N
N

N

HAL

open science

Multi-Level Reconfiguration in the DANAH Assistive
System

Said Lankri, Pascal Berruet, Jean-Luc Philippe

» To cite this version:

Said Lankri, Pascal Berruet, Jean-Luc Philippe. Multi-Level Reconfiguration in the DANAH Assistive
System. 2009 IEEE International Conference on Systems, Man, and Cybernetics, Oct 2009, United

States. pp.0. hal-00417019

HAL Id: hal-00417019
https://hal.science/hal-00417019
Submitted on 15 Sep 2009

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00417019
https://hal.archives-ouvertes.fr

Multi-Level Reconfiguration in the DANAH
Assistive System

Said LANKRI
European University of Brittany
Lab-STICC Laboratory
F-56321, Lorient, FRANCE
said.lankri @univ-ubs.fr

Abstract—Nowadays, interaction with our surrouding environ-
ment has increased due to the presence of numerous devices
that provide us with services. This is especially true in Smart
Homes and can be of great help for the disabled people and
the elderly that can no longer perform daily tasks they used
to. However, in case of failure, corrective actions can be heavy
to take, thus the need for the system to recover by itself
and ensure service availability. Service availability is provided
through service reconfiguration. This papers deals with service
reconfiguration in smart homes. It presents a multi-level approach
in which both off-line and on-line reconfiguration schemes are
used to gradually recover from failed services. Static, effect-based,
path and resource reconfiguration levels are described. They have
been successfully implemented in the DANAH assistive system,
which combines both navigation and service provision for smart
homes.

Index Terms—Service Reconfiguration, On-line/Dynamic Re-
configuration, Assistive Systems

I. INTRODUCTION

The rapid deployment of computer software and hardware
leads to the emergence of complex environments where
sensors, networks, devices and human machine interfaces
are seamlessly integrated to enhance the way people interact
with their environments [1], possibly with the addition of
some intelligence that makes them smart. The Ambient
Intelligence paradigm (Aml) [2] represents a new paradigm
shift in which the user interacts with more than one computer
device within the same environment that offers a great amount
of useful services. It contrasts with the historical paradigm
of the mainframes in which several people worked on the
same computer, and with the personal computer paradigm in
which each user possesses one computer. Due to the large
amount of the immersed systems within these environments,
it becomes more difficult to predict their evolution and the
failure probability rapidly increases. In order to provide
service availability, one can either design safe systems by
eliminating failures as in avionics, or let failures happen and
address them. In pervasive environments, systems cannot be
safe by design since the environment, which is uncertain, is
a part of the system itself. Therefore, these systems must be
built with reconfigurability in mind. Reconfigurable Systems
are those capable of rapidly adapt themselves to context and
objective changes, including market requirements, service

978-1-4244-2794-9/09/$25.00 (© 2009 IEEE

Pascal BERRUET
European University of Brittany
Lab-STICC Laboratory
F-56321, Lorient, FRANCE
pascal.berruet@univ-ubs.fr

Jean-Luc PHILIPPE
European University of Brittany
Lab-STICC Laboratory
F-56321, Lorient, FRANCE
jean-luc.philippe @univ-ubs.fr

failures and new quality standards.

This paper deals with service reconfiguration in Smart

Homes [3]. An Assistive Technology System (ATS) named
DANAH [4] has been implemented to provide environmental
control, autonomous navigation and service reconfiguration in
domotized living spaces. The services are advertised to the
user through a suitable interface, which selects the desired
service and DANAH shall deliver it. When a service fails,
DANAH follows a gradual reconfiguration process based on
static, effect-based, path and resource compensation to ensure
service availability. It combines both off-line reconfiguration
through statically defined reconfiguration rules, and on-line
reconfiguration that dynamically computes a new configuration
using current system status.
This paper is organized as follows. Section II gives a general
overview of reconfigurable systems in the fields of electronic
engineering and computer science. Section III focuses on
reconfiguration specifically in ATS and section IV deals with
reconfiguration in the DANAH ATS. It presents the underlying
service model and the reconfiguration process. Finally, section
V presents the DANAH experimental platform.

II. RELATED WORK

The meaning of the term reconfiguration in a reconfigurable
system may vary with the domain to which it is applied.
However, the aim of a reconfiguration process is to perform
changes to the system to ensure correct suitability to the current
context. Changes can be made to the software, the hardware,
or to both, and are triggered due to either objective changes
(adaptivity), or to service failures (fault-tolerance).

A. Reconfiguration in Electronics

Reconfigurable electronic systems [5] are nowadays widely
present thanks to the underlying hardware technologies such
as Field Programmable Gate Arrays (FPGAs). FPGAs contain
programmable logic cells that allow designing customized
systems specially tailored for application needs. They are
configured by downloading a circuit description (called a
bitstream) into the FPGA. This allows reduction in component
count (and hence cost), improved time-to-market and improved
flexibility and upgradability.

SMC 2009

FPGA Reconfiguration consists in changing totally or partially
(partial reconfiguration) the bitstream they contain. Reconfigu-
ration allows one to adapt the bitstream with regards to perfor-
mance issues (e.g. satisfy higher data troughput) or to power
saving issues (better battery duration). In addition, general-
purpose processor descriptions can be downloaded into FPGAs
(e.g. Intel, ARM, PowerPC ...) to run common OSes and their
software applications. As a result, it has been shown that
switching from software to hardware versions for some tasks
greatly improves both performance and energy savings [6], two
parameters that are of first importance in embedded devices.
Fig.1 depicts a typical reconfigurable FPGA architecture that
switches between software and hardware versions of tasks.

SW Task
SW Task

data —s|Program

Batt Reconfi
atter -
data troughput gurator

load HW |
versions | 0Ss
into FPGA |

FPGA
(processor)

run SW version

call
HW version

INTR
(OS services)| HW Task
HW Task

Reconfigurable FPGA architecture with SW/HW task versions

Fig. 1.

B. Reconfiguration in SOC

Service Oriented Computing [7] is the computing paradigm
in which applications consume services. The traditional ap-
proach wants applications to provide services. SOC goes
beyond by allowing application to be built themselves using
a composition of services. Services are provided through
software components located in foreign repositories. When
a service is requested, the application queries repositories in
order to find the suitable component that provides it.
Reconfiguration in SOC involves replacing a component that
is no longer able to deliver the service, for instance because
of network failures (unreachable service). The main advantage
of SOC is composition of services. Atomic services can be
plugged together in order to provide high-level, more com-
plex services. For instance, a high-level service that provides
weather reports can be built using a service that provides stan-
dard information (temperature, wind), a service that provides
satellite images and a service that shows live images from the
desired location. Reconfiguration of a failed service consists
in replacing it with a similar service. Similar services are gen-
erally interface-compatible and must be function-compatible.
If interfaces are easily described using Description Languages
(IDL, RDF, ...), functions can be described by adding tags
or ontologies and performing semantic reasoning, thus the
emergence of the semantic web. Semantic reasoning not only
allows reconfiguration by replacing a failed service with a
similar one [8], [9], but also allows replacing a single service
by a composition of several other services [10].

III. RECONFIGURATION IN ATS

A. Assistive Technology Systems

The changing distribution of age groups in our populations
leads to more and more elderly people and disabled persons in
need of some rehabilitation technology to maintain their mobil-
ity, autonomy and quality of life. Assistive technology systems
(ATS) are a kind of pervasive systems that help dependant
people improve their lives. By using some kind of automation
technology to act on their environment, they can perform daily
tasks they are no longer able to do. The Smart Home concept
[3] (or Intelligent Environment) emphasizes on environmental
control by incorporating electronically controllable devices and
sensors to provide automated services and monitoring. Active
(or on-demand) environmental control is achieved through the
use of some automation technology and passive monitoring
uses sensors to increase user’s safety by triggering appropriate
actions when harmful situations are detected (e.g. fall-off).
Smart homes have become an active research field, we can
cite [11], [12], [13] as few examples.

B. Reconfiguration in ATS

Reconfiguration has not yet widely gained Smart Homes
and previous works either focused on navigation and addressed
path planning problems in robotics, or focused on service
provision and addressed service availability in computer
science. We can also cite [14] in which a system for disabled
people that combines wheelchair navigation and service
provision has been built. Main drawback of this system is
the lack of a service model and thus service reconfiguration
consist in finding alternative paths or devices (and thus new
paths for the found devices) and not reconfiguring services by
themselves. This kind of reconfiguration is heavy since the
user on its wheelchair will suffer from path change each time
a service fails.

Regarding services, ATS can inherit many aspects of
services in SOC, except that in ATS services are provided
by independent physical devices present in smart homes
(lamps, TVs, ...) and therefore cannot be composed in the
same way as in SOC. Moreover, service failures in SOC are
addressed by searching similar components, which implies
the availability of these components. In smart homes, this is
quite unfeasible since services are tightly related to physical
devices and it is quite rare to have device redundancy. It
is therefore essential to first suggest a service model which
is compatible with the smart home concept, that establishes
relationships between the hardware and the software, describe
what is a service and how services can be composed together,
then propose service reconfiguration schemes in addition to
path reconfiguration when necessary.

The following section details the DANAH service model

and the reconfiguration process to address service availability
in smart homes.

SMC 2009

IV. SERVICE RECONFIGURATION IN DANAH
A. Service Model

In contrast to SOC, ATS not only deal with software
but also with the controlled hardware. A software part is
responsible of advertising, organizing and managing the
services that are run by the hardware. If a service fails, it is
most likely that the cause comes from the underlying device.
Reconfiguration does not involve querying a repository for
similar services as in SOC because the architecture of a smart
home is more local. Therefore there is tight relation between
the device and the service. As a consequence, we defined
the resource as the representation of a controlled device.
Resources provide operations which are the basic services
of our service model. Examples of resources are Lamps and
Doors. ’On’ and ’Off’ (resp. ’Open’ and ’Close’) are the
operations of Lamps (resp. Doors). The Fig.2 depicts the
contents of a resource.

Name

Activation nodes

Operations

Runtime Controlled

Protocol
Runtime

Fig. 2. Resource contents

To be advertised to the user, each resource has a name.
A runtime is responsible for managing the internal status of
the resource stored in properties, especially monitoring and
sending orders to the controlled physical device using some
home automation protocol.

Simple operations are the basic services implemented by
a resource that can be composed using operators to build
composite operations. Simple operations are those that can
be run through the runtime by sending orders directly to the
device. Composite operations are built by composing other
simple or composite operations to form scenarios. Operators
tell in which order these operations are run, as shown in Fig.3.

resource "room" {

operations it composes, as shown in Fig.4.

We can notice that when a user requests an operation, it is
mostly interested in its impact on the surrounding environment,
which we call effects [15]. Reconfiguring a failed service thus
consists in finding other services that when composed together
can result in same or similar effects.

RunOperation

Output

T s

(a) Service composition in SOC

Operator

(b) Service composition
in DANAH

Service

Run| [Result
— —

(c) Compositional approach in
DANAH

Fig. 4. Composition schemes in SOC and in DANAH

B. Configurations

As stated above, the resource properties are used to store
its current status. For instance, a door may contain a property
’Status” which can be set to ’Open’ or "Closed’, and a heater
may contain a property “Temperature’ which holds the current
set temperature.

The environment is the set of resources. The impact of
resource operations on the environment - their effects - is
defined by setting up a ’has effect on’ relationship between
resources. A resource A is said to have effects on a resource
B iff running operations of A may lead changes in the
properties of B. For instance, if "Lamp’ and ’Room’ are two
resources, running the operation Lamp . On changes the room
illuminance, written as Room@I1lluminance.

The system configuration is defined as the set of all resource
properties, and is written S™ at instant n. After running an
operation that has effects on the environment, the system
configuration becomes S"*1, as shown in Fig.5.

operation "Exit" = "SEQ(MainLight.Off Door.Open)" }
ate vi +1
Fig. 3. A composite operation 'Exit’ using the sequence operator that turns State Service State™
the lights off then opens the door room Engine
i Operation| Result
In SOC, components require input data and produce output Fig. 5. System Configuration Transition

data. In DANAH, running operations does not require any
input data and does not produce output other that the success
or failure of the operation. As our service model follows a
compositional approach, the rule applies also to composite
operations, in this case, it is the operator that returns the result
depending on its semantics and the result of the individual

The new configuration S™*! is computed in a two step
procedure. After running the operation, the resource runtime
is responsible of updating the resource’s own status (that said,
a resource has implicitly effects on itself). Then, a set of
effect rules is used to evaluate the impact of this change

SMC 2009

on other resources. An effect rule is described in terms of
a pre-condition that if satisfied triggers its corresponding
post-condition, as shown in Fig.6. A detailed view of this
mechanism is shown in Fig.7.

effect { pre="MainLight@Status==0n"
post="Room@Illuminance=100" 1}

Fig. 6. An effect rule

Result

Resource + Effect Rules
Run

Preconditions | Read

Operation

Runtime

=
3
[Posteonditions | :
“ Postconditions 2
Set Read Tg
Properties | ————| M

Resources

Fig. 7. In-depth view of system configuration computation

C. Service Execution

A service in DANAH can be

e an operation. e.g. Door.Open
« an objective. e.g. Room@Temperature=20

« acomposition. e.g. SEQ (Light .On Room@Temperature=20)

When a service is requested, simple operations are run
using resource runtimes, while composite ones are first
expanded and run according to operator semantics. Objectives
are resolved to a composition of operations and run. As
we combine both navigation and environmental control,
resources contain activation nodes which specify at which
places the user must be in order to deliver operations. When
a simple operation is run, navigation is performed by finding
a path to an activation node then activating the operation,
as shown in Fig.8. A path is a set of edges and each edge
may contain navigational attributes [16] which store services
that must be triggered while crossing. For instance, it may be
necessary when performing navigation to open/close doors,
enable/disable alarms, ...

D. Multi-Level Service Reconfiguration

Reconfiguration in DANAH is performed on operations, not
on the whole service. This is motivated by the fact that services
can be composed of several operations involving resources that
have nothing to do with each other. For instance, trying to
reconfigure a service that switches on lights and opens a door
as a whole would have no meaning. In contrast, operations
can be reconfigured by collecting their effects and finding
a set of other operation that would produce similar effects.
Following the execution steps in Fig.8, the TABLEI shows for
each step the possible failures and reconfiguration schemes.
Reconfiguration tries always to recover from the failed step in
order to avoid fault propagation to the upper levels.

In this paper we deal only with activation failures. After
reaching the resource by performing navigation to one of

Service
l

Composition Objective
Operator Services Composition
Edges

Navigation Services

(a) Service decomposition

Entry : Door.Open; Light.on
Course : NULL
w Exit : Door.close
P\A Entry : Door.Open
Course : NULL

Exit : Door.close; Light.off

Out

(b) Edges triggering services

Fig. 8. Decomposition of the execution of a service
TABLE I
ENUMERATION OF FAULTS, POSSIBLE CAUSES AND RECOVERING
METHODS
Step | Cause | Reconfiguration
Navigation | Obstacle/ (Not addressed)
Wheelchair mal-
function
Edge Navigation/ (Cause dependant)
Service
Path Edge Path reconfiguration
Activation | Resource Static/Effect-Based reconfiguration
Malfunction
Operation Path/ Resource Reconfiguration
Activation
Service Operation (Depends on operator semantics)

its activation nodes, the requested operation is run, we call
this step the activation of the operation. Resource runtime is
responsible of activating the desired operation and reporting
a result, which may be success or failure.

Activation reconfiguration is triggered on activation fail-
ure and aims at finding a set of similar services that will
compensate the failed operation. DANAH benefits both from
off-line reconfiguration using static rules and from on-line
reconfiguration using effect compensation. When performing
activation reconfiguration, statically defined alternatives are
sought before switching to a dynamically computed alternative.

E. Level 1 : Static Reconfiguration

Static reconfiguration is triggered on activation failure. It
performs compensation on an operation basis, using off-line
defined reconfiguration rules in resource descriptions.

Each operation can have a static reconfiguration rule which
maps it to an alternative service to run in case of failure, as
shown in Fig.9.

In this example, we suppose a room equipped with a main
light and two alternative lights. This rule specifies if the

SMC 2009

reconf { fail="MainLight.On"

again, with the current value of temperature 21. Operation ’-’

reconf="SEQ (AltLightl.0n AltLight2.0n)" }Jeads to ’20’ and ’+ leads to ’22’, the desired value. The final

Fig. 9. A static reconfiguration rule

operation 'On’ of the main light fails, both alternative lights
can be switched on to compensate.

Static reconfiguration rules are provided as a convenient
way of defining alternatives to failed operations. In general,
they are written by the expert who installs the system for a
particular user. This is most of interest in case of the user is
a disabled person.

F Level 2 : Effect-based Reconfiguration

Effect-based reconfiguration is triggered on activation
failure, in the absence of static reconfiguration rules and if the
failed operation has effects. It is based on effect compensation
and is computed dynamically.

When an activation fails, the effects it would have
produced on other resources are collected. Then for each
effect, a service that will produce the same or a similar effect
is dynamically computed.

More formally, let us suppose the effect (p,v"*1) € Sn+L,
where p is the property name and v™*! its value after running
the operation successfully. Given the current system status
S™ which contains (p,v™), effect reconfiguration searches
for a service that if run will bring the value of property p
from v™ to v"*!. The point here is that if the operation
fails, S™*! is not known because the failed operation has not
produced any effects. In our resource model, all resources
have a function Ef fectOf that tells the impact of running
their operations on their properties if they are successful. If
an operation fails, this function in conjunction with effect
rules are used to compute the would be state S+l then
reconfiguration is performed starting from the current state S™.

The way the alternative service is searched is through using
a ’dry run’ mechanism. Given an effect (p, v™*!) to reach, all
the resources that affect the property p are searched. For each
of these resources, operations activations are faked by calling
the E f fectO f function and the new system state is computed.
The operation that leads to the closest expected value v+ of
p is kept and appended to the list of a composition with a
SEQ operator. This process is restarted until no operations can
lead to a closer value or when the desired value is reached.
Finally, the computed sequence is returned as the alternative
to the failed operation.

Let us take an example. Suppose we have a resource Heater
with two operations '+’ and ’-’. The current room temperature
is 20 and we want a temperature of 22. DANAH searches for
resources that affect the temperature property of room and finds
the heater. It then starts to dry runs its operations. Running ’-’
leads to 19 while running *+’ leads to 21. It keeps '+ and starts

compensation service is then SEQ (Heater.+ Heater.+).
As we can notice, not only a composition of several operations
has been computed to compensate one single operation, but the
compensation is dynamic and takes care of the current system
status as well, as it may have been different in other situations.

G. Other reconfiguration levels

When activation definitely fails (e.g. no reconfiguration
found), other reconfiguration levels to deliver the service can
be triggered. WHen it is a part of a service triggered by a
navigational attribute, path reconfiguration is performed. This
level aims at finding another path to reach the resource to
activate the desired operation. This leads to a change in path
without changing the initial goal (the operation), and implies a
trajectory change for the user. If even the path reconfiguration
fails, or the activation is not part of a navigational attribute, an-
other last reconfiguration level called resource compensation is
triggered. This time the initial resource changes because either
it cannot be reached (path reconfiguration failed) of it is out
of order (activation definitely failed). Resource compensation
aims at finding similar resources on a resource basis using tags
found inside resource descriptions. As a change in goal may
also imply a new path computation, the list of similar resources
is presented to the user in order to always let him keep control
on the system and take decisions by himself.

V. EXPERIMENTAL PLATFORM

The reconfiguration levels described in this work have been
fully implemented in our system DANAH[4]. DANAH is an
ATS the combines both environmental control and navigation,
with reconfiguration in mind. It is meant to be deployed
quickly in smart homes. Special attention has been focused
on cost effectiveness, portability, modularity and installation
methodology. A model-driven approach is used in which the
installer uses a general purpose drawing program to describe
the target environment, then model transformations generate
clean structured data for DANAH. Regarding modularity,
resource runtimes, protocols and robot drivers for autonomous
navigation are implemented as plugins and loaded at startup.
Cost effectiveness is achieved through the use of open
source software that is portable and requires low performance
machines.

The DANAH architecture described in Fig.10 consist of
DANAH servers deployed in the smart home, DANAH clients
embedded on user devices (PDAs, small computers, ...) and
a home automation technology that bridges the software part
(the DANAH system) and the physical devices. Thanks to
its modularity, DANAH has plugins for the KNX/EIB open
standard technology and Infrared, this way it can act on simple
electrical devices (switches, doors, ...) and multimedia devices
(TV, Radio, ...). Communication between clients and servers
is achieved through protocol plugins. Currently, DANAH has
both support for WiFi and Bluetooth technologies. It runs

SMC 2009

under Linux and has been ported to the NOKIA N800 handheld
device.

DANAH Servers

Remote
Host

Home Automation DANAH Clients

Technology

Gateway

EIBNet /TP

I

Controlled Devices

KNX/EIB

User Wheelchair

Comm |

[I
Server Wheelchai®
Client driver

LY UI:

Fig. 10. DANAH architecture and HW/SW mapping

Client user interface shown in Fig.12 is especially designed
for disabled people and uses an icon paradigm to display
resources and operations. Thanks to effect rules (see Fig.11),
resource icon is changed depending on resource status to
provide the user with operation execution feedback. Moreover,
user interface provides an automatic scrolling mode to help
disabled people use it when they cannot perform clicks on
the touchscreen.

effect { pre="this@Status==0n"
post="this@icon=’'light-on.png’" }

Fig. 11. Icon feedback setup using effect rules. The ’this’ special resource
name denotes the resource that contains the rule

DANAH GERHOME DEMO

2- L

a

Fig. 12.
page

DANAH Client GUI connected to a server displaying the resource

VI. CONCLUSION

This paper described a multi-level service reconfiguration
approach to ensure service availability in domotized living
spaces. Static reconfiguration can ensure availability by
picking up alternative services from an off-line pool, while
effect-based reconfiguration dynamically computes alternatives
at runtime using the effect paradigm and effect rules. Taking
into account navigation leads to perform path reconfiguration
when necessary. Finally, resource compensation is used when
the service cannot be delivered using the initial resource.

These reconfiguration schemes have been implemented
in the DANAH assistive system and experimentation is in

progress in a medical structure involving patients with differ-
ent pathologies. Evaluation will compare time and perceived
quality of service when reconfiguration is enabled or disabled,
and will show for each pathology the suitable quantity of
reconfiguration.

REFERENCES

[1] J. C. Augusto and P. J. McCullagh, “Ambient intelligence: Concepts and
applications,” Comput. Sci. Inf. Syst, vol. 4, no. 1, p. 1-27, 2007.

[2] M. Satyanarayanan, “Pervasive computing: vision and challenges,” IEEE
Personal Communications, vol. 8, no. 4, p. 10-17, Aug. 2001.

[3] V. Ricquebourg, D. Menga, D. Durand, B. Marhic, L. Delahoche, and C.
Loge, “The smart home concept : our immediate future,” in Proc. IEEE
International Conference on E-Learning in Industrial Electronics, Dec.
2006, p. 23-28.

[4] S. Lankri, P. Berruet, A. Rossi, and J.-L. Philippe, “Architecture and
models of the DANAH assistive system,” in SIPE '08: Proceedings
of the 3rd international workshop on Services integration in pervasive
environments. New York, NY, USA: ACM, 2008, p. 19-24.

[5] T. Todman, G. Constantinides, S. Wilton, P. Cheung, W. Luk, and
O. Mencer, “Reconfigurable Computing: Architectures and Design
Methods,” vol. 152, no. 2, p. 193-205, Mar. 2005. [Online]. Available:
http://pubs.doc.ic.ac.uk/reconfigurable-computing/

[6] G. Stitt, F. Vahid, and S. Nematbakhsh, “Energy savings and speedups
from partitioning critical software loops to hardware in embedded
systems,” Trans. on Embedded Computing Sys., vol. 3, no. 1, p. 218-232,
2004.

[71 M. N. Huhns and M. P. Singh, “Service-oriented computing: Key
concepts and principles,” IEEE Internet Computing, vol. 9, no. 1, p.
75-81, 2005.

[8] J. Kim, J. Lee, and B. Lee, “Runtime service discovery and reconfigura-
tion using OWL-S based semantic web service,” in CIT. IEEE Computer
Society, 2007, p. 891-896.

[91 H. Hemmati, M. Niamanesh, and R. Jalili, “A framework to support
run-time assured dynamic reconfiguration for pervasive computing en-
vironments,” IEEE Ist International Symposium on Wireless Pervasive
Computing, p. 6 pp.—, Jan. 2006.

[10] M. Vallée, F. Ramparany, and L. Vercouter, “Composition flexible de
services d’objets communicants,” in 2nd French-speaking conference on
Mobility and Ubiquity computing. ACM, 2005, p. 185-192.

[11] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen,
“The gator tech smart house: A programmable pervasive space,” Com-
puter, vol. 38, no. 3, 2005.

[12] MIT, “The MIT house_n
http://architecture.mit.edu/house_n

[13] C. D. Kidd, R. Orr, G. D. Abowd, C. G. Atkeson, I. A. Essa,
B. Maclntyre, E. D. Mynatt, T. Starner, and W. Newstetter, “The
aware home: A living laboratory for ubiquitous computing research,”
in Cooperative Buildings, Integrating Information, Organization, and
Architecture, Second International Workshop, CoBuild’99, Pittsburgh,
USA, October 1-2, 1999, Proceedings, ser. Lecture Notes in Computer
Science, N. A. Streitz, J. Siegel, V. Hartkopf, and S. Konomi, Eds., vol.
1670. Springer, 1999, p. 191-198.

[14] A. Belabbas, P. Berruet, A. Rossi, and J. Philippe, “A modeling approach
to control a handicap technical assistance system,” in WSEAS Transac-
tions on Information Science and Applications, 2006.

[15] A. Urbieta, E. Azketa, I. Gomez, J. Parra, and N. Arana, “Towards
effects-based service description and integration in pervasive environ-
ments,” in SIPE '08: Proceedings of the 3rd international workshop on
Services integration in pervasive environments. New York, NY, USA:
ACM, 2008, p. 1-6.

[16] B. Krieg-Briickner, U. Frese, K. Liittich, C. Mandel, T. Mossakowski,
and R. Ross, “Specification of an ontology for route graphs,” in Proc.
International Conference on Spatial Cognition, Oct. 2004.

project.” [Online]. Available:

SMC 2009

