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Abstract

In this paper, we consider the problem of finding the LeastaBegiestimators of two isotonic
regression curveg; andgs under the additional constraint that they are ordered; 6{9.< g¢5.
Given two sets of data pointsyy, .., v, andzy, . . ., z, observed at (the same) design points, the esti-
mates of the true curves are obtained by minimizing the wejheast Squares criteridiz(a, b) =
Sty — ag)?w) + Y074 (25 — bj)*w? over the class of pairs of vectofs, b) € R™ x R" such
thata; < as < ... < ap, by < by < ... < b,, anda; < b;,i = 1,...,n. The characterization of
the estimators is established. To compute these estimatersse an iterative projected subgradient
algorithm, where the projection is performed with a “gefizesl” pool-adjacent-violaters algorithm
(PAVA), a byproduct of this work. Then, we apply the estimatmethod to real data from mechanical
engineering.

Keywords: least squares, monotone regression, pool-adjacentaislalgorithm, shape con-
straint estimation, subgradient algorithm

1 Introduction and motivation

Estimating a monotone regression curve is one of the mossickl estimation problems
under shape restrictions, see QM%S). A regmessirve is said to be isotonic if it



is monotone nondecreasing. We chose in this paper to lodlealass of isotonic regression
functions. The simple transformatiagn— —g suffices for the results of this paper to carry
over to the antitonic class.

Givenn fixed pointszy, . .., x,, assume that we obseryeatx; fori = 1,...,n. When
the points(z;, y;) are joined, the shape of the obtained graph can hint at theasimg mono-
tonicity of the true regression curve; say, assuming the modg] = ¢°(x;) + &;, with ¢;
the unobserved errors. This shape restriction can also eataré of the scientific problem
at hand, and hence the need for estimating the true curveioldiss of antitonic functions.
We refer t0|_B.a.LI.QAALe.LElI.|_(_L9172) arl.d_R.o.b.e.L[s.o.nJatla.I_LhQBB)ekamples. The weighted
Least Squares estimate ¢f in the class of isotonic functions taking at z; is the unique
minimizer of the criterion

L(a) = sz’(yz' —a;)? 1)
=1

over the class of vectorse R" such that; < as.... < a,, wherew, > 0,ws > 0,...,w, >
0 are given positive weights. In what follows, we will say tlaatectorv € R is increasing
orisotonic ifv; < ... < wv,, and use the notation < w for v, w € R" if the inequality holds
componentwise.

It is well known that the solutiom* of the Least Squares problem [0 (1) is given by the
so-called min-max formula; i.e.,

a; = maxmin Av({s,...,t}) )
whereAv({s,...,t}) = St yiw;/ St w; (see e.g.Barlow et Al 1972).
n ,b) has generalized this problem to incatg&nown bounds on the

regression function to estimate; i.e., she consideredmimaition of L under the constraint
ar, <a < ay, (3)

for two increasing vectorg;, anday . As in the classical setting, the solution of this problem
admits also a min-max representation. The PAVA can be gkredao efficiently compute
this solution and has been implemented in BhpackageOr dMonReg (lB_a.La.b_dag_uLe[AI

). Computation relies on a suitable functionéldefined on the setd C {1,...,n}
which generalizes the functiadv in @). This functional for the bounded monotone regres-
sion in [3) is given by

M(A) = <AU(A) Y max aL> A mfixn ay

wheremin s v = min;e 4 v; andmax 4 v = max;e A v;. Comparé_Bﬁ.LI.mALet_hlL(_Lsz, p. 57),
where a functional notation is used. However, in the laéenence no formal justification
was given for the form of the functionadll nor for the validity of (the modified version of)
the PAVA, see discussion after TheorEm 2.1.



bhaktm&i l(_'LQ.d9) discusses the bounded isotonic rdagrepsoblem for the absolute
value criterion function, yielding the bounded isotonicdiaa regressoLL_hakLayhvllL(J_bSQ)
proposes a PAVA-like algorithm as well, and establishesesoomnections to linear program-

ming theory. Unbounded isotonic median regression wasfirgidered b
m), who provided a min-max formula for the estimator anBAVA-like algorithm to
compute it. They also studied its consistency.

Now suppose that instead of having only one set of obsenstig . . . , v, at the design
pointszq, ..., z,, we are interested in analyzing two sets of data ..,y, andzy, ..., 2z,
observed at the same design points. Furthermore, if we teventormation that the un-
derlying true regression curves are increasing and orddrésinatural to try to construct
estimators that fulfill the same constraints.

The current paper presents a solution to this problem ofmesitig two isotonic regres-
sion curves under the additional constraint that they aglered. This solution is the unique
minimizer (a*, b*) of the criterion

Lo(a,b) = f: w; (yi — ai)? + Zn: w; (2 — bi)? 4)
i=1 1=1

over the class of pairs of vectofs, b) € R™ x R™ such that: andb are increasing and < b,
with w! andw? given vectors of positive weights R™.

The problem was motivated by an application from mechargcafineering. We will
make use of experimental data obtained from dynamic matesss (semm,
|20_D;Ja) to illustrate our estimation method. In engineeringchanics, it is common practice
to determine the deformation resistance and strength afriabt from uniaxial compression
tests at different loading velocities. The experimentautes are the so-called stress-strain
curves (see Figurd 1), and these may be used to determinefibvendtion resistance as a
function of the applied deformation. The recorded signalst&in substantial noise which is
mostly due to variations in the loading velocity and el@etrinoise in the data acquisition
system.

The data in this example consist of 1495 distinct paifsy;) and(x;, z;) wherex; is the
measured strain, whilg; (gray curve) and; (black curve) correspond to the experimental
stress results for two different loading velocities. Thestregression curves are expected to
be (a) monotone increasing as the stress is known to be agasing function of the strain
(for a given constant loading velocity), and (b) orderechasteformation resistance typically
increases as the loading velocity increases. In SeElioreZhew the resulting estimates as
well as a smoothed version thereof.

We will show that minimizingL, is equivalent to minimizing another convex functional
over the class of isotonic vectatis= R™. By doing so, we reduce a two-curve problem under
the constraints of monotonicity and ordering to a one-cypr@blem under the constraint
of monotonicity and boundedness. Actually, we can evenoparfthe minimization over

an
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Figure 1: Original observations.
the class of isotonic vectorSuy, ..., a,—1) of dimensionn — 1 satisfying the constraint

a; <...<an—1 < a} as we can explicitly determing;, by ageneralizednin-max formula
(see Propositiofi2.3). The solution of this equivalent mimation problem, which gives
the solutiona™ (and alsob* because it is a function af*), is computed using a projected
subgradient algorithm where the projection step is peréatmsing a suitable generalization
of the PAVA.

We would like to note thah_B_Lunk_eLlaL(_’LdGG) considered atesl problem, that of non-
parametric Maximum likelihood estimation of two orderednuative distribution functions.
In the same class of probleanEd%Z) treated estimaf survival functions of two
stochastically ordered random variables in the presencersoring, which was extended by

|Ee|lz_a.n.d_D¥kslllaL(_L9135) td/ > 2 stochastically ordered random variables. The theoreti-

cal solution can be related to the well-known Kaplan-Meminsator and can be computed
using an iterative algorithmic procedure fdr > 3 (sed.EeLtmad.D.ykslrh._lﬂ%, p. 1016).
The \/n— asymptotics of the estimators fof = 2, whether there is censoring or not, were
established by Praestgaard and Hliang (1996).

The paper is organized as follows. In Secfibn 2, we give tleatherization of the ordered
isotonic estimates. We also provide the explicit form of soéution of the related bounded




isotonic regression problem where the upper of the two igotourves is assumed to be fully
known.

In SectiorB we describe the projected subgradient algorttiat we use to compute the
Least Squares estimators of the ordered isotonic regressiwves, and apply the method to
real data from mechanical engineering. The technical graoé deferred to appendides A
andB.

2 Estimation of two ordered isotonic regression curves

If the larger of the two isotonic curves was known, then theoeld of course be no need to
estimate it. If we put.; = a°, the weighted Least Squares estimatef the smaller isotonic
curve is the minimizer of

Lia) = > wi(yi — a)?,
=1

wherew € R" is a vector of given positive weights, and= I;‘;O, the class of isotonic vectors
a € R" such thatz < a” anda® € R™. When the components af are all equal, the vector
a® will be assimilated with the common value of its componemstslane in Proposition 3.4
below.

The notatiorZ” will be used again hereafter to denote the class of isota@utovsy € R"
such thaty < w.

The statement of Barlow etlal. (1972, p. 57) implies that ifdeéine

M(A) = Av(A) A mjn a®

for a subsetd C {1,...,n}, then the solutionu* can be computed using an appropriately
modified version of the PAVA.

Theorem 2.1.Fori =1,...,n, we have

a; = 12125(1{121?]\4({3, St} = nslgflg?(Av({s, St A ag).

To keep this paper at a reasonable length, the proof of Thelgi@ is omitted. A short
note containing a more thorough discussion of the one-cpreblem and a proof of Theo-
rem[Z] can be obtained from the authors upon request. Agedescription of the modified
PAVA and a proof that it works whenever the functiordl satisfies the so-calleiveraging
Propertycan be found in Sectidd 3.

We now return to the main subject of this paper. Thedterh 2ctusial for finding the
Least Squares estimates of two ordered isotonic regressies. In particular, the result
will be used to develop an appropriate algorithm to complugesblution.



Lety, ...y, andzy, ..., z,, be the observed data from two unknown isotonic cupfeand
g5 such thay§ < g5. Given two vectors irR™ of positive weightas! andw?, we would like
to minimize

n

Ly(a,b) = > (yi— i)’ +Z (5)

i=1

over the class of pairs of vectofs, b) € R" x R" such that andb are isotonic and < b.
Call this clas<Z,,.

Existence and uniqueness of the solution. They follow from convexity and closedness of
7, and strict convexity of.,.

Characterization of the solution. For completeness, we give the characterization of the
solution of minimizing [b) ovefZ,,; i.e, a necessary and sufficient condition farb) € Z,,
to be equal to this solution. Lét < ... < ix such that; = 1,7, = n and

* . * * . . * * .
al = ... = ail < ail_;’_l = ... = a,i2_1 < ... < aik = ... = (In.

We caIIBZQj (resp.B}j) asetofindicegj, ..., 411 — 1},j = 1,...,k — 1 such thaw;, = b},

(resp.a;.kj < b;*j). Similarly, letl; < ... < I, such that; = 1,[, = n such that
bi=..=b, <bjyg1=...=b, 1 <.<b, =..=b,

and caIIC’0 (resp. Cz ) asetofindiceql;, ..., lj+1 — 1},j = 1,...,r — L such thab; = aj,

(resp. blj > azj)

Theorem 2.2. The pair(a*, b*) € Z,, is the minimizer off{5) if and only if

n

> (a; = yi)(a} — ai)w] +Z b — ) —b)w? > 0, V(a,b) €T, (6)
=1
Z (as_ys)asw; = 0, and (7)
seujB}j
Y (b —z)biwl = 0. (8)
seuquj

Proof. See AppendikA.
An explicit formula in the sense of a min-max representasonilar to [2) of (a*, )
turned out be to hard to find. However, since(resp.b*) is also the minimizer of

n

> (a—yi)*w} (respz (b— 2)? f)

i=1



over the clasg?" (resp. the class of isotonic vectdrs R™ such thab > a*), TheorenZlL
implies that

af = max min (Avi({s,...,t}) AbY) 9)
by = mgxrtn;n (Ava({s,...,t}) Vay) (10)
fori =1,...,n, where
| 4 02
Avy(A) = Liea ity YU andAvy(4) = Liiea %ty o
D icA W D icA W

for A C {1,...,n}.
Thus, the solutioria*, b*) is a fixed point of the operatad? : Z,, — Z,, defined as

P((a,0)) = (P1(b), P2(a)) (11)
= <1£135<1¥1>1? (Avi({s,...,t}) Abs), max I%lzl? (Ava({s,...,t}) Vv at)> .

However, this fixed point problem does not admit a uniquetswiu Therefore, there is
no guarantee that an algorithm based on the above min-meufas yields the solution,
except in the unrealistic and uninteresting case wheret#réng point of the algorithm is
the solution itself. To see thdt does not admit a unique fixed point, note that the minimizer
of the criterion

n n

Z(ai —y)*w! + B Z(b, — z)*w?

=1 =1
is a fixed point of P for any B > 0. Therefore, a computational method based on starting
from an initial candidate and then alternating betwdén (@) @0) cannot be successful. In
parallel, we have invested a substantial effort in tryingeéba closed form for the estimators.
Although we did not succeed, we were able to obtain a closed for «] (and by symmetry
for by,).

Proposition 2.3. We have that

x . . ~ /
aj = IngI{lAvl({l,...,t}) /\tglnzllM({l,...,t},{l,...,t b (12)

where

- Avi(A o w}) + Avy(B o w?
NI(A, B) = 1( )(%fjAlz;iZ;:Biig:jeB ]).

By symmetry, we also have that

b, = m<axAv2({t, ~om)V max M({t',...,n},{t,...,n}). (13)

t< t<t'<n



Some remarks are in order. On the one hand, the expressitaisaibabove indicate that
the Least Squares estimator must depend, as expected, osidtiee ratio of the weights
w! andw?. In particular, ifw? = 0 (resp. w! = 0), the expression ofi; (resp. b})
specializes to the well-known min-max formula in the cleakLeast Squares estimation of
an (unbounded) isotonic curve. On the other hand, the esipresfb, is essential for our
subgradient algorithm below.

Proof of Propositior.ZI3.See AppendikA.

In the next section, we describe how we can make use of themamformula in [P) to
compute the estimators using a projected subgradientitigor As mentioned above, we
use in this algorithm the identit{_{JL3) given in the previguieposition.

3 Algorithms and Application to real data

In this section, we show that the bounded isotonic estinagnrbe computed using the well-
known PAVA, or to be more precise a modified version of it. Riebat the bounded isotonic
estimator in the one-curve problem is given by

a; = nslgfntnzl?M({s, St}

whereM (A) = Av(A)Vmaxya®, A C€ {1,...,n}. Thata* can be computed using a PAVA
is a consequence of a more general result: This computhfiaciais true provided that a
functional M of setsA C {1, ...,n} satisfies what is referred to as tAeeraging Property ,
(seelﬁ.ha.ktaMaHL_lQb& p. 138), also calzalichy Mean Value Propert;yliﬁhs 1,
Section 1). See alsl‘Q_R.o.be.Us.Q.n_eltla.I_dQSS, p. 390). Notertiize classical unconstrained
monaotone regression problem, the min-max expression df¢hst Squares estimator follows
from Theorem 2.8 il].B.a.tI.osmeLbL(.’Lé?Z, p. 80).

3.1 Getting the min-max solution by the PAVA
First, let us describe how the PAVA works for some set fumalal/.

e At every step the current configuration is given by a subiiniof {1,...,} into &k
subsetsS; = {1,...,i1}, So = {i1 + 1,...,d9},..., Sk = {ix_1 + 1,...,n} for
some indiced =g < i1 <o < - < ip_q < i = N.

e The initial configuration is given by the finest subdivisioe;, /; = {;}.

e At every step we look at the values df on the sets of the subdivision. A violation is
noted each time there exists a valusuch thatM (S;) > M(S;41). We consider the
first violation (the one corresponding to the smallgsand then merge the subseis
andsS; into one interval.



e Given a new subdivision (which has one subset less than éweopis one), we look for
possible violations.

e The algorithm stops when there are no violations left.
Since for any violation a merging is performed (thus redgdime number of subsets), it is

clear that the algorithm stops after a finite number of iteret
We require now the set functiondll to satisfy the following property. SMns

(1981, section 1), Robertson el 4l (1988, p. 390)land Chak41989, p. 138).

Definition 3.1. We say that the functiondll satisfies the Averaging Property if for any sets
A and B such thatA N B = () we have that

min{M(A), M(B)} < M(AU B) < max{M(A), M(B)}.

If h andw > 0 are given vectorg R", then beside

A— Av(A) = Zwihi/zwia

€A €A

the following examples of functions also satisfy the AvenggProperty :

A (Av(A) V max h}) A min RO, with r°, h! two vectorsc R",

A +— minh = min h;,
A 1€A

A — medyh= argminz |hi — m|w;
mER e
where thearg min is taken to be the smallest in case non-uniqueness occurs

A — maxh = maxh;.
A €A

Note that the maximum, the minimum and the sum of two funeti®satisfying the Av-
eraging Property satisfy the same property as well.

Theorem 3.2. The final configuration obtained by the PAVA is such that theftMlowing
properties are satisfied.

1. The functionalM is increasing on the sets of the subdivision.

2. If one of the set$; = C' U D is the disjoint union of two subsets = {i;_; +
1,....,k}and D = {k+1,...,i;}, thenM(C) > M(D); i.e., a finer subdivision
would necessarily cause a violation.

Proof. The fact thatM is increasing on the final configuration is an easy conseguehthe
absence of violations (otherwise the algorithm would neehstopped).



As for the second part of the property, note that this is fiatisy the initial configuration
(since no set is the disjoint union of two non-trivial suls$etis well as by any configura-
tion that one could obtain after the first merging (since agingroccurs only because of a
violation). Now we will use an inductive reasoning.

To this end, we have to check two situations: Suppose we ntex@subsequent set$
and B and want to check whether there is a violation@and D, with AU B = CU D. We
are in one of the two following cases: eithér= A4; U Ay, C = Ay andD = A, U B, or
B =B1UBy,C =AUB;andD = B, (the case&” = A andD = B is trivial).

In the first case, if we suppose (D) > M(C'), we get

M(A2 UB) > M(Al), M(Ag) < M(Al), M(B) < M(A) = M(Al UAQ),

(the first inequality follows by assumption, the second lmuiction, and the third is true since
A and B have been merged) and this is impossible since one wouldudnthat

max{M(Az), M(B)} > M(A;) > M(As),

and hencé/(A) > M(B) > M (A1) > M(Asz), whichimpliesM (A) > max{M (A;), M (A2)},
which contradicts the Averaging Property .
In the second case we would have

M(A U Bl) < M(Bg), M(BQ) < M(Bl), M(A) > M(B) = M(Bl U Bg),
which implies
min{M(A), M(B;)} < M(B3) < M(By),
and themmin{M (A), M(B;1)} = M(A)andM (A) < M(By) < M(By), which contradicts
eitherM (A) < M(B) or the Averaging Property . O

Theorem 3.3.1f (S;); is the partition obtained at the end of the PAVA describedvabthen
m; = M(S},) such thati € S;, takes the same values given by the min-max formula for the
indexi.

Proof. See AppendikA.

3.2 Preparing for a projected subgradient algorithm

The following proposition is crucial for computing the ordd isotonic estimators via a pro-
jected subgradient algorithm.

Proposition 3.4. Let ¥ be the criterion

n n—1
Wor ) = 3 (max(Ginb) —u) wl e (b -zl (14)
- i=1

i=1

10



which is to be minimized on the convex set

0 = {(b1,.. . bp1) ERM by < by < ... < by_y < b}

where
Gsi = rtn>in Avi({s,...,t}) and b, = b} in G, A by, (@A)
-1
The criterion ¥ is convex. Furthermore, its unique minimiz@f™*, ..., b5 ;) equals
(by,...,0 ).

Proof. Let us write

I=Ir={a=(a1,...,an) €ER" a1 < ... <a,},

T = {b = (b, ... bp) t (br,... bu_y) € I andb, = b;;}
and consider
7% ={a:a e T anda < b}

forbe 7.
Now note that the min-max formula iBl(9) allows us to write

n n—1
Z (m<ax(G8,j Abg) — yj>2wjl» + Z(bj — Zj)zw?-
j=1

— N 5SJ
n n—1
. 2.1 2,2
=min » (a; —y;) w; + Z(b] zj) " w;
a€Th -
1 7j=1
Hence, we have far € 7
n n—1
\I/(bl, vouy bn—l) = nenzrg (aj — yj)2wjl» + Z(bj - zj)zw]z
a
n ]:1 ]:1

n

n—1
= > (@ (b) — y)wj + > (b — z)*w]
j=1

j=1

wherea;(b) = max,<;(Gs; A bs) is the j-th component of the minimizer of the function
S0 (aj —y;)*w} inZh. Let A € [0,1], andb andV’ in Z;. By definition ofZ% andZ}, we
have that

Xa(b)+ (1= N a) <Ab+ (1= Y

11



and hence

n

(@ab+ -2 - yj>2 !
=1

.

n

IN

(A a(b) + (1= X) a(b’) — yj>2wyl'
j=1

IN
>

(350 - )l + =N (3,0 - 1)}

1 j=1

J

This shows convexity of the first term @f. Convexity of ¥ now follows from convexity
of the function} "~ ( — zj) wjz. and the fact that the sum of two convex functions defined
on the same domain is also convex. O

The idea behind considering the convex functiowalk to reduce the dimensionality of
the problem as well as the number of constraints (fBam- 2 to n — 1 constraints). Onc&
is minimized; i.e, the isotonic estimati& is computeda™* can be obtained using the min-max
formula given in[®). However, the convex functionklis not continuously differentiable,
hence the need for an optimization algorithm that uses thgradient instead of the gradient
as the latter is not defined everywhere.

3.3 A projected subgradient algorithm to computeb;, ... b

n

To minimize the non-smooth convex functidhwe use a projected subgradient algorithm.
Since the gradient does not exist on the entire domain oftthetibn, one has to resort to
computation of a subgradient, the analogue of the gradiepbiats where the latter does
not exist. As opposed to classical methods developed foinmiEimg smooth functions, the
procedure of searching for the direction of descent andesighs is entirely different. The
classical reference for subgradient algorithn{s_is_lslhm_fb_d_Bde_et_dl.[(md3) provides a
nice summary of the topic, including the projected varidhote that a recent application in
statistics of the subgradient algorithms gives now theipdisg to compute the log-concave
density estimator in high dimensions: see Cule et al. (2008)

The main steps of the algorithm. Now recall that the functional should be minimized
over the(n—1)— dimensional convex s&t" ; given in Propositiol3]4. Of course, this is the

same as minimizing’ over then— dimensional convex s¢{b,...,b,) | b1 < ... <b,_1},
starting with an initial vecto(b(0 . ,b,(f)) such thaib,(f) = by and constraining the—th
component of the sub-gradient @fto be equal to 0.

Given a steplengthr, the new iterate**! = (b¥,... bF) at thek—th iteration of a

subgradient algorithm is given by

Vg1 = by — 7Dy,

12



where Dy, is the subgradient calculated at the previous iterate,; Dg. = ?\P(vk) (see
Appendix[B). However, it may happen that.; is not admissible; i.e.(bi*!, ... bFTl)
does not belong tdffl_ 1- When this occurs, af, projection of this iterate ontﬁ[ffi . Is
performed. This is equivalent to finding the minimizer of

n

Z(ai _ b?+1)2
=1
over the set[fi;. The latter problem can be solved using the generalized BAvAounded
isotonic regression as described above.
The computation of the subgradiehy, is described in detail in AppendiX B. As for the
steplengthry, we start the algorithm with a constant steplength. Onceapecified number
of iterations has been reached we switch to

Ther = (A Dell2)™!

wherer;, := h; ! is such thah < v, — 0 ask — oo and 7%, v = oo. Here,|| - ||
denotes thé.,-norm of a vector iNR™. This combination of constant and non-summable
diminishing steplength showed a good performance in outamepntation of the algorithm
over other classical choices 0y ). Furthermore, convergence is ensured by the following
theorem.

Theorem 3.5. dB_o;Ld_eLaLl dZO_(ﬂ)) A subgradient algorithm complemented with least-square
projection and using non-summable diminishing steplenighds for anyn > 0 afterk =
k(n) iterations a vectob® := (b¥, ..., bk) such that

‘min W(b') —W(b*) < 7,

i=1,...,

whereb* = (b7,. .., b)) is the vector given in Propositidn_3.4.

The proof can be found ln_B_o;Ld_ellah_(Zd)O?;) by combining theguments in Sections 2
and 3. Note that in our implementation we do not keep trachefiterate that yielded the

minimal value of¥, since we apply a problem-motivated stopping criteriort thearantees
us to have reached an iterate that is sufficiently clogé te (b7, ...,b}).

Choice of stopping rule. Since in subgradient algorithms the convex target funetidoes
not necessarily monotonically decrease with increasimghmar of iterations, the choice of a
suitable stopping criterion is delicate. However, in ouedfic setting we use the fact that
(a*,b*) is a fixed point of the operatd? defined in[(1lL) where* = P, (b*); the solution of
@) with upper bound*. This motivates iterating the algorithm until the diffecenof entries
of the two vector$” andb?;, where

bk = P2 ) Pl(bk)

is below a pre-specified positive constant
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The implementation. The projected subgradient algorithm for the two curve mobhas
well as the generalized PAVA computing the solution for oneve under the constraints
@) were implemented iR (R Development Core Teelirln_zd)OB). The corresponding package
O dMbnReg [Balabdaoui et all (2009) is available on CRAN. Note that taedinalyzed in
Sectior 34 is made available as a datas€ridVbnReg.

To conclude this section on the algorithmic aspects of oukywwee would like to men-
tion the work b)I_B_eLa.n_a.nd_D_umb_d 09) who propose amestt algorithm which can
be tailored to solve the problem given [ (5) for an arbitragmber of ordered monotone
curves. HoweveLB_e_La.n_a_nd_DUmblg 009) do not providanaitysis of the structure of
the estimated curves such as characterizations and rathtérgir emphasis on the algorith-
mic developments of the problem.

3.4 Real data example from mechanical engineering

We would like to estimate the stress-strain curves baseti@available experimental data
for two different velocity levels (see Figuké 1). The exgecturves have to be isotonic and
ordered. The data consist of 1495 pairg y;) and(y;, z;). The values of the measured strain
of the material (on the:-axis), are actually defined &s-) the logarithm of the ratio of the
current over the initial specimen length. The values ard@igesand take the maximal value
1, which corresponds to a maximum shortening of 63%.

Furthermore, since the stress measurements for diffeedotities are not performed ex-
actly at the same strain, the values of the stress have bempadtated at equally spaced
values of the strain. As pointed out by a referee, this willuice correlation between the
strain data. Even if the strain measurement were not ini@gsh having correlated stress
measurements is rather inevitable in this particular appbn because of the data process-
ing procedures associated with the measurement techrﬁqdﬂllm_a.nd_M.QhLZb%. The
estimation method is however still applicable. When stogdystatistical properties of the
isotonic estimators such as consistency and convergemeeotrelation between the data
should be of course taken into account.

In such problems, practitioners usually fit parametric ndsing a trial and error ap-
proach in an attempt to capture monotonicity of the stréssascurves as well as their order-
ing. The methods used are rather arbitrary and can also leectimsuming, hence the need
for an alternative estimation approach. Our main goal istwige those practitioners with a
rigorous way for estimating the ordered stress-strainesirv

In Figure[2 (upper plot) we provide the original data (blackl gray dots) and the pro-
posed ordered isotonic estimatgsandb* as described above. Being step functions, the
estimated isotonic curves are non-smooth, a well known loiaal of isotonic regression, see

among otherlsAALtighL(l&|78) alhd_Muke}jé_e_(J]%S). The lattgh@ pioneered the combi-

nation of isotonization followed by kernel smoothing. A tbogh asymptotic analysis of
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the smoothed isotonized and the isotonic smooth estimatassgiven bmml)-
, p. 743) shows that monotonicity of the regjien function is preserved by

the smoothing operation if the used kernel is log-concavieusT we define our smoothed
ordered monotone estimators by

a* (ZL’) — Z?:l Kh(ﬂi‘ - t)a;k B* — Z?:l Kh(ﬂi‘ B t)b;k
" > i Kn(z — ;) > i Kn(z — )

for 0 < x < 1. For simplicity, we used the kerné{;,(z) = ¢(x/h) where¢ is the density
function of a standard normal distribution which is cleddg-concave. FigurE 2 (lower plot)
depicts the smoothed isotonic estimates. We set the batitteid = 0.1n1/5 ~ 0.023.

Motivated by estimation of stress-strain curves, an apptio from mechanical engineer-
ing, we consider in this paper weighted Least Squares dstimia the problem of estimating
two ordered isotonic regression curves. We provide charizetions of the solution and de-
scribe a projected subgradient algorithm which can be usedmpute this solution. As a
by-product, we show how an adaptation of the well-known PA#h be used to compute
min-max estimators for any set functional satisfying theraging Property.

Acknowledgements. The first author would like to thank Cécile Durot for someehatst-
ing discussions around the subject. We also thank JongMim &t having made the data
available to us.

A Proofs

Proof of TheoreriLZl2Suppose thata*, v*) is the solution. Foe € (0, 1), and(a,b) € Z,,
consider the paifa®, b°) € R x R" defined as

a® = a"+ela—a")
B o= b te(b—b).

Fori < j e {1,....,n}, we have
a

s—a; = (1—¢)(aj—aj)+elaj—a;) >0

V5 — b = (1—¢€)(bj — b)) +e(bj —bi) >0.
Also, fori € {1,...,n} we have

al — b5 = (1—e€)(a; —bF) +ela; —b;) <0.
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Figure 2: Original observations, isotonic and isotonic ethed estimates.
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Hence,(a%, b°) € Z,, and

1
0 < lim—(La(a,b%) — La(a*,b"))

e\ €
= Y (a7 —yi)(ai — ayw} + Y (bF — z) (b — b )w}
i—1 i=1

yielding the inequality in[{6).
Now consider the vectors™ andb® such thatfoi = 1,...;n

aj = aj +eaj ligp
fy
J

b= b

Letr < s e {l,..,n}. If r ¢ B! ands ¢ B}, thena$ — a& = a* —a’ > 0. If r € B! and
J J J
s ¢ B, thena} > aj andag — af = a} — aj + eaj > 0 for || small enough. The same
reasoning applies if ¢ B}J ands € B}J Finally, if , s € B}J thena$ — a$ = 0.
Now, forr € {1,...,n}, we haves; = a; < b if r ¢ B} . Otherwiseq;, = a;(1+¢€) < by
if |¢| is small enough. Hencéq, b) € Z,,, and
1
0 = lim—(Ly(a%b) — La(a™,b"
lim ~(L2(a%, b%) — La(a”, b))

n

_ * * 1
- E (ar - yT’)lreBil_ Ay Wy .
J

r=1

Summing up over all the seB}j yields the identity in[{l7). We can prove very similarly the
identity in (8).

Conversely, suppose that*, b*) € 7, satisfies the inequality ill6). For afy, b) € Z,,,
we have

La(a,b) = Lo(a®,0") = 5 > (4 — af)w] + 3 > (bi = b))}
=1 =1
+ > (0 — yi)(ai — a))w]
=1

+ Y (b — z) (b — b))}
=1
> 0.

We conclude thata*, b*) is the solution of the minimization problem. O

Proof of Propositioi.ZI3Let ¢ > 0 and considefa,b) € R™ x R™ such that

a; = a;-k — € 1i€{1,..,t}7 t e {1, ’I’L}
b = b
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fori = 1,...,n. For smalle, (a,b) € Z,. Using the characterization in Theoréml2.2, it
follows that

t
Z a — ;) w <0
7j=1
implying that
t
> (af —yj)wj <0, for t€{1,..n}
7=1

or equivalently

aj <1g1>1{1Av1({ coth).

Now, considef(a,b) € R™ x R"™ such that

a; = a}k- — Elje{l,...,t}a te {1, ,n}
bj = b —eljeq,.n, 1<t <t

for j =1,...,n, with e > 0. For smalle, we have thata,b) € Z,, and hence

It follows that

7=1 7=1
that is
< i M Jth 4.
o< i ML L D,
We conclude that
R A Jt M Sth AL ).
a1 < min v1 ({1, })Atgtl,lgl (L. th {1, 1))
Now if aj < b7, letii{1,...,n} be such that} = ... = a; . Then(a, b) is such that
aj = aj+eljeqn i)
b = b

for j =1,...,nisinZ, whenle| is small enough. It follows that
Avl({la"'7il}) - (J,){.
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If af = b, and?} andif are such that} = .... = o}, andb} = ... = b}, then(a, b) such
1 1
that

. *
aj = a;+eljcn

bj = bj+eljen,. . i
forj =1,...,nisinZ, for |¢] small enough. Hence,
ay =M1, {1, .
(note thatif < i}). Therefore,

¢ =minAvi({1,...,t}) A max M({1,....t},{1,....}).

aq Iglzl{l Ul({ ’ ) }) trznt?gil ({ ) ) }7{ s R })

The expression ob] follows easily by replacing respectively: and z; by —z,_;41 and
~Yn—ip1fori=1,...,n. 0O

Proof of Theorer-3l13onsidere € R™ given by

a; = maxminM({s,....t})
and also the subdivision into subséts= {i;_1 + 1,...,4;} obtained by the PAVA. Let us
denote byG~ (resp.G ™) the grid set of indices which correspond to points at therimégg
(resp. end) of those subsets; i.e. of the farm- 1 (resp.i;).
We obviously have

P < i M oy ty).
a; > Hslgzx tzzI,ntIGHG+ ({37 ’ })

Then, consides ¢ G~. This means that we have a get. .., t} of the formBUC, C being

a union of subsets in the subdivision aBd right subset of a set of the partition of the form
AU B. We want to prove that/ ({s,...,t}) = M(B U C) is either smaller thad/(C) or
M(AU B UC). Suppose this is not the case. Then we would have

M(BUC) > M(C), M(BUC)> M(AUBUC), M(A) > M(B),

where the last inequality is implied by the second propertyheoren-3]2. Yet, the second
inequality, together with the Averaging Property , implieat M (A) < M (B U C). In the
end we get

M(BUC)>M(C), M(BUC) > M(A) > M(B),

which contradicts the Averaging Property .

We conclude thab/({s,...,t}) is smaller than the value dff at a set which is a union
of sets of the subdivision; i.e. either U B U C or C itself. But on sets of this kind it is
obvious, by the Averaging Property , thaf is smaller than the value:,, since this is the

19



maximal value of\/ on the intervals composing such a set (this is a consequéndebing
increasing). Hencel ({zs, ..., z:}) < my, implying that

a; <max min my = m;.
5<i t>i,teG+

The opposite inequality is obtained exactly in a symmetry \(first takes € G—, then
prove thatM ({zs, ..., z:}) is larger than the value df/ on a union of intervals). O

B Computing the subgradient
Computing the subgradient of ¥ on a dense set. Consider the set

D = {b: (i, ..o buo1) € R by £b; Vi,

andby £G, ;) ¥1<i<n-11<s<n—1,1 gj’gn}.
We denote by(e!, ..., e" 1) the canonical basis @&"~!. The setD is a dense open subset
of R"~! where the functionV is differentiable. Actually, for a fixed € D, in the explicit
formula for ¥ there is no ex-aequo (up to possible equalities betweettheerms). The

same will be true in a neighborhood &f For each value of € {1,...,n}, we define the
function

2
U, = (max(Gs,i Abg) — yl) wz-l.
s<1
Let us first considei € {1,...,n — 1}. We define{s,,,...,s; } to be the set of indices

wheremax,<;(Gs; A bs) is attained.

If & =1, thenGs, i Abs, > Gsi Absforalls € {1,...,i} \ {s;; }. This implies that
the same strict inequalities will be true in a neighborhobd and hence there are two cases:
either the function is locally constant or the square of din@function. Hence,

o If bs;, > Gsz-ln'- thenV¥,(b) = 0.
o If by, < Gy i thenVWi(h) = 2( (G, i A b, ) = i) wh e

Now if & > 2, then this implies that onlﬂsij i,»J =1,...,k can be equal (by definition
of the setD), and hence the function is locally constant. Theref&t@&,(b) = 0.

Fori = n, the calculation also requires distinction between theshs= 1 andk > 2.
Thus, ifk = 1 and the maximunmax,<,, (G, A bs) is attained ak;, # n, then

o If bsi1 > Gsilm, thenV ¥, (b) = 0.
o If by, < Gy, o thenV,(b) = 2<(Gsi1,n Aby) — yn> wlh e
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If £ =1ands;, = n (in this casé,, = b}, is known) ork > 2, thenV¥,,(b) = 0. Now
the gradientV W (b) is given by

n

n—1
VU(0b) =) V(D) +2) (b — z)wie'.
=1 =1

Calculating the subgradient of ¥ at any point. Take now any poink € R”~! which does
not necessarily belong tb. We want to approximaté by points ofD in the perspective of
using the following property: IV is convex,p. — p, 7. — v ase — 0, and~. € 9V (p;),
theny € 0¥(p). This is useful when we only want to find one element of the Btdvdntial
at a given point and we already know the gradients at nearlmygp0

We use the following approximation:

b: = b+ eu, whereu = (1,2,...,4,...,n—1).

We claim thath. may belong to the complement 6f for a finite number of values at most.
Indeed, for any paifi, j) with i # j, the equalityb; + ic = b; + je is satisfied for a unique
value ofe, and for anyi, ¢’ ands, the same thing holds true for the equality ; = b, + e7’.
Hence, there exists) > 0 such that foe €]0, [, we haveb. € D, where the expression of
the gradient is fully known by our calculations above.

We can act as follows: Takeand fixi < n — 1. For anys < i, determine which one
is minimal amongG; s andb. In case of equality, priority will be given t6r; ; since in
the approximation withb,, the value ofG; ; would be smaller thah, + es. This way we
classify the indices in two categories: The G-type and letyldext, look at all the indices
s1,..., S realizing the minimum of; s Vv bs. If amongsy, ..., s, there are some which
are of the b-type, this would imply that in the approximatwith b., those indices will yield
even a higher value faf; s, \V (bs; + €s;). In particular the maximal one will correspond to
the largest b-type index since it is the one where the coatéliis increased the most in the
approximation. Due to the fact thaj is fixed, we adopt, foi = n, the convention that the
indexs = n is of the G-type wheitr,, ,, A b}, is maximal. Thus, we can define the vector

@\Ifl(b) = 2((Gs,,, i Nbs, ) — i) wil e®m or 0,

Sim st

where the index;,, is the largest index of b-type such th@f , A b, is maximal (note that
si,, 1S always< n — 1). If no such index exists (i.e. if the maximal ones are all efy@e),
then this is the case where the vector eqoalNow consider

n n—1
VUOb) = > V() +2) (b —z) w) €'
i=1 i=1
This vector belongs t0¥ (b) by approximation and closedness of the subdifferential.
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Note that we would have obtained another element of the Balehtial if we had fixed
a different order of priority on the coordinatestoffor instance the first index instead of the
last one (ifu = (1,2,...,4,...n — 1) was replaced witlin — 1,...,2,1)). We could also
have decreased (instead of increased) the componentsyithg priority to b, instead of
G s In the minimumG; s A bs. In that case, we would have obtain@ébr the subgradient of
W, as soon as one of the components realizing the maximum whe @G-type.
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