - compensated by the fact that the smallness of the
gradient already provides some regularity estimates and some results are still possible.

This is what is usually done in elliptic regularity but the equation we want to look here is even
worse than the p−Laplace equation. Our main example is given by the function

H(q)(z) =
1

q
(|z| − 1)q

+ , q > 1 (1.2)

∗ CEREMADE, UMR CNRS 7534, Université Paris-Dauphine, Pl. de Lattre de Tassigny, 75775 Paris Cedex 16, FRANCE
filippo@ceremade.dauphine.fr
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which vanishes, together with its Hessian, on the whole ball B1. This means that all the values of
∇u which are smaller than 1 are a source of problems. Obviously, the regularity result that one may
expect to prove must concern F (∇u) instead of u itself: it is evident that the homogeneous equation
(the same, with f = 0) would be solved by any 1−Lipschitz function and that nothing more may
be said on u. On the contrary, F (∇u) is reasonably more regular, since either it vanishes or we are
in a zone where |∇u| > 1 and the equation is more elliptic. But gluing the two zones, which are not
open sets with nice boundaries, is not trivial.

Up to our knowledge, the first need for a regularity result on F (∇u) in the case of a degenerate
function F of this kind has been encountered in [1] for a variational problem linked to traffic
congestion. In this problem, i.e.

min

{
∫

|σ| + 1

q
|σ|q : σ ∈ Lq(Ω), ∇ · σ = f, σ · n = 0

}

(1.3)

the optimal σ̄ equals F (∇u) where u is a solution of (1.1) with F = ∇H(q), Neumann boundary

conditions and 1
p + 1

q = 1. For the sake of the applications of [1] boundedness and Sobolev regularity
were all that was needed on σ̄, and they are proven for functions H of the form given in (1.2).
In particular it is proven that σ̄ = F (∇u) belongs to H1 ∩ L∞ in any dimension d. Continuity is
not addressed, even if it would be interesting to obtain. We will explain in Section 6 the possible
applications of a continuity result, both in the framework of traffic congestion and of the variational
problem (1.3) in general.

Here we consider the more general case of a function H whose Hessian is bounded from below
outside any ball B1+δ and we prove a continuity result which is valid in two dimensions, provided
that we already know that F (∇u) belongs to H1 ∩L∞. This is exactly the case for H = H(q). Yet,
the assumptions on f are more standard in this framework (f ∈ L2+ε), while the Sobolev results of
[1] asked for Sobolev regularity of f itself, which is not that natural in elliptic regularity.

The proof of the present paper is two-dimensional because it follows a method developed by
DiBenedetto and Vespri for different equations, which is based on the following idea: using the
equation, one can prove that if the oscillation is not significantly reduced when passing from BR to
Bε0R, then the contribution of the crown BR \Bε0R to the Dirichlet energy (which is finite because
of the H1 assumption) is at least a certain value. This value, in the case of d = 2, scales in a way
so that it does not depend on R. This is used so as to prove a decay for the oscillation and get in
the end a logarithmic modulus of continuity.

In our case we first prove results for functions of the type (∂u/∂xi − (1 + δ))+ and then deduce
some results at the limit as δ → 0. This gives continuity of all the expression g(∇u) for all the
functions g vanishing on B1. Typically, this includes F (∇u) itself.

Notice that all the results we present are local and that we did not try to improve them up to
the boundary.

The strategy followed by the paper and its plan will be detailed in Section 2 below.
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2 The equation, the assumptions and the strategy

Let H : R
d → R be a convex function, satisfying the key assumption that

for all δ > 0 there exists cδ > 0 : D2H(z) ≥ cδId for all z such that |z| ≥ 1 + δ, (2.1)

where Id is the identity matrix. The function H may be for simplicity supposed C2, (or C1,1
loc ).

For notational purposes, as we already did in the introduction, we will denote ∇H by F , so that
F : R

d → R
d is a vector function satisfying some monotonicity assumptions. We will deal with

solutions of the following equation:
∇ · (F (∇u)) = f,

being f a given datum in a suitable space. We will see that for most of the results we prove L2+ε

will be sufficient, while for some of those that we recall we would need f in a Sobolev space.
Notice that this is the equation which is satisfied by the minimizers of

min

∫

H(∇u) +

∫

fu

(we do not precise boundary conditions since we are only interested in local results). The function H
is allowed, for instance, to vanish on the whole B1, as it is the case for the typical example H = H(q).
Hence, H is in general not strictly convex and no uniqueness is valid for the minimization problem
above. Yet, it is easy to see that F (∇u) is the same for all the minimizers. This vector field will be
the main object of investigation. By the way, F (∇u) is also the solution of the dual problem

min

∫

H∗(σ) : ∇ · σ = f.

Strategy. For a solution u of our problem, we write down the equation which is satisfied by a
partial derivative v = ∂u/∂x1.

To do so, we are tacitly assuming that u is regular (at least H2), which is not at all obvious with
the kind of equation we have. Hence the idea is: approximate the equation by truly elliptic equations
(for instance changing the function H into a function Hε, still satisfying (2.1), but satisfying also
C−

ε ≤ D2Hε ≤ C+
ε , for some non-uniform constant C±

ε , and fixing suitable boundary values: see for
instance [1]); then write estimates on the solutions uε which will only depend on cδ and not on the
constants C±

ε . This estimate will pass to the limit as ε → 0. The functions uε will converge up to
subsequences to a solution of the limit equation, which has no uniqueness, but the quantity F (∇u)
is the same for all the solutions. Hence, estimates on F (∇u) will be true for the non-approximated
equation as well.

In the following, we will not precise any more the approximation, but ,with this approximated
spirit in mind, let us differentiate the equation and get

∇ · (a(x) · ∇v) = f ′,
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being a(x) = D2H(∇u(x)) the Hessian matrix of H and f ′ the partial derivative of f . This is a
linear elliptic equation with the following property: a is not uniformly elliptic and can also vanish,
but on the points where |v(x)| ≥ 1 + δ one has a fortiori |∇u(x)| ≥ 1 + δ and hence a(x) ≥ cδId.

The main object of our preliminary analysis will be the function vδ = h1+δ(v) (we define hk(t) :=
(t − k)+). Since h1+δ is a Lipschitz and convex function, vδ is a subsolution of

∇ · (a(x) · ∇vδ) = f ′Iv>1+δ.

This new equation may be assumed to be uniformly elliptic, since the values of the matrix a
on the points where vδ = 0 are not important. Yet, vδ is only a subsolution and this will not be
sufficient to establish all the results we need for regularity. At a given point, we will also need to
use the equation which is satisfied by v itself (which is not uniformly elliptic).

In Section 3 we will prove a continuity result for vδ, in dimension 2 and under some a priori
assumption on vδ itself. We will need to suppose that vδ is a H1 function and that it is bounded.
Notice that, due to the fact that we tacitly regularize, when we say that vδ or f belong to a certain
functional space, we actually mean that the estimates we prove will only depend on the norm in this
space, and hence will be inherited by the solutions corresponding to non-regular data, provided we
stay in the same space. Also the continuity result is given in the same spirit, in the sense that we
will prove a quantified continuity (in our case, the modulus of continuity will be ω(R) = C| ln R|−1/2

and the constants will depend on cδ). The techniques follow a strategy by DiBenedetto and Vespri
(see [5]) which amounts at proving some oscillation decay from a ball to a smaller one under some
conditions. These conditions are such that violating them implies that the solution accumulates a
fixed amount of Dirichlet Energy in the crown between the two balls and the H1 assumption allows
to conclude.
Section 3 aims at being as general as possible and some of the lemmas will be stated in R

d instead
of R

2.
In Section 4 we will see how to link vδ to F (∇u). In particular this will allow to translate Sobolev

results on F (∇u) into corresponding results for vδ, and also to state that vδ as well does not depend
on the non-unique solution u.

In Section 5 we will conclude wider continuity results on functions of ∇u, as a consequence of
the results on vδ.

Section 6 will present some interesting applications, in cases when we do actually know that
F (∇u) is Sobolev and bounded. This is for instance the case for H = H(q) (see [1]). The H1

regularity mainly depends on structure assumptions on the function H and may fail to be valid in
general, while the L∞ one seems to be easier, since it only depends on the fact that functions of the
kind (∂u/∂xi − (1 + δ))+ are subsolution of a uniformly elliptic equation.

3 Continuity for vδ in dimension 2

The section will be opened by some very classical lemmas which have proven to be useful several
times in elliptic regularity. For brevity, we omit the proofs and we refer to the book by DiBenedetto
[4]. We also refer to the original work by De Giorgi [3].
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Lemma 1. If (Yn)n is a sequence of non-negative numbers satisfying

Yn+1 ≤ cbnY 1+β
n , Y1 ≤ c−1/βb−(β+1)/β2

, c, b, β > 0,

then Yn → 0.

Lemma 2. The following Poincaré-type inequality holds on any domain Ω in R
d with a universal

constant (depending on the dimension d only): if u ∈ H1
0 (Ω), then

∫

Ω
u2 ≤ C |{u 6= 0}|2/d

∫

Ω
|∇u|2.

If the previous inequality comes from an idea by De Giorgi, the following is very very standard:

Lemma 3. If a shape Ω1 is fixed, then for any rescaled open set ΩR = RΩ1 ⊂ R
d the following

Poincaré-type inequality holds with a constant C depending on Ω1 and on the ratio λ: if u ∈ H1(ΩR)
and |{u = 0}| ≥ λ|ΩR|, then

∫

ΩR

u2 ≤ CR2

∫

ΩR

|∇u|2.

Lemma 4. Suppose f ∈ L2+ε, and let v be a subsolution of

∇ · (a(x) · ∇v) = f ′Iv>0,

where the matrix a satisfies c̄Id ≤ a ≤ C̄Id. Then there exists a constant ν0 such that, if 0 ≤ v ≤ M
in BR and

|{v > (1 − α)M} ∩ BR| < ν0|BR|,
then v ≤ (1−α/2)M in BR/2, provided M ≥ R

ε

2+ε . The constant ν0 only depends on the dimension,
on α, on ε and on the bounds and on the ellipticity of a (i.e. on c̄ and C̄).

Proof. Set

kn = M
(

1 − α

2
− α

2n

)

, Rn =
R

2
+

R

2n
, An = {v > kn} ∩ BRn

,

let ηn be a cutoff function which vanishes outside BRn
and equals 1 on BRn+1

, with gradient bounds
|∇ηn| ≤ CR−12n. The function φn := (v − kn)+ is a subsolution of

∇ · (a(x) · ∇φn) = f ′Iv>kn
,

and we can test the equation against φnη2
n. We get

c̄

∫

|∇φn|2η2
n ≤

∫

< a∇φn,∇φn > η2
n ≤ C̄

∫

|∇φn||∇ηn|φnηn +

∫

f ′Iv>kn

(

φnη2
n

)

.

The first term in the right hand side may be estimated by c̄
4

∫

|∇φn|2η2
n + C̄

c̄

∫

φ2
n|∇ηn|2; in the

second one can get rid of Iv>kn
because anyway φn vanishes on {v ≤ kn} and integrate by parts, so

as to obtain
∫

f
∂

∂x1

(

φnη2
n

)

≤
∫

f |∇φn|η2
n + 2

∫

fφnηn|∇ηn| ≤
c̄

4

∫

|∇φn|2η2
n + C

∫

f2η2
n + C

∫

φ2
n|∇ηn|2.
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Putting together the estimates one gets

∫

|∇φn|2η2
n ≤ C

(
∫

φ2
n|∇ηn|2 +

∫

f2η2
n

)

.

We then apply the estimate of Lemma 2 to the function u = φnηn and get

∫

φ2
nη2

n ≤ C|An|
(

∫

φ2
n|∇ηn|2 +

∫

|∇φn|2η2
n

)

≤ C|An|
(

∫

φ2
n|∇ηn|2 +

∫

f2η2
n

)

.

In the last expression, we may estimate φ with M (actually M(1 − α) would be sufficient), |∇ηn|
with C2n/R, and apply Hölder inequality to f and IAn

. On the other hand, the values of φ2
nη2

n may
be estimated from below by (kn+1 − kn)IAn+1

. As a consequence, we get

(kn+1 − kn)2|An+1| ≤ C

[

M2|An|R−24n +

(
∫

f2+ε

)
2

2+ε

|An|
ε

2+ε

]

.

We define Yn as |An|/R2 (i.e., up to possible bounded factors, the ratio between the area of An and
the ball itself). We have

α2M24−nYn+1 ≤ CM2Yn

[

Yn4n + ||f ||2L2+εY
ε

2+ε

n M−2R
2ε

2+ε

]

.

Replacing Yn with Y
ε

2+ε

n (since Yn ≤ 4), and supposing M ≥ R
ε

2+ε , one gets an estimate of the form

Yn+1 ≤ C(d, C̄, c̄, ||f ||L2+ε , α)Y
1+ ε

2+ε

n 16n.

If one supposes Y1 ≤ ν0, where ν0 is given by the assumptions of Lemma 1, we get Yn → 0. This
means that the measure |{v > (1 − α/2)M} ∩ BR/2| is zero, which is the thesis.

Lemma 5. Let 0 ≤ u ≤ M be a function in H1(BR), assume that |{u > 3/4M} ∩ BR| ≥ ν0|BR|,
and set ε0 =

√

ν0/2, then one of the following alternatives happens:

• either the Dirichlet energy of u in BR \ Bε0R is large:
∫

BR\Bε0R
|∇u|2 ≥ cM2,

• or there exists a radius s ∈ [ε0R,R] such that u > 5
8M on ∂Bs.

Proof. Thanks to the value we have chosen for ε0, the set {u > 3
4M} ∩ (BR \ Bε0R) must include a

large part of BR \ Bε0R and in particular we have|{u > 3/4M} ∩ (BR \ Bε0R)| ≥ ν0

2 |BR|.
Let us define a subset X of [ε0R,R] through X = {s ∈ [ε0R,R] : ∃x ∈ ∂Bs : u(x) ≥ 3

4M}.
We obviously have

2πR|X| ≥
∫

X
2πsds ≥ |{u >

3

4
M} ∩ (BR \ Bε0R)| ≥ ν0

2
|BR|

6



which gives |X| ≥ ν0

4 R. Now, either the second alternative is verified or for every s ∈ X there exists
a point x on the circle ∂Bs such that u(x) < 5

8M . On each one of these circles we would get an
oscillation of at least M/8 and hence

M

8
≤

∫

∂Bs

|∇u|dH1 ≤ (2πs)1/2

(
∫

∂Bs

|∇u|2dH1

)1/2

,

which implies
∫

∂Bs

|∇u|2dH1 ≥ M2

128πR

and hence
∫

B(x0,R)\B(x0,ε0R)
|∇u|2 ≥

∫

X
ds

∫

∂Bs

|∇u|2dH1 ≥ M2

128πR
|X| ≥ Cν0M

2.

From now on, we will denote by ε0 the constant defined in Lemma 5 obtained for α = 1/4 and
c̄ = cδ (i.e. ε0 =

√

ν0/2 where ν0 is obtained from Lemma 4).

Lemma 6. Let u be in H1(BR \Bε0R) and assume that both the measures |{u > aM}∩ (BR \Bε0R)|
and |{u < bM} ∩ (BR \ Bε0R)| are larger than ηR2, then

∫

BR\Bε0R

|∇u|2 ≥ c(η, ε0, a, b)M2.

Proof. Consider the function φ = (u − bM)+ ∧ (a − b)M . It vanishes on a set whose measure is at
least ηR2 and is maximal and equal to (a − b)M on a set whose measure is, again, at least ηR2.
This implies, thanks to Lemma 3 applied to Ω = B1 \ Bε0

, the inequality

ηR2(b − a)2M2 ≤
∫

BR\Bε0R

φ2 ≤ C(η, ε0)R
2

∫

BR\Bε0R

|∇φ|2 ≤ C(η, ε0)R
2

∫

BR\Bε0R

|∇u|2.

The last inequality comes from the fact that φ is a 1−Lipschitz function of u and the statement is
obtained.

Lemma 7. Let BR and Bε0R be two concentric balls in Ω and vδ = h1+δ(ux1
) as defined in Section

2. Then one of the three followings alternatives happens

• either osc(vδ, Bε0R) ≤ 7
8 osc(vδ, BR),

• or the energy of vδ in BR \ Bε0R is large:

∫

BR\Bε0R

|∇vδ|2 ≥ c [osc(vδ, BR)]2 ,

• or we have osc(vδ, BR) ≤ R
ε

2+ε .
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Proof. Up to a translation, suppose that 0 ≤ vδ ≤ M in BR, where M = osc(vδ, BR). In the ball
BR the function vδ (actually it is vδ − infBR

vδ) is a subsolution of

∇ · (a(x) · ∇v) = f ′Iv>0,

where the matrix a satisfies a ≥ cδI at least whenever v > 0. Hence, one can replace a with cδI on
the set {vδ = 0} and suppose that the equation is uniformly elliptic. We start by supposing that

the inequality M > R
ε

2+ε is satisfied, otherwise the second alternative is realized. Assuming this
estimate, one can apply Lemma 4 with α = 1/4. We get that either |{vδ > 3/4M} ∩ BR| ≥ ν0|BR|
or the oscillation on BR/2 is reduced by a factor of 7/8 and the first alternative is realized.

Suppose now that |{vδ > 3/4M} ∩ BR| ≥ ν0|BR|. Lemma 5 proves that in this case either
the third alternative is realized or there exists at least a radius such that vδ stays high on a circle
between BR and Bε0R.

Hence, suppose now that at least a value s ∈ [ε0R,R] is such that vδ ≥ 5
8M on ∂Bs. In such a

case, consider the function w given by

w(x) =

{

(vδ − 5
8M)− ∧ 3

16M if x ∈ Bs,

0 if x /∈ Bs.

To get information on the behavior of w one needs to look back at the equation satisfied by the
partial derivative ux, instead of the one which has vδ = (ux − (1 + δ))+ as a subsolution. We know
that ux satisfies

∇ · (a(x) · ∇ux) = f ′,

which is a non-uniformly elliptic equation, and we test it against the test function wn = (w − kn)+,
where the numbers kn are given by kn = (1 − 2−(n+1))M

8 , for n ≥ 4. We get

∫

< a∇ux,∇wn >= −
∫

f
∂

∂x1
wn

and we notice that, where ∇wn 6= 0, one has ∇wn = −∇ux, and also vδ > 7
16M > 0, which implies

a ≥ cδI. Hence we have

cδ

∫

|∇wn|2 ≤
∫

< a∇wn,∇wn >≤
∫

f |∇wn| ≤
cδ

2

∫

|∇wn|2 +
C

2cδ

∫

f2I∇wn 6=0.

This implies, by using also Lemma 2

∫

w2
n ≤ C|An|

∫

|∇wn|2 ≤ C|An|||f ||2L2+ε |An|
ε

2+ε ,

where An = {w > kn}. With the same kind of estimates as in Lemma 4, one gets

|kn+1 − kn|2|An+1| ≤ C|An|1+
ε

2+ε ||f ||2L2+ε

8



and, setting again Yn = AnR−2 and using kn+1 − kn = M2−(n+1), this gives

Yn+1 ≤ 4nC(|f ||L2+ε , cδ, C̄)
R

2ε

2+ε

M2
Y

1+ ε

2+ε

n ≤ 4nC(|f ||L2+ε , cδ , C̄)Y
1+ ε

2+ε

n .

The last inequality comes from the assumption M > R
ε

2+ε . Again, if one supposes Y0 ≤ ν1 (where ν1

is given by Lemma 1, as in Lemma 4), one gets Yn → 0, which means that w ≤ M
8 on Bs, provided

|{w > M
16}| < ν1|BR|.

This means that there are two remainding cases: either the condition on the measure is fullfilled,
or not. In the first case the oscillation has gone down to 7

8M on Bs and hence we can say that the
oscillation on Bε0R is less than 7/8 of that on BR and the first alternative is realized.

In the second case, we may estimate again the energy thanks to Lemma 6. In this last case it is
the third alternative which is realized.

The conclusion of all these lemmas is a continuity result on vδ.

Theorem 8. Let u be a solution of ∇ · (F (∇u)) = f , with f ∈ L2+ε in dimension d = 2, and
suppose that vδ = h1+δ(ux1

)+ ∈ H1∩L∞ and that D2H(∇u) ≤ C̄Id (which is always true if H ∈ C2

and ∇u ∈ L∞). Then vδ is continuous on Ω and its modulus of continuity gives |vδ(x) − vδ(y)| ≤
C (ln |x − y|)−1/2 for any x, y ∈ Ω0 ⊂ Ω, the constant C depending on ||f ||L2+ε, ||vδ||L∞ , ||vδ||H1 ,
cδ, C̄, d(Ω0, ∂Ω).

Proof. Take a sequence of balls Bn included in Ω, of the form Bn = B(x0, ε
n
0R0), (R0 ≤ d(Ω0, ∂Ω)

for n = 1, . . . , N . We call R the last radius, i.e. R = R0ε
N
0 , and hence

N =
ln(R/R0)

ln ε0
.

Each time we pass from Bn to Bn+1 either the oscillation is diminished by a factor 7/8, or the
oscillation was already smaller than a power β = ε/(2 + ε) of the radius, or the energy in the crown
is controlled from below. Let us denote by j, k and h the number of times the three situations
happen. We have j + k + h = N . If we call M as before the oscillation of vδ on BN we have the
three following informations:

• M(8
7 )j ≤ ||vδ||L∞ , since the oscillation on B0 cannot be more than the maximal value of

vδ, which is positive, and it has diminished j times; we can also write M j
7 ≤ ||vδ||L∞ , since

(8
7 )j = (1 + 1

7)j ≥ 1 + j
7 ≥ j

7 ;

• M ≤ (R0ε
i
0)

β ≤ (R0ε
k
0)

β , where i is the last index of the second type (and hence one can say
that εi

0 ≤ εk
0 since i ≥ k); here we can write M ≤ C(R0, β, ε0)/k, thanks to the elementary

inequality εt ≤ C(ε)/t, which is valid for ε < 1 and t ≥ 0.

• cM2h ≤ ||vδ||2H1 , since on each crown Bi \Bi+1 where the third alternative is realized we had
a contribution proportional to the squared oscillation (and hence at least M2) to the Dirichlet
energy of vδ,

9



This implies the following bounds on M :

M ≤ min

{

7||vδ ||L∞

j
;
||vδ||2H1√

h
;

C(R0, β, ε0)

k

}

≤ max{7||vδ ||L∞ ; ||vδ||2H1 ; C(R0, β, ε0)}
max{√j,

√
h,

√
k}

.

At least one of the three indices j, k and h is larger than N/3, and hence one gets

M ≤ C(||vδ||L∞ , ||vδ ||H1 , R0, ε0, β)
1√
N

= C(||vδ||L∞ , ||vδ ||H1 , R0, β, ε0)

√

| ln ε0|
√

| ln R|
,

which gives a logarithmic modulus of continuity for vδ. This constant degenerates as the ellipticity
constant cδ goes to zero, since ε0 = ε0(cδ, C̄, β). The result is local and becomes worse when
approaching the boundary, due to the dependence on R0 (which can be taken as large as d(Ω0, ∂Ω)).

4 From F (∇u) to vδ

In this section we show a useful and clarifying lemma, which aims at giving the relation between
F (∇u) and vδ.

Lemma 9. For any a ∈ R
d consider all the points z such that F (z) = a and set

γδ(a) := (z1 − (1 + δ))+ = h1+δ(z1),

where z1 denotes the first component of z.
The function γδ is well-defined (i.e. if several z satisfy F (z) = a the value of h1+δ(z1) is the

same for all of them), and it is Lipschitz continuous with a Lipschitz constant that does not exceed
c−1
δ .

Proof. Consider points a, b, z, w ∈ R
d so that F (z) = a and F (w) = b. Suppose z1, w1 > 1 + δ: in

this case one has, from F = ∇H and from the quantified convex behavior of H on the half-space
{z1 ≥ 1 + δ},

< F (z) − F (w), z − w >≥ cδ|z − w|2,
which implies |z − w| ≤ c−1

δ |a− b| (this implies in particular uniqueness of z and w). Then one can
compose with h1+δ, which is 1−Lipschitz, and get

|h1+δ(z1) − h1+δ(w1)| ≤ |z1 − w1| ≤ |z − w| ≤ c−1
δ |a − b|.

In the case z1, w1 ≤ 1 + δ one trivially has h1+δ(z1) = h1+δ(w1) = 0. The only remaining case is
(by simmetry) z1 ≤ 1 + δ and w1 > 1 + δ. In this case there is a unique point z̃ on the line through
z and w lying on the hyperplane {z1 = 1 + δ}. Hence one may write

< F (z̃) − F (w), z̃ − w > ≥ cδ|z̃ − w|2,
< F (z) − F (z̃), z − z̃ > ≥ 0,

< F (z) − F (z̃), z̃ − w > ≥ 0.

10



The second inequality comes form simple convexity of H and the last one from the second, since
z − z̃ and z̃ − w share the same direction. Hence, summing up the first and the third, one gets

< F (z) − F (w), z̃ − w >≥ cδ|z̃ − w|2,

which gives
w1 − (1 + δ) ≤ |z̃ − w| ≤ c−1

δ |a − b|,
and, again, the Lipschitz result.

As we briefly addressed in Section 2, this lemma implies that vδ is the composition of F (∇u) with
a Lipschitz function (the Lipschitz constant only depending on δ). This is useful in several contexts.
First of all, we need vδ being a function (not necessarily Lipschitz) of F (∇u) if we tacitly approximate
the equation, since we already underlined that the solutions of the approximated problem may
converge to a specific solution u of the limit one, but F (∇u) is the same for all solutions. Thanks
to this lemma, the same is true for vδ. Then, this lemma also proves that vδ has the same Sobolev
regularity of F (∇u), and that its H1 norm only depends on that of F (∇u) and on cδ . In particular,
it does not depend on the direction that we choose for differentiating u (that we conventionally
called x1 but that could have been any other direction). This will be useful in the next section,
where we will deduce results on |∇u| starting from vδ (using the arbitrariness of the direction and
the equicontinuity of all the functions vδ).

5 Continuity of functions of ∇u

We have proven quantified continuity results for vδ = h1+δ(∂u/∂x1). Just changing the variable one
differentiate with respect to, one gets the same results for every function of the form h1+δ(∇u · e),
for |e| = 1. Since these functions all share the same modulus of continuity, taking the supremum
over e one has the same result for h1+δ(|∇u|) = (|∇u| − (1 + δ))+.

Finally, if one lets δ → 0, one gets continuity for (|∇u|−1)+ and for (∇u·e−1)+ as uniform limits
of continuous functions. The modulus of continuity depends on the dependence of the modulus of
continuity previously obtained with respect to δ. We did not explicitly accounted for these continuity
moduli but it could have been possible. Anyway, one can say that the continuity of (|∇u|− 1)+ and
for (∇u · e − 1)+ only depends on the constants (cδ)δ>0, on the upper bounds on the Hessian of H
(in the applications these usually depend on the maximum of |∇u|) and on the L2+ε norm of f . All
the results are local.

By composition, it is not difficult to prove continuity for functions of the form g(|∇u|), for any
real continuous function g satisfying g(t) = 0 for t ≤ 1.

To allow for more general functions and in particular for vector functions of ∇u, we present the
following lemma:

Lemma 10. Let z : Ω0 → R
d be a bounded function such that the family of functions h1(z · e) is

equicontinuous for e ∈ R
d with |e| = 1. Let g : R

d → R
d be a continuous function with g = 0 on B1.

Then g(z) is continuous on Ω0 and its modulus of continuity only depends on that of g, on ||z||L∞

and on the common modulus of continuity of the functions h1(z · e).
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Proof. First remark that, as we already pointed out, then the function (|z|−1)+ as well is continuous,
with the same modulus of continuity, as a supremum of a family of equicontinuous functions.

Now, fix ε > 0 and let δ = δ(ε) > 0 be the corresponding δ given by the equicontinuity of all
the functions h1(z · e) and h1(|z|). Take two points x, y ∈ Ω0 with |x − y| < δ and set a = z(x) and
b = z(y).

We distinguish two cases: either |a| ≤ 1 + 2ε or not. If yes, then we have g(a) ≤ ω(2ε), where
ω : R

+ → R
+ is the modulus of continuity of g, and

|(|a| − 1)+ − (|b| − 1)+| < ε, with (|a| − 1)+ ≤ 2ε,

which implies (|b|−1)+ ≤ 3ε and |b| ≤ 1+3ε and g(b) ≤ ω(3ε). Finally, |g(a)−g(b)| ≤ ω(2ε)+ω(3ε).
If not, then we have (|a|−1)+ = |a|−1 > 2ε and |(|a| − 1)+ − (|b| − 1)+| < ε implies (|b|−1)+ > ε

and (|b| − 1)+ = |b| − 1. This gives ||a| − |b|| < ε. In this case we want to estimate |a − b|: we use
the continuity of (z · e − 1)+ with e = a/|a|. We get

∣

∣

∣

∣

|a| − 1 −
(

b · a

|a| − 1

)

+

∣

∣

∣

∣

< ε

since, again, we have |a| − 1 > 2ε, then (b · a
|a| − 1)+ = b · a

|a| − 1 > ε and hence

∣

∣

∣

∣

|a| − b · a

|a|

∣

∣

∣

∣

< ε, and thus b · a

|a| > |a| − ε.

Then we write

|a − b|2 = |a|2 + |b|2 − 2a · b < |a|2 + |b|2 − 2|a|(|a| − ε) = 2|a|ε + |b|2 − |a|2

= 2|a|ε + (|b| + |a|) (|b| − |a|) ≤ ε (2|a| + |a| + |b|) ≤ ε (4|a| + ε) .

Since z was supposed to be bounded, we can assume |a| ≤ M and hence |a− b|2 ≤ Cε. In this case
we get |g(a) − g(b)| ≤ ω(

√
Cε).

In all the cases we get continuity of g ◦ z.

The following theorem is just a corollary of Lemma 10, Lemma 9 and Theorem 8.

Theorem 11. Let u be a solution of ∇ · (F (∇u)) = f , in dimension d = 2, where F = ∇H and
H is a convex function satisfying the assumption of Section 2, with D2H bounded on bounded sets.
Suppose f ∈ L2+ε and that F (∇u) ∈ H1 ∩L∞. Then g(∇u) is continuous on Ω for any continuous
function g : R

2 → R such that g = 0 on B1.

6 Applications

As a particular consequence of the previous section, in the case H = H(q) (for q ≥ 2), one has
continuity for F (∇u) itself, since the function F vanishes on the ball B1 and all the assumptions for
applying the previous theorems are verified (in particular, [1] proves H1 and L∞ regularity).
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As we said, σ = F (∇u) optimizes
∫

H∗(σ) under a divergence constraint, and in this case we
have H∗

(q)(σ) = |σ| + 1
p |σ|p. We summarize our results - under the variational formulation - in the

following theorem.

Theorem 12. Fix p ≤ 2.The unique minimizer σ̄ of

min

{
∫

|σ| + 1

p
|σ|p : σ ∈ Lp(Ω), ∇ · σ = f, σ · n = 0

}

(6.1)

is a continuous function in the interior of Ω, provided f ∈ W 1,p(Ω).

Proof. All the ingredients for this result have already been proved. We know that the optimal
solution σ̄ equals F (∇u) where F = ∇H(q) (with 1

q + 1
p = 1 and q ≥ 2)and u is the solution of

∇ · (F (∇u)) = f . Thanks to what proven in [1], the vector field F (∇u) is both bounded and H1.
This last regularity result requires, for the proof which is performed in [1], the Sobolev assumption
on f . The L∞ result is presented in [1] for a Lipschitz f but it should not be difficult to adapt to
f ∈ L2+ε. On the contrary it does not seem easy to relax the assumption for Sobolev regularity.

Then we use Lemma 9 to say that vδ ∈ H1(Ω) as well, and that the H1 norm of vδ does not
exceed c−1

δ ||F (∇)||H1 (in particular, for fixed δ, it is uniform with respect to the direction e).
This allows to use the results of Sections 3 and 4 for getting first the continuity of vδ and then

of F (∇u), since in this case F vanishes on the ball B1.
Boundedness of D2H(q)(∇u) comes from H(q) ∈ C1,1

loc and boundedness of ∇u.

This result is interesting in itself as a regularity result for a variational problem under divergence
constraints.

We also briefly present the consequences that our continuity proof has in the domain of continuous
traffic congestion, as in [2] and later in [1].

The latter paper mainly aims at exploring the equivalence between Problem (6.1) and the min-
imization of a total traffic intensity

∫

H∗(iQ(x))dx where iQ(x) denotes the quantity of traffic at x
associated to a probability distribution Q on the space of possible paths (the continuous framework
is described through the choice of all Lipschitz curves in Ω as a set of admissible paths, instead of
taking the paths on a given network). For modelling reasons, the choice of H = H(q) or in general
of a function H such that (H∗)′(0) > 0 makes more sense than a simple power, since (H∗)′(0)
represents the cost for passing through a point with no traffic, which should be low but non-zero.

It turns out from the analysis in [1] that one can build a measure Q which is optimal for the
traffic intensity problem starting from an optimal vector field σ̄ for (6.1). We then follow the integral
curves of a vector field

σ̂(t, x) :=
σ̄(x)

(1 − t)f+(x) + tf−(x)
,

where f+ and f− are the positive and negative parts of f , respectively. This would work fine
provided the vector field is Lipschitz continuous, so that its integral curves are well-defined as the
solutions of a standard Cauchy problem. Since σ̄ may not always be assumed to be Lipschitz, due to
the degeneracy of the equation that one gets with H = H(q), then the efforts in [1] were devoted to
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the proof of Sobolev regularity so as to apply DiPerna-Lions theory for weakly differentiable vector
fields.

Yet, in the case where σ̄ turns out to be continuous (and the present paper proves such a result in
dimension two), its integral curves may be at least interpreted as classical solution of an ODE with
non-uniqueness and their regularity could be improved (solutions of a first-order Cauchy problem
with continuous data are C1).

Besides this first application, there is another interesting consequence in traffic congestion which
is more linked to the topics of [2]: it is proven in such a paper that optimal traffic distributions Q
satisfy a Wardrop equilibrium principium (which says that every path which is actually followed by
somebody must be actually geodesics with respect to a metric taking into account traffic congestion:
it is an equilibrium since the metric itself depends on Q and Q must be concentrated on iQ−optimal
curves). Yet, the metric one obtains is a function g(iQ(x)) which is a priori neither continuous nor
semi-continuous, since iQ is only Lp. The efforts of a large part of [2] aim at giving a meaning to
geodesic distances and geodesic curves in such a setting.

Yet, the optimal traffic measure Q that one can build from σ has the property that iQ = |σ| (see
[1]) and this allows, provided σ ∈ C0, to set the geodesic problem in a usual continuous framework.
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