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TENSORS VERSUS MATRICES
USEFULNESS AND UNEXPECTED PROPERTIES

Pierre Comon

I3S Laboratory UMR6070, CNRS and University of Nice-SophiaAntipolis (UNS), France

ABSTRACT

Since the nineties, tensors are increasingly used in SignalPro-
cessing and Data Analysis. There exist striking differences
between tensors and matrices, some being advantages, and
others raising difficulties. These differences are pointedout
in this paper while briefly surveying the state of the art. The
conclusion is that tensors are omnipresent in real life, implic-
itly or explicitly, and must be used even if we still know quite
little about their properties.

Index Terms— Tensor rank, Canonical decomposition, Fac-
tor analysis, Parafac, High-order statistics, Separationof variables,
Low-rank approximation, Deflation, Blind identification

1. INTRODUCTION

1.1. Overview

This paper summarizes several tutorials I gave on tensors
since the IEEE SPWorkshop on High-Order Statisticsheld at
Banff in 1997, and in particular for the last five years. Some
of the results I presented were quite standard, and others were
the fruit of cooperations with colleagues, who are cited in ref-
erences.

Various definitions of rank are given in Section 2 and
properties are emphasized in Section 3. In particular: (i) the
rank of a tensor generally exceeds its dimension, (ii) thereex-
ist tensors having a rank larger than generic, (iii) the maximal
achievable rank of a tensor is not clearly known, (iv) the de-
composition of a tensor into a sum of rank-1 terms can often
be performed in an essentially unique manner.

In Section 4, it is shown that imposing a structure in the
rank-1 decomposition of a tensor may change the rank, even if
the structure is the same as the tensor to be decomposed. It is
shown for instance that (v) the rank can differ in real and com-
plex fields, and that (vi) a structure as simple as symmetry has
not be proved to have no influence on rank. In Section 5, it is
pointed out that (vii) searching for the best low-rank approx-
imation of a tensor is often an ill-posed problem. An even
more surprising fact is enlightened in Section 5.3: (viii) sub-
tracting the best rank-1 approximate generally increases ten-
sor rank. In Section 6, some algorithms are quoted, which al-
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low to compute the canonical decomposition that reveals the
tensor rank, but generally (ix) it is difficult to assess the rank
of a tensor and to compute its decomposition into a sum of
rank-1 terms.

Despite all these odd properties, which reveal our igno-
rance in the domain, tensors still remain attractive because
they allow to restore identifiability in several problems, as ex-
plained in Section 7.

1.2. Notations

Vectors are denoted in bold lowercases, matrices in bold up-
percases, and tensors in bold slanted uppercases. A matrix
defines either a linear operator or a bilinear form, once the
bases of the vector spaces are fixed. If bases are changed, so
is the matrix representing the operator.

Similarly, a tensorT of orderd, with coordinatesTi1..id

represents a multi-linear operator, defined from a space outer
product,⊗iSi, to another,⊗jSj . More precisely, a tensor
of orderd can be seen as an array withd indices, provided
bases ofd spacesSk have been defined. Denote byNk the
dimension of these spacesSk, 1 ≤ k ≤ d, and take a tensor
of orderd = 3 and dimensionsN1 × N2 × N3 to simplify
the presentation. Such a tensor can define a trilinear form, or
a bilinear operator. Thus, there areseveral waysto associate
a tensor with an operator. If a change of bases is defined by 3
matricesU, V andW in spacesS1, S2 andS3 respectively,
then the new tensor coordinatesT ′

ijk take the form

T ′
ijk =

∑

pqr

Uip Vjq Wkr Tpqr (1)

This multi-linear propertyis a specificity of tensors [1, 2]. It
is often written in compact form asT ′ = (U,V,W) · T.
Note that matrices also enjoy this property when they repre-
sent an operator, since they are then tensors of order 2.

Some tensors have the particular property of having “sep-
arated variables”, which means that they take the form

Tijk = ui vj wk

or in compact formT = u⊗⊗⊗ v⊗⊗⊗ w. One can indeed view
such a tensor expression as a discretized version of a func-
tional equationf(x, y, z) = u(x) v(y)w(z) representing a



separation of variables. The latter tensors will be referred to
asrank-1 tensors.

Tensors whose dimensionsNk are all equal may be said to
becubic[3]. A square matrix is a cubic tensor of order 2, for
instance. Tensors whose entries do not change by permuting
arbitrarily their indices are referred to assymmetric.

Symmetric tensorsof orderd are encountered every time
dth order derivatives of a multivariate function are utilized.
For instance, moments or cumulants of aN th dimensional
random variable are symmetric tensors of dimensionN [2, 4].
The covariance matrix is a particular case of cumulant tensor,
of order 2.

Example 1 For convenience, let’s write the values of a2 ×
2× 2 tensor in two2× 2 matrices stacked one after the other.
Here is an example of a rank-1 symmetric tensor:T1 =

[

1 −1 −1 1
−1 1 1 −1

]

(2)

It is in fact the triple outer product of vectorv = [1, −1] with
itself.

2. RANKS

In this paper, we are mainly interested in decomposing tensors
into a sum of rank-1 terms, as:

Tijk =
R
∑

r=1

ui(r) vj(r)wk(r) (3)

which is denoted asT =
∑

r u(r)⊗⊗⊗ v(r)⊗⊗⊗w(r) in compact
form, where as before⊗⊗⊗ stands for the tensor (outer) product.

Tensor rank. One defines therankof a tensor as the min-
imal number of rank-1 terms that are necessary for equality
(3) to hold. It is sometimes denoted asR⊗⊗⊗(T), or simply
R(T). TheCanonical decomposition(CAND) of a tensorT
is the decomposition (3) obtained with the smallest number of
terms,R(T). The CAND can be traced back to [5] [1][6] [7],
but it has been rediscovered in the seventies by psychome-
tricians and chemometricians, who gave it other names (e.g.
PARAFAC).

In the case of matrices, the CAND is not unique, since
there are infinitely many ways of decomposing a matrix of
rankR into a sum ofR rank-1 terms. This is the reason why
it is possible to impose orthogonality among the left (resp.
right) singular vectors of a matrix. But for tensors of order
higher than 2, the CAND can be unique, up to scale and per-
mutation ambiguities. That’s why the CAND is so attractive
in applications.

Multilinear rank. There exist other definitions of rank
for tensors. Some are pointed out in Section 4. But the sim-
plest one consists of associating the tensor with alinear op-
erator. Yet, there are2d − 2 nontrivially different ways of

making this association. If one restricts to operators mapping
⊗i6=kSi to Sk, 1 ≤ k ≤ d, represented by a matrix of size
Nk ×

∏

i6=k Ni, there ared possible such ranks, which are
usually calledk−mode ranks. Hence, thek−mode rank of a
tensor obviously cannot exceed itskth dimension,Nk. These
matrices have found various names in the literature,e.g., un-
foldingor flatteningmatrices.

The multilinear rank is defined as thed−uple of these
mode ranks. For a matrix, the twomode ranksare equal, and
coincide with the tensor rank defined by the CAND. For a
tensor they can be different.

Example 2 Take now the symmetric tensorT3 =

[

0 1 1 0
1 0 0 0

]

(4)

One can check out that this tensor has at most rank 3 since:

2T3 =

(

1
1

)⊗⊗⊗ 3

+

(

−1
1

)⊗⊗⊗ 3

− 2

(

0
1

)⊗⊗⊗ 3

It turns out that there exist no decomposition with only two
terms, so that tensorT3 has rank 3; this can be proved with
the help of Sylvester’s theorem, seee.g.[8, 9]. On the other
hand, the multilinear rank ofT3 is equal to(2, 2, 2).

This is the simplest example demonstrating that the tensor
rank can exceed dimensions, a fact that does not exist for ma-
trices.

Eigenvalues. Contrary to the Singular Value decompo-
sition (SVD), which reveals the eigenvalues of some linear
operator, the CAND is not directly linked to the eigenvalues
of the linear operators that can be associated with a tensor,
at least to our current knowledge. Some attempts have been
made to define eigenvalues of tensors, but this question is still
considered to be open [10, 11, 12].

The Waring problem. When dealing with symmetric
tensors, it is often useful to make the connection with ho-
mogeneous polynomials. More precisely, ifT is symmetric
of orderd and dimensionN , it can be bijectively associated
with the polynomial

p(x) =

N
∑

i,j,..k=1

cij..k Tij..k xi xj . . . xk

of degreed in N variables, wherex = (x1, x2, . . . , xN ). The
coefficientcij..k could be arbitrarily set to 1, but it is more
convenient to set it equal to the multinomial coefficient [13,
9]. Through this bijection, a vectoru is mapped to a linear
form ℓ(x) = uTx. Now because of the bijection, the CAND
can be stated in terms of polynomials as:

p(x) =

R(T )
∑

p=1

ℓp(x)d



Given polynomialp(x), finding the minimal number of linear
formsℓp(x) is known as the Waring problem [14].

Example 3 Take the tensor of example 2. The associated
polynomial isp(x1, x2) = 3 x2

1 x2 and the corresponding
CAND is:

2 p(x1, x2) = (x1 + x2)
3 + (−x1 + x2)

3 − 2 x3
2

Orbits. The orbit of a tensorT0 is the set of tensors that
are obtained by applying an invertible multilinear transform
onT0. Obviously, all tensors in the same orbit have the same
rank, and the same multilinear rank.

Example 4 By permuting the two rows in the 1st mode, one
easily checks out that the non symmetric tensor below is in
the orbit ofT3, studied in examples 2 and 3:T ′

3 =

[

1 0 0 0
0 1 1 0

]

(5)

and is hence of rank 3.

3. GENERICITY

Informally, one says that a property istypical if it holds true
on a nonzero-volume set. A property isgenericif is true al-
most everywhere. In other words, there can be several typical
ranks, but only a single generic rank [15, 16]. In algebraic ge-
ometry, it has been proved that a generic homogeneous poly-
nomial always assumes the same rank value in the complex
field. Hence there exist a single generic rank for symmet-
ric tensors inC. Thus the distinction between typical and
generic ranks is irrelevant in the complex field [3, 17]. Never-
theless, it is convenient to make the distinction in the present
framework by reserving the use of the terminology ofgeneric
rank to decompositions inC. We should note that the notion
of zero-volume (or zero-measure) is related to an underlying
topology. In algebraic geometry, this is the Zariski topology.
But these results hold true for other topologies, includingEu-
clidean [4].

Importance. The consequence is that real or complex
symmetric tensors with entries randomly drawn according to
a continuous probability distribution are generic, and always
have the same rank in the complex field. Considering that
in Engineering, measurements are always corrupted by noise,
and that this noise is generally assumed additive and has a
continuous probability density, we see that estimated tensors
will be generic most of the time. That’s why the study of
generic tensors is of prime importance.

Uniqueness. One could believe that uniqueness is en-
sured, at least up to permutation and scale, if the number of
free parameters are the same on both sides of (3). It turns out
that this is not true. Clebsch was the first to notice in 1850
that ternary quartics cannot generally be written as a sum of

N 2 3 4 5 6 7 8

2 2 3 4 5 6 7 8
d 3 2 4 5 8 10 12 15

4 3 6 10 15 21 30 42

Table 1. Generic rank̄Rs of symmetric tensors of orderd and
dimensionN . In the real field, it corresponds to the smallest
typical rank.

5 fourth powers of linear forms. Table 1 reports the values
of the rank of generic symmetric tensors, and one can indeed
notice the value of 6 for(d, N) = (4, 3). More precisely, for
symmetric tensors, left and right hand sides of (3) can have
the same number of free parameters only if the quantityFs

(resp.F for cubic tensors with unconstrained entries) below
is an integer

Fs =
1

N

(

N + d − 1

d

)

; F =
Nd

Nd − d + 1

In Tables 1 (resp. Table 2), the exceptions to the ceil rule
R̄s = ⌈Fs⌉ (resp. R̄ = ⌈F ⌉) are distinguished by an un-
derlining. When the ratiosFs or F are integers, and when
we do not face an exception, then there is a finite number
of CAND’s, and the corresponding value of the generic rank
is represented in a frame in Tables 1 and 2. Otherwise, the
generic rankR̄s > Fs (resp. R̄ > F ) and the CAND is not
unique. See [18] for further practical details.

For symmetric tensors in the complex field, all the values
of the generic rank are now known and proved theoretically:
this is the Waring problem [14], for which it has been proved
in 1996 by Alexander and Hirschowitz that the number of ex-
ceptions is finite. On the other hand, for tensors with free
entries, most values have been found by computer simula-
tions (in bold in Table 2). Finiteness of exceptions for non
symmetric tensors is still a conjecture.

As shown in Table 2, generic rank values are larger when
tensors have free entries, which makes sense. Generic ranks
of non cubic tensors can be found in [16], as well as tensors
of other particular forms.

N 2 3 4 5 6 7 8

2 2 3 4 5 6 7 8
d 3 2 5 7 10 14 19 24

4 4 9 20 37 62 97

Table 2. Generic rankR̄ of free tensors of orderd and equal
dimensions,N . In the real field, it corresponds to the smallest
typical rank.

Beside the generic cases appearing in framed boxes in Ta-
bles 1 or 2, can we have a finite number of possible CAND
for a given tensor? There are two results that can help us.



Necessary condition:if the rank of a tensorT is strictly
smaller than the expected rank:

Rs(T) < Fs or R(T) < F

then there is almost surely a finite number of CAND. In fact,
there is a set of zero-volume in which the number of CAND
can be infinite (cf. Example 5 below; see [16] for a summary
of complementary results).

Example 5 Take symmetric tensors of orderd = 4 and di-
mensionN = 3. From Table 1 we see that generic tensors
admit a finite number of CanD inC in that case, and that
the generic rank is 5. But by drawing randomly such tensors,
there is a zero probability to draw a tensor in the orbit of
x2

1x2, which has infinitely many CanD’s as in Example 3.

Sufficient condition:if the rank of a tensorT satisfies the
condition below:

2 R(T) + d − 1 ≤
d
∑

i=1

Ni

then the CAND is unique. The above condition is a simpli-
fication of the exact statement, and is true with probability
one; see [19] for the exact statement, involving the conceptof
k-rank of a matrix, introduced by Kruskal [20].

Another useful sufficient condition leading to almost sure
uniqueness can be found in [21] for tensors having one di-
mension much larger than the others.

Maximal rank. The maximal achievable rank of a tensor
is not clearly known, only bounds exist. But we know that
there always exist tensors having a rank larger than generic,
as soon as the order exceeds 2 (which is the matrix case).
Remember that the rank of a matrix cannot exceed its dimen-
sions.

Example 6 In Tables 1 and 2, we see that 3rd order cubic
tensors of dimension 2 are generically of rank 2, should they
be symmetric or not. But tensors studied in Examples 2 and 4
had a rank equal to 3.

Example 7 There is a one to one correspondence between
the space of3 × 3 × 3 symmetric tensors and ternary cubics
(homogeneous polynomials of degree 3 in 3 variables). InC

the generic rank is equal to 4 [9]. But polynomials lying in
the orbit of polynomialx2y + xz2 are of rank 5, which is the
maximal achievable rank of ternary cubics inC [22, 23, 9].

Hence there exist tensors having a rank larger than
generic, but they are difficult to find because they form a set
of zero volume.

4. RANK UNDER CONSTRAINT

Rank depends on the field.The results obtained so far do not
apply directly to real tensors, because it was assumed that the
underlying field was algebraically closed. In fact, there may
exist several typical ranks in the real field. The only thing
we know is that the smallest typical rank coincides with the
generic rank computed inC.

Example 8 Consider again symmetric tensors with(d, N) =
(3, 2), but this time inR. Beside the zero tensor, there are 4
orbits Ωi [24]. Ω1: rank-1 tensors generated by polynomial
x3, Ω2: rank-2 generated byx3 + y3, Ω3: rank-3 generated
by x2y, andΩ4: rank-3 generated byxy2 − x3. It turns out
that there are 2 typical orbits inR, namelyΩ2 andΩ4 and 2
negligible orbits,Ω1 andΩ3. In C, Ω4 does not exist, because
it is included inΩ2; this can be seen by observing thatΩ2 is
mapped toΩ4 by the transform(x, y) → (x + ıy, x − ıy).

The conclusions are similar as Example 8 for tensors with
free entries [25]: there can be several typical ranks. ten Berge
conjectured that there can only be at most two typical ranks
for p× q× 2 tensors. But tensors with dimensions larger than
2 are likely to admit more than 2 typical ranks inR.

Now what happens to the rank of a given real tensor? We
have for any real tensorT:

rank{T}C ≤ rank{T}R (6)

Example 9 The2 × 2 × 2 tensor :T2 =

[

−1 0 0 1
0 1 1 0

]

is of rank 3 inR, but 2 inC [4]. In fact we have inR:T2 =
1

2

(

1
1

)⊗⊗⊗ 3

+
1

2

(

1
−1

)⊗⊗⊗ 3

+ 2

(

−1
0

)⊗⊗⊗ 3

but we have in the complex field:

ı

2

(

−ı

1

)

⊗⊗⊗ 3

−
ı

2

(

ı

1

)

⊗⊗⊗ 3

.

So inequality (6) may happen to be strict.

Can the symmetry constraint change rank?Constrain-
ing the CAND to be real can increase rank, as we have just
seen. Similarly, since constraining the CAND can only in-
crease rank, we have:

R(T) ≤ Rs(T) (7)

However, it has not been possible to provide examples of
symmetric tensors for which the symmetric rank is strictly
larger than the free rank. Put in other words, it seems that
inequality (7) is always an equality. However, the result
R(T) = Rs(T), ∀T symmetric, has only been partially
proved in [4], and hence still remains a conjecture for most
sub-generic ranks.



5. LOW-RANK APPROXIMATION

In this section, we are interested in findingr families ofd vec-
tors,{u(p), v(p), . . . w(p)}, 1 ≤ p ≤ r, such that the crite-
rion below is minimized for a given rank valuer < R(T):

||T−

r
∑

p=1

u(p)⊗⊗⊗ v(p)⊗⊗⊗ . . .⊗⊗⊗ w(p)||2 (8)

5.1. Rank-1 approximation

It is well known that the set of rank-1 tensors is closed, as
a determinantal variety [26, 27]. Yet, its computation still
raises difficulties, due to the multimodal character of the cri-
terion of the form (8), even forr = 1. If the Frobenius norm
is used, one can think of running a power iteration [28]. Suffi-
cient convergence conditions have been obtained for symmet-
ric tensors in [29]. Also note that there exist a closed form
solution for 3rd order tensors of dimension 2 [30].

5.2. Rank-r approximation

In applications, approximating a tensor by another of given
lower rank,r > 1, is often what is actually sought for. How-
ever, this question is well posed only if the setYr of tensors
of rank at mostr is closed. But it turns out thatYr is gener-
ally not closed, unlessr = 1 or r is maximal (i.e. whenYr is
the whole space). Note that the proof that every setYr is not
closed for1 < r < Rmax given in [4] is yet incomplete.

Example 10 In order to prove thatYr is not closed, it suffices
to find a sequence of rank−r tensors converging to a tensor of
strictly higher rank. Take 3 linearly independent vectorsx, y,
andz and build the following sequence of 3rd order symmet-
ric tensors (the principle extends to non symmetric tensors,
with a somewhat more complicated notation):T(n) = n2(x +

1

n2
y +

1

n
z)⊗⊗⊗ 3

+ n2(x +
1

n2
y −

1

n
z)⊗⊗⊗ 3 − 2n2 x⊗⊗⊗ 3

For everyn, the above tensor is of rank 3, but it converges to
the limit below, which is of rank 5 [18]:T(∞) = x⊗⊗⊗x⊗⊗⊗y + x⊗⊗⊗ y⊗⊗⊗ x + y⊗⊗⊗ x⊗⊗⊗ x

+ x⊗⊗⊗ z⊗⊗⊗ z + z⊗⊗⊗x⊗⊗⊗ z + z⊗⊗⊗ z⊗⊗⊗x

This tensor is in fact associated with the polynomial3x2y +
3xz2, belonging to the orbit of rank-5 ternary cubics (cf. Ex-
ample 7).

Examples in dimension 2 have already be reported as well
[4, section 6] [25]. For instance, one can build a sequence of
2-dimensional cubic tensors of orderd and rank2 converging

to a tensor of rankd. Note that the first example of lack of
closeness was probably due to Bini et al. in 1979; see [25].

In general, the approximation problem is ill-posed, which
means that not every tensor will have a low-rank approximate.
However, there exist well-posed tensor approximation prob-
lems [31], as now shown.

Restriction to orthogonal transforms. Consider the case
where columnsu(p), (resp.v(p) andw(p)) involved in (8)
are constrained to be orthogonal. ThenTmust be cubic andr
cannot exceed its dimension, which is a strong limitation. But
on the other hand, according to Weierstrass theorem, a con-
tinuous function defined on a compact set reaches its extrema.
Yet, the orthogonal group is compact, because bounded and
closed in a finite dimensional space. On the other hand, a
function such as (8) is continuous. Hence, the minimum al-
ways exists. This is why approximate orthogonal tensor diag-
onalization has been the subject of numerous researches for
the last fifteen years [9]; Independent Component Analysis is
one instance of this diagonalization problem.

Regularization of the criterion. A well-known way to
deal with ill-posed problems is to add regularization terms; in
[32] for instance, the regularized criterion consists of func-
tion (8) with additional terms proportional to the norm of
each unknown. Yet, from the constrained optimization theory,
we know that, under some regularity conditions, minimiz-
ing a functionf(x1, . . . xk) under the constraints||xi||

2 =
µi, i ∈ {1, . . . , k} is equivalent to minimizing the functional
f(x1, . . . xk)+

∑

i λi||xi||
2, where the realsλi should be cho-

sen so as to satisfy the constraints. Yet, in a finite dimensional
space, the unit sphere is compact, and so is the set defined by
||xi||

2 = µi, i ∈ {1, . . . , k}. Thus by the same argument as
above, the continuous functionf(x) reaches its extrema on
the latter set.

Restriction to real positive tensors.In a number of con-
texts, the tensors considered have real nonnegative entries, as
well as the rank-1 terms appearing in the CAND. This is the
case for instance of tensors built on power spectral densities
or images (see Section 7). Now criterion (8) is to be opti-
mized over the cone of vectors with real positive entries. Itis
shown in [31] that this is a well-posed problem for anyr.

Border rank Another more natural way of facing the
problem of ill-posedness is to search the closureȲr of Yr

instead ofYr itself. By doing so, the rank of the approxima-
tion may be as large as theborder rankof Yr; see [33, 3, 25]
for this terminology. However, we solve a different problem,
which may not be satisfactory in practice.

5.3. Subtraction of the best rank-1 approximate

It is now known that one cannot estimate the tensor rank by
subtracting successive rank-1 approximates [29]. The reason
is that the tensor rank may not decrease this way. This makes
sense, otherwise the rank−r approximation problem would
be well-posed, since the rank−1 was. But it can be shown that



subtracting the best rank−1 approximation generally even in-
creases tensor rank [24], which is more surprising.

Example 11 The tensorT =

[

1 0 0 1
0 2 1 0

]

is of rank 2. Its best rank-1 approximate is [24]:Y =

[

0 0 0 0
0 2 0 0

]

And one checks out that the differenceT−Y =

[

1 0 0 1
0 0 1 0

]

is of rank 3, because in lies in the orbit of Example 4.

6. COMPUTATION

The computation of the CAND of a given tensor remains a
difficult task, even if the rank is known and the CAND essen-
tially unique. The most often encountered way to compute the
CAND is to resort to standard optimization algorithms such
as the conjugate gradient [34], Newton [35, 36], Alternat-
ing Least squares [37, 38, 36, 18], or Levenberg-Marquardt
[35, 18] algorithms. All these algorithms have a common
limitation: they can lead to a local minimum of (8) even for
r = R(T), that is, to a nonzero error, if a good initial guess is
not available.

A global line search can be combined with any of these
iterative algorithms in order to avoid local minima; since the
global minimum is found only in a one- or two-dimensional
space for complexity reasons, the technique has been called
Enhanced Line Search(ELS) [39, 40].

Nevertheless, in the case of 2-dimensional symmetric ten-
sors, a theorem by Sylvester allows to compute the CAND, ei-
ther in the real or complex field, and only requires to compute
the kernel of some Hankel matrix [17, 9]. This algorithm has
been recently extended to symmetric tensors of larger dimen-
sions, but only in the complex field [8], and basically works
for ranks below generic, and when the CAND admits a finite
number of solutions.

For tensors of order 3 with one dimension equal to 2, tech-
niques based on matrix pencils have been shown to be very at-
tractive [15]. The CAND can also be calculated with the help
of the Generalized Schur Decomposition [41, 42]. Other al-
gorithms have been proposed for tensors with specific shapes,
in particular in [21] for 3rd order tensors when the rank is
smaller than the largest dimension.

7. APPLICATIONS

As already said in introduction, the CAND may be seen as a
discrete version of the functional equation

f(x, y, z) =
∑

p

up(x) vp(y)wp(z) (9)

A1. Limiting the sum (9) to a finite number of terms allows
to reduce the computational complexity in several problems,
for instance in the approximation of integral or differential
operators [43].
A2. Another interest in the CAND in mathematics is the eval-
uation of the asymptotic arithmetic complexity of the product
of two matrices [44, 3, 45, 46]. The tensor to be decomposed
is then of order 3, and represents this bilinear map.
A3. The CAND (3) is widely utilized in Multi-way Factor
Analysis [37]. It appears in several quite different branches
of engineering [38, 47, 48, 9, 49]. Let’s review some of them.
A4. In fluorescence spectroscopy for instance, an optical ex-
citation at wavelengthλe produces a fluorescence emission
at wavelengthλf with a fluorescence intensity that can be
modeled as indicated below, if the Beer-Lambert law can be
linearized (that is, at low concentrations):

I(λf , λe, k) = Io

∑

ℓ

γℓ(λf ) ǫℓ(λe) ck,ℓ

wherek denotes an experiment index, which may correspond
to different concentrations or temperatures. We recognizea
tensor CAND, if wavelengths are discretized [38]. Note that
the tensors are here real andnonnegative.
A5. Another direct application occurs in probability, when
writing the joint distributionq(x) of a d−dimensional ran-
dom variableX conditionally to a discrete variableΘ taking
r possible valuesθℓ with probabilityµ(θℓ). If random vari-
ablesXn are conditionally independent, we have, applying
Bayes rule:

q(x) =

r
∑

ℓ=1

µ(θℓ) q1(x1 | θℓ) q2(x2 | θℓ) · · · qn(xn | θℓ)

If variablesXn are themselves all discrete, the rule takes the
form of the CAND of adth order realnonnegativetensor [31].
A6. Image processing is also an example where tensors have
real nonnegative entries [50, 51, 52, 53].
A7. Modeling the signals received on an array of antennas
generally leads to a matrix or tensor formulation. For instance
in digital communications, the signal received on the antenna
array takes the form

Tijp =
∑

ℓ

∑

q

aiℓq

∑

k

hℓqkpsjℓk

wherei, j, k, ℓ, q denote the space, time, symbol time, trans-
mitter and path indices, respectively;a characterizes the re-
ceiver geometry,h the global channel impulse response, and



s the transmitted signal. Indexp appears only in the pres-
ence of additionaldiversity, induced by oversampling, polar-
ization, coding, geometrical invariance, wide frequency band,
nonstationarity... See e.g. [54, 55] for an introduction.
A8. In some problems however, the diversity is lacking in the
measurements. This may occur for instance when the matrix
slices of a third order tensor are proportional. In such a case,
the CAND is not unique, because the tensor decomposition
reduces to a matrix one. In statistical signal processing, there
are several ways to face this problem, by taking advantage of
another property.

Consider the simplest linear statistical model

x = Hs

where realizations of vectorx are observed. In other words, a
matrixXij is given. The goal is to identify matrixH, which
is assumed to mix statistically independent random variables
si. The second joint characteristic functionΨx of variables
xi may be shown to satisfy the core equation

Ψx(u) =
∑

ℓ

Ψsℓ

(

∑

q

uq Hqℓ

)

whereΨsℓ
denotes the 2nd characteristic functions of variable

sℓ. As pointed out in Section 1, thedth order derivative of
such a function yields a symmetric tensor of orderd. At order
3 for instance, this tensor can be modeled as

Tijk(u) =
∑

ℓ

µℓ(u)Hiℓ Hjℓ Hkℓ

whereµℓ(u) stands for the third derivative ofΨsℓ
taken at

∑

q uq Hqℓ. At u = 0, this is a cumulant matching equation,
and we face the CAND of a 3rd order symmetrictensor. If a
grid of values is chosen foru, then we have the CAND of a
4th order non symmetrictensor [56].

In all the applications mentioned above, it was necessary
to resort to tensors in order to solve the problem. In fact,
if stated in matrix form, the above problems would have in-
finitely many solutions. From the engineer point of view, ten-
sors have allowed to restore identifiability.
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