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Abstract. In this paper, we present a new approach to the study of shaped and apodized apertures for the detection of exoplanets.
It is based on a Radon transform of the telescope aperture and makes it possible to present the effects of shaped and apodized
apertures in a unified manner for an objective comparison between them. An illustration of this approach is made for a few
apertures. Our conclusion favors the apodized apertures. The approach also permits us to obtain new results. In a second part
of the paper, we derive expressions for the signal-to-noise ratio (SNR) of an experiment using an apodized aperture and draw
the corresponding curves for the example of a circular telescope apodized by a prolate spheroidal function. We found that a
very marked improvement of the SNR can be obtained using apodization techniques. There is an apodization that optimizes the
SNR for a given observation; this apodization is generally very strong. The analysis is made for the case of a perfect telescope
operated in space.
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1. Introduction

The direct observation of an extrasolar planet is a difficult task,
not because of the required angular resolution (Jupiter seen at
10 parsec is at 0.5 arcsec of the Sun), but because of the tremen-
dous difference in flux between the planet and the star. The
planet should appear over a strong luminous background, the
main part of which is due to the diffraction pattern of the star.
To detect the planet, this coherent background must be reduced
as much as possible. Several techniques, such as the phase-
mask coronagraph of Roddier & Roddier (1997) and the four-
quadrants coronagraph of Rouan et al. (2000) use an interfero-
metric process to reject the starlight outside the main part of the
experiment, with the help of a Lyot stop. They are very promis-
ing solutions for exoplanet detection; detailed descriptions of
these techniques can be found in several papers and will not
be presented here. In the present communication, we focus our
analysis on the alternative techniques that seek to detect exo-
planets by strongly reducing the level of the wings of the star
diffraction pattern at the planet position. In these techniques
the starlight is entirely conserved in the experiment while be-
ing concentrated in the core of the diffraction pattern. These
“apodization” techniques are of interest because they are sim-
pler to implement than the coronagraphs mentioned above and
are fundamentally achromatic. Our analysis is restricted to the
classical techniques for the case of a perfect telescope operated
in space. It does not include the non-linear approaches recently
proposed by Guyon (2003) and Traub & Vanderbei (2003).

The paper is organized in two parts. The first part concerns
the effects of diffraction. We will see that the Radon-based
approach we propose permits a unified view of the effects of
shaped and apodized apertures on telescope point spread func-
tions (PSF). The second part of the paper is related to signal-
to-noise ratios (SNR).

The presentation will make frequent reference to the review
paper of Jacquinot & Roizen-Dossier (1964). Jacquinot (1950)
was interested in the resolution of spectral lines of very large
intensity differences. Assuming that a weak line could be re-
solved close to a strong line if its intensity was at least com-
parable to the envelope of the instrumental wings of the strong
line, Jacquinot derived that the minimum distance of resolution
increases as

√
K, where K is the contrast between the two lines.

This law in
√

K results from the sinc2 diffraction pattern in the
spectroscopic one-dimensional geometry. Applied to the Airy
pattern, this gives a resolution proportional to

3√
K. The figure

of merit Q, later introduced by Brown & Burrows (1990) is
similar to Jacquinot’s criterion.

Couder & Jacquinot (1939) were at the origin of the word
“apodisation” that literally means feet suppression (of the
PSF). They showed that this result can be obtained either by
making the rim of contour of the pupil a particular shape
or modifying the transmission of the aperture. These authors
made reference to the use of square and polygonal apertures by
astronomers for the observation of the companion of Sirius.

The interest in apodization has been constant in the field
of optics and was renewed for laser applications. A collection
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of very interesting papers can be found in the SPIE Milestone
Series of Mills & Thompson (2003). In some of these studies
an extensive analytical approach of the problem has been de-
veloped.

The importance of apodized apertures in astronomy for
the detection of exoplanet was rediscovered by Nisenson &
Papaliolios (2001). Since then, the study of various shaped and
apodized apertures has been developed by several authors, such
as Kasdin et al. (2003), Vanderbei et al. (2003a,b).

The term apodized aperture is now used for an aperture
with a variable transmission, typically decreasing from the cen-
ter to the edges. The efficiency of such an aperture for wing
reduction follows directly from the properties of the Fourier
transform: a smooth, continuous derivable function produces
lower side lobes than a step like function. Shaped apertures can
give a similar result; how this is obtained is less easy to un-
derstand. The Radon approach we present permits us to better
understand why the two techniques may have similar effects on
the PSF.

Although a PSF with strongly apodized wings is helpful for
detecting exoplanets, the relevant criterion is the SNR at which
the determination can be made. The second part of the paper is
concerned with SNR estimations. For a perfect experiment, the
fundamental limit is that of the photoelectric detection of the
light (Goodman 1985). We describe a simple formulation of
the SNR that uses equivalent surfaces and gives results similar
to what could be obtained with a matched filter (Aime 2004).

Numerical examples are given for an experiment using a
circular telescope apodized by a prolate spheroidal function.
The principal reason for choosing prolate apodization is that
it allows us to compare apertures with different strengths of
apodization in a continuous way. We show that the apodization
must be very strong to improve the SNR for exoplanet detec-
tion. However, this result may be modified by the presence of
an incoherent strong background.

2. Classical effects of diffraction
on the telescope PSF

2.1. Basic properties of the diffraction pattern
of a telescope of variable transmission

Fourier optics shows that the complex amplitude at the focus of
a telescope can be written proportional to the Fourier transform
of the wave on the aperture P(x, y), of the form:

Ψ(x, y) =
A

iλF
P̂
( x
λF
,
y

λF

)
(1)

where F is the focal length of the telescope, A the amplitude of
the incident wave and λ the wavelength.

If one calibrates the focal plane in terms of angular units,
α = x/F and β = y/F, the intensity I(α, β) can be written as:

I(α, β) =
I0

λ2

∣∣∣∣∣P̂
(
α

λ
,
β

λ

)∣∣∣∣∣
2

= I0 × S (α, β) (2)

where I0 is the intensity of the light at the telescope aperture.
We consider for later use several properties of S (α, β), for

the general case in which P(x, y) presents a non-uniform com-
plex transmission. For this we make use of the two integrated

quantities ΦI and ΦA that play an important role in the effi-
ciency of a telescope:

ΦI =

∫ ∫
|P(x, y)|2 dxdy

ΦA =

∫ ∫
P(x, y)dxdy (3)

ΦI and ΦA represent the flux in intensity and the flux in ampli-
tude for a uniform incoming wave over the aperture. For a tele-
scope with uniform transmission or with phase defaults only,
|P(x, y)|2 = 1, and ΦI equals the surface S of the aperture.

The intensity at the center of the diffraction pattern is
given by:

S (0, 0) =
1
λ2

∣∣∣∣∣
∫ ∫

P(x, y)dxdy
∣∣∣∣∣
2

=
Φ2

A

λ2
· (4)

The term λ2 accounts for the dependence on wavelength of the
size of the PSF. For a perfect telescope with uniform transmis-
sion, ΦA = S; the intensity at the center of the diffraction pat-
tern increases as S2 and the diffraction pattern shrinks as 1/S.

In terms of signal and image processing, the PSF is a func-
tion whose integral equals 1. We obtain such a function, which
we denote S PSF(α, β) by dividing S (α, β) by ΦI. If we divide
S (α, β) by Φ2

A/λ
2 we obtain a function that is equal to 1 at the

origin and which we denote S N(α, β). These three functions are
related to one another by the relation:

S (α, β) = ΦI × S PSF(α, β) =
Φ2

A

λ2
× S N(α, β). (5)

2.2. Resolution in terms of equivalent solid angle ∆
and Strehl ratio �

Rather than using an angle to determine the resolution of a
telescope, one may use an angular surface ∆ for characteriz-
ing the spread of the PSF on the sky. Generalizing the concept
of equivalent width used in Fourier transform theory to two di-
mensions, the equivalent angular surface ∆ (or equivalent solid
angle) may be written as:

∆ =
1

S (0, 0)

∫ ∫
S (α, β)dαdβ =

λ2ΦI

Φ2
A

(6)

where we have made use of Parseval’s theorem to derive the
result (Aime 2004). This makes it possible to substitute ∆ to
either ΦI or Φ2

A in Eq. (5). For a perfect aperture with uniform
transmission, ∆ = ∆0 = λ

2/S, that is just the inverse of the
surface of the telescope in units of wavelength. These quanti-
ties may be considered in relation with the conservation of the
optical étendue U:

U = λ2 = S∆0 =
Φ2

A

ΦI
∆. (7)

Owing to the Fourier properties, the inverse of ∆ is the equiv-
alent surface (in units of angular frequencies) of the telescope
modulation transfer function; it can be considered as a spectral



C. Aime: Radon approach to apodization 787

bandwidth for angular frequencies. The ratio � of the spec-
tral bandwidth 1/∆ of the apodized aperture to that 1/∆0 of the
perfect aperture with uniform transmission, equal to:

� =
∆0

∆
=
Φ2

A

ΦIS
(8)

can be interpreted as a Strehl ratio of the apodized aperture.
This quantity is smaller than 1; the demonstration that fol-
lows was proposed to the author by Michel (2003). Given two
square integrable functions f (x) and g(x), the Cauchy-Schwarz
inequality states that:
∣∣∣∣∣
∫

f (x)g∗(x)dx
∣∣∣∣∣
2

≤
∫
| f (x)|2dx

∫
|g(x)|2dx. (9)

This relation remains valid for two dimensions if the integra-
tion is performed over the surface of the telescope aperture.
Setting f ≡ P and g ≡ 1, we obtain |ΦA|2 ≤ ΦIS, which
demonstrates the proposition � ≤ 1. As a consequence, using
an aperture with a non-uniform transmission (or with a con-
tour) can only decrease the resolution in the usual acceptation
of the term. We shall see in the following that these considera-
tions must be modified when the objective is to resolve close-by
sources with extremely large magnitude differences.

2.3. Shaped and apodized aperture for reducing
the wings of the diffraction pattern

For a perfect telescope with a circular aperture, the intensity in
the focal plane can be written as:

S (α, β) = S (ρ) =

(
2

J1(πρD/λ)
πρD/λ

)2
× S

2

λ2
(10)

where ρ =
√
α2 + β2. The first term of the product is the Airy

function. Equation (10) could be further simplified if D is ex-
pressed in units of λ, but then the wavelength dependence of
the diffraction is lost.

The Airy pattern presents relatively strong wings that ham-
per the observation of a close-by faint source like an exoplanet.
The envelope of the Airy wings decreases only as the cube of
the distance from the center. Rings of the diffraction pattern re-
main above 10−3 up to the 4th ring, and decrease below 10−4

after the 9th ring only. The diffraction pattern drops below 10−5

only at a distance greater than 20λ/D, and would require a dis-
tance of 420λ/D to reach a value of 10−9, comparable to what is
expected for a terrestrial exoplanet. This effect is strong enough
to consider the perturbations produced by other distant bright
stars in the field.

A reduction of the strength of the Airy wings is possible,
at the cost of a widening of the central part of the pattern (and
therefore of ∆), modifying the pupil in shape or transmission.
The first use of such apertures seems to have been published by
Couder & Jacquinot (1939) who used a square aperture for the
detection of faint spectral lines with a dynamic range up to 104.
They wrote the PSF as the following product of a function of α
with a function of β of the form:

S N(α, β) =

(
sin(παL/λ)
παL/λ

sin(πβL/λ)
πβL/λ

)2
· (11)

They were aware of the fact that the envelope of the diffraction
pattern at 45◦ goes as ρ−4, which is better than the ρ−3 decrease
of the Airy pattern. They refereed to the empirical use of polyg-
onal apertures in astronomy at the same time, in particular for
the companion of Sirius.

Nisenson & Papaliolios (2001), in their project of an
Apodized Square Aperture (ASA), use this same shaped aper-
ture for which the effect of wing reduction is enforced by an
apodization with two separable functions of α and β. As in the
Couder & Jacquinot example, the aperture is utilized at 45◦ of
the axes.

2.3.1. A unified presentation of diffraction of shaped
and apodized apertures based on the Radon
transform

A unified presentation of diffraction patterns of shaped and
apodized apertures can be presented using the Radon trans-
form. This can be obtained by expressing the focal plane in-
tensity in radial coordinates. For that, we make use of well
known properties of two-dimensional Fourier transforms, in
particular the so-called central slice theorem. This theorem al-
lows us to write the diffraction pattern in the direction θ as the
one-dimensional Fourier transform of the Radon transform of
the aperture. This can be demonstrated as follows. The Fourier
transform P̂(u, v) of the aperture transmission function P(x, y)
can be written as:

P̂(u, v) =
∫ ∫

P(x, y) exp−2iπ(ux + vy)dxdy. (12)

We express P̂(u, v) as the function R̂(ρ, θ) of the radial coor-
dinates ρ and θ, such that u = ρ cos(θ) and v = ρ sin(θ).
In the aperture plane, we write the integration as a func-
tion of X and Y, coordinates of the axes rotated by the an-
gle θ from x and y. We have x = X cos(θ) − Y sin(θ) and
y = X sin(θ) + Y cos(θ). Substituting X, Y, ρ and θ to x, y, u
and v we obtain:

R̂(ρ, θ) =
∫

R(X, θ) e−2iπρXdX (13)

where R(X, θ) is the Radon transform of the aperture transmis-
sion function:

R(X, θ) =
∫

P(X cos(θ) − Y sin(θ), X sin(θ) + Y cos(θ))dY. (14)

Note that the result for θ = 0 is straightforwardly obtained from
Eq. (12) by setting v = 0. The function R(X, θ) is generally
represented for positive and negative values of X, and a range
of θ values restricted to {0, π}, or to {−π/2, π/2}.

An illustration of the computation of the Radon transform
R(X, θ) is given in Fig. 1. It corresponds, for given X and θ to the
integral of the aperture transmission function along a line (seg-
ment AB in Fig. 1) perpendicular to the direction of diffraction.
The result that would be obtained for a clear elliptic aperture is
drawn in Fig. 2. In medical tomography, this integral is called
a projection; in this domain, the interest is in the inversion of
the Radon transform to retrieve P(x, y) knowing R(X, θ). This
is mainly done numerically, using filtered back-projection.
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Fig. 1. Illustration of the computation of the aperture Radon trans-
form R(X, θ) described by Eq. (14). The figure is drawn for an el-
liptical aperture, with axes proportional to 1 and 1.4. R(X, θ) corre-
sponds to the sum of the amplitude transmission along AB. For a clear
aperture (transmission equal to 1), it simply equals the length of the
segment AB.

Fig. 2. Radon transform R(X, θ) of the elliptical clear aperture drawn in
Fig. 1. For each θ value the projection takes the form of an ellipse that
follows the law α

√
−X2 + a2 cos(θ)2 + b2 sin(θ)2, where α is a factor

that keeps the integral of the curve equal to the area πab of the ellipse,
a and b being the semi-axes of the ellipse.

It might be of interest for astronomy if we seek to find the aper-
ture that produces a given PSF, but this delicate inverse problem
(which does not necessarily have a solution) will not be treated
here.

2.3.2. Illustration of the Radon approach for simple
examples

Let us illustrate the Radon approach for the examples of a
circular aperture, a square aperture and a Gaussian shaped
aperture.

A clear circular aperture can be taken as the basis for an
un-shaped, un-apodized aperture. Its Radon transform is inde-
pendent of θ, and simply equal to the cord of the circle:

RC(X, θ) = 2
√

D2 − 4 X2 Π

(X
D

)
(15)

where D is the diameter of the aperture, and Π(x) a function
equal to 1 for |x| ≤ 1/2| and 0 otherwise.

The one-dimensional Fourier transform of RC(X, θ) gives
the amplitude of the Airy function (Eq. (10)). If we apply to
this aperture a circular-symmetric apodization function t(r), its
Radon transform RCa(X, θ) will be an even function of X, inde-
pendent of θ. The circular diffraction pattern can be computed
using either Eq. (13) or by the Hankel transform of P(r)t(r):

R̂(ρ, 0) =
∫ D

2

− D
2

RCa(X, θ) cos(2πρX)dX

= 2π
∫ D

2

0
XP(X)t(X)J0(2πρX)dX. (16)

There is an unlimited number of possible two-dimensional
transmissions functions for t(r). Some of them have analyti-
cal expressions for both the Radon transform and the diffrac-
tion pattern; a few of them lead to very simple expressions. For

example, with t(r) =
√

1 − ( 2r
D )2, the Radon transform is pro-

portional to (1 − ( 2X
D )2), which is known as the Welch apodiza-

tion window. Using the latter function for t(r) gives a value

of RCa(X, θ) proportional to
(
1 − ( 2X

D )2
) 3

2 . The corresponding

diffraction pattern is 8J2(πDρ)/(πDρ)2, whose wings decrease
as r−5. The diffraction pattern goes below 10−9 at a distance
10 times smaller than for the un-apodized aperture. This result
is obtained with the drawback of a low throughput of value 1/3.
We discuss the importance of this quantity later in the paper.

The treatment of an elliptical aperture (our example in
Fig. 1) could be done as a generalization of that of a circular
aperture. The circular symmetry is obviously lost, but the value
of R(X, θ), given in the caption of Fig. 2, resembles that ob-
tained for a circle; most of the above results remain valid after
a geometrical transformation that consists of a similitude in the
direction of one of the axes of the ellipse.

A square aperture can be considered as the simplest shaped
aperture. Its throughput compared with the circular aperture is
less by π/2 (square inscribed in the circular aperture). After a
few computations, the formula below can be derived to give the
Radon transform of a square:

RS(X, 0) = LΠ
(X

L

)

RS

(
X,
π

4

)
= L
√

2Λ

(
X

L
√

2

)

RS(X, θ) = L
a

sin 2θ
Λ

(
2X
a

)
− L

b
sin 2θ

Λ

(
2X
b

)
(17)

where a = cos θ + sin θ, b = cos θ − sin θ, L is the side of
the square and Λ(x) is the triangle function. The expression is
valid for θ between 0 and π/4; the entire Radon transform can
be derived using symmetries at θ equal to π/4 and π/2. A rep-
resentation of R(X, θ) is shown in Fig. 3. The square aperture
gives its worst possible values at θ equals 0 and π/2, where
it corresponds to the un-apodized window function. At an an-
gle of π/4, R(X, θ) equals the triangle function, an apodization
function known as the Bartlett function. In between these two
directions, R(X, θ) has the shape of an isosceles trapezoid.

Various kinds of apodization can be used together with a
rectangular aperture. Nisenson and Papaliolios for AS A pro-
posed to use Sonine apodizations, of the form (1− x2)

ν−1
2 . These
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Fig. 3. Illustration of the Radon approach for a square aperture. Top
left: gray level representation of the Radon transform R(X, θ) of a
square for θ varying between −π/2 and π/2. Top right: cuts of
R(X, θ) for a = 0 (function LΠ( X

L )) and c = π/4 (triangle function

L
√

2 Λ( X
L
√

2
)). For intermediate values (such as b = π/8), the shape

is that of an isosceles trapezoid as given in Eq. (17). Curves are such
that their integrals equal the area of the square. Because of the regu-
lar shape of the square, the Radon transform presents symmetries that
makes it possible to restrict its computation to a range of θ values be-
tween 0 and π/4. Bottom left: gray level representation of |R̂(ρ, θ)|2,
corresponding to squared modulus of the horizontal one-dimensional
Fourier transform of the top left figure. Bottom right: usual PSF of
the square aperture. Lines a, b and c are the corresponding cuts or
transforms for all these figures.

apodizations were compared to prolate spheroidal apodizations
by Soummer et al. (2002), who also give expressions for vari-
ous apodizations and corresponding PSFs.

A shaped aperture can be constructed using simple or very
complex contours. The elliptic aperture given as an example
in Fig. 1 is a simple modification of the circular aperture, as
already discussed. To the contrary, the aperture proposed by
Kasdin et al. (2003) uses masks with 6 to 8 elongated trans-
parent zones. In such a case, it is difficult to find an analyt-
ical expression for the Radon transform, and the computation
must be made numerically. This is already the case for the aper-
ture drawn in Fig. 4 whose contour is defined by two truncated
Gaussian curves of the form ± exp(−y2). The resulting figure is
not convex; for some values of θ and X, the integration line (a
line such as AB in Fig. 1) crosses the aperture in 4 points. The
corresponding value for R(X, θ) is double peaked, and gives
strong diffraction arms outside the region where θ is close to 0.

2.3.3. Comparison between shaped and apodized
apertures

As already indicated, several recent studies have been made on
various shaped apertures (Kasdin et al. 2003; Vanderbei et al.
2003b,a). These authors emphasize two advantages of shaped

Fig. 4. Left: shaped aperture (Gaussian contour) with its correspond-
ing diffraction pattern inside, in a representation similar to that of
Jacquinot (1950). Middle: Radon transform R(X, θ) of the aperture
for θ varying between −π/2 and π/2 (representation similar to that
of Fig. 3). Right: cuts of the Radon transform for θ values close to 0
(bottom), where smooth shapes are obtained, and π/2 (top) where the
projections can display double peaks, already visible in the gray level
image.

apertures compared to apodized ones. The first is the simplicity
of fabrication, which is obvious. The second is that, for a sim-
ilar result, shaped apertures provide a better intensity through-
put than apodized apertures, because the term |P(x, y)|2 makes
the intensity fluxΦI to be smaller thanΦA for an apodized aper-
ture, while ΦI = ΦA for a shaped aperture. With the Radon ap-
proach of Eqs. (13) and (14), it is clear that different shaped or
apodized apertures can lead to the same value of R(X, θ) for a
given direction θ. But different apertures cannot give the same
R(X, θ) for all θ values, unless they are identical. This derives
from the inverse properties of both Fourier and Radon trans-
forms. A shaped aperture cannot wholly replace an apodized
aperture and vice versa.

An illustration of this is made in Fig. 5, which compares
the diffraction patterns of two apertures included in a rectan-
gle of surface S . One aperture is apodized by a linear function
in one direction (of the form 1 − 2|x|/L, L being the length
of the rectangle); the other aperture is shaped in the form of
a rhombus. Both apertures give the same triangle function for
R(X, 0). The value I(0, 0) of the diffraction pattern at the cen-
ter is the same for these two apertures and equals 1/4 (times
the constant factor S/λ2). The throughput favors the shaped
aperture, as claimed by the authors using these techniques: it
is of 1/2 for the shaped aperture (shaping reduces the aperture
area by a factor 2), against only 1/3 for the apodized aperture
(result of the integration of (1−2|x|/L)2). But this apparent gain
is misleading, and expresses only the fact that the intensity is
uselessly spread in the other directions by the shaped aperture.
This is clearly visible in Fig. 5, where the diffraction takes the
shape of an X elongated in the vertical direction, preventing
any useful planet detection in this region. The apodized aper-
ture is much more efficient for the whole plane on average. It
makes it possible to discover an exoplanet in a wider region.
This can be quantified using the Strehl factor � that strongly
favors the apodized aperture for which � = 3/4 against only
1/2 for the shaped aperture.

Similar conclusions can be drawn for the other shaped aper-
tures recently proposed in the literature. In fact, to give bet-
ter useful throughput than an apodized aperture and the same
diffraction pattern in a given direction θ0 a shaped aperture
should be able to produce a value kR(X, θ0), with k greater
than 1. This is not possible since the maximal value cannot
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Fig. 5. Top: two aperture transmissions included in a rectangle and giv-
ing exactly the same triangle function for R(X, θ) for θ = 0. Left, the
rectangular aperture is diaphragmed to a rhombus, right the amplitude
transmission of the rectangular aperture linearly decreases from 1 to 0
in one dimension, from center to limb. Bottom: corresponding PSFs.
Along the horizontal axis (arrows), the two apertures give exactly the
same diffraction pattern; these patterns are otherwise different else-
where.

exceed the length of the aperture in the transverse direction.
The interest of a shaped aperture that remains is its ease of
fabrication.

Now let us consider the more general case of apodization.
If we seek to have a point spread function with reduced side-
lobes in a given direction θ, then we want a smooth value for
R(X, θ) in that direction. Since the work of Duffieux (1946), it is
known that the diffracted amplitude in the far wings decreases
as a power series of the form f (n−1) x−n, where f (n) is the value
of the nth derivative of the transmission at the edge of the aper-
ture (for a full aperture with no central obscuration). This result
is derived from repeated integration by parts of the diffraction
integral written as a Fourier transform. The same result applies
for the Fourier transform of R(X, θ). A square aperture gives a
decreasing amplitude in 1/x along the axes because the Radon
transform R(X, θ) is not zero at X = L/2 (Eq. (11)). With this
idea in mind, one would propose apodizing functions equal to
zero at the edge of the aperture with the first non-zero derivative
as high as possible. Jacquinot & Roizen-Dossier (1964) pointed
out that this goal is difficult to realize in practice, because the
optical density of an absorbing medium cannot rise from 0 to
infinity from the center to the edge of the aperture. As a con-
sequence, the transmission at the margin of the aperture may
be very low, but not zero. However, the overall shape of the
aperture may compensate that effect. Indeed, because of the in-
tegration in Eq. (9), a strictly convex two-dimensional aperture
(boundary containing no line segment) gives a value of zero for
R(X, θ) at the edge for any θ value.

Fig. 6. Example of projections R(X, θ) for a ring aperture (circular
aperture with central circular obscuration) apodized with two differ-
ent functions. The curve corresponding to the raw aperture (curve 1)
is reproduced in the two figures. It simply corresponds to the differ-
ence between two functions of the form

√
1 − x2. The other curves

correspond to: (2 – left) an apodization that decreases the transmission
both toward the limb and the center of the aperture and (3 – right) an
apodization where the transmission decreases only towards the limb.
In the latter case it is clear that the result may even be worse than the
original aperture. All curves are normalized to their maximum.

Several apertures recently proposed, such as the checker-
board aperture of Vanderbei et al. (2004), do not obey that re-
quirement and present discontinuities because they are made
of disjoint transmission regions. These discontinuities induce
step-like variations in R(X, θ) that produce ghosts toward some
directions, or diffracted amplitudes for circular concentric rings
(Vanderbei et al. 2003a,b). In the latter case, R(X, θ) can be
written as a weighted sum of functions of the form given in
Eq. (15). An elementary representation of such an aperture is
the classical circular aperture with central obstruction that can
be written as 2(

√
D2 − 4 X2 Π( X

D ) − √d2 − 4 X2 Π( X
d )), where

D and d are the outer and inner diameters of the aperture.
This function is continuous, but not its derivative at the points
|X| = d/2, as it can be seen for the dashed curves of Fig. 6.
To reduce the side lobes, Jacquinot & Roizen-Dossier (1964)
proposed to use pupil transmissions that decrease both toward
the edge and toward the center of the aperture; for that kind of
apodization they used a function of the form J2(r). In Fig. 6
we have drawn for comparison the results on the projections
for the two cases of apodization (we used a simple polyno-
mial function in this example). The projection corresponding
to a double apodization presents a smooth structure, while that
corresponding only to a single apodization presents a structure
with unwanted peaks.

A difficulty that remains is the practical implementation of
these continuous apodizations. Good results seem to have been
obtained in the past by Jacquinot who used a special appara-
tus. Recent developments have been made that use interfero-
metric apodizations, as proposed by Aime et al. (2001) and
Martinache (2003). The reader will find several other tech-
niques in the selection of papers by Mills & Thompson (2003)
already quoted. Some of the techniques proposed are very sur-
prising, such as the apodization using frustrated total reflection
proposed by Diels (1975). Nevertheless, it might be interest-
ing to use discrete pupil masks because they appear to be easy
to realize from an engineering point of view. In that case we
may try to overcome the problem of discontinuities. As a line
of investigation one might imagine a discrete aperture drawn
continuously in the plane. An example of that is the one in the
form of a spiral drawn with a pencil of variable width in Fig. 7.
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Fig. 7. Principle of a spiral aperture whose projections R(X, θ) (and
first derivative) may not present discontinuities. As described in the
body of the paper this aperture is shown for illustration only; a more
realistic aperture would be obtained by using a spiral with a larger
number of revolutions.

Note that this figure is given only for illustration, and no the-
ory was developed for it by the author. More complex Hilbert
plane-filling curves might also be used for the same purpose.
We do not intend to develop their study here, and come back to
apertures with variable transmission.

For an even pattern, R(X, θ) must be even. In that case, the
modulus squared of the real and imaginary parts of the trans-
form add independently, and there is no advantage for R(X, θ)
not to be real. This result was already obtained by Dossier
et al. (1954) using a different reasoning. It might in princi-
ple present negative parts corresponding to phase π, but this
is unlikely to be realized because of the difficulty of obtaining
achromatic phase shifters. We therefore come to the conclusion
that the apodizing function should have a real transmission be-
tween 0 and 1. It should be noted moreover that all of the clas-
sical apodizing functions proposed in the literature of signal
processing (Bartlett, Blackman, Cosine, Gaussian, Hamming,
Hanning, Welch or others) described for example in Harris
(1978) are positive-only functions.

Jacquinot & Roizen-Dossier (1964) consider several tech-
niques for a systematic search for pupil functions with given
apodizing properties, such as to have a dark region in the
diffraction pattern, an idea further envisaged by Malbet et al.
(1995), or to consider several criteria, among them the rate of
decrease of energy already discussed, the spreading factor, or
the maximum encircled energy. For the latter case, they failed
to describe the prolate spheroidal functions that were discov-
ered at that time by Slepian (1964) and Slepian & Pollak (1961)
and whose application to optics was later reviewed by Frieden
(1971).

An example of prolate spheroidal function and correspond-
ing PSF is given in Fig. 8. For it, we used a special program
written by P.E. Falloon (Falloon et al. 2003) in Mathematica
(Wolfram 1999) to compute prolate circular spheroidal func-
tions. The behavior of prolate apodization is quite different to
the other apodizations. Indeed, the rate of attenuation of the
wings remains r−3 as for the Airy pattern, but starts at a much
lower level. This is not surprising because prolate apodizations

Fig. 8. Examples of prolate apodization functions for a circular aper-
ture. Top: radial cuts of the transmission in amplitude, for a telescope
of diameter 1 (radius 0.5). Bottom: corresponding PSFs, normalized
to 1 at the origin (S N,c(ρ)); the x-axis is in units of λ/D, the y-axis is
on a logarithmic scale. The curves are drawn for the prolate param-
eter c equal to 6 (curve b) and 10 (curve c). The un-apodized aper-
ture and corresponding Airy function are also drawn for comparison
(curve a, prolate parameter c = 0). Note that the wings of the pro-
late PSFs show the same r−3 decrease as the Airy pattern, to a strong
factor of attenuation.

Fig. 9. Representation on a semi-logarithmic scale of (1) the aperture
equivalent resolving solid angle ∆, (2) the flux in amplitudeΦA, (3) the
flux in intensity ΦI and (4) the level of the wings of the apodized aper-
ture. The curves are drawn for a circular prolate apodized aperture;
the x-axis corresponds to the parameter c that describes the strength
of the apodization. All curves are normalized to 1 at the origin, which
corresponds to the raw un-apodized circular aperture.

do not end with zero at the edge of the aperture, and we refer
the reader to the reasoning conducted above on the behavior of
apodizations and strictly convex apertures. For a circular pro-
late spheroidal function, the values of ΦI, ΦA and ∆ are repre-
sented in Fig. 9 as a function of the parameter c that defines the
strength of the apodization (see for example Frieden (1971) for
description of this parameter). In the same graph, we have plot-
ted the decrease of the level of the wings compared to that of
the Airy function. For some aspects, the prolate functions may
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Fig. 10. Schematic representation of a planet over a strong background
due for example to the wings of the diffraction pattern of the star. We
assume in this model that all the photons from the planet gather in a
surface ∆ corresponding to the resolution of the aperture. Within this
area, the number of photons diffracted by the star is proportional to the
volume of a cylinder of basis ∆ and height the level of residual light.
The noise comes from fluctuations of the overall collected photons
within ∆.

be considered as the best apodizers (they maximize the encir-
cled energy). However, their importance for apodization is not
so fundamental as in coronagraphy (Soummer et al. 2002).

3. Signal-to-noise ratio considerations

The detection of a signal embedded in noise is a classical prob-
lem of signal detection theory (Michel & Ferrari 2003). For
large difference between the planet and the background and a
large number of collected photons a classical signal-to-noise
analysis can be utilized.

The intensity produced in the focal plane by the star is
I0S (α, β), as described by Eq. (2). The constant term I0 de-
pends on the brightness of the star, and must be expressed in
number of photons. If ε is the intensity ratio between the planet
and the star, the function corresponding to a planet at the po-
sition (αP, βP) is ε × I0S (α − αP, β − βP). To obtain a simple
expression for the SNR of the experiment, we make two sim-
plifying assumptions. We assume that the residual diffraction
wings of the star can be approximated as a local constant back-
ground of value I0 × S̃ (αP, βP), where S̃ (αP, βP) corresponds to
a local mean of S (αP, βP), integrated over a region of size ∆.
Moreover, we make the optimistic assumption that all the light
of the planet can be collected in a pixel, or a group of pixels,
of angular equivalent surface ∆. For simplicity of notations, the
overall efficiency of the optical system and detector is assumed
to be 1; if not, this would change only the value of I0.

With this model the expected number of photons collected
for the planet is (optimistically) estimated to be εI0×ΦI. Within
the resolution surface ∆, the number of photons due to the
diffraction of the star is given by the volume of the cylinder
below the planet as schematized in Fig. 10:

I0S̃ (αP, βP) × ∆ = I0
∆Φ2

A

λ2
S̃ N(αP, βP) = I0ΦIS̃ N(αP, βP) (18)

where we have used the relations obtained in Eqs. (5)
and (6); S̃ N(αP, βP) corresponds to the same local integration as
S̃ (αP, βP). If, moreover, there is a uniform background due for

Fig. 11. Representation of the logarithm of the SNR as a function of
the strength of apodization (parameter c) for a prolate apodized circu-
lar telescope, as given by Eq. (20), for the case of a background free
observation (γ = 0). The parameters entering the expression of the
SNR are represented in Fig. 9 for c up to 15. The planet is assumed
to be at about 7λ/D. All curves are normalized to 1 at the origin, with
reference to the un-apodized case. The values of ε (from 10−10 to 10−2)
are given at the right of the curves. Very strong improvement of SNR
can be obtained for low ε values while apodization is useless for low
contrast sources.

Fig. 12. Similar to Fig. 11, for a fixed value ε = 10−8 and variable
values of the background factor γ equal to 0, 10−8, 10−6 and 10−2. For
a large value of γ, the combined effects of the decrease of transmis-
sion and the increase of the equivalent surface ∆ make the effect of
apodization inefficient. It remains very efficient otherwise (the y-axis
is a logarithmic scale).

example to exozodiacal light, we must add to Eq. (18) a term
of the form IBΦI∆, where IB is a factor that measure the light
energy per steradian. For simplicity, we write IB = γI0. The
fluctuations of this background produces a noise, to which we
must add the fluctuations of the number of photons of the planet
itself. For a Poisson process, the variance equals the mean, and
the resulting overall variance is simply the sum of all the con-
tributions, regardless of origin:

σ2 = I0ΦIS̃ N(αP, βP) + εI0ΦI + γI0ΦI∆. (19)

Writing the SNR as the ratio of the expected total number of
photons due to the planet divided by σ, we have:

SNR = ε

√
I0ΦI

S̃ N(αP, βP) + ε + γ∆
· (20)

An illustration of this result is given in Figs. 11 and 12 for a
circular aperture apodized by a circular prolate spheroidal func-
tion. The SNR is given as a function of the parameter c, and all
curves are normalized to 1 for the unapodized case. Figure 11
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is drawn for γ = 0 (no background) and ε varying from 10−2

to 10−10. In this case the relevant parameters are the telescope
throughput and the level of the diffraction wings. For low ε val-
ues, the loss of photons as the apodization increases is compen-
sated in an advantageous way by the collapse of the wings of
the PSF, as it can be seen in Fig. 9.

A strong apodization is more effective than a weak one, and
permits considerable improvement of the SNR. For low c val-
ues (up to 4 or so), the apodization is not efficient since ΦI

decreases as fast as the wings. For very large values of c, the
SNR decreases when the number of photons in the wings under
the planet is comparable to that in the planet, leading to an opti-
mal c value. For a small dynamical range between the sources,
apodization is not efficient. This is the case for example for
ε = 10−2 (double star of 5 mag difference), at least for the sep-
aration chosen (7λ/D) in Fig. 11. From this example we may
conclude that in general the larger the magnitude difference be-
tween the star and the planet, the stronger the apodization to
use.

The effect of the background may reduce the interest of
apodization because it reintroduces the effect of the equivalent
area ∆. We show it in an example in Fig. 12, where we have
represented the SNR for ε = 10−8 and different values of the
background coefficient γ. In that case the SNR is both sensitive
to the throughput and to the equivalent surface of resolution ∆.
The optimum is obtained for a lower value of the parameter c;
it still corresponds to a strong apodization. A very strong back-
ground (large γ values) makes apodization useless.

It is possible to obtain a simplified form for the SNR if we
make the assumption that both ε and γ∆ remain small com-
pared to the wings of the PSF. In that case, Eq. (20) reduces to
a function SNRc(ρ) that only depends, for the circular prolate
apodization, on the parameter c and the distance star to planet ρ
(ρ here stands for αP, βP):

SNRc(ρ) ∼ ε√I0

√
Φc

S̃ N,c(ρ)
· (21)

A representation of this relation is given in Fig. 13. To draw the
figure, the PSF has been approximated to get rid of the zeroes
of the prolate function; the central part of the prolate function
is conserved and an envelope of the form κ−3 is substituted
for the wings of the functions. As indicated in the comments
to the figure, the region of low SNR corresponds to the central
core of the PSF. A planet, to be observed, should lie outside
that region, but fairly close to it (one or two ∆). Within the
approximation of Eq. (21), it appears clearly that there is an
optimal apodization that depends on the planet position. In fact
it corresponds to the strongest apodization allowing the obser-
vation of the planet. For example, if a planet is around 3λ/D,
the apodization corresponding to c ∼ 5 seems to be optimal;
a stronger apodized aperture (c ∼ 10) will provide a better
SNR for a planet around 6λ/D. Increasing the size of the aper-
ture will be particularly efficient because it will permit using
stronger apodizations for a given planet position.

The assumptions we have used to derive Eq. (20) are op-
timistic (all the flux of the planet within ∆) and cannot be
verified in practice. It is possible however to use a matched

Fig. 13. Representation on a logarithmic scale of the term Φc/S N,c(ρ)
that appears in the SNR expression of Eq. (21), as a function of the
spatial position ρ in units of λ/D and the prolate parameter c. The
curve at c = 0 corresponds to the un-apodized circular aperture.
The SNR increases with ρ, as expected. For a large ρ value, the SNR in-
creases with c, because the gain obtained by lowering the PSF S N,c(ρ)
dominates the throughput reduction Φc. The depletion zone on the left
(small ρ and large c) corresponds to the wide central core of the PSF
that increases with the apodization strength.

filter, convolving the image with the PSF, or an estimate of the
PSF (Aime 2004). This will not change the level of the back-
ground. It will slightly modify the maximum collected flux for
the planet. As described by Aime & Soummer (2003), a new
quantity Φ′I should be substituted to ΦI, of the form:

Φ′I =
∫ ∫

S 2(α, β)dαdβ =
∫ ∫

|T (u, v)|2dudv (22)

where T (u, v) is the telescope modulation transfer func-
tion (MTF). We recall that ΦI corresponds to the integral of
S (α, β), instead of that of S 2(α, β) for Φ′I. For circular and rect-
angular apertures, Aime & Soummer (2003) find that Φ′I was
about half the value of ΦI. This ratio is about the same for pro-
late apodizations and is almost independent of the value of the
parameter c. We do not give the new values because the curves
drawn in Figs. 11−13 remain almost unchanged.

4. Conclusion

The results presented in this paper can be divided in two parts,
the first being a Radon presentation of aperture diffraction
effects, and the second a presentation of SNR for apodized
apertures.

We have shown that the use of the Radon transform per-
mits a better understanding of diffraction patterns of shaped
and apodized apertures, mainly because it makes it possible to
reduce the two-dimensional problem to an ensemble of one-
dimensional projections. Not all the possibilities allowed by
this new approach have been exploited in this paper. We used it
for a comparison between shaped, discrete and apodized aper-
tures. Our conclusion favors the apertures with continuous vari-
able transmission, in contradiction with recent publications on
this topic. This assumes, of course, that apertures with perfectly
controlled transmission can be realized in practice.
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Simplified expressions for the SNR of the detection of an
exoplanet have also been given. Illustrations for the optimal
case of a circular aperture apodized by a prolate spheroidal
function have been drawn. Aside from the fact that these func-
tions are optimal in a particular sense for apodization, they
make it possible to modulate the strength of the apodization
in a continuous way. Several remarks can be made from this
study. One is that the apodization must be very strong to be ef-
ficient for faint exoplanet detection. The SNR improvement can
then be very large. Moreover, the apodization must be adapted
to the star to planet distance. As a simple rule-of-thumb, the
optimal apodization is the strongest that permits geometric ob-
servation of the planet. This conclusion greatly favors the use
of the largest possible telescopes.
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