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Abstract

In this paper, we consider the problem of finding the Least Squares estimators of two isotonic

regression curvesg◦
1

and g◦
2

under the additional constraint that they are ordered; e.g., g◦
1

≤ g◦
2
.

Given two sets ofn data pointsy1, .., yn andz1, . . . , zn observed at (the same) design points, the esti-

mates of the true curves are obtained by minimizing the weighted Least Squares criterionL2(a, b) =
∑n

j=1
(yj − aj)

2w1

j +
∑n

j=1
(zj − bj)

2w2

j over the class of pairs of vectors(a, b) ∈ R
n × R

n such

that a1 ≤ a2 ≤ ... ≤ an, b1 ≤ b2 ≤ ... ≤ bn, andai ≤ bi, i = 1, ..., n. The characterization of

the estimators is established. To compute these estimators, we use an iterative projected subgradient

algorithm, where the projection is performed with a “generalized” pool-adjacent-violaters algorithm

(PAVA), a byproduct of this work. Then, we apply the estimation method to real data from mechanical

engineering.

Keywords: least squares, monotone regression, pool-adjacent-violaters algorithm, shape con-

straint estimation, subgradient algorithm

1 Introduction and motivation

Estimating a monotone regression curve is one of the most classical estimation problems

under shape restrictions, see e.g. Brunk (1958). A regression curve is said to be isotonic if it
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is monotone nondecreasing. We chose in this paper to look at the class of isotonic regression

functions. The simple transformationg → −g suffices for the results of this paper to carry

over to the antitonic class.

Givenn fixed pointsx1, . . . , xn, assume that we observeyi atxi for i = 1, . . . , n. When

the points(xi, yi) are joined, the shape of the obtained graph can hint at the increasing mono-

tonicity of the true regression curve,g◦ say, assuming the modelyi = g◦(xi) + εi, with εi

the unobserved errors. This shape restriction can also be a feature of the scientific problem

at hand, and hence the need for estimating the true curve in the class of antitonic functions.

We refer to Barlow et al. (1972) and Robertson et al. (1988) for examples. The weighted

Least Squares estimate ofg◦ in the class of isotonic functions takingyi at xi is the unique

minimizer of the criterion

L(a) =

n
∑

i=1

wi(yi − ai)
2 (1)

over the class of vectorsa ∈ R
n such thata1 ≤ a2.... ≤ an wherew1 > 0, w2 > 0, . . . , wn >

0 are given positive weights. In what follows, we will say thata vectorv ∈ R
n is increasing

or isotonic ifv1 ≤ . . . ≤ vn, and use the notationv ≤ w for v,w ∈ R
n if the inequality holds

componentwise.

It is well known that the solutiona∗ of the Least Squares problem in (1) is given by the

so-called min-max formula; i.e.,

a∗i = max
s≤i

min
t≥i

Av({s, . . . , t}) (2)

whereAv({s, . . . , t}) =
∑t

i=s yiwi/
∑t

i=s wi (see e.g. Barlow et al., 1972).

van Eeden (1957a,b) has generalized this problem to incorporate known bounds on the

regression function to estimate; i.e., she considered minimization ofL under the constraint

aL ≤ a ≤ aU , (3)

for two increasing vectorsaL andaU . As in the classical setting, the solution of this problem

admits also a min-max representation. The PAVA can be generalized to efficiently compute

this solution and has been implemented in theR packageOrdMonReg (Balabdaoui et al.,

2009). Computation relies on a suitable functionalM defined on the setsA ⊆ {1, ..., n}
which generalizes the functionAv in (2). This functional for the bounded monotone regres-

sion in (3) is given by

M(A) =
(

Av(A) ∨ max
A

aL

)

∧ min
A

aU

whereminA v = mini∈A vi andmaxA v = maxi∈A vi. Compare Barlow et al. (1972, p. 57),

where a functional notation is used. However, in the latter reference no formal justification

was given for the form of the functionalM nor for the validity of (the modified version of)

the PAVA, see discussion after Theorem 2.1.
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Chakravarti (1989) discusses the bounded isotonic regression problem for the absolute

value criterion function, yielding the bounded isotonic median regressor. Chakravarti (1989)

proposes a PAVA-like algorithm as well, and establishes some connections to linear program-

ming theory. Unbounded isotonic median regression was firstconsidered by Robertson and Waltman

(1968), who provided a min-max formula for the estimator anda PAVA-like algorithm to

compute it. They also studied its consistency.

Now suppose that instead of having only one set of observationsy1, . . . , yn at the design

pointsx1, . . . , xn, we are interested in analyzing two sets of datay1, . . . , yn andz1, . . . , zn

observed at the same design points. Furthermore, if we have the information that the un-

derlying true regression curves are increasing and ordered, it is natural to try to construct

estimators that fulfill the same constraints.

The current paper presents a solution to this problem of estimating two isotonic regres-

sion curves under the additional constraint that they are ordered. This solution is the unique

minimizer(a∗, b∗) of the criterion

L2(a, b) =
n

∑

i=1

w1
i (yi − ai)

2 +
n

∑

i=1

w2
i (zi − bi)

2 (4)

over the class of pairs of vectors(a, b) ∈ R
n×R

n such thata andb are increasing anda ≤ b,

with w1 andw2 given vectors of positive weights inRn.

The problem was motivated by an application from mechanicalengineering. We will

make use of experimental data obtained from dynamic material tests (see Shim and Mohr,

2009) to illustrate our estimation method. In engineering mechanics, it is common practice

to determine the deformation resistance and strength of materials from uniaxial compression

tests at different loading velocities. The experimental results are the so-called stress-strain

curves (see Figure 1), and these may be used to determine the deformation resistance as a

function of the applied deformation. The recorded signals contain substantial noise which is

mostly due to variations in the loading velocity and electrical noise in the data acquisition

system.

The data in this example consist of 1495 distinct pairs(xi, yi) and(xi, zi) wherexi is the

measured strain, whileyi (gray curve) andzi (black curve) correspond to the experimental

stress results for two different loading velocities. The true regression curves are expected to

be (a) monotone increasing as the stress is known to be an increasing function of the strain

(for a given constant loading velocity), and (b) ordered as the deformation resistance typically

increases as the loading velocity increases. In Section 3, we show the resulting estimates as

well as a smoothed version thereof.

We will show that minimizingL2 is equivalent to minimizing another convex functional

over the class of isotonic vectorsa ∈ R
n. By doing so, we reduce a two-curve problem under

the constraints of monotonicity and ordering to a one-curveproblem under the constraint

of monotonicity and boundedness. Actually, we can even perform the minimization over
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Figure 1: Original observations.

the class of isotonic vectors(a1, . . . , an−1) of dimensionn − 1 satisfying the constraint

a1 ≤ . . . ≤ an−1 ≤ a∗n as we can explicitly determinea∗n by ageneralizedmin-max formula

(see Proposition 2.3). The solution of this equivalent minimization problem, which gives

the solutiona∗ (and alsob∗ because it is a function ofa∗), is computed using a projected

subgradient algorithm where the projection step is performed using a suitable generalization

of the PAVA.

We would like to note that Brunk et al. (1966) considered a related problem, that of non-

parametric Maximum likelihood estimation of two ordered cumulative distribution functions.

In the same class of problems, Dykstra (1982) treated estimation of survival functions of two

stochastically ordered random variables in the presence ofcensoring, which was extended by

Feltz and Dykstra (1985) toN ≥ 2 stochastically ordered random variables. The theoreti-

cal solution can be related to the well-known Kaplan-Meier estimator and can be computed

using an iterative algorithmic procedure forN ≥ 3 (see Feltz and Dykstra, 1985, p. 1016).

The
√

n− asymptotics of the estimators forN = 2, whether there is censoring or not, were

established by Præstgaard and Huang (1996).

The paper is organized as follows. In Section 2, we give the characterization of the ordered

isotonic estimates. We also provide the explicit form of thesolution of the related bounded
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isotonic regression problem where the upper of the two isotonic curves is assumed to be fully

known.

In Section 3 we describe the projected subgradient algorithm that we use to compute the

Least Squares estimators of the ordered isotonic regression curves, and apply the method to

real data from mechanical engineering. The technical proofs are deferred to appendices A

and B.

2 Estimation of two ordered isotonic regression curves

If the larger of the two isotonic curves was known, then therewould of course be no need to

estimate it. If we putaU = a0, the weighted Least Squares estimatea∗ of the smaller isotonic

curve is the minimizer of

L(a) =

n
∑

i=1

wi(yi − ai)
2,

wherew ∈ R
n is a vector of given positive weights, anda ∈ Ia0

n , the class of isotonic vectors

a ∈ R
n such thata ≤ a0 anda0 ∈ R

n. When the components ofa0 are all equal, the vector

a0 will be assimilated with the common value of its components as done in Proposition 3.4

below.

The notationIw
n will be used again hereafter to denote the class of isotonic vectorsv ∈ R

n

such thatv ≤ w.

The statement of Barlow et al. (1972, p. 57) implies that if wedefine

M(A) = Av(A) ∧ min
A

a0

for a subsetA ⊆ {1, ..., n}, then the solutiona∗ can be computed using an appropriately

modified version of the PAVA.

Theorem 2.1. For i = 1, . . . , n, we have

a∗i = max
s≤i

min
t≥i

M({s, . . . , t}) = max
s≤i

min
t≥i

(

Av({s, . . . , t}) ∧ a0
s

)

.

To keep this paper at a reasonable length, the proof of Theorem 2.1 is omitted. A short

note containing a more thorough discussion of the one-curveproblem and a proof of Theo-

rem 2.1 can be obtained from the authors upon request. A general description of the modified

PAVA and a proof that it works whenever the functionalM satisfies the so-calledAveraging

Propertycan be found in Section 3.

We now return to the main subject of this paper. Theorem 2.1 iscrucial for finding the

Least Squares estimates of two ordered isotonic regressioncurves. In particular, the result

will be used to develop an appropriate algorithm to compute the solution.
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Let y1, ...yn andz1, ..., zn be the observed data from two unknown isotonic curvesg◦1 and

g◦2 such thatg◦1 ≤ g◦2 . Given two vectors inRn of positive weightsw1 andw2, we would like

to minimize

L2(a, b) =
n

∑

i=1

(yi − ai)
2w1

i +
n

∑

i=1

(zi − bi)
2w2

i (5)

over the class of pairs of vectors(a, b) ∈ R
n × R

n such thata andb are isotonic anda ≤ b.

Call this classIn.

Existence and uniqueness of the solution.They follow from convexity and closedness of

In and strict convexity ofL2.

Characterization of the solution. For completeness, we give the characterization of the

solution of minimizing (5) overIn; i.e, a necessary and sufficient condition for(a, b) ∈ In

to be equal to this solution. Leti1 < ... < ik such thati1 = 1, ik = n and

a∗1 = ... = a∗i1 < a∗i1+1 = ... = a∗i2−1 < ... < a∗ik = ... = a∗n.

We callB0
ij

(resp.B1
ij

) a set of indices{ij , ..., ij+1 − 1}, j = 1, ..., k − 1 such thata∗ij = b∗ij
(resp.a∗ij < b∗ij ). Similarly, letl1 < ... < lr such thatl1 = 1, lr = n such that

b∗1 = ... = b∗l1 < b∗l1+1 = ... = b∗l2−1 < ... < b∗lk = ... = b∗n

and callC0
lj

(resp.C1
lj

) a set of indices{lj , ..., lj+1 − 1}, j = 1, ..., r − 1 such thatb∗lj = a∗lj
(resp.b∗lj > a∗lj ).

Theorem 2.2. The pair(a∗, b∗) ∈ In is the minimizer of (5) if and only if

n
∑

i=1

(a∗i − yi)(a
∗
i − ai)w

1
i +

n
∑

i=1

(b∗i − zi)(b
∗
i − bi)w

2
i ≥ 0, ∀ (a, b) ∈ In (6)

∑

s∈∪jB1
ij

(a∗s − ys)a
∗
sw

1
s = 0, and (7)

∑

s∈∪jC1
lj

(b∗s − zs)b
∗
sw

2
s = 0. (8)

Proof. See Appendix A.

An explicit formula in the sense of a min-max representationsimilar to (2) of (a∗, b∗)

turned out be to hard to find. However, sincea∗ (resp.b∗) is also the minimizer of

n
∑

i=1

(a − yi)
2w1

i

(

resp.
n

∑

i=1

(b − zi)
2w2

i

)
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over the classIb∗
n (resp. the class of isotonic vectorsb ∈ R

n such thatb ≥ a∗), Theorem 2.1

implies that

a∗i = max
s≤i

min
t≥i

(Av1({s, . . . , t}) ∧ b∗s) (9)

b∗i = max
s≤i

min
t≥i

(Av2({s, . . . , t}) ∨ a∗t ) (10)

for i = 1, . . . , n, where

Av1(A) =

∑

i∈A yiw
1
i

∑

i∈A w1
i

, andAv2(A) =

∑

i∈A ziw
2
i

∑

i∈A w2
i

for A ⊆ {1, ..., n}.

Thus, the solution(a∗, b∗) is a fixed point of the operatorP : In → In defined as

P((a, b)) = (P1(b),P2(a)) (11)

=

(

max
s≤i

min
t≥i

(Av1({s, . . . , t}) ∧ bs),max
s≤i

min
t≥i

(Av2({s, . . . , t}) ∨ at)

)

.

However, this fixed point problem does not admit a unique solution. Therefore, there is

no guarantee that an algorithm based on the above min-max formulas yields the solution,

except in the unrealistic and uninteresting case where the starting point of the algorithm is

the solution itself. To see thatP does not admit a unique fixed point, note that the minimizer

of the criterion
n

∑

i=1

(ai − yi)
2w1

i + B

n
∑

i=1

(bi − zi)
2w2

i

is a fixed point ofP for anyB > 0. Therefore, a computational method based on starting

from an initial candidate and then alternating between (9) and (10) cannot be successful. In

parallel, we have invested a substantial effort in trying toget a closed form for the estimators.

Although we did not succeed, we were able to obtain a closed form for a∗1 (and by symmetry

for b∗n).

Proposition 2.3. We have that

a∗1 = min
t≥1

Av1({1, . . . , t}) ∧ min
t≥t′≥1

M̃({1, . . . , t}, {1, . . . , t′}) (12)

where

M̃ (A,B) =
Av1(A)(

∑

i∈A w1
i ) + Av2(B)(

∑

j∈B w2
j )

∑

i∈A w1
i +

∑

j∈B w2
j

.

By symmetry, we also have that

b∗n = max
t≤n

Av2({t, . . . , n}) ∨ max
t≤t′≤n

M̃({t′, . . . , n}, {t, . . . , n}). (13)

7



Some remarks are in order. On the one hand, the expressions obtained above indicate that

the Least Squares estimator must depend, as expected, on therelative ratio of the weights

w1 and w2. In particular, if w2 = 0 (resp. w1 = 0), the expression ofa∗1 (resp. b∗n)

specializes to the well-known min-max formula in the classical Least Squares estimation of

an (unbounded) isotonic curve. On the other hand, the expression of b∗n is essential for our

subgradient algorithm below.

Proof of Proposition 2.3.See Appendix A.

In the next section, we describe how we can make use of the min-max formula in (9) to

compute the estimators using a projected subgradient algorithm. As mentioned above, we

use in this algorithm the identity (13) given in the previousproposition.

3 Algorithms and Application to real data

In this section, we show that the bounded isotonic estimatorcan be computed using the well-

known PAVA, or to be more precise a modified version of it. Recall that the bounded isotonic

estimator in the one-curve problem is given by

a∗i = max
s≤i

min
t≥i

M({s, . . . , t})

whereM(A) = Av(A)∨maxA a0, A ⊆∈ {1, ..., n}. Thata∗ can be computed using a PAVA

is a consequence of a more general result: This computational fact is true provided that a

functionalM of setsA ⊆ {1, ..., n} satisfies what is referred to as theAveraging Property ,

(see Chakravarti, 1989, p. 138), also calledCauchy Mean Value Propertyby Leurgans (1981,

Section 1). See also Robertson et al. (1988, p. 390). Note that in the classical unconstrained

monotone regression problem, the min-max expression of theLeast Squares estimator follows

from Theorem 2.8 in Barlow et al. (1972, p. 80).

3.1 Getting the min-max solution by the PAVA

First, let us describe how the PAVA works for some set functional M .

• At every step the current configuration is given by a subdivision of {1, ..., } into k

subsetsS1 = {1, . . . , i1}, S2 = {i1 + 1, . . . , i2}, . . . , Sk = {ik−1 + 1, . . . , n} for

some indices1 = i0 ≤ i1 < i2 < · · · < ik−1 < ik = n.

• The initial configuration is given by the finest subdivision;i.e.,Ij = {j}.

• At every step we look at the values ofM on the sets of the subdivision. A violation is

noted each time there exists a valuej such thatM(Sj) > M(Sj+1). We consider the

first violation (the one corresponding to the smallestj) and then merge the subsetsSj

andSj+1 into one interval.
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• Given a new subdivision (which has one subset less than the previous one), we look for

possible violations.

• The algorithm stops when there are no violations left.

Since for any violation a merging is performed (thus reducing the number of subsets), it is

clear that the algorithm stops after a finite number of iterations.

We require now the set functionalM to satisfy the following property. See Leurgans

(1981, Section 1), Robertson et al. (1988, p. 390) and Chakravarti (1989, p. 138).

Definition 3.1. We say that the functionalM satisfies the Averaging Property if for any sets

A andB such thatA ∩ B = ∅ we have that

min{M(A),M(B)} ≤ M(A ∪ B) ≤ max{M(A),M(B)}.

If h andw > 0 are given vectors∈ R
n, then beside

A 7→ Av(A) =
∑

i∈A

wihi/
∑

i∈A

wi,

the following examples of functions also satisfy the Averaging Property :

A 7→
(

Av(A) ∨ max
A

h1
i

)

∧ min
A

h0, with h0, h1 two vectors∈ R
n,

A 7→ min
A

h = min
i∈A

hi,

A 7→ medA h = arg min
m∈R

∑

i∈A

|hi − m|wi

where thearg min is taken to be the smallestm in case non-uniqueness occurs,

A 7→ max
A

h = max
i∈A

hi.

Note that the maximum, the minimum and the sum of two functionals satisfying the Av-

eraging Property satisfy the same property as well.

Theorem 3.2. The final configuration obtained by the PAVA is such that the two following

properties are satisfied.

1. The functionalM is increasing on the sets of the subdivision.

2. If one of the setsSj = C ∪ D is the disjoint union of two subsetsC = {ij−1 +

1, . . . , k} and D = {k + 1, . . . , ij}, thenM(C) > M(D); i.e., a finer subdivision

would necessarily cause a violation.

Proof. The fact thatM is increasing on the final configuration is an easy consequence of the

absence of violations (otherwise the algorithm would not have stopped).
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As for the second part of the property, note that this is satisfied by the initial configuration

(since no set is the disjoint union of two non-trivial subsets), as well as by any configura-

tion that one could obtain after the first merging (since a merging occurs only because of a

violation). Now we will use an inductive reasoning.

To this end, we have to check two situations: Suppose we mergetwo subsequent setsA

andB and want to check whether there is a violation onC andD, with A∪B = C ∪D. We

are in one of the two following cases: eitherA = A1 ∪ A2, C = A1 andD = A2 ∪ B, or

B = B1 ∪ B2, C = A ∪ B1 andD = B2 (the caseC = A andD = B is trivial).

In the first case, if we supposeM(D) ≥ M(C), we get

M(A2 ∪ B) ≥ M(A1), M(A2) < M(A1), M(B) < M(A) = M(A1 ∪ A2),

(the first inequality follows by assumption, the second by induction, and the third is true since

A andB have been merged) and this is impossible since one would conclude that

max{M(A2),M(B)} ≥ M(A1) > M(A2),

and henceM(A) > M(B) ≥ M(A1) > M(A2), which impliesM(A) > max{M(A1),M(A2)},

which contradicts the Averaging Property .

In the second case we would have

M(A ∪ B1) ≤ M(B2), M(B2) < M(B1), M(A) > M(B) = M(B1 ∪ B2),

which implies

min{M(A),M(B1)} ≤ M(B2) < M(B1),

and thenmin{M(A),M(B1)} = M(A) andM(A) ≤ M(B2) < M(B1), which contradicts

eitherM(A) < M(B) or the Averaging Property . 2

Theorem 3.3. If (Sj)j is the partition obtained at the end of the PAVA described above, then

mi = M(Sji
) such thati ∈ Sji

takes the same values given by the min-max formula for the

indexi.

Proof. See Appendix A.

3.2 Preparing for a projected subgradient algorithm

The following proposition is crucial for computing the ordered isotonic estimators via a pro-

jected subgradient algorithm.

Proposition 3.4. LetΨ be the criterion

Ψ(b1, . . . , bn−1) =
n

∑

i=1

(

max
s≤i

(Gs,i ∧ bs) − yi

)2
w1

i +
n−1
∑

i=1

(bi − zi)
2w2

i (14)
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which is to be minimized on the convex set

Ib∗n
n−1 = {(b1, . . . , bn−1) ∈ R

n−1 : b1 ≤ b2 ≤ . . . ≤ bn−1 ≤ b∗n}

where

Gs,i = min
t≥i

Av1({s, . . . , t}) and bn = b∗n in Gn,n ∧ bn, (14).

The criterionΨ is convex. Furthermore, its unique minimizer(b∗∗1 , . . . , b∗∗n−1) equals

(b∗1, . . . , b
∗
n−1).

Proof. Let us write

I = I∞
n = {a = (a1, . . . , an) ∈ R

n : a1 ≤ . . . ≤ an},

I∗
n =

{

b = (b1, . . . , bn) : (b1, . . . , bn−1) ∈ Ib∗n
n−1 andbn = b∗n

}

and consider

Ib
n = {a : a ∈ I anda ≤ b}

for b ∈ I∗
n.

Now note that the min-max formula in (9) allows us to write

n
∑

j=1

(

max
s≤j

(Gs,j ∧ bs) − yj

)2
w1

j +
n−1
∑

j=1

(bj − zj)
2w2

j

= min
a∈Ib

n

n
∑

j=1

(aj − yj)
2w1

j +

n−1
∑

j=1

(bj − zj)
2w2

j .

Hence, we have forb ∈ I∗
n

Ψ(b1, ..., bn−1) = min
a∈Ib

n

n
∑

j=1

(aj − yj)
2w1

j +
n−1
∑

j=1

(bj − zj)
2w2

j

=
n

∑

j=1

(ãj(b) − yj)
2w1

j +
n−1
∑

j=1

(bj − zj)
2w2

j

whereãj(b) = maxs≤j(Gs,j ∧ bs) is thej-th component of the minimizer of the function
∑n

j=1(aj − yj)
2w1

j in Ib
n. Let λ ∈ [0, 1], andb andb′ in I∗

n. By definition ofIb
n andIb′

n , we

have that

λ ã(b) + (1 − λ) ã(b′) ≤ λ b + (1 − λ) b′

11



and hence

n
∑

j=1

(

ãj(λ b + (1 − λ) b′) − yj

)2
w1

j

≤
n

∑

j=1

(

λ ã(b) + (1 − λ) ã(b′) − yj

)2
w1

j

≤ λ

n
∑

j=1

(

ãj(b) − yj

)2
w1

j + (1 − λ)

n
∑

j=1

(

ãj(b
′) − yj

)2
w1

j .

This shows convexity of the first term ofΨ. Convexity ofΨ now follows from convexity

of the function
∑n−1

j=1 (bj − zj)
2w2

j and the fact that the sum of two convex functions defined

on the same domain is also convex. 2

The idea behind considering the convex functionalΨ is to reduce the dimensionality of

the problem as well as the number of constraints (from3n− 2 to n− 1 constraints). OnceΨ

is minimized; i.e, the isotonic estimateb∗ is computed,a∗ can be obtained using the min-max

formula given in (9). However, the convex functionalΨ is not continuously differentiable,

hence the need for an optimization algorithm that uses the subgradient instead of the gradient

as the latter is not defined everywhere.

3.3 A projected subgradient algorithm to computeb∗1, . . . , b
∗
n−1

To minimize the non-smooth convex functionΨ we use a projected subgradient algorithm.

Since the gradient does not exist on the entire domain of the function, one has to resort to

computation of a subgradient, the analogue of the gradient at points where the latter does

not exist. As opposed to classical methods developed for minimizing smooth functions, the

procedure of searching for the direction of descent and steplengths is entirely different. The

classical reference for subgradient algorithms is Shor (1985). Boyd et al. (2003) provides a

nice summary of the topic, including the projected variant.Note that a recent application in

statistics of the subgradient algorithms gives now the possibility to compute the log-concave

density estimator in high dimensions; see Cule et al. (2008).

The main steps of the algorithm. Now recall that the functionalΨ should be minimized

over the(n−1)− dimensional convex setIb∗n
n−1 given in Proposition 3.4. Of course, this is the

same as minimizingΨ over then− dimensional convex set{(b1, . . . , bn) | b1 ≤ . . . ≤ bn−1},

starting with an initial vector(b(0)
1 , . . . , b

(0)
n ) such thatb(0)

n = b∗n and constraining then−th

component of the sub-gradient ofΨ to be equal to 0.

Given a steplengthτk, the new iteratebk+1 = (bk
1 , . . . , b

k
n) at thek−th iteration of a

subgradient algorithm is given by

vk+1 = bk − τkDk,

12



whereDk is the subgradient calculated at the previous iterate; i.e., Dk = ∇̃Ψ(vk) (see

Appendix B). However, it may happen thatvk+1 is not admissible; i.e.(bk+1
1 , . . . , bk+1

n−1)

does not belong toIb∗n
n−1. When this occurs, anL2 projection of this iterate ontoIb∗n

n−1 is

performed. This is equivalent to finding the minimizer of
n

∑

i=1

(ai − bk+1
i )2

over the setIb∗n
n . The latter problem can be solved using the generalized PAVAfor bounded

isotonic regression as described above.

The computation of the subgradientDk is described in detail in Appendix B. As for the

steplengthτk, we start the algorithm with a constant steplength. Once a pre-specified number

of iterations has been reached we switch to

τk+1 = (h0.1
k ‖Dk‖2)

−1

whereγk := h−0.1
k is such that0 ≤ γk → 0 ask → ∞ and

∑∞
k=1 γk = ∞. Here,‖ · ‖2

denotes theL2-norm of a vector inRn. This combination of constant and non-summable

diminishing steplength showed a good performance in our implementation of the algorithm

over other classical choices of(γk)k. Furthermore, convergence is ensured by the following

theorem.

Theorem 3.5. (Boyd et al. (2003)) A subgradient algorithm complemented with least-square

projection and using non-summable diminishing steplengthyields for anyη > 0 after k =

k(η) iterations a vectorbk := (bk
1 , . . . , b

k
n) such that

min
i=1,...,k

Ψ(bi) − Ψ(b∗) ≤ η,

whereb∗ = (b∗1, . . . , b
∗
n) is the vector given in Proposition 3.4.

The proof can be found in Boyd et al. (2003) by combining theirarguments in Sections 2

and 3. Note that in our implementation we do not keep track of the iterate that yielded the

minimal value ofΨ, since we apply a problem-motivated stopping criterion that guarantees

us to have reached an iterate that is sufficiently close tob∗ = (b∗1, . . . , b
∗
n).

Choice of stopping rule. Since in subgradient algorithms the convex target functional does

not necessarily monotonically decrease with increasing number of iterations, the choice of a

suitable stopping criterion is delicate. However, in our specific setting we use the fact that

(a∗, b∗) is a fixed point of the operatorP defined in (11) wherea∗ = P1(b
∗); the solution of

(1) with upper boundb∗. This motivates iterating the algorithm until the difference of entries

of the two vectorsbk andbk
# where

bk
# = P2 ◦ P1(b

k)

is below a pre-specified positive constantδ.

13



The implementation. The projected subgradient algorithm for the two curve problem as

well as the generalized PAVA computing the solution for one curve under the constraints

(3) were implemented inR (R Development Core Team, 2008). The corresponding package

OrdMonReg Balabdaoui et al. (2009) is available on CRAN. Note that the data analyzed in

Section 3.4 is made available as a dataset inOrdMonReg.

To conclude this section on the algorithmic aspects of our work, we would like to men-

tion the work by Beran and Dümbgen (2009) who propose an active set algorithm which can

be tailored to solve the problem given in (5) for an arbitrarynumber of ordered monotone

curves. However, Beran and Dümbgen (2009) do not provide ananalysis of the structure of

the estimated curves such as characterizations and rather put their emphasis on the algorith-

mic developments of the problem.

3.4 Real data example from mechanical engineering

We would like to estimate the stress-strain curves based on the available experimental data

for two different velocity levels (see Figure 1). The expected curves have to be isotonic and

ordered. The data consist of 1495 pairs(xi, yi) and(yi, zi). The values of the measured strain

of the material (on thex-axis), are actually defined as(−) the logarithm of the ratio of the

current over the initial specimen length. The values are positive and take the maximal value

1, which corresponds to a maximum shortening of 63%.

Furthermore, since the stress measurements for different velocities are not performed ex-

actly at the same strain, the values of the stress have been interpolated at equally spaced

values of the strain. As pointed out by a referee, this will induce correlation between the

strain data. Even if the strain measurement were not interpolated, having correlated stress

measurements is rather inevitable in this particular application because of the data process-

ing procedures associated with the measurement technique (see Shim and Mohr, 2009). The

estimation method is however still applicable. When studying statistical properties of the

isotonic estimators such as consistency and convergence, the correlation between the data

should be of course taken into account.

In such problems, practitioners usually fit parametric models using a trial and error ap-

proach in an attempt to capture monotonicity of the stress-strain curves as well as their order-

ing. The methods used are rather arbitrary and can also be time consuming, hence the need

for an alternative estimation approach. Our main goal is to provide those practitioners with a

rigorous way for estimating the ordered stress-strain curves.

In Figure 2 (upper plot) we provide the original data (black and gray dots) and the pro-

posed ordered isotonic estimatesa∗ and b∗ as described above. Being step functions, the

estimated isotonic curves are non-smooth, a well known drawback of isotonic regression, see

among others Wright (1978) and Mukerjee (1988). The latter author pioneered the combi-

nation of isotonization followed by kernel smoothing. A thorough asymptotic analysis of

14



the smoothed isotonized and the isotonic smooth estimatorswas given by Mammen (1991).

Mukerjee (1988, p. 743) shows that monotonicity of the regression function is preserved by

the smoothing operation if the used kernel is log-concave. Thus, we define our smoothed

ordered monotone estimators by

ã∗h(x) =

∑n
i=1 Kh(x − t)a∗i

∑n
i=1 Kh(x − xi)

b̃∗h(x) =

∑n
i=1 Kh(x − t)b∗i

∑n
i=1 Kh(x − xi)

for 0 ≤ x ≤ 1. For simplicity, we used the kernelKh(x) = φ(x/h) whereφ is the density

function of a standard normal distribution which is clearlylog-concave. Figure 2 (lower plot)

depicts the smoothed isotonic estimates. We set the bandwidth toh = 0.1n−1/5 ≈ 0.023.

Motivated by estimation of stress-strain curves, an application from mechanical engineer-

ing, we consider in this paper weighted Least Squares estimators in the problem of estimating

two ordered isotonic regression curves. We provide characterizations of the solution and de-

scribe a projected subgradient algorithm which can be used to compute this solution. As a

by-product, we show how an adaptation of the well-known PAVAcan be used to compute

min-max estimators for any set functional satisfying the Averaging Property.

Acknowledgements. The first author would like to thank Cécile Durot for some interest-

ing discussions around the subject. We also thank JongMin Shim for having made the data

available to us.

A Proofs

Proof of Theorem 2.2.Suppose that(a∗, b∗) is the solution. Forǫ ∈ (0, 1), and(a, b) ∈ In

consider the pair(aǫ, bǫ) ∈ R
n × R

n defined as

aǫ = a∗ + ǫ(a − a∗)

bǫ = b∗ + ǫ(b − b∗).

For i ≤ j ∈ {1, ..., n}, we have

aǫ
j − aǫ

i = (1 − ǫ)(a∗j − a∗i ) + ǫ(aj − ai) ≥ 0

bǫ
j − bǫ

i = (1 − ǫ)(b∗j − b∗i ) + ǫ(bj − bi) ≥ 0.

Also, for i ∈ {1, ..., n} we have

aǫ
i − bǫ

i = (1 − ǫ)(a∗i − b∗i ) + ǫ(ai − bi) ≤ 0.
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Figure 2: Original observations, isotonic and isotonic smoothed estimates.
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Hence,(aǫ, bǫ) ∈ In, and

0 ≤ lim
ǫց0

1

ǫ
(L2(a

ǫ, bǫ) − L2(a
∗, b∗))

=
n

∑

i=1

(a∗i − yi)(ai − a∗i )w
1
i +

n
∑

i=1

(b∗i − zi)(bi − b∗i )w
2
i

yielding the inequality in (6).

Now consider the vectorsaǫ andbǫ such that forl = 1, ..., n

aǫ
l = a∗l + ǫ a∗l 1l∈B1

ij

bǫ
l = b∗l

Let r ≤ s ∈ {1, ..., n}. If r /∈ B1
ij

ands /∈ B1
ij

, thenaǫ
s − aǫ

r = a∗s − a∗r ≥ 0. If r ∈ B1
ij

and

s /∈ B1
ij

, thena∗s > a∗r andaǫ
s − aǫ

r = a∗s − a∗r + ǫa∗s > 0 for |ǫ| small enough. The same

reasoning applies ifr /∈ B1
ij

ands ∈ B1
ij

. Finally, if r, s ∈ B1
ij

, thenaǫ
s − aǫ

r = 0.

Now, forr ∈ {1, ..., n}, we haveaǫ
r = a∗r ≤ b∗r if r /∈ B1

ij
. Otherwise,aǫ

r = a∗r(1+ǫ) < b∗r
if |ǫ| is small enough. Hence,(aǫ, bǫ) ∈ In, and

0 = lim
ǫց0

1

ǫ
(L2(a

ǫ, bǫ) − L2(a
∗, b∗))

=
n

∑

r=1

(a∗r − yr)1r∈B1
ij

a∗rw
1
r .

Summing up over all the setsB1
ij

yields the identity in (7). We can prove very similarly the

identity in (8).

Conversely, suppose that(a∗, b∗) ∈ In satisfies the inequality in (6). For any(a, b) ∈ In,

we have

L2(a, b) − L2(a
∗, b∗) =

1

2

n
∑

i=1

(ai − a∗i )
2w1

i +
1

2

n
∑

i=1

(bi − b∗i )
2w2

i

+
n

∑

i=1

(a∗i − yi)(ai − a∗i )w
1
i

+

n
∑

i=1

(b∗i − zi)(bi − b∗i )w
2
i

≥ 0.

We conclude that(a∗, b∗) is the solution of the minimization problem. 2

Proof of Proposition 2.3.Let ǫ > 0 and consider(a, b) ∈ R
n × R

n such that

ai = a∗i − ǫ 1i∈{1,..,t}, t ∈ {1, ...n}
bi = b∗i
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for i = 1, ..., n. For smallǫ, (a, b) ∈ In. Using the characterization in Theorem 2.2, it

follows that

t
∑

j=1

(a∗j − yj)w
1
j ≤ 0

implying that

t
∑

j=1

(a∗1 − yj)w
1
j ≤ 0, for t ∈ {1, ...n}

or equivalently

a∗1 ≤ min
t≥1

Av1({1, . . . , t}).

Now, consider(a, b) ∈ R
n × R

n such that

aj = a∗j − ǫ1j∈{1,...,t}, t ∈ {1, ..., n}
bj = b∗j − ǫ1j∈{1,...,t′}, 1 ≤ t′ ≤ t

for j = 1, ..., n, with ǫ > 0. For smallǫ, we have that(a, b) ∈ I2, and hence

t
∑

j=1

(a∗j − yj)w
1
j +

t
∑

j=1

(b∗j − zj)w
2
j ≤ 0.

It follows that

t
∑

j=1

(a∗1 − yj)w
1
j +

t′
∑

j=1

(a∗1 − zj)w
2
j ≥ 0,

that is

a∗1 ≤ min
1≤t′≤t≤n

M̃({1, . . . , t}, {1, . . . , t′}).

We conclude that

a∗1 ≤ min
t≥1

Av1({1, . . . , t}) ∧ min
t≥t′≥1

M̃ ({1, . . . , t}, {1, . . . , t′}).

Now if a∗1 < b∗1, let i1{1, ..., n} be such thata∗1 = . . . = a∗i1 . Then(a, b) is such that

aj = a∗j + ǫ 1j∈{1,...,i1}

bj = b∗j

for j = 1, ..., n is in In when|ǫ| is small enough. It follows that

Av1({1, . . . , i1}) = a∗1.
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If a∗1 = b∗1, andi′1 andi′′1 are such thata∗1 = .... = a∗i′
1

andb∗1 = .... = b∗i′′
1

, then(a, b) such

that

aj = a∗j + ǫ 1j∈{1,...,i′
1
}

bj = b∗j + ǫ 1j∈{1,...,i′′
1
}

for j = 1, ..., n is in In for |ǫ| small enough. Hence,

a∗1 = M̃({1, . . . , i′1}, {1, . . . , i′′1}).

(note thati′′1 ≤ i′1). Therefore,

a∗1 = min
t≥1

Av1({1, . . . , t}) ∧ max
t≥t′≥1

M̃ ({1, . . . , t}, {1, . . . , t′}).

The expression ofb∗1 follows easily by replacing respectivelyyi and zi by −zn−i+1 and

−yn−i+1 for i = 1, . . . , n. 2

Proof of Theorem 3.3.Considera ∈ R
n given by

ai = max
s≤i

min
t≥i

M({s, . . . , t})

and also the subdivision into subsetsSj = {ij−1 + 1, . . . , ij} obtained by the PAVA. Let us

denote byG− (resp.G+) the grid set of indices which correspond to points at the beginning

(resp. end) of those subsets; i.e. of the formij + 1 (resp.ij).

We obviously have

ai ≤ max
s≤i

min
t≥i, t∈G+

M({s, . . . , t}).

Then, considers /∈ G−. This means that we have a set{s, . . . , t} of the formB∪C, C being

a union of subsets in the subdivision andB a right subset of a set of the partition of the form

A ∪ B. We want to prove thatM({s, . . . , t}) = M(B ∪ C) is either smaller thanM(C) or

M(A ∪ B ∪ C). Suppose this is not the case. Then we would have

M(B ∪ C) > M(C), M(B ∪ C) > M(A ∪ B ∪ C), M(A) > M(B),

where the last inequality is implied by the second property in Theorem 3.2. Yet, the second

inequality, together with the Averaging Property , impliesthatM(A) < M(B ∪ C). In the

end we get

M(B ∪ C) > M(C), M(B ∪ C) > M(A) > M(B),

which contradicts the Averaging Property .

We conclude thatM({s, . . . , t}) is smaller than the value ofM at a set which is a union

of sets of the subdivision; i.e. eitherA ∪ B ∪ C or C itself. But on sets of this kind it is

obvious, by the Averaging Property , thatM is smaller than the valuemt, since this is the
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maximal value ofM on the intervals composing such a set (this is a consequence of M being

increasing). Hence,M({xs, . . . , xt}) ≤ mt, implying that

ai ≤ max
s≤i

min
t≥i, t∈G+

mt = mi.

The opposite inequality is obtained exactly in a symmetric way (first takes ∈ G−, then

prove thatM({xs, . . . , xt}) is larger than the value ofM on a union of intervals). 2

B Computing the subgradient

Computing the subgradient ofΨ on a dense set. Consider the set

D =
{

b = (b1, . . . , bn−1) ∈ R
n−1 : bi 6= bj ∀ i 6= j,

andbi′ 6= Gs,j′ ∀ 1 ≤ i′ ≤ n − 1, 1 ≤ s ≤ n − 1, 1 ≤ j′ ≤ n
}

.

We denote by(e1, . . . , en−1) the canonical basis ofRn−1. The setD is a dense open subset

of R
n−1 where the functionΨ is differentiable. Actually, for a fixedb ∈ D, in the explicit

formula forΨ there is no ex-aequo (up to possible equalities between theGi,s terms). The

same will be true in a neighborhood ofb. For each value ofi ∈ {1, . . . , n}, we define the

function

Ψi =
(

max
s≤i

(Gs,i ∧ bs) − yi

)2
w1

i .

Let us first consideri ∈ {1, . . . , n − 1}. We define{si1, . . . , sik} to be the set of indicess

wheremaxs≤i(Gs,i ∧ bs) is attained.

If k = 1, thenGsi1
,i ∧ bs1

> Gs,i ∧ bs for all s ∈ {1, . . . , i} \ {si1}. This implies that

the same strict inequalities will be true in a neighborhood of b and hence there are two cases:

either the function is locally constant or the square of an affine function. Hence,

• If bsi1
> Gsi1

,i, then∇Ψi(b) = 0.

• If bsi1
< Gsi1

,i, then∇Ψi(b) = 2
(

(Gsi1
,i ∧ bsi1

) − yi

)

w1
i esi1 .

Now if k ≥ 2, then this implies that onlyGsij
,i, j = 1, . . . , k can be equal (by definition

of the setD), and hence the function is locally constant. Therefore,∇Ψi(b) = 0.

For i = n, the calculation also requires distinction between the casesk = 1 andk ≥ 2.

Thus, ifk = 1 and the maximummaxs≤n(Gs,n ∧ bs) is attained atsi1 6= n, then

• If bsi1
> Gsi1

,n, then∇Ψi(b) = 0.

• If bsi1
< Gsi1

,n, then∇Ψn(b) = 2
(

(Gsi1
,n ∧ bsi1

) − yn

)

w1
n esi1 .

20



If k = 1 andsi1 = n (in this casebn = b∗n is known) ork ≥ 2, then∇Ψn(b) = 0. Now

the gradient∇Ψ(b) is given by

∇Ψ(b) =
n

∑

i=1

∇Ψi(b) + 2
n−1
∑

i=1

(bi − zi)w
2
i e

i.

Calculating the subgradient ofΨ at any point. Take now any pointb ∈ R
n−1 which does

not necessarily belong toD. We want to approximateb by points ofD in the perspective of

using the following property: IfΨ is convex,pε → p, γε → γ asǫ → 0, andγε ∈ ∂Ψ(pε),

thenγ ∈ ∂Ψ(p). This is useful when we only want to find one element of the subdifferential

at a given point and we already know the gradients at nearby points.

We use the following approximation:

bε = b + εu, whereu = (1, 2, . . . , i, . . . , n − 1).

We claim thatbε may belong to the complement ofD for a finite number of valuesε at most.

Indeed, for any pair(i, j) with i 6= j, the equalitybi + iε = bj + jε is satisfied for a unique

value ofε, and for anyi, i′ ands, the same thing holds true for the equalityGi,s = bi′ + εi′.

Hence, there existsε0 > 0 such that forε ∈]0, ε0[, we havebε ∈ D, where the expression of

the gradient is fully known by our calculations above.

We can act as follows: Takeb and fix i ≤ n − 1. For anys ≤ i, determine which one

is minimal amongGi,s and bs. In case of equality, priority will be given toGi,s since in

the approximation withbε, the value ofGi,s would be smaller thanbs + ǫs. This way we

classify the indices in two categories: The G-type and b-type. Next, look at all the indices

s1, . . . , sk realizing the minimum ofGi,s ∨ bs. If amongs1, . . . , sk there are some which

are of the b-type, this would imply that in the approximationwith bε, those indices will yield

even a higher value forGi,sj
∨ (bsj

+ εsj). In particular the maximal one will correspond to

the largest b-type index since it is the one where the coordinate is increased the most in the

approximation. Due to the fact thatb∗n is fixed, we adopt, fori = n, the convention that the

indexs = n is of the G-type whenGn,n ∧ b∗n is maximal. Thus, we can define the vector

∇̃Ψi(b) = 2((Gsim ,i ∧ bsim
) − yi) w1

i esim or 0,

where the indexsim is the largest index of b-type such thatGi,s ∧ bs is maximal (note that

sim is always≤ n − 1). If no such index exists (i.e. if the maximal ones are all of G-type),

then this is the case where the vector equals0. Now consider

∇̃Ψ(b) =

n
∑

i=1

∇̃Ψi(b) + 2

n−1
∑

i=1

(bi − zi) w2
i ei.

This vector belongs to∂Ψ(b) by approximation and closedness of the subdifferential.
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Note that we would have obtained another element of the subdifferential if we had fixed

a different order of priority on the coordinates ofb; for instance the first index instead of the

last one (ifu = (1, 2, . . . , i, . . . n − 1) was replaced with(n − 1, . . . , 2, 1)). We could also

have decreased (instead of increased) the components, thusgiving priority to bs instead of

Gi,s in the minimumGi,s ∧ bs. In that case, we would have obtained0 for the subgradient of

Ψi as soon as one of the components realizing the maximum was of the G-type.
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