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TENSORS VERSUS MATRICES
USEFULNESS AND UNEXPECTED PROPERTIES

Pierre Comon

I3S Laboratory UMR6070, CNRS and University of Nice-Sophidipolis (UNS), France

ABSTRACT low to compute the canonical decomposition that reveals the

Since the nineties, tensors are increasingly used in Skyoal tensor rank, but generally ('X.) itis difficult t_o_ assess taake
of a tensor and to compute its decomposition into a sum of

cessing and Data Analysis. There exist striking differsnce
: . I Hk-lterms.
between tensors and matrices, some being advantages, a ) . . .

s R . . Despite all these odd properties, which reveal our igno-
others raising difficulties. These differences are poiret rance in the domain, tensors still remain attractive bezaus
in this paper while briefly surveying the state of the art. Thethe allow to restore i'dentifiabilit in several proble K
conclusion is that tensors are omnipresent in real lifeJizap Ia'):]ed N Sect'orﬂ? Y P mSex
itly or explicitly, and must be used even if we still know it pial : : '

little about their properties.

. » 1.2. Notations
Index Terms— Tensor rank, Canonical decomposition, Fac-

tor analysis, Parafac, High-order statistics, Separaiforariables, ~ Vectors are denoted in bold lowercases, matrices in bold up-

Low-rank approximation, Deflation, Blind identification percases, and tensors in bold slanted uppercases. A matrix
defines either a linear operator or a bilinear form, once the
1. INTRODUCTION _bases of the vector spaces are fixed. If bases are changed, so
is the matrix representing the operator.
1.1. Overview Similarly, a tensorT of orderd, with coordinates;,  ;,

represents a multi-linear operator, defined from a spaa out
This paper summarizes several tutorials | gave on tensofgoduct, ®;S;, to another,®;S;. More precisely, a tensor
since the IEEE SWorkshop on High-Order Statistit®ld at  of orderd can be seen as an array wifhindices, provided
Banff in 1997, and in particular for the last five years. Somebases ofl spacesS; have been defined. Denote B, the
of the results | presented were quite standard, and othees wedimension of these spacés, 1 < k < d, and take a tensor
the fruit of cooperations with colleagues, who are citecefr r  of orderd = 3 and dimensiongV; x N, x N3 to simplify
erences. the presentation. Such a tensor can define a trilinear form, o

Various definitions of rank are given in Sectifin 2 anda bilinear operator. Thus, there aeveral wayso associate
properties are emphasized in Sectibn 3. In particularh@) t a tensor with an operator. If a change of bases is defined by 3
rank of a tensor generally exceeds its dimension, (i) tegre matricesU, V andW in spacesS;, S andSs respectively,
ist tensors having a rank larger than generic, (iii) the meti  then the new tensor coordinatg§, take the form
achievable rank of a tensor is not clearly known, (iv) the de- '
composition o_f a tensor into a sum of rank-1 terms can often e = Z Uip Vig Wir Tpgr (1)
be performed in an essentially unique manner.

In Sectionﬂi, it is shown that imposing a structure in the
rank-1 decomposition of a tensor may change the rank, even Trhis multi-linear propertyis a specificity of tensorg][f] 2]. It
the structure is the same as the tensor to be decomposed. I{§soften written in compact form a8’ = (U, V, W) - T.
shown for instance that (v) the rank can differ in real and comNote that matrices also enjoy this property when they repre-
plex fields, and that (vi) a structure as simple as symmesy hasent an operator, since they are then tensors of order 2.
not be proved to have no influence on rank. In Sedijon 5, itis  Some tensors have the particular property of having “sep-
pointed out that (vii) searching for the best low-rank appro arated variables”, which means that they take the form
imation of a tensor is often an ill-posed problem. An even
more surprising fact is enlightened in Sectfor] 5.3: (viiips Tiji = ui vj W
tracting the best rank-1 approximate generally increases t
sor rank. In Sectioﬁl 6, some algorithms are quoted, which a

par

pr in compact formT = ugvew. One can indeed view
such a tensor expression as a discretized version of a func-
Work funded by contract ANR-06-BLAN-0074 “ECOTES. tional equationf(z,y,z) = wu(z)v(y) w(z) representing a




separation of variables. The latter tensors will be refetee  making this association. If one restricts to operators nrapp
asrank-1 tensors ®ixkS; 10 S, 1 < k < d, represented by a matrix of size
Tensors whose dimensiong; are all equal may be saidto N x H#k N;, there ared possible such ranks, which are
becubic[E]. A square matrix is a cubic tensor of order 2, for usually calledk—mode ranksHence, theci—mode rank of a
instance. Tensors whose entries do not change by permutitgnsor obviously cannot exceed ktth dimension V. These
arbitrarily their indices are referred to sgmmetric matrices have found various names in the literaterg, un-
Symmetric tensorsf orderd are encountered every time folding or flatteningmatrices.
dth order derivatives of a multivariate function are utitize The multilinear rankis defined as the/—uple of these
For instance, moments or cumulants ofVdh dimensional mode ranks. For a matrix, the twoode ranksire equal, and
random variable are symmetric tensors of dimensdifl,[}].  coincide with the tensor rank defined by thenD. For a
The covariance matrix is a particular case of cumulant tensotensor they can be different.
of order 2.
Example 2 Take now the symmetric tensor
Example 1 For convenience, let’'s write the values oRax
2 x 2 tensor in twa2 x 2 matrices stacked one after the other. T, = { 0 1 ‘ 10 } (4)

Here is an example of a rank-1 symmetric tensor: L 00 0
1 1 11 One can check out that this tensor has at most rank 3 since:
T, = o 2)
! -1 1 1 -1 1123 —1\®3 0\®?3
n-(1) (7))
Itis in fact the triple outer product of vecter = [1, —1] with
itself. It turns out that there exist no decomposition with only two
terms, so that tensoT’s has rank 3; this can be proved with
2 RANKS the help of Sylvester’s theorem, seg.[f], fil. On the other

hand, the multilinear rank of; is equal to(2, 2, 2).

In this paper, we are mainly interested in decomposing t8nso

. . This is the simplest example demonstrating that the tensor
into a sum of rank-1 terms, as:

rank can exceed dimensions, a fact that does not exist for ma-
R trices.
Tigr =Y wi(r) vy (r) we(r) 3) Eigenvalues. Contrary to the Singular Value decompo-
r=1 sition (SVD), which reveals the eigenvalues of some linear
operator, the @\D is not directly linked to the eigenvalues
of the linear operators that can be associated with a tensor,

: .~ at least to our current knowledge. Some attempts have been
Tensor rank. One defines theank of a tensor as the min- ' . ) o
. . made to define eigenvalues of tensors, but this questioitl is st
imal number of rank-1 terms that are necessary for equamXonsidered to be o eEl 12]
(E) to hold. It is sometimes denoted &, (T), or simply P '

R(T). TheCanonical decompositiofCAND) of a tensorT The Waring problem. When dealing with symmetric
is the decompositiof}3) obtained with the smallest number of€nsors, it is often useful to make the connection with ho-
terms,R( T). The CAND can be traced back tf][S[|[{][6[J[7], Mcgeneous polynomials. More preciselyTifis symmetric
but it has been rediscovered in the seventies by psychom@f orderd and dimensionV, it can be bijectively associated
tricians and chemometricians, who gave it other nareas ( with the polynomial
PARAFAC). N

In the case of matrices, theA@D is not upique, sinc_e p(x) = Z Cijk Tijwixj ... 0k
there are infinitely many ways of decomposing a matrix of
rank R into a sum ofR rank-1 terms. This is the reason why
it is possible to impose orthogonality among the left (respof degreed in N variables, wheree = (z1,x2,...,zy). The
right) singular vectors of a matrix. But for tensors of ordercoefficientc;;. , could be arbitrarily set to 1, but it is more
higher than 2, the &ID can be unique, up to scale and per-convenient to set it equal to the multinomial coefficigni,[13
mutation ambiguities. That's why thea®D is so attractive [@]. Through this bijection, a vectar is mapped to a linear

which is denoted ag" = > _u(r) e v(r) @ w(r) in compact
form, where as beforg stands for the tensor (outer) product.

i, k=1

in applications. form ¢(x) = u"x. Now because of the bijection, thex@D
Multilinear rank. There exist other definitions of rank €an Pe stated in terms of polynomials as:
for tensors. Some are pointed out in Secfipn 4. But the sim- R(T)

plest one consists of associating the tensor wilinear op- p(x) = Z ,(x)?
erator. Yet, there are¢ — 2 nontrivially different ways of 1



Given polynomiap(x), finding the minimal numberoflinear | N | 2 3 4 5 6 7 8 |
forms/{,(x) is known as the Waring probleﬂ14]. 2 2 3 4 5 6 7 8

d| 3] |2 4 5 8 10 |12| |15
Example 3 Take the tensor of exampl]a 2. The associated 4 6 1_5
polynomial isp(z1,22) = 32?2 and the corresponding = = =

CAND is: Table 1. Generic rank?, of symmetric tensors of orddrand

dimensionN. In the real field, it corresponds to the smallest

2p(z1,22) = (21 + 22)% + (—21 + 22)° — 223 typical rank

Orbits. The orbit of a tensofT is the set of tensors that

are obtained by applying an invertible multilinear tramsfo 5 fourth powers of linear forms. Tab[g 1 reports the values
on Ty. Obviously, all tensors in the same orbit have the samef the rank of generic symmetric tensors, and one can indeed
rank, and the same multilinear rank. notice the value of 6 fofd, N') = (4, 3). More precisely, for

i ) symmetric tensors, left and right hand sidesﬁ)f (3) can have
Example 4 By permuting the two rows n the 1st mode, ON€he same number of free parameters only if the quartity
easily checks out that the non symmetric tensor below is 'E}esp.F for cubic tensors with unconstrained entries) below

the orbit of T3, studied in exampld$ 2 afif 3: is an integer
, [1 0|0 0
Ts= [ 0 1 ‘ 10 ]

and is hence of rank 3.

(5) o 1 <N+d—1>_ B Nd
N d ' - Nd—d+1
In Tables[]L (resp. Tablf 2), the exceptions to the ceil rule
Rs = [Fs] (resp. R = [F]) are distinguished by an un-
3. GENERICITY derlining. When the ratiog’; or F' are integers, and when
we do not face an exception, then there is a finite number
of CAND'’s, and the corresponding value of the generic rank

__is represented in a frame in Tab[gs 1 &hd 2. Otherwise, the
most everywhere. In other words, there can be several ﬂyp'caeneric ranki, > F, (resp. & > F) and the GND is not

ranks, but only a single generic ra[ 16]. In algebraic g unique. Seem8] for further practical details.

ometry, it has been proved that a generic homogeneous poly- For symmetric tensors in the complex field, all the values

nomial always assumes the same rank value in the comple>$ . . )
Of the generic rank are now known and proved theoretically:

field. Hence there exist a single generic rank for symmet;, . . . o
ric tensors inC. Thus the distinction between typical and this is the Waring problenm.4], for which it has been proved

. - . ) in 1996 by Alexander and Hirschowitz that the number of ex-
generic ranks is irrelevant in the complex figlH[[3, 17]. Neve S .
o : Ll ceptions is finite. On the other hand, for tensors with free
theless, it is convenient to make the distinction in the @nés . .
. . ) entries, most values have been found by computer simula-
framework by reserving the use of the terminologgeheric

rank to decompositions if©. We should note that the notion tions (in .bOId n Ta_ble[|_2). F|n|_teness of exceptions for non
: ._symmetric tensors is still a conjecture.

of zero-volume (or zero-measure) is related to an undeglyin As shown in Tableﬂz eneric rank values are larger when

topology. In algebraic geometry, this is the Zariski togglo 9 9

- tensors have free entries, which makes sense. Generic ranks
But these results hold true for other topologies, including .
clidean EF]- of non cubic tensors can be found E[lG], as well as tensors

Importance. The consequence is that real or complexOf other particular forms.

symmetric tensors with entries randomly drawn according to
a continuous probability distribution are generic, andaalsv |

Informally, one says that a propertytigical if it holds true
on a nonzero-volume set. A propertygenericif is true al-

4 5 6 7 8]

3

have the same rank in the complex field. Considering that 2 3 4 5 6 7 8
in Engineering, measurements are always corrupted by,noise | d | 3 . 5 7 10 14 19 24
and that this noise is generally assumed additive and has a 4 4 @ 20 37 62 97
continuous probability density, we see that estimatedotens ~
will be generic most of the time. That's why the study of Table 2. Generic rankR of free tensors of ordef and equal
generic tensors is of prime importance. dimensions)V. In the real field, it corresponds to the smallest

Uniqueness. One could believe that uniqueness is en-typical rank.
sured, at least up to permutation and scale, if the number of
free parameters are the same on both sideE of (3). It turns out Beside the generic cases appearing in framed boxes in Ta-
that this is not true. Clebsch was the first to notice in 185mles[} ofp, can we have a finite number of possiblenD
that ternary quartics cannot generally be written as a sum dbr a given tensor? There are two results that can help us.

N | 2
2

N




Necessary conditionif the rank of a tensofT is strictly 4. RANK UNDER CONSTRAINT

smaller than the expected rank:
Rank depends on the fieldThe results obtained so far do not

R(T)<F, or R(T)<F apply directly to real tensors, because it was assumedhbat t

underlying field was algebraically closed. In fact, thereyma

then there is almost surely a finite number ofND. In fact, ~ eXist several typical ranks in the real field. The only thing

there is a set of zero-volume in which the number ain@  We know is that the smallest typical rank coincides with the
can be infinite (cf. Examplg 5 below; sde][16] for a summarygeneric rank computed i@.

of complementary results). Example 8 Consider again symmetric tensors with ) =

(3,2), but this time inR. Beside the zero tensor, there are 4
Example 5 Take symmetric tensors of ordér= 4 and di-  orbits Q; [R4]. Q;: rank-1 tensors generated by polynomial
mensionN = 3. From Table[Jl we see that generic tensorsz®, Q: rank-2 generated by® + y°, Q3: rank-3 generated
admit a finite number of CanD iff in that case, and that by z?y, and€y: rank-3 generated byy? — x3. It turns out
the generic rank is 5. But by drawing randomly such tensorsthat there are 2 typical orbits iR, namelyQ; andQ, and 2
there is a zero probability to draw a tensor in the orbit of negligible orbits Q2; and3. In C, €24 does not exist, because
x3x4, which has infinitely many CanD’s as in Examflle 3. it is included in{,; this can be seen by observing tHas is

mapped td2, by the transformz, y) — (z +w, z — ).

Sufficient conditionif the rank of a tensofl satisfies the

o The conclusions are similar as Examﬂle 8 for tensors with
condition below:

free entries@S]: there can be several typical ranks. teg&e
d conjectured that there can only be at most two typical ranks
QR(T)+d—1< Z N; for p x ¢ x 2 tensors. But tensors with dimensions larger than
P 2 are likely to admit more than 2 typical rankslin
Now what happens to the rank of a given real tensor? We
then the @ND is unique. The above condition is a simpli- have for any real tensdr:
fication of the exact statement, and is true with probability
one; see[[39] for the exact statement, involving the conaept rank{ T} < rank{ T} (6)
k-rank of a matrix, introduced by KruskﬂZO].
Another useful sufficient condition leading to almost sure
uniqueness can be found ip ]21] for tensors having one di- T, — [ -1 0 ‘ 0 1 }
mension much larger than the others. 0 1]1 0

Maximal rank. The maximal achievable rank of a tensor is of rank 3 inR, but 2 inC [ff]. In fact we have inR:
is not clearly known, only bounds exist. But we know that 3 3 3
R i ) 1 1 ® 1 1 ® -1 ®
there always exist tensors having a rank larger than generic Ty = = ( ) 4z ( ) ) ( )
as soon as the order exceeds 2 (which is the matrix case). 2 \1 2\~ 0
Remember that the rank of a matrix cannot exceed its dimerbyt we have in the complex field:
sions.

Example 9 The2 x 2 x 2 tensor :

®3 ®3
(1) =2 (0)
Example 6 In Tables[ll and]2, we see that 3rd order cubic 2\ 1 2 \1

tensors of dimension 2 are generically of rank 2, should theyso inequality [[5) may happen to be strict.

be symmetric or not. But tensors studied in Examfjles fand 4 -4, the symmetry constraint change rank?Constrain-

had a rank equal to 3. ing the CAND to be real can increase rank, as we have just
seen. Similarly, since constraining thextlD can only in-

Example 7 There is a one to one correspondence betweegrease rank, we have:

the space 08 x 3 x 3 symmetric tensors and ternary cubics

(homogeneous polynomials of degree 3 in 3 variables)C In R(T) < Ry(T) @)

the generic rank is gqugal to ‘ﬂgg]- But polynomials lying in However, it has not been possible to provide examples of
the orbit of polynomiak=y + x2* are of rank 5, which is the  symmetric tensors for which the symmetric rank is strictly

maximal achievable rank of ternary cubics@p3,P3,8].  |arger than the free rank. Put in other words, it seems that
inequality ﬂ’) is always an equality. However, the result
Hence there exist tensors having a rank larger thai(T) = R(T), VT symmetric, has only been partially

generic, but they are difficult to find because they form a seproved in El], and hence still remains a conjecture for most
of zero volume. sub-generic ranks.



5. LOW-RANK APPROXIMATION to a tensor of ranki. Note that the first example of lack of
closeness was probably due to Bini et al. in 1979; Ee [25].

In this section, we are interested in findinfamilies ofd vec- In general, the approximation problem is ill-posed, which
tors, {u(p), v(p),... w(p)}, 1 < p < r, such that the crite- means that not every tensor will have a low-rank approximate
rion below is minimized for a given rank value< R(T): However, there exist well-posed tensor approximation prob
. lems [31], as now shown.
1T-> ulp)ev(p)e...ow(p)| (8) Restriction to orthogonal transforms. Consider the case
=1 where columnai(p), (resp. v(p) andw(p)) involved in @)

are constrained to be orthogonal. THEmust be cubic and
cannot exceed its dimension, which is a strong limitationt B

on the other hand, according to Weierstrass theorem, a con-
It is well known that the set of rank-1 tensors is closed, asinuous function defined on a compact set reaches its extrema
a determinantal variety [P4, P7]. Yet, its computationlstil Yet, the orthogonal group is compact, because bounded and
raises difficulties, due to the multimodal character of the ¢ closed in a finite dimensional space. On the other hand, a
terion of the form [B), even for = 1. If the Frobenius norm  function such as[]8) is continuous. Hence, the minimum al-
is used, one can think of running a power iteratior} [28]. Suffi ways exists. This is why approximate orthogonal tensor-diag
cient convergence conditions have been obtained for symmegnalization has been the subject of numerous researches for
ric tensors in[[29]. Also note that there exist a closed formhe last fifteen year§][9]; Independent Component Analgsis i

5.1. Rank-1 approximation

solution for 3rd order tensors of dimension[2][30]. one instance of this diagonalization problem.
Regularization of the criterion. A well-known way to
5.2. Rank+ approximation deal with ill-posed problems is to add regularization terims

[@] for instance, the regularized criterion consists afdu
In applications, approximating a tensor by another of givenion (§) with additional terms proportional to the norm of
lower rank,r > 1, is often what is actually sought for. How- each unknown. Yet, from the constrained optimization tizeor
ever, this question is well posed only if the 3étof tensors  we know that, under some regularity conditions, minimiz-
of rank at most- is closed. But it turns out that, is gener- ing a functionf(zy,...2;) under the constraint$z;||? =

ally not closed, unless = 1 or r is maximal (i.e. whe, is ;i e {1,...,k} is equivalent to minimizing the functional

the whole space). Note that the proof that every)eis not f(x1, ... 2k)+>, Ail|z:| |2, where the real3; should be cho-

closed forl < r < Ry.q. given in [4]is yet incomplete. sen so as to satisfy the constraints. Yet, in a finite dimerasio
space, the unit sphere is compact, and so is the set defined by

Example 10 In order to prove thad’, is not closed, it suffices |,(|2 = 1;,i € {1,...,k}. Thus by the same argument as

to find a sequence of rark tensors converging to a tensor of ahove, the continuous functiof(z) reaches its extrema on
strictly higher rank. Take 3 linearly independentvecterss,  the |atter set.

andz and build the following sequence of 3rd order symmet-  Restriction to real positive tensors.In a number of con-
ric tensors (the principle extends to non symmetric tensorgexts, the tensors considered have real nonnegative ®rdse
with a somewhat more complicated notation): well as the rank-1 terms appearing in theND. This is the
1 1 case for instance of tensors built on power spectral dessiti
T(n) = n*(x+—5y+—2)°° or images (see Sectidh 7). Now criteridh (8) is to be opti-
" T mized over the cone of vectors with real positive entriess It
+ nP(x+ —y——2)8% - 2n?x®3 shown in [3]1] that this is a well-posed problem for any
" Border rank Another more natural way of facing the
For everyn, the above tensor is of rank 3, but it converges toproblem of ill-posedness is to search the closyreof Y,

the limit below, which is of rank § [18]: instead of)), itself. By doing so, the rank of the approxima-
tion may be as large as therder rankof ),; see [3B[B[45]
T(c0) = XeXey+XeyeX+yeXeX for this terminology. However, we solve a different problem
+ XezZeZtzZeXezZtzZezZeX which may not be satisfactory in practice.

This tensor i; in fact asso_ciated with the polynorﬁiﬁ?y + 5.3, Subtraction of the best rank-1 approximate
322, belonging to the orbit of rank-5 ternary cubics (cf. Ex-
ample}). It is now known that one cannot estimate the tensor rank by
subtracting successive rank-1 approximq@s [29]. Theoreas
Examples in dimension 2 have already be reported as weil$ that the tensor rank may not decrease this way. This makes
[, section 6] ]. For instance, one can build a sequence ¢fense, otherwise the rank approximation problem would
2-dimensional cubic tensors of ordéand rank2 converging be well-posed, since the rankk was. But it can be shown that



subtracting the best rark approximation generally even in- 7. APPLICATIONS

creases tensor ra24], which is more surprising.
As already said in introduction, thea@ D may be seen as a

discrete version of the functional equation

f(I,y,Z) = ZUP(I) vp(y) wp(z) 9)

Example 11 The tensor

1 0|10 1
T= [ 0 2 ‘ 10 }
Al. Limiting the sum KP) to a finite number of terms allows
to reduce the computational complexity in several problems
for instance in the approximation of integral or differati
0 0l0 o operatorsS’_]. . _ .
Y= [ 0 2 ‘ 0 0 ] A2. Anotherinterestin the & D in mathematics is the eval-
uation of the asymptotic arithmetic complexity of the protdu
of two matrices[[44[]3, 49, #6]. The tensor to be decomposed
is then of order 3, and represents this bilinear map.
A3. The CanD (E) is widely utilized in Multi-way Factor
Analysis ]. It appears in several quite different braggh
of engineering[[3d, 47, 28] §.]49]. Let's review some of them.
] o ] A4. In fluorescence spectroscopy for instance, an optical ex-
is of rank 3, because in lies in the orbit of Examfjle 4. citation at wavelength,. produces a fluorescence emission
at wavelength\; with a fluorescence intensity that can be
modeled as indicated below, if the Beer-Lambert law can be

is of rank 2. Its best rank-1 approximate [24]:

And one checks out that the difference

T_Y:[l 0‘0 1}

0 0|1 O

6. COMPUTATION linearized (that is, at low concentrations):
The computation of the &ND of a given tensor remains a IAg, Ae k) =1, Zw(x\f) €r(Ae) Crp
difficult task, even if the rank is known and the€D essen- ¢

tially unique. The most often encountered way to compute thg herer: denotes an experiment index, which may correspond
CAND is to resort to standard optimization algorithms suchy, giterent concentrations or temperatures. We recogaize

as the conjugate gradie34], Newtdn][45] 36], Alternatansor an D, if wavelengths are discretizeld [38]. Note that
ing Least squareg [BY,]3B.|36] 18], or Levenberg-Marquargfq tensors are here real amghnegative

[@ ] 'fllgorithms. All these algor?thms have a commonag  another direct application occurs in probability, when
limitation: they can lead to a local minimum cﬂ (8) even for yriting the joint distributiong(x) of a d—dimensional ran-
r = R(T), thatis, to a nonzero error, if a good initial guess iSy,m yariableX conditionally to a discrete variabl taking

not available. r possible valueg, with probability z2(6,). If random vari-

~ Aglobal line search can be combined with any of thesesples X, are conditionally independent, we have, applying
iterative algorithms in order to avoid local minima; sinbet Bayes rule:

global minimum is found only in a one- or two-dimensional

space for complexity reasons, the technique has been called .
Enhanced Line SeardELS) [B9,[40]. q(x) = Y pl0e) g1 (w1 | 00) a2(w2 | 0) - (o | O0)
. . . . =
Nevertheless, in the case of 2-dimensional symmetric ten- !
sors, a theorem by Sylvester allows to compute tae D, ei-  If variablesX;, are themselves all discrete, the rule takes the

ther in the real or complex field, and only requires to computdorm of the CAND of adth order reahonnegativéensor [3]L].

the kernel of some Hankel matrik J1[7, 9]. This algorithm hasA6. Image processing is also an example where tensors have
been recently extended to symmetric tensors of larger dimeri€al nonnegative entriep [50,]41] $2] 53.

sions, but only in the complex field]][8], and basically worksA7- Modeling the signals received on an array of antennas

for ranks below generic, and when thei@D admits a finite generally leads to a matrix or tensor formulation. For ins&a
number of solutions. in digital communications, the signal received on the améen

For tensors of order 3 with one dimension equal to 2, tech@'T@Y takes the form
nigues based on matrix pencils have been shown to be very at-
tractive [15]. The @GND can also be calculated with the help Tip = DD iea Y hearpsicn
of the Generalized Schur Decompositi¢n| [, 42]. Other al- b y
gorithms have been proposed for tensors with specific shapesherei, j, k, ¢, ¢ denote the space, time, symbol time, trans-
in particular in ] for 3rd order tensors when the rank ismitter and path indices, respectively,characterizes the re-
smaller than the largest dimension. ceiver geometryh the global channel impulse response, and



s the transmitted signal. Index appears only in the pres-
ence of additionadliversity, induced by oversampling, polar-

ization, coding, geometrical invariance, wide frequenagd
nonstationarity... See e.d. [44]55] for an introduction.

A8. In some problems however, the diversity is lacking in the

[5] F.L.HITCHCOCK, “Multiple invariants and generalizednk
of a p-way matrix or tensor,J. Math. and Physvol. 7, no. 1,
pp. 40-79, 1927.

[6] T. D. HOWELL, “Global properties of tensor rank,inear
Algebra and Applicationsvol. 22, pp. 9-23, 1978.

measurements. This may occur for instance when the matrix[7] D. A. WEINSTEIN, “Canonical forms for symmetric tensgrs

slices of a third order tensor are proportional. In such &cas

Linear Algebra Appl.pp. 271-282, 1984.

the CanD is not unique, because the tensor decomposition[g] j. BRACHAT, P. COMON, B. MOURRAIN, and E. TSI-

reduces to a matrix one. In statistical signal processheyet
are several ways to face this problem, by taking advantage of

another property.
Consider the simplest linear statistical model

x=Hs

where realizations of vector are observed. In other words, a

matrix X;; is given. The goal is to identify matrikl, which

is assumed to mix statistically independent random vagbl

s;. The second joint characteristic functidn, of variables
x; may be shown to satisfy the core equation

Uo(n) =) ¥, <Z Uy Hﬂ)
4 q

whereWl,;, denotes the 2nd characteristic functions of variable
s¢. As pointed out in Sectioﬂ 1, théth order derivative of

such a function yields a symmetric tensor of ordeAt order
3 for instance, this tensor can be modeled as

T%jk(“) = Z ,LL[(U) Hig ng Hkg
4

where,(u) stands for the third derivative oF;, taken at

GARIDAS, “Symmetric tensor decompositiorLlinear Alge-
bra and its Applications2009, submitted. hal:inria-00355713,
arXiv:0901.3706.

[9] P. COMON, “Tensor decompositions, state of the art and

applications,” inMathematics in Signal Processing ¥. G.
McWhirter and I. K. Proudler, Eds., pp. 1-24. Clarendon
Press, Oxford, UK, 2002, arXiv:0905.0454v1.

[10] L-H. LIM, “Singular values and eigenvalues of tensois:

variational approach,” InEEE Int. Workshop on Comput.
Adv. Multi-Sensor Adapt. ProcPuerto Vallarta, Mexico, 13-
15 Dec. 2005.

[11] P. COMON, *“Blind channel identification and extractiof

more sources than sensors,” keynote addresSPI& Confer-
ence San Diego, July 19-24 1998, pp. 2-13,

[12] L. Ql, “Rank and eigenvalues of a symmetric tensor, thé-m

tivariate homogeneous polynomial and the algebraic hyper-
surface it defines,”Jour.Symbolic Computatiorvol. 41, pp.
1309-1327, 2006.

[13] R. EHRENBORG and G. C. ROTA, “Apolarity and canonical

forms for homogeneous polynomialsEuropean Jour. Com-
binatorics vol. 14, pp. 157-181, 1993.

[14] A.IARROBINO, “Inverse system of a symbolic power. lhet

Waring problem for forms,”J. Algebra vol. 174, pp. 1091—
1110, 1995.

Zq ug Hye. Atu =0, this is a cumulant matching equation, [15] J. M. F. ten BERGE, “The typical rank of tall three-way ar

and we face the &\D of a 3rd order symmetri¢ensor. If a
grid of values is chosen fax, then we have the &ND of a
4th order non symmetriensor [5p].

In all the applications mentioned above, it was necessary
to resort to tensors in order to solve the problem. In fact,[l7]
if stated in matrix form, the above problems would have in-
finitely many solutions. From the engineer point of view,-ten

sors have allowed to restore identifiability.
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