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In this paper, we consider the problem of finding the Least Squares estimators of two isotonic regression curves g • 1 and g • 2 under the additional constraint that they are ordered; e.g., g

Given two sets of n data points y 1 , .., y n and z 1 , . . . , z n observed at (the same) design points, the estimates of the true curves are obtained by minimizing the weighted Least Squares criterion

and a i ≤ b i , i = 1, ..., n. The characterization of the estimators is established. To compute these estimators, we use an iterative projected subgradient algorithm, where the projection is performed with a "generalized" pool-adjacent-violaters algorithm (PAVA), a byproduct of this work. Then, we apply the estimation method to real data from mechanical engineering.

Introduction and motivation

Estimating a monotone regression curve is one of the most classical estimation problems under shape restrictions, see e.g. [START_REF] Brunk | On the estimation of parameters restricted by inequalities[END_REF]. A regression curve is said to be isotonic if it 1 is monotone nondecreasing. We chose in this paper to look at the class of isotonic regression functions. The simple transformation g → -g suffices for the results of this paper to carry over to the antitonic class.

Given n fixed points x 1 , . . . , x n , assume that we observe y i at x i for i = 1, . . . , n. When the points (x i , y i ) are joined, the shape of the obtained graph can hint at the increasing monotonicity of the true regression curve, g • say, assuming the model y i = g • (x i ) + ε i , with ε i the unobserved errors. This shape restriction can also be a feature of the scientific problem at hand, and hence the need for estimating the true curve in the class of antitonic functions. We refer to [START_REF] Barlow | Statistical inference under order restrictions. The theory and application of isotonic regression[END_REF] and [START_REF] Robertson | Order restricted statistical inference[END_REF] for examples. The weighted Least Squares estimate of g • in the class of isotonic functions taking y i at x i is the unique minimizer of the criterion

L(a) = n i=1 w i (y i -a i ) 2
(1) over the class of vectors a ∈ R n such that a 1 ≤ a 2 .... ≤ a n where w 1 > 0, w 2 > 0, . . . , w n > 0 are given positive weights. In what follows, we will say that a vector v ∈ R n is increasing or isotonic if v 1 ≤ . . . ≤ v n , and use the notation v ≤ w for v, w ∈ R n if the inequality holds componentwise.

It is well known that the solution a * of the Least Squares problem in (1) is given by the so-called min-max formula; i.e., a * i = max 

where Av({s, . . . , t}) = t i=s y i w i / t i=s w i (see e.g. [START_REF] Barlow | Statistical inference under order restrictions. The theory and application of isotonic regression[END_REF]. van Eeden (1957a,b) has generalized this problem to incorporate known bounds on the regression function to estimate; i.e., she considered minimization of L under the constraint

a L ≤ a ≤ a U , (3) 
for two increasing vectors a L and a U . As in the classical setting, the solution of this problem admits also a min-max representation. The PAVA can be generalized to efficiently compute this solution and has been implemented in the R package OrdMonReg [START_REF] Balabdaoui | OrdMonReg: Compute least squares estimates of one bounded or two ordered isotonic regression curves[END_REF]. Computation relies on a suitable functional M defined on the sets A ⊆ {1, ..., n} which generalizes the function Av in (2). This functional for the bounded monotone regression in (3) is given by

M (A) = Av(A) ∨ max A a L ∧ min A a U
where min A v = min i∈A v i and max A v = max i∈A v i . Compare Barlow et al. (1972, p. 57), where a functional notation is used. However, in the latter reference no formal justification was given for the form of the functional M nor for the validity of (the modified version of) the PAVA, see discussion after Theorem 2.1. [START_REF] Chakravarti | Bounded isotonic median regression[END_REF] discusses the bounded isotonic regression problem for the absolute value criterion function, yielding the bounded isotonic median regressor. [START_REF] Chakravarti | Bounded isotonic median regression[END_REF] proposes a PAVA-like algorithm as well, and establishes some connections to linear programming theory. Unbounded isotonic median regression was first considered by [START_REF] Robertson | On estimating monotone parameters[END_REF], who provided a min-max formula for the estimator and a PAVA-like algorithm to compute it. They also studied its consistency. Now suppose that instead of having only one set of observations y 1 , . . . , y n at the design points x 1 , . . . , x n , we are interested in analyzing two sets of data y 1 , . . . , y n and z 1 , . . . , z n observed at the same design points. Furthermore, if we have the information that the underlying true regression curves are increasing and ordered, it is natural to try to construct estimators that fulfill the same constraints.

The current paper presents a solution to this problem of estimating two isotonic regression curves under the additional constraint that they are ordered. This solution is the unique minimizer (a * , b * ) of the criterion

L 2 (a, b) = n i=1 w 1 i (y i -a i ) 2 + n i=1 w 2 i (z i -b i ) 2 (4)
over the class of pairs of vectors (a, b) ∈ R n × R n such that a and b are increasing and a ≤ b, with w 1 and w 2 given vectors of positive weights in R n . The problem was motivated by an application from mechanical engineering. We will make use of experimental data obtained from dynamic material tests (see [START_REF] Shim | Using split hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates[END_REF] to illustrate our estimation method. In engineering mechanics, it is common practice to determine the deformation resistance and strength of materials from uniaxial compression tests at different loading velocities. The experimental results are the so-called stress-strain curves (see Figure 1), and these may be used to determine the deformation resistance as a function of the applied deformation. The recorded signals contain substantial noise which is mostly due to variations in the loading velocity and electrical noise in the data acquisition system. The data in this example consist of 1495 distinct pairs (x i , y i ) and (x i , z i ) where x i is the measured strain, while y i (gray curve) and z i (black curve) correspond to the experimental stress results for two different loading velocities. The true regression curves are expected to be (a) monotone increasing as the stress is known to be an increasing function of the strain (for a given constant loading velocity), and (b) ordered as the deformation resistance typically increases as the loading velocity increases. In Section 3, we show the resulting estimates as well as a smoothed version thereof.

We will show that minimizing L 2 is equivalent to minimizing another convex functional over the class of isotonic vectors a ∈ R n . By doing so, we reduce a two-curve problem under the constraints of monotonicity and ordering to a one-curve problem under the constraint of monotonicity and boundedness. Actually, we can even perform the minimization over the class of isotonic vectors (a 1 , . . . , a n-1 ) of dimension n -1 satisfying the constraint a 1 ≤ . . . ≤ a n-1 ≤ a * n as we can explicitly determine a * n by a generalized min-max formula (see Proposition 2.3). The solution of this equivalent minimization problem, which gives the solution a * (and also b * because it is a function of a * ), is computed using a projected subgradient algorithm where the projection step is performed using a suitable generalization of the PAVA.

We would like to note that [START_REF] Brunk | Maximum likelihood estimation of the distributions of two stochastically ordered random variables[END_REF] considered a related problem, that of nonparametric Maximum likelihood estimation of two ordered cumulative distribution functions. In the same class of problems, [START_REF] Dykstra | Maximum likelihood estimation of the survival functions of stochastically ordered random variables[END_REF] treated estimation of survival functions of two stochastically ordered random variables in the presence of censoring, which was extended by [START_REF] Feltz | Maximum likelihood estimation of the survival functions of N stochastically ordered random variables[END_REF] to N ≥ 2 stochastically ordered random variables. The theoretical solution can be related to the well-known Kaplan-Meier estimator and can be computed using an iterative algorithmic procedure for N ≥ 3 (see [START_REF] Feltz | Maximum likelihood estimation of the survival functions of N stochastically ordered random variables[END_REF]Dykstra, 1985, p. 1016). The √ nasymptotics of the estimators for N = 2, whether there is censoring or not, were established by [START_REF] Praestgaard | Asymptotic theory for nonparametric estimation of survival curves under order restrictions[END_REF].

The paper is organized as follows. In Section 2, we give the characterization of the ordered isotonic estimates. We also provide the explicit form of the solution of the related bounded isotonic regression problem where the upper of the two isotonic curves is assumed to be fully known.

In Section 3 we describe the projected subgradient algorithm that we use to compute the Least Squares estimators of the ordered isotonic regression curves, and apply the method to real data from mechanical engineering. The technical proofs are deferred to appendices A and B.

Estimation of two ordered isotonic regression curves

If the larger of the two isotonic curves was known, then there would of course be no need to estimate it. If we put a U = a 0 , the weighted Least Squares estimate a * of the smaller isotonic curve is the minimizer of

L(a) = n i=1 w i (y i -a i ) 2 ,
where w ∈ R n is a vector of given positive weights, and a ∈ I a 0 n , the class of isotonic vectors a ∈ R n such that a ≤ a 0 and a 0 ∈ R n . When the components of a 0 are all equal, the vector a 0 will be assimilated with the common value of its components as done in Proposition 3.4 below.

The notation I w n will be used again hereafter to denote the class of isotonic vectors v ∈ R n such that v ≤ w.

The statement of Barlow et al. (1972, p. 57) implies that if we define

M (A) = Av(A) ∧ min A a 0
for a subset A ⊆ {1, ..., n}, then the solution a * can be computed using an appropriately modified version of the PAVA.

Theorem 2.1. For i = 1, . . . , n, we have To keep this paper at a reasonable length, the proof of Theorem 2.1 is omitted. A short note containing a more thorough discussion of the one-curve problem and a proof of Theorem 2.1 can be obtained from the authors upon request. A general description of the modified PAVA and a proof that it works whenever the functional M satisfies the so-called Averaging Property can be found in Section 3.

a * i = max
We now return to the main subject of this paper. Theorem 2.1 is crucial for finding the Least Squares estimates of two ordered isotonic regression curves. In particular, the result will be used to develop an appropriate algorithm to compute the solution.

Let y 1 , ...y n and z 1 , ..., z n be the observed data from two unknown isotonic curves g • 1 and g

• 2 such that g • 1 ≤ g • 2 .
Given two vectors in R n of positive weights w 1 and w 2 , we would like to minimize

L 2 (a, b) = n i=1 (y i -a i ) 2 w 1 i + n i=1 (z i -b i ) 2 w 2 i (5)
over the class of pairs of vectors (a, b) ∈ R n × R n such that a and b are isotonic and a ≤ b.

Call this class I n .

Existence and uniqueness of the solution. They follow from convexity and closedness of I n and strict convexity of L 2 .

Characterization of the solution. For completeness, we give the characterization of the solution of minimizing (5) over I n ; i.e, a necessary and sufficient condition for (a, b) ∈ I n to be equal to this solution. Let i

1 < ... < i k such that i 1 = 1, i k = n and a * 1 = ... = a * i 1 < a * i 1 +1 = ... = a * i 2 -1 < ... < a * i k = ... = a * n .
We call

B 0 i j (resp. B 1 i j ) a set of indices {i j , ..., i j+1 -1}, j = 1, ..., k -1 such that a * i j = b * i j (resp. a * i j < b * i j ). Similarly, let l 1 < ... < l r such that l 1 = 1, l r = n such that b * 1 = ... = b * l 1 < b * l 1 +1 = ... = b * l 2 -1 < ... < b * l k = ... = b * n and call C 0 l j (resp. C 1 l j ) a set of indices {l j , ..., l j+1 -1}, j = 1, ..., r -1 such that b * l j = a * l j (resp. b * l j > a * l j ).
Theorem 2.2. The pair (a * , b * ) ∈ I n is the minimizer of ( 5) if and only if

n i=1 (a * i -y i )(a * i -a i )w 1 i + n i=1 (b * i -z i )(b * i -b i )w 2 i ≥ 0, ∀ (a, b) ∈ I n (6) s∈∪ j B 1 i j (a * s -y s )a * s w 1 s = 0, and (7) 
s∈∪ j C 1 l j (b * s -z s )b * s w 2 s = 0. ( 8 
)
Proof. See Appendix A. An explicit formula in the sense of a min-max representation similar to (2) of (a * , b * ) turned out be to hard to find. However, since a * (resp. b * ) is also the minimizer of

n i=1 (a -y i ) 2 w 1 i resp. n i=1 (b -z i ) 2 w 2 i over the class I b * n (resp. the class of isotonic vectors b ∈ R n such that b ≥ a * ), Theorem 2.1 implies that a * i = max s≤i min t≥i (Av 1 ({s, . . . , t}) ∧ b * s ) (9) b * i = max s≤i min t≥i (Av 2 ({s, . . . , t}) ∨ a * t ) (10) 
for i = 1, . . . , n, where

Av 1 (A) = i∈A y i w 1 i i∈A w 1 i , and Av 2 (A) = i∈A z i w 2 i i∈A w 2 i for A ⊆ {1, ..., n}.
Thus, the solution (a * , b * ) is a fixed point of the operator P : I n → I n defined as

P ((a, b)) = (P 1 (b), P 2 (a)) (11) = max s≤i min t≥i (Av 1 ({s, . . . , t}) ∧ b s ), max s≤i min t≥i (Av 2 ({s, . . . , t}) ∨ a t ) .
However, this fixed point problem does not admit a unique solution. Therefore, there is no guarantee that an algorithm based on the above min-max formulas yields the solution, except in the unrealistic and uninteresting case where the starting point of the algorithm is the solution itself. To see that P does not admit a unique fixed point, note that the minimizer of the criterion

n i=1 (a i -y i ) 2 w 1 i + B n i=1 (b i -z i ) 2 w 2 i
is a fixed point of P for any B > 0. Therefore, a computational method based on starting from an initial candidate and then alternating between ( 9) and ( 10) cannot be successful. In parallel, we have invested a substantial effort in trying to get a closed form for the estimators. Although we did not succeed, we were able to obtain a closed form for a * 1 (and by symmetry for b * n ).

Proposition 2.3. We have that

a * 1 = min t≥1 Av 1 ({1, . . . , t}) ∧ min t≥t ′ ≥1 M ({1, . . . , t}, {1, . . . , t ′ }) ( 12 
)
where

M (A, B) = Av 1 (A)( i∈A w 1 i ) + Av 2 (B)( j∈B w 2 j ) i∈A w 1 i + j∈B w 2 j .
By symmetry, we also have that

b * n = max t≤n Av 2 ({t, . . . , n}) ∨ max t≤t ′ ≤n M ({t ′ , . . . , n}, {t, . . . , n}). ( 13 
)
Some remarks are in order. On the one hand, the expressions obtained above indicate that the Least Squares estimator must depend, as expected, on the relative ratio of the weights w 1 and w 2 . In particular, if w 2 = 0 (resp. w 1 = 0), the expression of a * 1 (resp. b * n ) specializes to the well-known min-max formula in the classical Least Squares estimation of an (unbounded) isotonic curve. On the other hand, the expression of b * n is essential for our subgradient algorithm below.

Proof of Proposition 2.3. See Appendix A.

In the next section, we describe how we can make use of the min-max formula in (9) to compute the estimators using a projected subgradient algorithm. As mentioned above, we use in this algorithm the identity (13) given in the previous proposition.

Algorithms and Application to real data

In this section, we show that the bounded isotonic estimator can be computed using the wellknown PAVA, or to be more precise a modified version of it. Recall that the bounded isotonic estimator in the one-curve problem is given by

a * i = max s≤i min t≥i M ({s, . . . , t})
where M (A) = Av(A)∨max A a 0 , A ⊆∈ {1, ..., n}. That a * can be computed using a PAVA is a consequence of a more general result: This computational fact is true provided that a functional M of sets A ⊆ {1, ..., n} satisfies what is referred to as the Averaging Property , (see Chakravarti, 1989, p. 138), also called Cauchy Mean Value Property by Leurgans (1981, Section 1). See also Robertson et al. (1988, p. 390). Note that in the classical unconstrained monotone regression problem, the min-max expression of the Least Squares estimator follows from Theorem 2.8 in Barlow et al. (1972, p. 80).

Getting the min-max solution by the PAVA

First, let us describe how the PAVA works for some set functional M .

• At every step the current configuration is given by a subdivision of {1, ..., } into k

subsets S 1 = {1, . . . , i 1 }, S 2 = {i 1 + 1, . . . , i 2 }, . . . , S k = {i k-1 + 1, . . . , n} for some indices 1 = i 0 ≤ i 1 < i 2 < • • • < i k-1 < i k = n.
• The initial configuration is given by the finest subdivision; i.e., I j = {j}.

• At every step we look at the values of M on the sets of the subdivision. A violation is noted each time there exists a value j such that M (S j ) > M (S j+1 ). We consider the first violation (the one corresponding to the smallest j) and then merge the subsets S j and S j+1 into one interval.

• Given a new subdivision (which has one subset less than the previous one), we look for possible violations.

• The algorithm stops when there are no violations left.

Since for any violation a merging is performed (thus reducing the number of subsets), it is clear that the algorithm stops after a finite number of iterations.

We require now the set functional M to satisfy the following property. See Leurgans (1981, Section 1), Robertson et al. (1988, p. 390) and Chakravarti (1989, p. 138).

Definition 3.1. We say that the functional M satisfies the Averaging Property if for any sets A and B such that A ∩ B = ∅ we have that

min{M (A), M (B)} ≤ M (A ∪ B) ≤ max{M (A), M (B)}.
If h and w > 0 are given vectors ∈ R n , then beside

A → Av(A) = i∈A w i h i / i∈A w i ,
the following examples of functions also satisfy the Averaging Property :

A → Av(A) ∨ max A h 1 i ∧ min A h 0 , with h 0 , h 1 two vectors ∈ R n , A → min A h = min i∈A h i , A → med A h = arg min m∈R i∈A |h i -m|w i
where the arg min is taken to be the smallest m in case non-uniqueness occurs,

A → max A h = max i∈A h i .
Note that the maximum, the minimum and the sum of two functionals satisfying the Averaging Property satisfy the same property as well.

Theorem 3.2. The final configuration obtained by the PAVA is such that the two following properties are satisfied.

1. The functional M is increasing on the sets of the subdivision. Proof. The fact that M is increasing on the final configuration is an easy consequence of the absence of violations (otherwise the algorithm would not have stopped).

As for the second part of the property, note that this is satisfied by the initial configuration (since no set is the disjoint union of two non-trivial subsets), as well as by any configuration that one could obtain after the first merging (since a merging occurs only because of a violation). Now we will use an inductive reasoning.

To this end, we have to check two situations: Suppose we merge two subsequent sets A and B and want to check whether there is a violation on C and D, with A ∪ B = C ∪ D. We are in one of the two following cases: either

A = A 1 ∪ A 2 , C = A 1 and D = A 2 ∪ B, or B = B 1 ∪ B 2 , C = A ∪ B 1 and D = B 2 (the case C = A and D = B is trivial).
In the first case, if we suppose M (D) ≥ M (C), we get

M (A 2 ∪ B) ≥ M (A 1 ), M (A 2 ) < M (A 1 ), M (B) < M (A) = M (A 1 ∪ A 2 ),
(the first inequality follows by assumption, the second by induction, and the third is true since A and B have been merged) and this is impossible since one would conclude that

max{M (A 2 ), M (B)} ≥ M (A 1 ) > M (A 2 ),
and hence

M (A) > M (B) ≥ M (A 1 ) > M (A 2 ), which implies M (A) > max{M (A 1 ), M (A 2 )},
which contradicts the Averaging Property .

In the second case we would have

M (A ∪ B 1 ) ≤ M (B 2 ), M (B 2 ) < M (B 1 ), M (A) > M (B) = M (B 1 ∪ B 2 ), which implies min{M (A), M (B 1 )} ≤ M (B 2 ) < M (B 1 ),
and then min{M (A), M (B 1 )} = M (A) and M (A) ≤ M (B 2 ) < M (B 1 ), which contradicts either M (A) < M (B) or the Averaging Property . 2

Theorem 3.3. If (S j ) j is the partition obtained at the end of the PAVA described above, then m i = M (S j i ) such that i ∈ S j i takes the same values given by the min-max formula for the index i.

Proof. See Appendix A.

Preparing for a projected subgradient algorithm

The following proposition is crucial for computing the ordered isotonic estimators via a projected subgradient algorithm.

Proposition 3.4. Let Ψ be the criterion

Ψ(b 1 , . . . , b n-1 ) = n i=1 max s≤i (G s,i ∧ b s ) -y i 2 w 1 i + n-1 i=1 (b i -z i ) 2 w 2 i ( 14 
)
10 which is to be minimized on the convex set

I b * n n-1 = {(b 1 , . . . , b n-1 ) ∈ R n-1 : b 1 ≤ b 2 ≤ . . . ≤ b n-1 ≤ b * n }
where

G s,i = min t≥i Av 1 ({s, . . . , t}) and b n = b * n in G n,n ∧ b n , (14).
The criterion Ψ is convex. Furthermore, its unique minimizer

(b * * 1 , . . . , b * * n-1 ) equals (b * 1 , . . . , b * n-1 ).
Proof. Let us write 

I = I ∞ n = {a = (a 1 , . . . , a n ) ∈ R n : a 1 ≤ . . . ≤ a n }, I * n = b = (b 1 , . . . , b n ) : (b 1 , . . . , b n-1 ) ∈ I b * n n-
(a j -y j ) 2 w 1 j + n-1 j=1 (b j -z j ) 2 w 2 j .
Hence, we have for b 

∈ I * n Ψ(b 1 , ..., b n-1 ) = min a∈I b n n j=1 (a j -y j ) 2 w 1 j + n-1 j=1 (b j -z j ) 2 w 2 j = n j=1 (ã j (b) -y j ) 2 w 1 j + n-1 j=1 (b j -z j ) 2
λ ã(b) + (1 -λ) ã(b ′ ) ≤ λ b + (1 -λ) b ′ and hence n j=1 ãj (λ b + (1 -λ) b ′ ) -y j 2 w 1 j ≤ n j=1 λ ã(b) + (1 -λ) ã(b ′ ) -y j 2 w 1 j ≤ λ n j=1 ãj (b) -y j 2 w 1 j + (1 -λ) n j=1 ãj (b ′ ) -y j 2 w 1 j .
This shows convexity of the first term of Ψ. Convexity of Ψ now follows from convexity of the function n-1 j=1 (b jz j ) 2 w 2 j and the fact that the sum of two convex functions defined on the same domain is also convex.

2 The idea behind considering the convex functional Ψ is to reduce the dimensionality of the problem as well as the number of constraints (from 3n -2 to n -1 constraints). Once Ψ is minimized; i.e, the isotonic estimate b * is computed, a * can be obtained using the min-max formula given in (9). However, the convex functional Ψ is not continuously differentiable, hence the need for an optimization algorithm that uses the subgradient instead of the gradient as the latter is not defined everywhere.

A projected subgradient algorithm to compute

b * 1 , . . . , b * n-1
To minimize the non-smooth convex function Ψ we use a projected subgradient algorithm. Since the gradient does not exist on the entire domain of the function, one has to resort to computation of a subgradient, the analogue of the gradient at points where the latter does not exist. As opposed to classical methods developed for minimizing smooth functions, the procedure of searching for the direction of descent and steplengths is entirely different. The classical reference for subgradient algorithms is [START_REF] Shor | Minimization Methods for Non-Differentiable Functions[END_REF]. [START_REF] Boyd | Subgradient methods[END_REF] provides a nice summary of the topic, including the projected variant. Note that a recent application in statistics of the subgradient algorithms gives now the possibility to compute the log-concave density estimator in high dimensions; see [START_REF] Cule | Maximum likelihood estimation of a multidimensional log-concave density[END_REF].

The main steps of the algorithm. Now recall that the functional Ψ should be minimized over the (n-1)dimensional convex set I 

v k+1 = b k -τ k D k ,
where D k is the subgradient calculated at the previous iterate; i.e., D k = ∇Ψ(v k ) (see Appendix B). However, it may happen that v k+1 is not admissible; i. n . The latter problem can be solved using the generalized PAVA for bounded isotonic regression as described above.

The computation of the subgradient D k is described in detail in Appendix B. As for the steplength τ k , we start the algorithm with a constant steplength. Once a pre-specified number of iterations has been reached we switch to

τ k+1 = (h 0.1 k D k 2 ) -1 where γ k := h -0.1 k is such that 0 ≤ γ k → 0 as k → ∞ and ∞ k=1 γ k = ∞.
Here, • 2 denotes the L 2 -norm of a vector in R n . This combination of constant and non-summable diminishing steplength showed a good performance in our implementation of the algorithm over other classical choices of (γ k ) k . Furthermore, convergence is ensured by the following theorem. ) is the vector given in Proposition 3.4. The proof can be found in [START_REF] Boyd | Subgradient methods[END_REF] by combining their arguments in Sections 2 and 3. Note that in our implementation we do not keep track of the iterate that yielded the minimal value of Ψ, since we apply a problem-motivated stopping criterion that guarantees us to have reached an iterate that is sufficiently close to

b * = (b * 1 , . . . , b * n ).
Choice of stopping rule. Since in subgradient algorithms the convex target functional does not necessarily monotonically decrease with increasing number of iterations, the choice of a suitable stopping criterion is delicate. However, in our specific setting we use the fact that 

k # = P 2 • P 1 (b k )
is below a pre-specified positive constant δ.

The implementation. The projected subgradient algorithm for the two curve problem as well as the generalized PAVA computing the solution for one curve under the constraints (3) were implemented in R (R [START_REF] Development | R: A Language and Environment for Statistical Computing[END_REF]. The corresponding package OrdMonReg Balabdaoui et al. ( 2009) is available on CRAN. Note that the data analyzed in Section 3.4 is made available as a dataset in OrdMonReg.

To conclude this section on the algorithmic aspects of our work, we would like to mention the work by Beran and Dümbgen (2009) who propose an active set algorithm which can be tailored to solve the problem given in ( 5) for an arbitrary number of ordered monotone curves. However, Beran and Dümbgen (2009) do not provide an analysis of the structure of the estimated curves such as characterizations and rather put their emphasis on the algorithmic developments of the problem.

Real data example from mechanical engineering

We would like to estimate the stress-strain curves based on the available experimental data for two different velocity levels (see Figure 1). The expected curves have to be isotonic and ordered. The data consist of 1495 pairs (x i , y i ) and (y i , z i ). The values of the measured strain of the material (on the x-axis), are actually defined as (-) the logarithm of the ratio of the current over the initial specimen length. The values are positive and take the maximal value 1, which corresponds to a maximum shortening of 63%.

Furthermore, since the stress measurements for different velocities are not performed exactly at the same strain, the values of the stress have been interpolated at equally spaced values of the strain. As pointed out by a referee, this will induce correlation between the strain data. Even if the strain measurement were not interpolated, having correlated stress measurements is rather inevitable in this particular application because of the data processing procedures associated with the measurement technique (see [START_REF] Shim | Using split hopkinson pressure bars to perform large strain compression tests on polyurea at low, intermediate and high strain rates[END_REF]. The estimation method is however still applicable. When studying statistical properties of the isotonic estimators such as consistency and convergence, the correlation between the data should be of course taken into account.

In such problems, practitioners usually fit parametric models using a trial and error approach in an attempt to capture monotonicity of the stress-strain curves as well as their ordering. The methods used are rather arbitrary and can also be time consuming, hence the need for an alternative estimation approach. Our main goal is to provide those practitioners with a rigorous way for estimating the ordered stress-strain curves.

In Figure 2 (upper plot) we provide the original data (black and gray dots) and the proposed ordered isotonic estimates a * and b * as described above. Being step functions, the estimated isotonic curves are non-smooth, a well known drawback of isotonic regression, see among others [START_REF] Wright | Estimating strictly increasing regression functions[END_REF] and [START_REF] Mukerjee | Monotone nonparameteric regression[END_REF]. The latter author pioneered the combination of isotonization followed by kernel smoothing. A thorough asymptotic analysis of the smoothed isotonized and the isotonic smooth estimators was given by [START_REF] Mammen | Estimating a smooth monotone regression function[END_REF]. Mukerjee (1988, p. 743) shows that monotonicity of the regression function is preserved by the smoothing operation if the used kernel is log-concave. Thus, we define our smoothed ordered monotone estimators by

ã * h (x) = n i=1 K h (x -t)a * i n i=1 K h (x -x i ) b * h (x) = n i=1 K h (x -t)b * i n i=1 K h (x -x i )
for 0 ≤ x ≤ 1. For simplicity, we used the kernel K h (x) = φ(x/h) where φ is the density function of a standard normal distribution which is clearly log-concave. Figure 2 (lower plot) depicts the smoothed isotonic estimates. We set the bandwidth to h = 0.1n -1/5 ≈ 0.023.

Motivated by estimation of stress-strain curves, an application from mechanical engineering, we consider in this paper weighted Least Squares estimators in the problem of estimating two ordered isotonic regression curves. We provide characterizations of the solution and describe a projected subgradient algorithm which can be used to compute this solution. As a by-product, we show how an adaptation of the well-known PAVA can be used to compute min-max estimators for any set functional satisfying the Averaging Property.
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A Proofs

Proof of Theorem 2.2. Suppose that (a * , b * ) is the solution. For ǫ ∈ (0, 1), and (a, b) ∈ I n consider the pair (a ǫ , b ǫ ) ∈ R n × R n defined as

a ǫ = a * + ǫ(a -a * ) b ǫ = b * + ǫ(b -b * ).
For i ≤ j ∈ {1, ..., n}, we have

a ǫ j -a ǫ i = (1 -ǫ)(a * j -a * i ) + ǫ(a j -a i ) ≥ 0 b ǫ j -b ǫ i = (1 -ǫ)(b * j -b * i ) + ǫ(b j -b i ) ≥ 0.
Also, for i ∈ {1, ..., n} we have Hence, (a ǫ , b ǫ ) ∈ I n , and

a ǫ i -b ǫ i = (1 -ǫ)(a * i -b * i ) + ǫ(a i -b i ) ≤ 0.
0 ≤ lim ǫց0 1 ǫ (L 2 (a ǫ , b ǫ ) -L 2 (a * , b * )) = n i=1 (a * i -y i )(a i -a * i )w 1 i + n i=1 (b * i -z i )(b i -b * i )w 2 i
yielding the inequality in (6). Now consider the vectors a ǫ and b ǫ such that for l = 1, ..., n

a ǫ l = a * l + ǫ a * l 1 l∈B 1 i j b ǫ l = b * l Let r ≤ s ∈ {1, ..., n}. If r / ∈ B 1 i j and s / ∈ B 1 i j , then a ǫ s -a ǫ r = a * s -a * r ≥ 0. If r ∈ B 1 i j and s / ∈ B 1 i j , then a * s > a *
r and a ǫ sa ǫ r = a * sa * r + ǫa * s > 0 for |ǫ| small enough. The same reasoning applies if r / ∈ B 1 i j and s ∈ B 1 i j . Finally, if r, s ∈ B 1 i j , then a ǫ sa ǫ r = 0. Now, for r ∈ {1, ..., n}, we have

a ǫ r = a * r ≤ b * r if r / ∈ B 1 i j . Otherwise, a ǫ r = a * r (1+ǫ) < b * r if |ǫ| is small enough. Hence, (a ǫ , b ǫ ) ∈ I n , and 
0 = lim ǫց0 1 ǫ (L 2 (a ǫ , b ǫ ) -L 2 (a * , b * )) = n r=1 (a * r -y r )1 r∈B 1 i j a * r w 1 r .
Summing up over all the sets B 1 i j yields the identity in (7). We can prove very similarly the identity in (8).

Conversely, suppose that (a * , b * ) ∈ I n satisfies the inequality in (6). For any (a, b) ∈ I n , we have

L 2 (a, b) -L 2 (a * , b * ) = 1 2 n i=1 (a i -a * i ) 2 w 1 i + 1 2 n i=1 (b i -b * i ) 2 w 2 i + n i=1 (a * i -y i )(a i -a * i )w 1 i + n i=1 (b * i -z i )(b i -b * i )w 2 i ≥ 0.
We conclude that (a 

Now, consider (a, b) ∈ R n × R n such that a j = a * j -ǫ1 j∈{1,...,t} , t ∈ {1, ..., n} b j = b * j -ǫ1 j∈{1,...,t ′ } , 1 ≤ t ′ ≤ t
for j = 1, ..., n, with ǫ > 0. For small ǫ, we have that (a, b) ∈ I 2 , and hence

t j=1 (a * j -y j )w 1 j + t j=1 (b * j -z j )w 2 j ≤ 0. It follows that t j=1 (a * 1 -y j )w 1 j + t ′ j=1 (a * 1 -z j )w 2 j ≥ 0, that is a * 1 ≤ min 1≤t ′ ≤t≤n M ({1, . . . , t}, {1, . . . , t ′ }).
We conclude that

a * 1 ≤ min t≥1 Av 1 ({1, . . . , t}) ∧ min t≥t ′ ≥1 M ({1, . . . , t}, {1, . . . , t ′ }). Now if a * 1 < b * 1 , let i 1 {1, ..., n} be such that a * 1 = . . . = a * i 1 . Then (a, b) is such that a j = a * j + ǫ 1 j∈{1,...,i 1 } b j = b * j for j = 1, ..., n is in I n when |ǫ| is small enough. It follows that Av 1 ({1, . . . , i 1 }) = a * 1 .
maximal value of M on the intervals composing such a set (this is a consequence of M being increasing). Hence, M ({x s , . . . , x t }) ≤ m t , implying that

a i ≤ max s≤i min t≥i, t∈G + m t = m i .
The opposite inequality is obtained exactly in a symmetric way (first take s ∈ G -, then prove that M ({x s , . . . , x t }) is larger than the value of M on a union of intervals). 2

B Computing the subgradient

Computing the subgradient of Ψ on a dense set. Consider the set

D = b = (b 1 , . . . , b n-1 ) ∈ R n-1 : b i = b j ∀ i = j,
and b i ′ = G s,j ′ ∀ 1 ≤ i ′ ≤ n -1, 1 ≤ s ≤ n -1, 1 ≤ j ′ ≤ n .
We denote by (e 1 , . . . , e n-1 ) the canonical basis of R n-1 . The set D is a dense open subset of R n-1 where the function Ψ is differentiable. Actually, for a fixed b ∈ D, in the explicit formula for Ψ there is no ex-aequo (up to possible equalities between the G i,s terms). The same will be true in a neighborhood of b. For each value of i ∈ {1, . . . , n}, we define the function

Ψ i = max s≤i (G s,i ∧ b s ) -y i 2 w 1 i .
Let us first consider i ∈ {1, . . . , n -1}. We define {s i 1 , . . . , s i k } to be the set of indices s where max s≤i (G s,i ∧ b s ) is attained.

If k = 1, then G s i 1 ,i ∧ b s 1 > G s,i ∧ b s for all s ∈ {1, . . . , i} \ {s i 1 }.
This implies that the same strict inequalities will be true in a neighborhood of b and hence there are two cases: either the function is locally constant or the square of an affine function. Hence,

• If b s i 1 > G s i 1 ,i , then ∇Ψ i (b) = 0. • If b s i 1 < G s i 1 ,i , then ∇Ψ i (b) = 2 (G s i 1 ,i ∧ b s i 1 ) -y i w 1 i e s i 1 .
Now if k ≥ 2, then this implies that only G s i j ,i , j = 1, . . . , k can be equal (by definition of the set D), and hence the function is locally constant. Therefore, ∇Ψ i (b) = 0.

For i = n, the calculation also requires distinction between the cases k = 1 and k ≥ 2. Thus, if k = 1 and the maximum max s≤n (G s,n ∧ b s ) is attained at s i 1 = n, then Calculating the subgradient of Ψ at any point. Take now any point b ∈ R n-1 which does not necessarily belong to D. We want to approximate b by points of D in the perspective of using the following property: If Ψ is convex, p ε → p, γ ε → γ as ǫ → 0, and γ ε ∈ ∂Ψ(p ε ), then γ ∈ ∂Ψ(p). This is useful when we only want to find one element of the subdifferential at a given point and we already know the gradients at nearby points. We use the following approximation:

• If b s i 1 > G s i 1 ,n , then ∇Ψ i (b) = 0. • If b s i 1 < G s i 1 ,
b ε = b + εu, where u = (1, 2, . . . , i, . . . , n -1).

We claim that b ε may belong to the complement of D for a finite number of values ε at most. Indeed, for any pair (i, j) with i = j, the equality b i + iε = b j + jε is satisfied for a unique value of ε, and for any i, i ′ and s, the same thing holds true for the equality G i,s = b i ′ + εi ′ . Hence, there exists ε 0 > 0 such that for ε ∈]0, ε 0 [, we have b ε ∈ D, where the expression of the gradient is fully known by our calculations above. We can act as follows: Take b and fix i ≤ n -1. For any s ≤ i, determine which one is minimal among G i,s and b s . In case of equality, priority will be given to G i,s since in the approximation with b ε , the value of G i,s would be smaller than b s + ǫs. This way we classify the indices in two categories: The G-type and b-type. Next, look at all the indices s 1 , . . . , s k realizing the minimum of G i,s ∨ b s . If among s 1 , . . . , s k there are some which are of the b-type, this would imply that in the approximation with b ε , those indices will yield even a higher value for G i,s j ∨ (b s j + εs j ). In particular the maximal one will correspond to the largest b-type index since it is the one where the coordinate is increased the most in the approximation. Due to the fact that b * n is fixed, we adopt, for i = n, the convention that the index s = n is of the G-type when G n,n ∧ b * n is maximal. Thus, we can define the vector ∇Ψ i (b) = 2((G s im ,i ∧ b s im )y i ) w 1 i e s im or 0, where the index s im is the largest index of b-type such that G i,s ∧ b s is maximal (note that s im is always ≤ n -1). If no such index exists (i.e. if the maximal ones are all of G-type), then this is the case where the vector equals 0. Now consider

∇Ψ(b) = n i=1 ∇Ψ i (b) + 2 n-1 i=1 (b i -z i ) w 2 i e i .
This vector belongs to ∂Ψ(b) by approximation and closedness of the subdifferential.
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 1 Figure 1: Original observations.

2.

  If one of the sets S j = C ∪ D is the disjoint union of two subsets C = {i j-1 + 1, . . . , k} and D = {k + 1, . . . , i j }, then M (C) > M (D); i.e., a finer subdivision would necessarily cause a violation.

  1 and b n = b * n and consider I b n = {a : a ∈ I and a ≤ b} for b ∈ I * n . Now note that the min-max formula in (9) allows us to write

w 2 j

 2 where ãj (b) = max s≤j (G s,j ∧ b s ) is the j-th component of the minimizer of the function n j=1 (a jy j ) 2 w 1 j in I b n . Let λ ∈ [0, 1], and b and b ′ in I * n . By definition of I b n and I b ′ n , we have that

  given in Proposition 3.4. Of course, this is the same as minimizing Ψ over the ndimensional convex set {(b 1 , . . . , b n ) | b 1 ≤ . . . ≤ b n-1 }, starting with an initial vector (b * n and constraining the n-th component of the sub-gradient of Ψ to be equal to 0. Given a steplength τ k , the new iterate b k+1 = (b k 1 , . . . , b k n ) at the k-th iteration of a subgradient algorithm is given by

  e. (b k+1 1 , . . . , b k+1 n-1 ) does not belong to I b * n n-1 . When this occurs, an L 2 projection of this iterate onto I

  Theorem 3.5. (Boyd et al. (2003)) A subgradient algorithm complemented with least-square projection and using non-summable diminishing steplength yields for any η > 0 after k = k(η) iterations a vector b k := (b k 1 , . . . , b k n ) such that min i=1,...,k Ψ(b i ) -Ψ(b * ) ≤ η, where b * = (b * 1 , . . . , b * n

  (a * , b * ) is a fixed point of the operator P defined in (11) where a * = P 1 (b * ); the solution of (1) with upper bound b * . This motivates iterating the algorithm until the difference of entries of the two vectors b k and b k # where b
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 2 Figure 2: Original observations, isotonic and isotonic smoothed estimates.

  n , then ∇Ψ n (b) = 2 (G s i 1 ,n ∧ b s i 1 )y n w 1 n e s i 1 . If k = 1 and s i 1 = n (in this case b n = b * n is known) or k ≥ 2, then ∇Ψ n (b) = 0. Now the gradient ∇Ψ(b) is given by z i )w 2 i e i .

  Proof of Proposition 2.3. Let ǫ > 0 and consider (a, b) ∈ R n × R n such that a = 1, ..., n. For small ǫ, (a, b) ∈ I n . Using the characterization in Theorem 2.2, it follows that

		t
		j=1	(a * j -y j )w 1 j ≤ 0
	implying that	
	t	
	j=1	(a * 1 -y j )w 1 j ≤ 0, for t ∈ {1, ...n}
	or equivalently	
		a * 1 ≤ min

* , b * ) is the solution of the minimization problem.

2 i = a * iǫ 1 i∈{1,..,t} , t ∈ {1, ...n} b i = b * i for i t≥1

Av 1 ({1, . . . , t}).

for j = 1, ..., n is in I n for |ǫ| small enough. Hence,

(note that i ′′ 1 ≤ i ′ 1 ). Therefore,

M ({1, . . . , t}, {1, . . . , t ′ }).

The expression of b * 1 follows easily by replacing respectively y i and z i by -z n-i+1 and -y n-i+1 for i = 1, . . . , n. 2 Proof of Theorem 3.3. Consider a ∈ R n given by

and also the subdivision into subsets S j = {i j-1 + 1, . . . , i j } obtained by the PAVA. Let us denote by G -(resp. G + ) the grid set of indices which correspond to points at the beginning (resp. end) of those subsets; i.e. of the form i j + 1 (resp. i j ).

We obviously have a i ≤ max s≤i min t≥i, t∈G + M ({s, . . . , t}).

Then, consider s / ∈ G -. This means that we have a set {s, . . . , t} of the form B ∪ C, C being a union of subsets in the subdivision and B a right subset of a set of the partition of the form A ∪ B. We want to prove that M ({s, . . . , t}) = M (B ∪ C) is either smaller than M (C) or M (A ∪ B ∪ C). Suppose this is not the case. Then we would have

where the last inequality is implied by the second property in Theorem 3.2. Yet, the second inequality, together with the Averaging Property , implies that M (A) < M (B ∪ C). In the end we get

which contradicts the Averaging Property .

We conclude that M ({s, . . . , t}) is smaller than the value of M at a set which is a union of sets of the subdivision; i.e. either A ∪ B ∪ C or C itself. But on sets of this kind it is obvious, by the Averaging Property , that M is smaller than the value m t , since this is the Note that we would have obtained another element of the subdifferential if we had fixed a different order of priority on the coordinates of b; for instance the first index instead of the last one (if u = (1, 2, . . . , i, . . . n -1) was replaced with (n -1, . . . , 2, 1)). We could also have decreased (instead of increased) the components, thus giving priority to b s instead of G i,s in the minimum G i,s ∧ b s . In that case, we would have obtained 0 for the subgradient of Ψ i as soon as one of the components realizing the maximum was of the G-type.