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ABSTRACT
It is usually accepted that whenever dealing with astronomical observation through the at-
mosphere, the optical turbulence temporal evolution can be sufficiently described with the
so-called frozen turbulence hypothesis. In this model, turbulence is supposed to be equiva-
lent to a series of solid phase screens that slide horizontally in front of the observation field
of view. Experimental evidence shows, however, that an additional physical process must be
taken into account when describing the temporal behaviour of the optical turbulence. In fact,
while translating above the observer, turbulence undergoes a proper temporal evolution and
affects differently the astronomical and, more specifically, the astrometric observations. The
proper temporal evolution of the turbulence-induced optical turbulence observable quantities
is here called the optical turbulence boiling. We are proposing through this paper a theoretical
approach to the modelling of the optical turbulence temporal evolution when the turbulent
layer horizontal translation and the optical turbulence boiling are both involved. The model
we propose, as a working hypothesis though, has a direct relevance to differential astrometry
because of its explicit dependence upon the optical turbulence temporal evolution. It can also
be generalized to other techniques of high angular resolution astronomical observation through
the atmospheric turbulence.

Key words: turbulence – atmospheric effects – techniques: high angular resolution –
astrometry – planetary systems.

1 I N T RO D U C T I O N

One of the most exciting astronomical activities nowadays is incon-
testably the detection of extra-solar planetary systems. For this pur-
pose, and in parallel to direct imaging developments (Chauvin et al.
2005), many indirect observation methods are being developed. As-
trometry, complementarily to radial velocity surveys, appears to be
a promising technique for exoplanet detection through its capability
to determine planetary masses and long-period orbits (McAlister
1996; Pravdo & Shaklan 1996; Launhardt 2005). The accuracies
needed today for detecting the astrometric signature of the apparent
star position perturbation that is induced by an orbiting planet in
a nearby system are of the order of a few microarcseconds if not
less (Sozzetti 2005). In order to detect these astrometric signatures,
space and ground-based astrometric programmes are being devel-
oped (Casertano et al. 1996; Lattanzi et al. 2000; Sozzetti et al. 2003).
The most straightforward direction for ground-based astrometry to
achieve such precisions is probably related to infrared long-baseline
interferometry (Shao & Colavita 1992; Lane & Muterspaugh 2004).

�E-mail: berdja@unice.fr (AB); borgnino@unice.fr (JB)

It appears, however, that with appropriate field averaging and data
reduction (Pravdo & Shaklan 1996), an appropriate apodization of
the entrance pupil and a virtually enhanced symmetrization of the
reference field (Lazorenko & Lazorenko 2004; Lazorenko 2006),
it is still possible to achieve very acceptable astrometric accuracies
with mono-aperture telescopes (Gatewood 1987; Anderson et al.
2006) in relatively good seeing conditions.

Ground-based astrometry, like the other optical and infrared high
angular resolution observation techniques, is strongly contaminated
by the atmospheric optical turbulence. A long-exposure observation
regime is therefore performed in order to induce a time averaging of
the apparent instantaneous turbulence-induced image motion over
the telescope field of view. For a given exposure time, the astromet-
ric accuracy depends mostly upon how fast the optical turbulence
evolves over time (Lindegren 1980). We find it important therefore
to accurately model the optical turbulence temporal evolution and
its effect on finite-exposure image motion in order to have the abil-
ity to perform the astrometrical measurements in the most suitable
conditions.

The optical turbulence temporal evolution is usually modelled
with the so-called frozen turbulence hypothesis or the Taylor hy-
pothesis (Tatarskii 1971; Conan, Rousset & Madec 1995; Avila
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et al. 1997). The optical turbulence horizontal transportation has
been observed for a long time (Vernin & Roddier 1973) and a model
of multilayered frozen and translating turbulent layers has been de-
veloped (Roddier, Gilli & Lund 1982) for the purpose of studying
the turbulence-induced speckle image temporal evolution (Aime,
Kadiri & Ricort 1980; Aime et al. 1986; Vernin et al. 1991) and how
to monitor it (Lopez 1992). It is still in use also to model speckle
statistics in adaptively corrected images (Fitzgerald & Graham
2006). This multilayered approach is usually called ‘speckle boil-
ing’. This denomination is due to the visual effect it induces on the
speckle image temporal evolution and has nothing to do with the op-
tical turbulence boiling we are describing in this paper. The frozen
turbulence hypothesis is based upon the belief that for short expo-
sure times, wavefronts do not deform but translate uniformly as the
wind blows. This is equivalent, relatively to the optical effect that
is induced, to moving solid diffusers illuminated using laser beams.
It leads to a relatively simple theoretical description of the optical
turbulence temporal evolution and how it is decorrelated over time
(Conan et al. 1995). However, a closer look via dedicated experi-
ments (St-Jacques 1998; Schöck & Spillar 1999) has given a new
insight into the limits of the frozen turbulence hypothesis. It appears
that this approximation is valid only for exposures lower than a few
tens of milliseconds (St-Jacques & Baldwin 2000; Schöck & Spillar
2000) and that the optical turbulence temporal evolution cannot be
described only by wavefront horizontal translation as it is usually
supposed. This limit was also noted before (Gendron & Léna 1996).
In fact, while translating in front of the telescope field of view, the
optical turbulence undergoes a proper temporal evolution, which for
a stationary observer superposes on that evolution produced by the
horizontal transportation. This proper temporal evolution is to be
referred to as the optical turbulence boiling.

A more appropriate modelling of the properties of the optical tur-
bulence temporal evolution not only is relevant for long exposures
as in astrometric surveys but also matters in some other high an-
gular resolution techniques. For example, optimizing the response
of adaptive optical systems depends upon the short time-scale over
which the turbulence-induced optical wavefront pattern evolves. The
deterministic aspect of the horizontal frozen and translating turbu-
lent layers might also allow making predictions on the evolution of
the wavefront pattern and thus making adaptive optics more effi-
cient. The optical turbulence temporal evolution is also significant
for long-baseline interferometry (Kellerer & Tokovinin 2007). It ap-
pears then that the validity of the frozen turbulence hypothesis as
well as the influence of the optical turbulence boiling deserves to be
discussed.

The major aim of the present paper is to propose a theoretical
approach that permits modelling the optical turbulence temporal
evolution when the optical turbulence boiling and the turbulence
layer horizontal translating are both involved. We emphasize mod-
elling the finite-exposure differential image motion because of its
significance for astrometry and for the other techniques of high an-
gular resolution imaging. The model can be easily generalized to
other observable quantities as well.

2 F I N I T E - E X P O S U R E D I F F E R E N T I A L
I M AG E M OT I O N

When propagating through the atmosphere, light from outer space
encounters a medium with a randomly distributed and time-
changing refractive index field. This inhomogeneity is due to the
omnipresent turbulence in the air. The different areas of an incoming
wavefront are unequally slowed down by the refraction index field

and thus undergo phase and amplitude fluctuations (Tatarskii 1971).
When diffraction occurs at the entrance pupil of a telescope and light
is focused on an imaging detector, the instantaneous point spread
function, which is the image obtained when a single unresolved star
is observed, usually exhibits a speckled distribution rather than a
single airy spot. This image is also shifted from its real position and
as time passes by, its instantaneous position fluctuates around its
average turbulence-free position. We do not discuss here the sys-
tematic errors like the differential chromatic refraction (Gubler &
Tytler 1998), but we focus on the optical turbulence effects only.
Image motion is due to the turbulence-induced angular deviations
of light from its initial direction of incidence. It is proportional to
the normalized averaging of the local wavefront slopes over the en-
trance pupil where they are weighted by the instantaneous intensity
fluctuations resulting from scintillation (Tatarskii 1971).

Let α1(t) and α2(t) be the one-dimensional components along
an arbitrary direction of the instantaneous angular motion of the
images of two stars 1 and 2. One of them may be the target star
under investigation and the other may be any of the reference stars
in the field of view. Instantaneous differential image motion along
that same direction is given by the difference α1(t) − α2(t) of the
instantaneous departures α1(t) and α2(t) from the real positions of
the stars as they should be measured without optical turbulence.

In the following, mono-directional differential image motion
refers to the one-dimensional component of the two-dimensional
differential image motion along a given orientation. The astrometric
error can be defined as the rms of the long-exposure two-dimensional
differential image motion. It can be easily obtained, for example,
from the statistical variance of long-exposure mono-directional dif-
ferential image motion taken along two arbitrary orthogonal orien-
tations. In the following, we will focus, however, on the statistics of
the finite-exposure mono-directional differential image motion.

In order to minimize the differential image motion effect on the
angular separation measurements, a long-exposure measurement is
performed in order to induce sufficient averaging on the instan-
taneous turbulence-induced motions. Because time averaging is
finite, there always remains a residual differential image motion
(Lindegren 1980).

If �αres(T) is the residual mono-directional differential image
motion after an averaging over a finite-exposure time T, then we
write

�αres(T ) = 1

T

∫ T

0

dt[α1(t) − α2(t)], (1)

where �αres(T) is simply the finite-exposure measurement of the
mono-directional differential image motion α1 − α2 over an expo-
sure time T. It is a random quantity with zero mean like α1(t) and
α2(t). We will characterize it by its statistical variance σ 2

T that is
given by

σ 2
T = 〈|�αres(T ) |2〉 , (2)

where 〈. . .〉 denotes ensemble averaging as if finite-exposure mea-
surements were repeated infinitely with the same conditions of op-
tical turbulence.

The statistical variance of the finite-exposure differential image
motion can therefore be developed into

σ 2
T =

∫ T

0

∫ T

0

dt dt ′

T 2

〈
[α1(t) − α2(t)][α1(t ′) − α2(t ′)]

〉
. (3)

The quantity that appears in the double integral is the temporal
covariance R�α(t − t′) of the instantaneous differential image mo-
tion. As it depends only upon the time difference τ = t − t′, the

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 378, 1177–1186

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/378/3/1177/1056173 by guest on 19 N
ovem

ber 2021



Modelling the optical turbulence boiling 1179

double integral can be reduced into a single integral relatively to the
variable τ . We have thus

σ 2
T = 2

T 2

∫ T

0

dτ [T − τ ]R�α(τ ). (4)

We can already see in this expression that the astrometrical error
via the residual mono-directional differential image motion variance
depends upon the statistical properties of the temporal evolution of
the optical turbulence, which is expressed here through the temporal
covariance of the instantaneous mono-directional differential image
motion.

The temporal covariance R�α(τ ) is directly related by a Fourier
transform to the temporal power spectral density ω�α(ν) of the in-
stantaneous mono-directional differential image motion where ν

denotes a temporal frequency. The temporal power spectral density
is a positive and pair function so that one directly writes

R�α(τ ) = 2

∫ ∞

0

dνω�α(ν) cos{2πντ }. (5)

The variance of the finite-exposure mono-directional differential
image motion is then obtained with

σ 2
T = 4

T 2

∫ T

0

dτ [T − τ ]

∫ ∞

0

dνω�α(ν) cos{2πντ }. (6)

One has, thus, to determine the temporal power spectral density of
the instantaneous differential image motion in order to characterize
long-exposure measurements.

While the modelling of the temporal statistical properties of the
optical turbulence quantities is based upon the temporal power spec-
tral density, the optical turbulence properties are most often de-
scribed by the two-dimensional spatial power spectral density. In
all the following, we will describe the effects induced by a single
equivalent turbulent layer at a given altitude. We will also ignore
the polychromatic effects on mono-directional differential image
motion statistics (Berdja, Borgnino & Irbah 2006) and consider just
the monochromatic case. If the optical turbulence obeys the von
Kàrmàn (Borgnino 1990; Borgnino, Martin & Ziad 1992) and Hill-
Andrews models (Innocenti & Consortini 2004; Jolissaint, Véran &
Conan 2006), then the instantaneous differential image motion spa-
tial power spectral density W�α( f ), where f is a two-dimensional
spatial frequency vector, is given by

W�α( f ) = 0.7654

[
C2

nδh

cos{ε}

]
f 2

x

[
f 2 + L−2

0

]−11/6

×
[

2D J1{π D f } − 2D′ J1{π D′ f }
π[D2 − D′2] f

]2

cos2{πλh f 2}

× [1 + 3.4310 f l0 − 0.5384[ f l0]7/6] exp{−3.6252[ f l0]2}
× [1 − cos{2πh fΘ}], (7)

with f = f x i + f y j .
Θ = �x i + �y j is the two-dimensional angular separation be-

tween the two stars in the sky (Fig. 1), C2
n the constant structure for

refractive index fluctuations, δ h the turbulent layer thickness, ε the
average zenith angle, L0 the outer scale of the optical turbulence
(Borgnino 1990; Borgnino et al. 1992), l0 the inner scale (Innocenti
& Consortini 2004), D the diameter of the circular entrance pupil of
the telescope, D′ the diameter of the circular central obstruction, λ

the light wavelength and h the altitude of the turbulent layer above
the instrument. We have assumed here that the one-dimensional
component of the differential image motion is oriented along the
x-axis. The geometrical configuration is summarized in Fig. 1.

Θ

ηγ
hΘ

x
v

Figure 1. The plane surface in this diagram represents a horizontal turbulent
layer at an altitude h above the ground-based telescope which is represented
here by its entrance circular pupil downside. Two unresolved stars with
angular separation Θ are observed and the intersections of the lines of sight
with the turbulent layer draw a baseline hΘ which can be viewed as a
projection of the angular separation. In the figure, the x-axis denotes the
orientation along which the one-dimensional component of image motion is
considered. The relative angle of the baseline to the image motion component
is denoted by γ . The relative angle of the turbulence translation velocity v
to the image motion component is denoted by η.

We should note here that one could obtain straightforward results
for the long-exposure two-dimensional differential image motion
from the following model just by replacing the term f 2

x by f 2 in
equation (7). Applications to some other optical turbulence observ-
able quantities can be obtained by entering the appropriate spatial
power spectral densities instead of the one expressed in the previous
equation.

We will discuss in the following sections how to derive tempo-
ral power spectral densities from spatial power spectral densities in
order to model the temporal statistical properties of the optical tur-
bulence and their influence on high angular resolution techniques.

3 T H E O P T I C A L T U R BU L E N C E T E M P O R A L
E VO L U T I O N P RO C E S S E S

From the observational viewpoint, we can classify the optical turbu-
lence temporal evolution according to two main phenomenological
processes.

(i) A chaotic dynamical evolution, due to the very intrinsic na-
ture of fluid turbulence, which causes what we have designated as
the optical turbulence boiling. This process can be schematically
described as being due to the fact that inside a turbulent layer, the
relative spatial configuration of eddies at all available scales does
change over time.

(ii) An apparent evolution that is due to the relative horizontal
translation of the turbulent layer relatively to the observer. For a
given line of sight, light experiences different parts of the turbulent
layer over time.

We will first review the analytical modelling of the temporal
power spectral density of the instantaneous mono-directional differ-
ential image motion when horizontal translation occurs alone with-
out any proper boiling. This is the well-known frozen turbulence
hypothesis. We present then an analytical modelling of the tempo-
ral power spectral density of the instantaneous mono-directional
differential image motion when the optical turbulence boiling
occurs alone. In the following section, we present a more gen-
eral approach to model the temporal power spectral density of the
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mono-directional instantaneous differential image motion when the
turbulent layer horizontal translation and the optical turbulence
boiling occur together.

4 T H E F RO Z E N T U R BU L E N C E H Y P OT H E S I S

In this approximation, we consider that the optical turbulence tem-
poral evolution is dominated by the translational effect as if the
turbulence spatial pattern was frozen and entirely translated by the
wind with a constant velocity v. The frozen turbulence hypothesis
is valid for a limited time beyond which we could consider that the
optical turbulence boiling could become sufficiently important to
induce additive temporal decorrelation.

Let �α(r ,t) be an instantaneous spatial distribution of the
x-oriented mono-directional differential image motion as measured
through a ground-based telescope, where r = xi + y j is a two-
dimensional position vector.

At an arbitrary initial instant t = 0, one can write

�α(r , 0) =
∫

d f |�α( f , 0)| exp{2πi f r + iϕ0( f )}, (8)

where |�α( f , 0)| is the modulus of the spatial Fourier transform of
�α(r , 0). It is to be considered as a random quantity whose statistical
variance gives the spatial power spectral density of the instantaneous
differential image motion like the one given in equation (7). ϕ0( f )
is a random arbitrary phase with 0 < ϕ0( f ) � 2π . We might recall
here that �α(r , 0) is a random and unpredictable spatial distribution
whose Fourier transform has random spatial frequency-distributed
modulus |�α( f , 0)| and phase ϕ0( f ). Only reproducible are the
statistical quantities like the spatial power spectrum W�α( f ), which
is given by W�α( f ) = 〈|�α( f , 0)|2〉.

During a finite duration t, the whole turbulence is translated along
a distance vt where v is still the velocity vector of the turbulence
translation. At an instant t, the observed optical turbulence pattern
through a fixed line of sight at a position r is the same pattern that was
observed according to that same line of sight but at a position r −v t
at the instant t = 0. According to the frozen turbulence hypothesis,
we can then write

�α(r , t) = �α(r − vt, 0). (9)

With this translational effect, the instantaneous spatial distribu-
tion of the x-oriented mono-directional differential image motion at
instant t is given by

�α(r , t) =
∫

d f |�α( f , 0)| exp{2πi f [r − vt] + iϕ0( f )}. (10)

Relative to the observer, every spatial spectral component of fre-
quency f ‘oscillates’ at a temporal frequency ν that is given by

ν = fv. (11)

With the frozen turbulence hypothesis, there is a simple rela-
tion between spatial frequencies and temporal frequencies when
the velocity of the turbulent layer translation is known. The optical
turbulence with a temporal frequency ν is the result of the contri-
butions of the optical turbulence of all the frequencies f that satisfy
equation (11).

Within the framework of the frozen flow hypothesis, the temporal
power spectral density of the instantaneous mono-directional differ-
ential image motion ωFTH

�α (ν) at a temporal frequency ν is given by
the sum of all the spatial power spectral densities W�α( f ) with fre-
quencies f that satisfy equation (11). We may symbolize this ‘energy

transfer-like’ relation by the following expression:

ωFTH
�α (ν) dν =

∫
ν= fv

d f W�α( f ). (12)

In order to simplify this expression, we may choose different
spatial frequency coordinates with f ′ = f ′

x i ′ + f ′
y j ′ so that i′ is

aligned with the direction of the velocity vector v. In this case, the
‘energy transfer condition ’ in equation (11) writes simply ν = v f ′

x

where v is the module of v. We can thus obtain

ωFTH
�α (ν) = 1

v

∫
d f ′

y W�α

(
ν

v
, f ′

y

)
. (13)

This is achieved by a rotation of the coordinates system. If η is
defined by v = v[cos{η}i + sin{η} j], which also means that it is
the angle between the velocity direction relatively to the orientation
of the chosen component of the differential image motion, then we
will particularly have f x = f ′

x cos{η} − f ′
y sin{η}. This is how

temporal spectra are usually calculated within the framework of the
frozen turbulence hypothesis (Conan et al. 1995; Avila et al. 1997).

For example, we can consider the spatial power spectral density
of the instantaneous mono-directional differential image motion as
being given by

W�α( f ) = 0.7654

[
C2

nδh

cos{ε}

]
f 2

x

[
f 2 + L−2

0

]−11/6

×
[

2J1{π D f }
π D f

]2

[1 − cos{2πh fΘ}]. (14)

Here, diffraction and inner scale effects are neglected and the en-
trance pupil is circular without central obstruction.

The temporal power spectral density of the instantaneous mono-
directional differential image motion in this case is thus given
by

ωFTH
�α (ν) = 0.7654

v

[
C2

nδh

cos{ε}

]∫
d f ′

y

[
ν

v
cos{η} − f ′

y sin{η}
]2

× [
F2 + L−2

0

]−11/6
[

2J1{π DF}
π DF

]2

×
[

1 − cos

{
2πh�

[
ν

v
cos{η − γ } − f ′

y sin{η − γ }
]}]

,

(15)

where F2 = [ ν

v
]2 + [ f ′

y]2 and � being defined with Θ =
�[cos {γ }i + sin{γ } j].

The temporal power spectral density depends on the relative ori-
entations of the wind and angular separation relatively to the chosen
component of differential image motion, via the angles η and γ .
Fig. 2 displays, as an example, a temporal power spectral density
which is calculated by numerical integration of equation (15).

5 T H E O P T I C A L T U R BU L E N C E B O I L I N G

The situation we are to describe now is the case where the turbulent
layer does not translate horizontally across the observation field of
view. In this case v = 0 explicitly. We can imagine that rather than
remaining indefinitely frozen, the optical turbulence will undergo a
proper evolution, the optical turbulence boiling.

In order to model this effect, we will first recall some of the earliest
results of the statistical modelling of turbulence.

A fully developed and stationary turbulent fluid is statistically de-
scribed with the energy cascade model. In this approach, the energy
flow from large spatial structures of turbulence to smaller structures
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Figure 2. Plot of a temporal power spectral density of the instantaneous
mono-directional differential image motion ωFTH

�α (ν) within the framework
of the frozen turbulence hypothesis, which is calculated by numerical inte-

gration of equation (15). Here, the term 0.7654[ C2
n δh

cos{ε} ] is normalized to 1.

D = 1 m, � = 10 arcsec, γ = 0 rad, L0 = 10 m, h = 10 km, v = 10 m s−1

and η = 0 rad.

is constant. This implies through a dimensional reasoning within the
framework of the Kolmogorov model that to a structure of turbu-
lence with a given spatial characteristic length l is associated to an
average velocity fluctuation u which is proportional to l1/3 (Tatarskii
1971).

For a turbulence structure with a spatial length l, a velocity fluc-
tuation u is characterized by its fluctuation time τ where τ = l/u.
This characteristic fluctuation time refers to the turbulence structure
lifetime. It is an estimation of the time during which a turbulence
structure appears and disappears. By replacing u by l1/3, we have

τ ∝ l2/3. (16)

This describes how turbulence ‘boils’. The above proportionality
gives a direct relation between temporal frequencies ν and spatial
frequencies f for optical turbulence. This relation is given (Masciadri
& Vernin 1997; St-Jacques 1998) by

ν ∝ f 2/3. (17)

We can introduce here a proportionality constant ν0 as an inde-
pendent parameter that expresses how fast the optical turbulence
evolves by optical turbulence boiling. In this case, we write

ν = ν0 f 2/3. (18)

This also gives f = [ ν

ν0
]3/2 and dν = 2ν0

3 f −1/3d f .
The spatial spectral components during the optical turbulence

boiling can be viewed as resembling standing waves, each oscil-
lating at a temporal frequency that is given by equation (18). With
these considerations, the instantaneous spatial distribution of the x-
oriented mono-directional differential image motion at instant t is
given by

�α(r , t) =
√

2

∫
d f |�α( f , 0)| cos

{
2πν0 f 2/3t + ϕb( f )

}
× exp{2πi f r + iϕ0( f )}, (19)

where ϕb( f ) is an arbitrary phase with 0 � ϕb( f ) < 2π . The term√
2 cos{2πν0 f 2/3t +ϕb( f )} expresses here the temporal modulation

of the spatial spectral component of spatial frequency f.
Standing waves can be decomposed into two waves travelling in

opposite directions. �α(r , t) can also be rewritten in the following
form:

�α(r , t) =
√

2

2

∫
d f |�α( f , 0)|

× exp
{

2πi
[

f r − ν0 f 2/3t
] + i[ϕ0( f ) − ϕb( f )]

}
+

√
2

2

∫
d f |�α( f , 0)|

× exp
{

2πi
[

f r + ν0 f 2/3t
] + i[ϕ0( f ) + ϕb( f )]

}
.

(20)

Here, exp{2πi[ f r − ν0f 2/3t] + i[ϕ0( f ) − ϕb( f )]} and
exp{2πi[ f r + ν0 f 2/3t] + i[ϕ0( f ) + ϕb( f )]} are the expressions
of the travelling waves in the spatial frequency domain whose in-
terference produces the standing waves of the optical turbulence
boiling.

We can see that every spatial frequency f leads to an equal parti-
tion of the optical turbulence energy into two temporal frequencies
ν = ν0 f 2/3 and ν = −ν0 f 2/3. As a consequence, the temporal power
spectral density of the instantaneous mono-directional differential
image motion ωboil

�α (ν) is given by the following energy transfer-like
expression:

ωboil
�α (ν) dν = 1

2

∫
ν=ν0 f 2/3

d f W�α( f )

+1

2

∫
ν=−ν0 f 2/3

d f W�α( f ). (21)

The first integral in equation (21) deals with the positive tem-
poral frequencies while the second integral deals with the negative
ones. The temporal power spectral density is a pair function so that
calculating one of the integrals is sufficient to obtain the other by
symmetry. We choose to consider the positive temporal frequency
part:

ωboil
�α (ν; ν > 0) dν = 1

2

∫
ν=ν0 f 2/3

d f W�α( f ). (22)

Let us consider, for example, the simplified spatial power spectral
density from equation (14). We suppose that the optical turbulence
boiling relation between temporal and spatial frequencies in equa-
tion (18) is still valid beyond the inertial range even if initially
derived from the Kolmogorov model.

We may reexpress this spatial power spectral density in polar
coordinates (f , θ f ) where f is the radial spatial frequency and θ f

the polar spatial frequency. With equation (18) in mind, we can then
rewrite the temporal power spectral density in the following manner:

ωboil
�α (ν; ν > 0) = 3

4ν0

ν2

ν2
0

∫ 2π

0

dθ f W�α

([
ν

ν0

]3/2

, θ f

)
. (23)

Otherwise, equation (14) becomes

W�α( f , θ f ) = 0.7654

[
C2

nδh

cos{ε}

]
[ f cos{θ f }]2

[
f 2 + L−2

0

]−11/6

×
[

2J1{π D f }
π D f

]2

[1 − cos{2πh f � cos{θ f − γ }}],
(24)
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Figure 3. Plot of a temporal power spectral density of the instantaneous
mono-directional differential image motion ωboil

�α (ν) within the framework of
the optical turbulence boiling model, which is calculated from equation (26).

Here, the term 0.7654[ C2
n δh

cos{ε} ] is normalized to 1. D = 1 m, � = 10 arcsec,
γ = 0 rad, L0 = 10 m, h = 10 km and ν0 = 1.

and by replacing W�α(f , θ f ) in equation (23) we obtain

ωboil
�α (ν; ν > 0) = 3

4ν0

[
ν

ν0

]2

0.7654

[
C2

nδh

cos{ε}

][
ν

ν0

]3

×
[[

ν

ν0

]3

+ L−2
0

]−11/6
[

2J1{π D
[

ν

ν0

]3/2}
π D

[
ν

ν0

]3/2

]2

×
∫ 2π

0

dθ f cos2{θ f }[1 − cos{2πh f � cos{θ f − γ }}]. (25)

The latter integral over the polar spatial frequency is easily solv-
able.

The positive temporal frequency part of the temporal power spec-
tral density of the instantaneous mono-directional differential image
motion in this case is then given by

ωboil
�α (ν; ν > 0) = 3π

4ν0
0.7654

[
C2

nδh

cos{ε}

][
ν

ν0

]5

×
[[

ν

ν0

]3

+ L−2
0

]−11/6
[

2J1

{
π D

[
ν

ν0

]3/2}
π D

[
ν

ν0

]3/2

]2

×
[

1 − J0

{
2πh�

[
ν

ν0

]3/2}
+ cos{2γ }J2

{
2πh�

[
ν

ν0

]3/2}]
.

(26)

The negative temporal frequency part of the temporal power spec-
tral density is obtained by the same operations. The result is numer-
ically the same.

Fig. 3 displays, as an example, a temporal power spectral density
which is plotted from equation (26).

5.1 The optical turbulence boiling constant

It is possible to make an estimate of the numerical order of mag-
nitude of the optical turbulence boiling constant ν0 from experi-
mental data. For example, a technique to test the frozen turbulence
hypothesis quantitatively using data from wavefront sensors has

been developed (Schöck & Spillar 2000; St-Jacques & Baldwin
2000). In these experiments, the quantity of interest is mainly the
spatio-temporal autocorrelation function of the mono-directional
image motions measured through the subapertures of the wavefront
sensor.

In order to interpret such results in a simple manner, we may
consider distant subapertures whose relative position matches the
wind direction in case of a single turbulent layer. We consider two
subapertures a and b which are separated by a given distance L. The
turbulence features that cross the line of sight of subaperture a reach
the line of sight of subaperture b after a time interval whose duration
is L/v, where v is still the velocity of the turbulent layer horizontal
translation.

In the case of total validity of the frozen turbulence hypothesis,
mono-directional image motion at subaperture b at instant t is exactly
the same as mono-directional image motion measured at subaperture
a at instant t − L/v. This means that the spatio-temporal covariance
of mono-directional image motion at distance L and time interval
L/v is given by the variance of mono-directional image motion any-
where. Now if during its travel from subaperture a to subaperture
b turbulence undergoes proper evolution, then the spatio-temporal
covariance of mono-directional image motion at distance L and time
interval L/v is given by the temporal covariance of mono-directional
image motion at time interval L/v, where only the optical turbulence
boiling is involved.

It appears that the time interval for which the temporal covariance
(of the mono-directional image motion variance) reaches half its
maximum is typically of the order of 50 to 100 ms for most available
data sets (Schöck & Spillar 2000). With this, we can evaluate the
typical values of the optical turbulence boiling constant.

Following the same operations as for the mono-directional dif-
ferential image motion in Section 5, the simplified temporal power
spectral density of the instantaneous mono-directional image mo-
tion measured through circular subapertures when only the optical
turbulence boiling occurs is given by

ωboil
α (ν; ν > 0) = 3π

4ν0
0.3827

[
C2

nδh

cos{ε}

][
ν

ν0

]5

×
[[

ν

ν0

]3

+ L−2
0

]−11/6[2J1{π D
[

ν

ν0

]3/2}
π D

[
ν

ν0

]3/2

]2

.

(27)
The temporal covariance Rα(τ ) for a time interval τ relates to it

by

Rα(τ ) = 2

∫ ∞

0

dνωboil
α (ν; ν > 0) cos{2πντ }. (28)

For various values of ν0, we can calculate the time interval t50

(Schöck & Spillar 2000) for which Rα(t50) = 1
2 Rα(0) with the pre-

vious equations. We then find an approximate relationship between
the experimental results t50 and the possibly related optical turbu-
lence boiling constant ν0 in the following simple form:

ν0 ≈ [9.84t50]−1. (29)

We have assumed the near-field approximation for the optical
turbulence by neglecting diffraction and scintillation and we have
assumed an arbitrary value L0 = 10 m for the outer scale as a plau-
sible order of magnitude. The diameter of the subapertures is D =
10 cm.

t50 varies between 50 and 100 ms in the data we have considered.
The optical turbulence boiling constant ν0 then varies between ap-
proximately 2 and 1. This gives us an order of magnitude for ν0
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Modelling the optical turbulence boiling 1183

even if we have not yet enough data for the amplitude of variations
of this parameter.

6 T H E T R A N S L AT I N G - A N D - B O I L I N G
O P T I C A L T U R BU L E N C E M O D E L

In the most general case, turbulence layer boils while translating
horizontally above the observer. We propose in the following a the-
oretical approach to model the optical turbulence temporal evolution
when the optical turbulence boiling and the turbulence layer hori-
zontal translation above the observer are simultaneously involved.

We recall that �α(r , t) is an instantaneous spatial distribution of
the x-oriented mono-directional differential image motion as mea-
sured through a ground-based telescope. At a given initial instant
t = 0, it is given by equation (8).

As stated before, each spectral component with spatial frequency
f oscillates at a temporal frequency ν0 f 2/3. Simultaneously, the same
spatial spectral components of the optical turbulence translate at a
velocity v.

By applying the same modelling of the horizontal translation as
in equation (10) and the same modelling of the optical turbulence
boiling as in equation (19), the instantaneous spatial distribution of
the x-oriented mono-directional differential image motion at instant
t can be expressed as

�α(r , t) =
√

2

∫
d f |�α( f , 0)| cos

{
2πν0 f 2/3t + ϕb( f )

}
× exp{2πi f [r − vt] + iϕ0( f )}, (30)

where ϕ0( f ) and ϕb( f ) are arbitrary phases.
For the observer, the temporal behaviour of a given spatial spectral

component is thus that of an oscillation at a given temporal frequency
which is modulated by an oscillation at an other temporal frequency.

We can rewrite �α(r , t) from equation (30) into the following
form:

�α(r , t) =
√

2

2

∫
d f |�α( f , 0)|

× exp
{

2πi
[

f r − [
fv+ ν0 f 2/3

]
t
] + i[ϕ0( f ) − ϕb( f )]

}
+

√
2

2

∫
d f |�α( f , 0)|

× exp
{

2πi
[

f r − [ fv− ν0 f 2/3
]
t] + i[ϕ0( f ) + ϕb( f )]

}
.

(31)

We can see here that every spatial frequency f leads to an equal
partition of the optical turbulence energy into two temporal frequen-
cies ν = fv + ν0 f 2/3 and ν = fv − ν0 f 2/3.

Consequently, the temporal power spectral density ω�α(ν) of the
x-oriented differential image motion is given by the following en-
ergy transfer expression:

ω�α(ν)dν = 1

2

∫
ν= fv+ν0 f 2/3

d f W�α( f )

+1

2

∫
ν= fv−ν0 f 2/3

d f W�α( f ). (32)

Resolving this equation is not as straightforward as it is when
dealing with boiling or horizontal translation effects separately. We
did not find an analytic solution to equation (32), so we treated
it numerically. There are two complementary approaches to take
benefit from this model. One may need for instance to numerically
simulate a time series of instantaneous measurements. We present

in Section 6.1 a method for numerically simulating the optical tur-
bulence temporal evolution as presented in this section and in the
previous one. Section 6.2 presents a numerical procedure to obtain
a good estimation of the temporal power spectral densities of the in-
stantaneous x-oriented mono-directional differential image motion
and other optical turbulence quantities.

6.1 Monte Carlo numerical simulation of the optical
turbulence boiling

The above analytical modelling has a direct applicability. It provides
a simple way to simulate the temporal evolution of spatial (or angu-
lar) distributions of optical turbulence observable quantities through
the field of view of a telescope. When applied to phase and ampli-
tude fluctuations, it can have a direct relevance for adaptive optics
studies for example (Vogel 2006). We introduce in the following the
general principles of a simulation of differential image motion while
keeping in mind that the procedure is exactly the same for phase,
amplitude or differential piston fluctuations to give a few examples.

A spatial two-dimensional distribution of differential image mo-
tion at an arbitrary instant t = 0 is given by equation (8). Such a
spatial distribution �α(r , 0) is usually obtained numerically over a
regularly sampled grid by putting

�α(r , 0) = FFT−1{√W�α( f )

[A1( f ) cos{ϕ0( f )} + i A2( f ) sin{ϕ0( f )}]}, (33)

where FFT denotes the Fast Fourier Transform procedure, A1( f )
and A2( f ) are independent Gaussian random numbers with variance
equal to 1 and ϕ0( f ) are independent random numbers with uniform
distribution and satisfying 0 < ϕ0( f ) � 2π as we have seen before.
The spatial distribution �α(r , 0) is random but it is ensured that its
statistic properties are reproducible through W�α( f ).

Within the framework of the Frozen Turbulence Hypothesis, if
we take a particular measurement at a given position at an initial in-
stant, measurements at other moments are simply obtained from the
positions on the same spatial distribution according to equation (9).
The entire spatial distribution is moved in front of the observer.

In the model of the optical turbulence boiling, every spatial spec-
tral component of frequency f ‘oscillates’ at a given temporal fre-
quency ν according to equation (18).

Equation (19) illustrates how the spatial components ‘oscillate’
over time and consequently how the spatial distribution of differen-
tial image motion ‘boils’. We have thus a spatial spectrum at every
instant t and this makes it possible to obtain numerically the spatial
distribution at any moment by performing the following transform:

�α(r , t) = √
2FFT−1{√W�α( f ) cos

{
2πν0 f 2/3t + ϕb( f )

}
×[A1( f ) cos{ϕ0( f )} + i A2( f ) sin{ϕ0( f )}]} (34)

where ϕb( f ) are independent random numbers with uniform distri-
bution that satisfy 0 � ϕb( f ) < 2π . Its randomness, which is at-
tributed to the spatial spectral component, ensures that the temporal
evolution is random and unpredictable while its statistical proper-
ties are reproducible through W�α( f ) and through how energy is
distributed over temporal frequencies.

The result of such a simulation can be viewed as a three-
dimensional grid with one of its axis being time. It is then possible,
by taking measurements at different spatial positions on layers cor-
responding to different instants, to have the temporal evolution of
differential image motion including the optical turbulence boiling
and horizontal translation.

The numerical simulation principle is briefly introduced here and
more details will probably be discussed in a forthcoming paper.
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1184 A. Berdja and J. Borgnino

6.2 Numerical estimation of temporal spectra

In both the cases of the frozen turbulence hypothesis and of the op-
tical turbulence boiling without horizontal translation, solving the
equations of energy transfer from spatial to temporal frequencies
(equations 12 and 21) has been analytically straightforward. It con-
sisted schematically in fixing a value to the temporal frequency ν

and to look for all the possible values of the spatial frequencies f that
satisfy the relations between ν and f, given by equations (11) and
(18). For every fixed temporal frequency, the corresponding spatial
frequencies provide an integration domain which is simple in shape
for both the cases previously refereed to.

When considering the translating and boiling optical turbulence,
the spatial frequency integration domains for fixed temporal fre-
quencies are far more complex and we find it difficult to apply
the same analytical reasoning as above to calculate temporal power
spectral densities.

The simplest way to numerically solve equation (32) is to scan
all the spatial frequencies and to assign their optical turbulence
energy to the corresponding temporal frequencies. We have chosen
to perform a semirandom sampling of spatial frequencies so that
we ensure a better coverage of the optical turbulence spatial power
spectral densities through several scans.

Temporal frequencies are regularly sampled with a sampling path
δν. Meanwhile, the spatial frequency domain is mapped with square
cells with dimensions δ f × δ f within which f are randomly sampled.
To each spatial frequency f is associated the corresponding optical
turbulence energy W�α( f ). Otherwise, two temporal frequencies
ν = fv+ ν0 f 2/3 and ν = fv− ν0 f 2/3 are also associated with f. The
procedure consists of then adding the amount of energy 1

2
δ f 2

δν
W�α( f )

to the temporal power spectral density ω�α(ν) at the corresponding
temporal frequencies ν. At the end of the scan, the optical turbu-
lence energy in W�α( f ) is redistributed over ω�α(ν) with respect
to the relation between spatial and temporal frequencies. This is a
very schematic description of the principle of the numerical pro-
cedure and does not include, for example, the improvement which
consists of an adaptive mapping of the spatial frequency domain for
an optimized sampling of the lower frequencies.

In practice, because the temporal frequency sampling path δν

is nonzero, the numerical procedure does not give the temporal
power spectral density ω�α(ν) exactly but an average over δν. In
fact, the result can be formally expressed by a convolution product
ω�α(ν) ⊗ π{ν/δν} where π{ν/δν} is the rectangle function of
base δν. A special care must then be taken for temporal frequency
samplings and for temporal covariance calculations. The procedure
has been implemented and successfully tested on the already known
cases of the frozen turbulence hypothesis and the optical turbulence
boiling without horizontal translation. The temporal power spectra
are exactly the same in both the cases as those obtained analytically.

The resulting temporal power spectral densities from numerical
calculations are as expected different in shape from the temporal
power spectral densities obtained when the optical turbulence boil-
ing or horizontal translation is ignored. Fig. 4 displays, as an ex-
ample, a temporal power spectral density that has been calculated
numerically from equation (32). It can be visually compared to Fig. 2
where ν0 is put equal to zero and to Fig. 3 where v is put equal to
zero.

7 E F F E C T O F T H E O P T I C A L T U R BU L E N C E
B O I L I N G O N D I F F E R E N T I A L I M AG E M OT I O N

When a temporal spectrum ω�α(ν) is calculated for a given set
of parameters, it is then possible to calculate the temporal covari-
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Figure 4. Plot of a temporal power spectral density of the instantaneous
mono-directional differential image motion ω�α(ν) when both the optical
turbulence boiling and the horizontal translation are involved. Here, the term

0.7654[ C2
n δh

cos{ε} ] is normalized to 1. D = 1 m, L0 = 10 m, h = 10 km, � = 10

arcsec, γ = 0 rad, v = 10 m s−1, η = 0 rad and ν0 = 1.

ance of the instantaneous mono-directional differential image mo-
tion R�α(τ ) with equation (5), and then to calculate the statistical
variance of the finite-exposure mono-directional differential image
motion σ 2

T with equation (4). This latter depends upon the shape of
the temporal covariance, and so upon how fast the optical turbulence
becomes uncorrelated.

Let us consider a situation where the optical turbulence is well
described except for the optical turbulence boiling contribution.
One can therefore calculate the variance of the finite-exposure one-
directional differential image motion in the framework of the frozen
flow hypothesis, thus assuming ν0 = 0, as a predictive characteri-
zation of the accuracy of astrometrical measurements for example.
With the model we propose in the previous sections, we can intro-
duce the optical turbulence boiling as a perturbation to the frozen
flow hypothesis conditions in order to observe the difference.

The introduction of the optical turbulence boiling should reduce
the coherence time that is due to the translating effect. It is then
tempting to consider the optical turbulence boiling as being benefi-
cial for differential astrometry because when the differential image
motion is decorrelated faster, it means a decrease of the variance of
finite-exposure differential image motion, as well as the astrometric
error. It would be damaging at the same time for adaptive optics
since it would mean that the optical turbulence evolves faster.

We can see, however, that in some conditions, introducing the op-
tical turbulence boiling may increase the variance of finite-exposure
differential image motion. Fig. 5, for example, displays the variance
σ 2

T as a function of exposure time T in case of some values of the
optical turbulence boiling constant ν0. One may note that in this
particular configuration where the wind is parallel to the spatial pro-
jection of the angular separation, the variance σ 2

T increases instead
of decreasing.

It may be surprising at a first sight that a more uncorrelated op-
tical turbulence would lead to an increase of the finite-exposure
variance. This is understandable when considering the shape of the
temporal covariance of the instantaneous one-directional differen-
tial image motion in this configuration where the wind is parallel
to the angular separation spatial projection. In Fig. 6, one can see
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that the covariance in the case of the frozen turbulence hypothesis
(ν0 = 0) has positive and negative values on different domains of
the temporal separation τ . The negative part corresponds mainly
to large temporal separations over which the instantaneous mono-
directional differential image motion has a statistical tendency to
be in opposite directions. Equation (4) otherwise shows that the
variance of finite-exposure fluctuations is a weighted integral of the
temporal covariance of the instantaneous fluctuations. When the op-
tical turbulence boiling is introduced, it mainly affects those parts
of the temporal covariance that correspond to the larger temporal
separations. This leads to a rapid disappearance of the negative co-
variance zones so that the variance increases rapidly. Fig. 6 shows
how the temporal covariance of the instantaneous one-directional

differential image motion can be affected by a relatively slow opti-
cal turbulence boiling. It can be observed that even in the presence
of strong winds, the contribution of the optical turbulence boiling
may be very notable, especially for long exposures.

What appears is that a precise determination of the variance of
finite-exposure differential image motion requires the determination
of the optical turbulence boiling constant ν0 alongside with the other
parameters such as the wind velocity and its orientation according
to the angular separation.

It also appears from this application to mono-directional differ-
ential image motion that the optical turbulence boiling is a signifi-
cant contributor to the description of the accuracy of ground-based
differential astrometry through the optical turbulence and that it de-
serves to be properly investigated in order to perform astrometric
measurements in the most suitable conditions.

8 C O N C L U S I O N

We have proposed over this contribution a theoretical modelling of
the optical turbulence temporal evolution, which is based upon some
phenomenological assumptions and which is applied here to finite-
exposure differential image motion. We have shown how it is possi-
ble to calculate temporal spectra of the optical turbulence quantities
in the general case in which both the turbulent layer horizontal trans-
lation and the optical turbulence boiling are involved. The model is
quantitatively expressed within the framework of a one-layer turbu-
lence configuration with the von Kàrmàn optical turbulence model.
It can be easily generalizable into multilayered configurations and
using other optical turbulence models.

The major aim of this contribution is to propose a theoretical ap-
proach to model the optical turbulence temporal evolution and its
effects on modelling finite-exposure differential image motion when
the turbulent layer horizontal translation and the optical turbulence
boiling are both involved. We have also discussed the possible im-
plications of such a model on ground-based differential astrometry.
The calculations, however, have to be pursued more systematically
in order to completely characterize the most favourable conditions
for astrometric measurements. The implications of such a modelling
of the optical turbulence temporal evolution have also to be inves-
tigated in other areas of the high angular resolution and confronted
with experimental data.
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