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A STRATEGY FOR NON-STRICTLY CONVEX TRANSPORT COSTS AND

THE EXAMPLE OF ||x− y||p IN R
2

GUILLAUME CARLIER, LUIGI DE PASCALE, AND FILIPPO SANTAMBROGIO

Abstract. This paper deals with the existence of optimal transport maps for some optimal
transport problems with a convex but non strictly convex cost. We give a decomposition
strategy to address this issue. As part of our strategy, we have to treat some transport
problems, of independent interest, with a convex constraint on the displacement. As an
illustration of our strategy, we prove existence of optimal transport maps in the case where
the source measure is absolutely continuous with respect to the Lebesgue measure and the
transportation cost is of the form h(‖x − y‖) with h strictly convex increasing and ‖.‖ an
arbitrary norm in R

2.

1. Introduction

Given two probability measures µ and ν on R
d and a transport cost c : R

d → R the corre-
sponding Monge problem consists in minimizing the average transport cost

∫

Rd c(x−T (x))µ(dx)
among all transport maps T i.e. maps pushing forward µ to ν (which as usual is denoted by
T#µ = ν). It is a highly nonconvex problem (whose admissible set may even be empty if µ has
atoms for instance) and it is therefore relaxed to the Monge-Kantorovich problem that consists
in minimizing

∫

Rd×Rd c(x− y)γ(dx, dy) over Π(µ, ν), the set of transport plans i.e. of probability

measures on R
d × R

d having µ and ν as marginals. To prove existence of an optimal transport
map one thus aims to prove that there is an optimal plan γ (existence of such plans holds under
very mild assumptions since the Monge-Kantorovich problem is linear) that is in fact induced by
a transport map i.e. of the form γ = (id, T )#µ. To achieve this goal, one usually uses strongly
the dual problem that consists in maximizing

∫

Rd φdµ +
∫

Rd ψdν subject to the constraint that
φ(x) + ψ(y) ≤ c(x − y). An optimal pair (φ, ψ) for the dual is called a pair of Kantorovich
potentials. It is very well-known (under reasonable assumptions on the measures) that when c is
strictly convex then this strategy gives an optimal transport (see [12] or section 2 below where
the arguments is briefly recalled; we also refer to the book [14] for a general overview and recent
developments of optimal transport theory).

It is also well-known that lack of strict convexity makes the existence of an optimal transport
much more delicate. Even the important case (originally considered by Monge) where c is a norm
was well understood only in recent years ([11], [4], [3], [2], [8], [6], [9], [7]). In the case of the
Euclidean norm, for example, the direction of the displacement is determined by a Kantorovich
potential and transport only takes place on a set of segments called transport rays. On the one
hand, the lack of strict convexity in the radial direction gives rise to an indeterminacy of the
displacement length, but on the other hand, the problem on transport rays is one dimensional and
then much simpler. These observations lead to a strategy proof originally due to Sudakov ([13])
consisting in reducing to a one-dimensional problem on each transport ray (monotone transport
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for instance) and then glue the solutions together. The most involved part of the full proof
consisted in proving that the transport rays have enough regularity so that the disintegrated
measures on such rays are non-atomic (see [4], [6] for such a proof).

In the present paper we consider a convex but not strictly convex c. We propose a decom-
position strategy that takes advantage of the fact that whenever the displacement is not fully
determined it means that it lies in some face of c but on such a face the cost is affine and is there-
fore unchanged if we replace the transport plan by another one which has the same marginals
and satisfy the further constraint that the displacement belongs to the face. In the spirit, our
strategy can be compared to Sudakov’s one but it is different since there is no real analogue of
transport rays here. Instead, our strategy, detailed in section 2, involves ”face restricted prob-
lems” that are optimal transport problems with convex constraints on the displacement. Such
constrained problems have, we believe, their own interest and motivation (e.g. due to connec-
tions with L∞ transportation problems as studied in [10]) and we will address some of them in
section 3. We will avoid here subtle disintegration arguments to glue together the face restricted
problems in general but will instead illustrate in section 4 how our strategy easily produces an
optimal transport map in the case of c(z) = h(‖z‖) with h strictly convex increasing and ‖ · ‖
an arbitrary norm in R

2. The contributions of this paper are then :

• a general decomposition strategy to deal with convex but non strictly convex costs,
• a contribution to constrained transport problems,
• the proof of existence of optimal transport maps for a class of costs in R

2.

2. Strategy of decomposition

In this section we outline a general decomposition strategy to study existence of an optimal
transport for the Monge-Kantorovich problem

min

{
∫

Rd×Rd

c(x− y) γ(dx, dy) : γ ∈ Π(µ, ν)

}

,

where c is convex but not strictly convex. Not all of the steps listed below can be always carried
on in full generality. In the following sections we will detail some case where this is possible and
illustrate some applications.

The decomposition is based on the following steps:

• Consider an optimal plan γ and look at the optimality conditions by means of a solution
(φ, ψ) of the dual problem. From the fact that

φ(x) + ψ(y) = c(x− y) on spt γ and φ(x) + ψ(y) ≤ c(x− y)

one deduces that if x is a differentiability point for φ (which is denoted x ∈ Diff(φ)),

∇φ(x) ∈ ∂c(x− y),

which is equivalent to

x− y ∈ ∂c∗(∇φ(x)). (2.1)

Let us define

Fc := {∂c∗(p) : p ∈ R
d},

which is the set of all values of the subdifferential multi-map of c∗. These values are
those convex sets where the function c is affine, and they will be called faces of c.

Thanks to (2.1), for every fixed x, all the points y such that (x, y) belongs to the
support of an optimal transport plan are such that the difference x− y belong to a same
face of c. Classically, when these faces are singleton (i.e. when c∗ is differentiable, which
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is the same as c being strictly convex), this is the way to obtain a transport map, since
only one y is admitted for every x.

Equation (2.1) also enables one to classify the points x as follows. For every K ∈ Fc

we define the set

XK := {x ∈ Diff(φ) : ∂c∗(∇φ(x)) = K}.

Hence γ may be decomposed into several subplans γK according to the criterion x ∈ XK ,
which, as we said, is equivalent to x− y ∈ K.

If the set Fc is finite or countable, we can define

γK := γ|XK×Rd ,

which is the simpler case. Actually, in this case, the marginal µK := (π1)#γK (where
π1(x, y) = x) is a submeasure of µ, and in particular it inherits the absolute continuity
from µ. This is often useful for proving existence of transport maps.

If Fc is uncountable, in some cases one can still rely on a countable decompositions by
considering the set Fmulti

c := {K ∈ Fc : K is not a singleton }. If Fmulti
c is countable,

then one can separate those x such that ∂c∗(∇(φ(x)) is a singleton (where a transport
already exists) and look at a decomposition for K ∈ Fmulti

c only.
In some other cases, it could be useful to bundle together different possible K’s so

that the decomposition is countable, even if coarser. We will give an example of this last
type in Section 4.

• This reduces the transport problem to a superposition of transport problems of the type

min

{
∫

Rd×Rd

c(x− y) γ(dx, dy) : γ ∈ Π(µK , νK), sptγ ⊂ {x− y ∈ K}

}

.

The advantage is that the cost c restricted to K is easier to study. For instance, if K is
a face of c, then c is affine on K and in this case the transport cost does not depend any
more on the transport plan.

• If K is a face of c the problem is reduced to find a transport map from µK to νK

satisfying the constraint x−T (x) ∈ K, knowing a priori that a transport plan satisfying
the same constraint exists.

In some cases (for example if K is a convex compact set with non-empty interior) this
problem may be reduced to an L∞ transport problem. In fact if one denotes by || · ||K
the (gauge-like) “norm” such that K = {x : ||x||K ≤ 1}, one has

min
{

max{||x− y||K , (x, y) ∈ spt(γ)}, γ ∈ Π(µ, ν)
}

≤ 1 (2.2)

and the question is whether the same result would be true if one restricted the admissible
set to transport maps only (passing from Kantorovich to Monge, say). The answer would
be positive if a solution of (2.2) was induced by a transport map T (which is true if

µK ≪ Ld and K = B(0, 1), see [10], but is not known in general). Moreover, the answer
is also positive in R where the monotone transport solves all the Lp problems, and hence
the L∞ as well.

• A positive answer may be also given in case (and it is actually almost equivalent) one
is able to select, for instance by a secondary minimization, a particular transport plan
satisfying spt(γ) ⊂ {x − y ∈ K} which is induced by a map. This leads to the very
natural question of solving

min

{
∫

Rd×Rd

[
1

2
|x− y|2 + χK(x− y)] dγ : γ ∈ Π(µ, ν)

}

,
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or, more generally, transport problems where the cost function involves convex con-
straints on x − y. These problems are studied in Section 3. For instance, in the
quadratic case above, we can say that the optimal transport T exists and is given by
T (x) = x− projK(∇φ(x)) (projK denoting projection on K), provided two facts hold:

– µ is absolutely continuous, so that we can assure the existence of a (possibly ap-
proximate) gradient of φ µ−a.e. under mild regularity assumptions on φ;

– an optimal potential φ does actually exist, in a class of functions (Lipschitz, BV)
which are differentiable almost everywhere, at least in a weak sense.

• In order to apply the study of convex-constrained problems to the original problem
with c(x − y) the first issue (i.e. absolute continuity) does not pose any problem if the
decomposition is finite or countable, while it is non trivial, and it presents the same kind
of difficulties as in Sudakov’s solution of the Monge’s problem, in case of disintegration.
For interesting papers related to this kind of problems, see for instance [5, 6].

• As far as the second issue is concerned, this is much more delicate, since in general
there are no existence results for potentials with non-finite costs. In particular, a coun-
terexample has been provided by Caravenna when c(x, y) = |x − y| + χK(x − y) where
K = R

+ × R
+ ⊂ R

2 and it is easily adapted to the case of quadratic costs with convex
constraints. On the other hand, it is easy to think that the correct space to set the
dual problem in Kantorovitch theory for this kind of costs would be BV since the the
constraints on x − y enable one to control the increments of the potentials φ and ψ on
some directions, thus giving some sort of monotonicity. Yet, this is not sufficient to find
a bound in BV if an L∞ estimate is not available as well and the counterexample that
we mentioned - which gives infinite values for both φ and ψ, exactly proves that this
kind of estimates are hard to prove.

Remark 2.1. An interesting example that could be approached by this strategy is that of crys-
talline norms (a problem that has been already solved by a different method in [2]). In this
case the faces of the cost c are polyhedral cones but, if the support of the two measures are
bounded, we can suppose that they are compact convex polyhedra. This means, thanks to the
considerations we did above, that it is possible to perform a finite decomposition and to reduce
the problem to some L∞ minimizations for norms whose unit balls are polyhedra. In particular
solving the L∞ problem for crystalline norms is enough to solve the usual L1 optimal transport
problem for the crystalline norms.

Remark 2.2. If, on the other hand, one wants a simple example that can be completely solved
through this strategy and that works in any dimension, one can look at the cost c(z) = (|z|−1)2+,

which vanishes for displacements smaller than one. In this case it is easy to see that Fmulti
c has

only one element, which is given by the Euclidean ball B(0, 1). The associated L∞ problem has
been solved in [10] and this is enough to get the existence of an optimal transport.

3. Constrained transport problems

In this section we see two useful examples of transport problem under the constraint x−y ∈ K.
Since the cost we use, due to this constraint, is lower semicontinuous but not finitely valued, it
is well-known that duality holds (the minimum of the Kantorovich problem coincides with the
supremum of the dual one), but existence of optimizers in the dual problem is not guaranteed.
As we underlined in Section 2, this is a key point and what we present here will always assume
(artificially) that this existence holds true. In section 4 we will show a relevant example in which
this is actually the case.
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3.1. Strictly convex costs with convex constraints. We start from the easiest transport
problem with convex constraints:

Theorem 3.1. Let µ, ν be two probability measures on R
d, with µ ≪ Ld, K a closed and

convex subset of R
d and h : R

d → R a strictly convex function. Let c(z) = h(z) + χK(z): then

the transport problem

min

{
∫

Rd×Rd

c(x− y) γ(dx, dy), γ ∈ Π(µ, ν)

}

admits a unique solution, which is induced by a transport map T , provided that a transport

plan with finite cost exists and the dual problem admits a solution (φ, ψ) where φ is at least

approximately differentiable a.e.

Proof. As usual, consider an optimal transport plan γ and the potentials φ and ψ optimality
conditions on optimal transport plans and optimal potentials for this problem read as

φ(x) + ψ(y) = h(x− y) on spt γ ⊂ {x− y ∈ K}

and

φ(x) + ψ(y) ≤ h(x− y) for all (x, y) : x− y ∈ K

and, if φ is differentiable at x, they lead to

∇φ(x) ∈ ∂c(x− y) = ∂h(x− y) + NK(x− y), (3.1)

where NK(z) is the normal cone to K at z. We used the fact that the sub-differential of the
sum h and χK is the sum of their sub-differentials since h is real-valued and hence continuous.
Equation (3.1) is verified by the true gradient of φ if it exists but it stays true for the approximate
gradient if φ is only approximately differentiable.

Yet, when a vector l and a point z̄ ∈ K satisfy

l ∈ ∂h(z̄) +NK(z̄),

thanks to the convexity of h and K, this gives that z̄ minimizes K ∋ z 7→ h(z)− l · z. Since h is
strictly convex this gives the uniqueness of z̄, which will depend on l. We will denote it by z̄(l).

In this case, we get x− y = z̄(∇φ(x)), which is enough to identify y = T (x) := x− z̄(∇φ(x))
and proving existence of a transport map which is necessarily unique. �

Remark 3.2. Notice that, in the case h(z) = 1
2 |z|

2, the point z̄(l) will be the projection of l on
K, which gives the nice formula

T (x) = x− projK(∇φ(x)),

i.e. a generalization of the usual formula for the optimal transport in the quadratic case.

3.2. Strictly convex costs of one variable and convex constraints. Let µ ≪ L2 and ν be

two probability measures in R
2, let K be a convex subset of R

2 such that
◦

K 6= ∅ and consider
the cost

c(x− y) = h(x1 − y1) + χK(x− y),

for a function h : R → R increasing and strictly convex.

Theorem 3.3. Assume that there exist γ ∈ Π(µ, ν) and φ, ψ Lipschitz such that

φ(x) + ψ(y) ≤ c(x− y) ∀x, y (3.2)

φ(x) + ψ(y) = c(x− y) γ − a.e. (3.3)

Then there exists an optimal transport map for the cost c between µ and ν
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Remark 3.4. The assumption above implies that γ is an optimal plan and the couple (φ, ψ) is
optimal for the dual problem. In order to have the existence of an optimal γ it is enough to
assume that there exists at least one σ ∈ Π(µ, ν) such that

∫

R2×R2

c(x− y)σ(dx, dy) <∞.

Again we recall that this assumption is not enough to have the existence of an optimal couple
for the dual problem.

Proof. As L2(R2 \Diff(φ)) = 0 also µ(R2 \Diff(φ)) = 0 then we can restrict our attention to the
points of differentiability of φ. For each (x, y) ∈ spt(γ) such that x ∈ Diff(φ) by (3.2) and (3.3)
we obtain

∇φ(x) ∈ h′(x1 − y1)e1 + NK(x− y). (3.4)

By the convexity of the functions involved (3.4) is equivalent to

x− y ∈ argmin
z

{h(z1) −∇φ(x) · z + χK(z)}.

Let S be the set of those x such that the set on the right-hand side of (3.4) is a singleton

argmin
z

{h(z1) −∇φ(x) · z + χK(z)} = {p},

then y is uniquely determined by

y = x− p.

Let us consider a decomposition of γ in two parts: γ = γ|S×R2 + γ|Sc×R2 The first part of the
decomposition is already supported on the graph of a Borel map. As far as the second part is
concerned, we will prove the existence of a transport map which gives the same cost and the
same marginals. This will be done by a sort of one-dimensional decomposition according to the
following observations.

Whenever the set on the right-hand side of (3.4) is not a singleton then by the convexity of
the function h(z1) −∇φ(x) · z it is a convex subset of K. Even more, by the strict convexity of
h there exist a number m(∇φ(x)) such that

argmin
z

{h(z) −∇φ(x) · z + χK(z)} ⊂ {z · e1 = m(∇φ(x))}
⋂

K.

We claim that if argminz{h(z)−∇φ(x) ·z+χK(z)} has more than one element then x is a local
maximum of φ on the line x+ te2. In fact assume that there exist two points y = (m(∇φ(x)), y2)
and ỹ = (m(∇φ(x)), ỹ2) such that x − y ∈ argminz{h(z) − ∇φ(x) · z + χK(z)} and x − ỹ ∈
argminz{h(z) − ∇φ(x) · z + χK(z)} and assume without loss of generality that ỹ2 < y2. As
x − y ∈ K also x + te2 − y ∈ K for small and positive t (because it belongs to the segment
[x− y, x− ỹ]), then

φ(x + te2) + ψ(y) ≤ h(x1 −m(∇φ(x)))

φ(x) + ψ(y) = h(x1 −m(∇φ(x)))

and subtracting the second equation from the first

φ(x + te2) − φ(x) ≤ 0.

The same inequality is obtained for small, negative t using ỹ. Introduce now the set Mn =
{x | φ(x+te2) ≤ φ(x) ∀t ∈ [− 1

n
, 1

n
]}. The setMn is closed. LetM i

n := Mn∩{x : x·e2 ∈ [ i
n
, i+1

n
]},

as a consequence of local maximality, φ is vertically constant on M i
n. There exists a function

φ̃ depending only on the variable x1 such that φ̃ coincide with φ on M i
n. Then on the set

L(M i
n) ∩ Diff(φ), ∇φ = app∇φ = app∇φ̃ and the latter approximate gradient depends only on
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x2 which implies that ∇φ is vertically constant on a subset of full measure of M i
n. The disjoint

union Sc = ∪n,i[S
c ∩ (M i

n \Mn−1)] induces the decomposition

γ|Sc×R2 =
∑

n,i

γn,i,

where γn,i := γ|[Sc∩(Mi
n\Mn−1)]×R2 .

Denote by µn,i and νn,i the marginals of γn,i. Clearly µn,i is absolutely continuous with
respect to L2. Consider the disintegration according to x1

µn,i = an,i(x1) · L
1 ⊗ µx1

n,i

with µx1

n,i ≪ L1 for almost every x1, where an,i(x1)·L1 is the projection of µn,i on the first variable

(which is absolutely continuous as well). Analogously, we define νy1

n,i as the disintegration of νn,i

with respect to y1. From what we said, it follows that there exist a map Tn,i : R → R such that
sptγn,i ∩ {x : x · e1 = x1} ⊂ {(x, y) : y · e1 = Tn,i(x1)}. Notice that Tn,i(x1) coincides with
m(∇φ(x)) for every x ∈M i

n whose first component is x1.
Also disintegrate

γn,i = an,i(x1) · L
1 ⊗ γx1

n,i

with γx1

n,i ∈ Π(µx1

n,i, δTn,i(x1) ⊗ ν
Tn,i(x1)
n,i ). It is then enough to replace γn,i with a new transport

plan of the form (id × Sn,i)#µn,i with the following properties

Sn,i(x1, x2) = (Tn,i(x1), S
x1

n,i(x2)),

(Sx1

n,i)#µ
x1

n,i = ν
Tn,i(x1)
n,i , x2 − Sx1

n,i(x2) ∈ Kx1−Tn,i(x1),

where we denote, for every t, the section of K at level t by Kt := {s : (t, s) ∈ K}.
Since the h-part of the cost only depends on x1 − y1 and γn,i and the transport plan issued

by the map Sn,i realize the same displacements as far as the first coordinates are concerned, this
part of the cost does increase. Moreover, the constraint (x1 − y1, x2 − y2) ∈ K, which amounts
to the requirement that x2 − y2 belongs to a segment Kx1−y1

, is preserved, thanks to the last
condition above. Hence, the two transport plans have exactly the same cost.

We are only left to find, for every x1, the map Sx1

n,i. For this, it is enough to choose the

monotone transport map from µx1

n,i to νx1

n,i. This map is well defined because the first measure

is absolutely continuous (in particular there are no atoms). The constraint is preserved because
γx1

n,i satisfied it, and the monotone transport map is optimal for any convex transport cost of
x2 − y2 .

Notice that the whole map Sn,i we are using is measurable since in every ambiguous case we
chose the monotone transport map. �

4. Application: c(x− y) = h(‖x− y‖) in R
2

Theorem 4.1. Let µ, ν be probability measures compactly supported in R
2, with µ ≪ L2, let

|| · || be an arbitrary norm of R
2 and h : R

+ → R
+ a strictly convex and increasing function.

Denote by c the function c(z) = h(||z||), which is still a convex function. Then the transport

problem

min

{
∫

Rd×Rd

c(x− y) γ(dx, dy), γ ∈ Π(µ, ν)

}

admits at least a solution which is induced by a transport map T .

Proof. The strategy to prove this theorem is almost the one described in Section 2, with the
additional trick of bundling together some faces of the convex function h(||x−y||). The boundary
of the unit ball of the norm || · || has a countable number of flat parts (they are countable since
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each one has a positive length, otherwise it would not be a flat part, and we cannot have more
than a countable quantity of disjoint positive length segments in the boundary). We call Fi,
with i = 1, 2, . . . the closure of these flat parts and we then associate to each face Fi the cone
Ki = {tz, t ≥ 0, z ∈ Fi}.

Consider an optimal transport plan γ and a pair of Kantorovich potentials (φ, ψ) (these objects
exist since the cost is continuous). From the general theory of optimal transport and what we
underlined in Section 2, it follows that if (x, y) ∈ spt(γ) and x is a differentiability point of φ,
then ∇φ(x) ∈ ∂c(x− y). This may be re-written as

x− y ∈ ∂c∗(∇φ(x)).

We classify the points x according to ∂c∗(∇φ(x)). This subdifferential may be either a singleton
or a segment (it cannot be a set of dimension two because otherwise c would be affine on a set
with non-empty interior, which is in contradiction with the strict convexity of h). We call X0

the set of those x such that ∂c∗(∇φ(x)) is a singleton. If instead it is a segment, it is a segment
of points which share a single vector in the subdifferential of c. This means, thanks to the shape
of c, that it is necessarily an homothety of one face Fi:

x− y ∈ ∂c∗(∇φ(x)) = t(x)Fi(x) ⊂ Ki(x).

We denote by Xi the set of points x where c∗(∇φ(x)) is an homothety of Fi.
The disjoint decomposition given by the sets Xi induces a corresponding decomposition γ =

∑

i≥0 γi where γi = γ|Xi×R2 . Each sub-transport plan γi is an optimal transport plan between
its marginals µi and νi, which are submeasures of µ and ν, respectively. In particular, each
measure µi is absolutely continuous.

We now build a solution to the optimal transport problem for the cost c that is induced by a
transport map by modifying γ in the following way: γ0 is already induced by a transport map
since for every x we only have one y; every γi for i ≥ 1 will be replaced by a new transport
plan with the same marginals which does not increase the cost, thanks to Theorem 3.3. Since γi

sends µi to νi, is optimal for the cost c and satisfies the additional condition spt(γi) ⊂ {(x, y) :
x − y ∈ Ki}, it is also optimal for the cost c(x − y) + χKi

(x − y). The advantage of this new
cost is that c depends on one variable only, when restricted to Ki since there exists a new basis
(e1, e2) such that ||z|| = z1 for every z ∈ Ki which is written as (z1, z2) in this new basis (the
direction of the vector e1 being the normal direction to Fi). Theorem 3.3 precisely states that the
optimal transport problem for a cost which is given by a strictly convex function of one variable
plus a constraint imposing that x − y belongs to a given convex set admits a solution induced
by a transport map, provided the first measure is absolutely continuous and some γ, φ and ψ

satisfying equations 3.2 and 3.3 exist. This last assumption is exactly satisfied by taking γi and
the original potentials φ and ψ for the problem with cost c from µ to ν, since they satisfied

φ(x) + ψ(y) ≤ h(||x− y||) ≤ h(||x− y||) + χKi
(x− y),

φ(x) + ψ(y) = h(||x− y||) = h(||x− y||) + χKi
(x− y) on spt(γKi

). �
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