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Abstract. This paper presents a generalization of the Roddier & Roddier Phase Mask coronagraph for polychromatic obser-
vations. It is shown that using a dual-zone phase mask, combined with complex apodization, both phase and size chromatism
can be compensated simultaneously to produce high extinction of a point source over large bandwidths, for example the entire
K band with a residual integrated starlight of 3.2 × 10−4 and a star intensity level of 10−6 at an angular separation of 3λ/D.
Other advantages of the proposed technique include the compatibility with centrally obscured telescopes, absence of blind axes
and no symmetrization of the images.
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1. Introduction

The scientific objectives of high contrast imaging are numer-
ous, for example exoplanet imaging, circumstellar disks, stel-
lar environnements of massive or evolved stars, Active Galactic
Nuclei. For all of these scientific objectives, both imaging and
spectral information are essential and polychromatic high con-
trast images are needed.

Several coronagraphic techniques aim at obtaining these
requirements, with different characteristics: the Achromatic
Interfero-Coronagraph (AIC) (Gay & Rabbia 1996; Baudoz
et al. 2000a,b) is the only coronagraph totally achromatic by
construction but it symmetrizes the images and is therefore not
adapted to produce images of complex structures (e.g. proto-
planetary disks).

Focal plane mask coronagraphs are more suited for imag-
ing and several techniques have been proposed. The Roddier
& Roddier Phase Mask Coronagraph (Roddier & Roddier
1997) can yield a theoretical 100% monochromatic perfect case
in its prolate apodized version (PARRC) (Aime et al. 2002;
Soummer et al. 2003) but suffers from two chromatism effects:
size and phase chromatisms. However it can be used with cen-
tral obscuration or even diluted apertures (Guyon & Roddier
2002).

The Prolate Apodized Lyot Coronagraph PALC (Aime
et al. 2002; Soummer et al. 2003) is only affected by the size
chromatism but needs larger mask sizes, of the order of 3λ/D
to 4λ/D and has a lower throughput (of the order of 20%
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to 30%). It has been shown that its polychromatic residual in-
tensity remains satisfactory, even without size chromatism cor-
rection (Soummer et al. 2002). Its sensitivity to central obscu-
ration is important.

Sectorised phase mask coronagraphs, such as the Four
Quadrants Phase Mask FQPM (Rouan et al. 2000; Riaud et al.
2001) or the Phase Knife Coronagraph PKC (Abe et al. 2001,
2003), can also yield a total extinction in the monochromatic
perfect case (Abe et al. 2003). These techniques are only af-
fected by the phase shift chromatism. However, they are highly
sensitive to pupil shape and pupil remodelling is necessary to
achieve optimal performance. In particular, the performance of
the quadrant phase mask on a telescope having a central obscu-
ration can be recovered by using a pupil mask that is concave
everywhere (Llyod et al. 2002). Also, images suffer from re-
duced sensitivity along the sector edges (roughly by a factor
of 10) which causes loss of observation efficiency, especially
for imaging objects very close to the star. This may require
rotation of the instrument. Several possibilities for the achrom-
atization of these techniques have been proposed, involving
multilayer compensation techniques (Riaud et al. 2001), bire-
fringence (Mawet et al. 2002) or dispersion (Abe et al. 2001).

Unfortunately, none of these techniques presents simulta-
neously all the advantages: large bandpass coronagraphic ef-
ficiency, good imaging capabilities, possible use with central
obscuration.

The purpose of this paper is to present an original ap-
proach that we consider as a polychromatic generalization of
the Roddier & Roddier Coronagraph. This concept permits one
to obtain high contrast over very large bandwidths (up to 40%
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Fig. 1. This figure reviews the principle of the prolate apodized Roddier & Roddier coronagraph in the monochromatic perfect case. The plots
represent the wave amplitudes ΨA(x), ΨB(x), ΨC(x) (dimensionless) as a function of the spatial position x in the three planes A, B, C for a
one-dimensional telescope of width L. The entrance pupil Π(x/L) is apodized by the adequate prolate function Φ(x) (left figure). The π phase
mask (multiplication by −1) is applied to the wave amplitude in the focal plane (center figure). The direct wave and the wave diffracted by the
mask interfere destructively inside the pupil plane C (right figure). In this perfect case, the Lyot Stop (not represented) eliminates all the star
light and the extinction is total. The amplitude in the focal plane D is not represented since it is null in the whole field (total extinction of the
star). For more details, refer to Aime et al. (2002) and Soummer et al. (2003).

for example). Moreover, it can be used with a centrally ob-
scured telescope and can provide snapshot images.

The proposed approach consists of re-visiting the chroma-
tism problems associated with phase masks, taking them into
account from the beginning. This approach leads to the use
of a dual-zone non-π phase mask combined with a complex-
apodized entrance pupil. The possibility of three zones is dis-
cussed in the conclusion.

The results hereafter indicate that this method can provide
high achromatic nulling over a large band with near-perfect
nulling at two wavelengths. In Sect. 2, we introduce the the-
oretical basis of this method from the analysis of the Roddier
& Roddier Phase Mask chromatism. In Sect. 3 we give the gen-
eral formalism and results for a circular pupil telescope.

2. Phase masks coronagraphs and chromatism

2.1. Roddier & Roddier phase mask

Roddier & Roddier (1997) have proposed an improvement of
Lyot’s stellar coronagraph, by replacing the occulting mask by
a transparent π phase shifting mask, slightly smaller than the
Airy disk. This technique can be greatly improved by a slight
apodization of the entrance pupil, as proposed by Guyon &
Roddier (2000) and Baudoz (1999). The formal study of this
technique (Aime et al. 2002; Soummer et al. 2003) showed
that it can yield a theoretical 100% nulling in the monochro-
matic case for a perfect telescope, using prolate spheroidal
apodizations.

The principle of the Prolate Apodized Roddier & Roddier
Coronagraph is recalled in Fig. 1, adapted from Aime et al.
(2002), and involves four planes A, B, C, D. A denotes the
telescope aperture (with apodization mask), B denotes the tele-
scope focus (with the coronagraphic phase mask), C denotes
the Lyot pupil plane (with the Lyot stop) and D denotes the

final focal plane (with the detector). Plane D is not represented
in Fig. 1.

The correct prolate spheroidal apodization is applied (in
amplitude) to the wave in plane A. In plane B, the π phase
mask is set at the center of the telescope impulse response. The
direct wave, which corresponds to an image of the pupil, and
the wave diffracted by the mask interfere destructively inside
the aperture in plane C. Thanks to the properties of prolate
functions and given appropriate masking in plane C, the star
is totally nulled in the monochromatic perfect case.

It is important to note that the R&R (apodized or not)
accepts central obscuration, in contrast with the FQPM/PKC
or PALC. Moreover, it leaves the image outside the mask al-
most unaffected, without blind zones (FQPM/PKC, shaped or
apodized pupil concepts (Nisenson & Papaliolios 2001) would
require rotation of the instrument) or symmetrization of the im-
age (AIC).

The unapodized version of the Roddier & Roddier coro-
nagraph has been tested experimentally (Guyon et al. 1999)
but with low performance, due to insufficient phase shift pre-
cision. The main drawback of this coronagraph remains its
double chromatic dependence: the exact π phase shift and
optimal mask diameter are only satisfied at a single wave-
length. Although great advances are being made toward achro-
matic phase shifting using multilayer dichroic filter technol-
ogy (Riaud et al. 2001), the size chromatism problem may only
be solved by adding chromatic magnification and demagnifi-
cation using several lenses before the mask and between the
mask and the Lyot Stop using Wynne’s achromatization tech-
nique (Wynne 1979; Roddier et al. 1980). These chromatic ef-
fects for a PARRC are represented in Fig. 2 in the worst case of
uncompensated double chromatism, and for size chromatism
alone.

The chromatism effects can be illustrated by a simple rea-
soning at the center of the coronagraphic pupil, in plane C.
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Fig. 2. This figure illustrates the deviation
from the perfect monochromatic case for the
PARRC. The figures represent the residual
star energy integrated inside the exit pupil
and normalized to the apodizer through-
put T , as a function of the wavelength

E(λ) = 1
T

∫ D/2

0
2 π r |ΨC(r, λ)|2dr. as a func-

tion of the wavelength for Prolate Apodized
Roddier & Roddier Coronagraph. The left
figure represents E(λ) considering a simple
reflection π phase mask (double chromatism
dependence). Right figure: even with a per-
fect achromatic phase shift, the effet of size
chromatism alone severely limits the per-
formance of the coronagraph. Note that the
residual energy is exactly zero at the central
wavelength.
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Fig. 3. Schematic illustration of the double chro-
matism for R&R (or PARRC). Top: at λ =
λ0 the phase shift is exactly π. In particu-
lar, at the center of the pupil in plane C, the
wave amplitude exactly zero: the integral of
the amplitude inside and outside the mask (in
plane B),represented in grey tints, are equal and
opposite (center). These two integrals are rep-
resented by 2 opposite vectors in the complex
plane (right). Center: at λ � λ0 the phase shift
is not exactly π (for a reflection phase mask
for example) and the impulse response size is
magnified by the factor λ0/λ. The corresponding
vectorial addition is no longer null (right), and
describes the dotted line curve over the band-
width. Bottom: to obtain an achromatic nulling
at the center of the pupil, a third vector is neces-
sary in the complex plane to obtain again a zero
complex amplitude (right). This third vector can
be produced using a second doughnut-shaped
phase mask. A dual-zone phase mask with two
non π phase shifts is then needed.

The amplitude at the center of the pupil in plane C is equal
to the integral of the complex amplitude in plane B (Fourier
integral theorem). This integral over the whole plane B can be
split into two integrals: inside and outside the mask area.

The complex amplitude Ψ at the center of the corona-
graphic pupil (plane C) is then the complex addition of the two
vectors u1 = v1 eıϕ1 , representing the integrated field within the

phase shifted zone, and u2 = v2 eıϕ2 representing the integrated
field outside this zone. For perfect nulling at the center of the
pupil, u1 = u2 eı π, and the two vectors are real, as illustrated in
Fig. 3 (top).

The chromatic dependence of this scheme can easily be
demonstrated by this representation. When the wavelength de-
creases slightly, the Airy disk shrinks so that more energy is
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concentrated in the inner zone, making v 1 grow and v2 decrease.
Also, unless a sophisticated achromatic phase shifter is used,
the phase between the vectors is no longer 180 degrees. For ex-
ample, in the case of a reflective phase mask, optimized at the
wavelength λ0 with a step size z = λ0/4, the phase shift be-
tween the two waves at the wavelength λ is ϕ = π λ0/λ, and the
vector u1 rotates in the complex plane (Fig. 3). The resulting
vectorΨ = u1 + u2 is now finite, i.e. d|Ψ|/dλ � 0

This vectorial addition reasoning holds for a single point
in the pupil, and the Fourier area theorem makes it particularly
easy to perform this sum at the center of the pupil. However,
knowing the profile of the Fourier transform of each zone of
the phase-masked image, it is easy to generalize this treatment
to every point in the pupil.

2.2. Dual-zone phase mask

The above reasoning for the R&R Phase Mask induces the ne-
cessity of a third vector u3, that would be able to reduce to zero
(or approximately zero) the complex amplitudeΨ at the center
of the pupil for a range of wavelengths.

For that, let us consider a second, doughnut-shaped phase
mask, surrounding the original R&R Phase disk, as illustrated
in Fig. 3. Two different phase shifts ϕ1 and ϕ2 are attributed to
this dual-zone phase mask. The complex amplitude at the cen-
ter of the coronagraphic pupil now appears as the summation
of three complex components:Ψ = u1 + u2 + u3.

An infinite number of solutions may be found satisfying
Ψ = u1 + u2 + u3 = 0, but one may also hope to find at least
one solution for which dΨ/dλ = 0. This would indicate the
presence of a zone within which Ψ ≈ 0 for a finite wavelength
range.

Let us first illustrate this proposal in the simple case of a
raw unapodized aperture. We consider a plane wave of complex
amplitude unity, arriving at the telescope aperture. In the focal
plane, the complex amplitude of the Airy pattern is:

A(r) = D
J1(πD r/λ f )

2 r
, (1)

where D is the telescope diameter, f the focal length, λ the
wavelength and r the position. At the center of the re-image
pupil, the complex amplitude is unity, using the Fourier integral
theorem:
1
λ f

∫ ∞

0
2 π r A(r) dr = 1, (2)

with the Fourier Optics scaling factor 1/λ f (Goodman
1996). The integral over each zone finds an analytical ex-
pression, using the derivation property of Bessel functions
dJ0(r)/dr = −J1(r):

Int(d, λ) =
1
λ f

∫ d/2

0
2 π ξA(ξ) dξ = 1 − J0

(
πD d
2 λ f

)
· (3)

The modulus of the three vectors u1, u2, u3 corresponds to the
integrals of the complex amplitude over the three zones:

v1 = Int(d1, λ)

v2 = Int(d2, λ) − Int(d1, λ), (4)

v3 = 1 − (v1 + v2)
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Fig. 4. Illustration of the modulus of the three vectors u1, u2, u3 for
a variation wavelength λ/λ0 across the bandwidth, corresponding
to Eq. (4).

where d1 and d2 are the diameters of the inner and outer zone
of the mask, expressed in units of the resel size λ0 f /D at the
central wavelength λ0. Theses integrals are illustrated in Fig. 4
for a bandwidth of 40%.

The phase shift in each zone must be calculated as a func-
tion of the wavelength. Assuming a reflective phase mask with
steps z1 and z2 expressed in units of λ0, the phases are given
by: ϕ1 = 4πz1 λ0/λ, ϕ2 = 4πz2 λ0/λ and ϕ3 = 0. The complex
amplitude at the center of the pupil Ψ:

Ψ = u1 + u2 + u3 = v1 eıϕ1 + v2 eıϕ2 + v3 eıϕ3 (5)

finds then an analytical expression using Eq. (4):

Ψ = eıϕ1 +
[
eıϕ2 − eıϕ1

]
J0

(
πD d1

2 λ f

)
+

[
1 − eıϕ2

]
J0

(
πD d2

2 λ f

)
· (6)

The mean polychromatic intensity at the center of the pupil, for
the bandwidth ∆λ centered at the wavelength λ0 can be used as
a criterion to search for an achromatic solution (at the center of
the pupil):

I0 =
1
∆λ

∫ λ0+∆λ/2

λ0−∆λ/2
|Ψ|2dλ. (7)

A numerical conjugate gradient method has been used to op-
timize the four parameters d1, d2, z1, z2. The representation of
Fig. 3 shows that the mask must have dimensions comparable
to the Airy core to obtain a suitable three-vectors addition. This
information is very useful in choosing the starting values of d 1

and d2 for the optimization, and limits the range of investiga-
tion to discriminate local minima. Moreover, the analytical ex-
pression (Eq. (6)) is easily implemented and provides efficient
calculations.

The optimal set of solutions depends on the bandwidth
and this point will be specifically discussed below. In this
simple case, we have tested the three bandwidths 20%, 30%
and 40%: the mask dimensions remain within a single group in
the (d1, d2) plot, Fig. 5 (left). However, four main groups of so-
lutions can be identified for the phase steps in Fig. 5 (right), that
we denote S1, S2, S3 and S4. We have represented in Fig. 6 the
intensity I0 for a typical fixed solution (d1, d2) (chosen in the
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Fig. 5. Illustration of the optimization at the center of the pupil, for
the bandwidths 20%, 30% and 40%. Left: mask dimensions diam-
eters d1 and d2. A single group of solutions exist for these 3 band-
widths. Right: phase steps z1 and z2. Four groups of solutions exist
for the phase steps for each bandwidth.

group of Fig. 5 (left)), as a function of the phase steps (z 1, z2).
The 4 solutions S1, S2, S3 and S4 can be recognized and it ap-
pears that the two solutions with the smaller phase steps (S1
and S2) are more interesting: they correspond to a deeper level
on the contour representation of Fig. 6. This is not surprising
since for large phase steps z, the chromatism of the phase shift
is greater. It is therefore more difficult to compensate over large
bandwidths.

For these optimized solutions, the resulting complex am-
plitude Ψ at the center of the pupil traces a γ-like curve in the
complex plane, as λ varies over the bandwidth. Each point on
this curve corresponds to the three-vector addition described
qualitatively in Fig. 3 and illustrated for the parameters of so-
lution (S2) in Fig. 7. The wave amplitude is folded around zero
in the complex plane so that the intensity remains close to zero
for a large range of wavelengths.

For the best of these four solutions (S2) we have summa-
rized the results in Fig. 8 in terms of Ψ, the complex ampli-
tude at the center of the pupil corresponding to the two-vector
addition for R&R described in Fig. 3 and to the three-vector
addition for DZPM. The intensity at the center the pupil is
compared to the original unapodized Roddier & Roddier tech-
nique over the bandwidth. Near perfect nulling is achieved at
two points and less than 0.5% is reached over most of the band.

Although this analysis only holds for a single point in the
pupil, it is a good introduction the problem of full-pupil opti-
mization, described in the following section.

3. Optimization over the entire pupil

3.1. Formalism

In this section we give the formalism of the dual-zone coron-
agraph for a circular aperture, based on the formalism devel-
oped for prolate apodized circular apertures and coronagraphy
(Soummer et al. 2003). Thanks to the geometry of the pupil,
apodization and phase masks, the problem presents a radial
symmetry: a two-dimensional function f (r) can be represented
by its radial cut f (r), where r =

√
x2 + y2 is the modulus of the

position vector r = (x, y). The wave propagation between each
plane A, B, C, D involved in the coronagraph can be written as
a scaled Fourier Transform (FT) (Goodman 1996). The FT of
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Fig. 6. Illustration of the existence of several solutions for the phase
steps z1 and z2 for a typical solution of mask diameters d1 =

0.88 λ0 f /D and d2 = 1.40 λ0 f /D (see Fig.5). The figure represents
the intensity I0 as a function of the phase steps z1 and z2. The contour
scaling is logarithmic with 10 equally-spaced contours between 10−3

and 1 (dark shading corresponds to lower values). The best solutions
correspond to the smallest phase step values (S1 and S2). The other
solutions S3, S4, etc. have a lower efficiency (the figure is centro-
symmetrical and identical solutions exist with negative phase steps).
The points of Fig. 5 correspond to the four holes of the figure (for
positive values of z1 and z2). The solutions denoted S1 and S2 corre-
spond to a lower intensity (clearly visible on the contour plot). This
computation is made for 40% bandwidth.

a radial function is also a radial function, whose radial cut can
be expressed using the Hankel Transform (HT):

Ψ̂A(r) =
∫ ∞

0
2 π ρΨA(ρ) J0(2 π ρ r) dρ. (8)

We consider a plane wave arriving at the circular aperture of
diameter D apodized by a radial function Φ(r) (eventually Φ
can be complex in this paper). The complex amplitude at the
aperture is then ΨA(r) = Π( r

D )Φ(r), where Π(r) = 1 for |r| ≤
1/2 and 0 otherwise.

In the focal plane, the Dual-Zone Phase Mask (DZPM) size
is proportional to the size of the diffraction pattern for the cen-
tral wavelength of the band λ0. The DZPM inner diameter d1

and outer diameter d2 are written as:

d1 = α1
λ0 f
D
= a1 λ0 f

d2 = α2
λ0 f
D
= a2 λ0 f , (9)

where we use the parameters a1 and a2 to express the diam-
eters in units of 1/D, for convenience in the following equa-
tions and for homogeneity with the previous paper notation
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Fig. 7. Illustration of the three vector addi-
tion in the complex plane, for three wave-
lengths λ/λ0 = 0.85, λ/λ0 = 1, λ/λ0 =

1.15, and parameters d1, d2, z1, z2 of solu-
tion S2. The resulting vector describes the
γ-like curve as the wavelength varies across
the bandwidth.
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Fig. 8. Results of the optimization at the
center of the pupil. Top: representation in
the complex plane of the complex ampli-
tude at the center of the pupil. The com-
plex amplitude is folded with a γ-like curve
and remains close to zero. A comparison
is made at the same scale with R&R (left)
and zoomed (right). Bottom: residual in-
tensity at the center of the pupil as a func-
tion of the wavelength, compared to the
R&R coronagraph (left) and zoomed (right).
The intensity is normalized to 1 for the
case without coronagraph. Almost perfect
nulling is obtained for two wavelengths, and
the average intensity is below 0.5% over
the bandwidth. The comparison with the
R&R coronagraph, without chromatism cor-
rection, shows a great improvement with the
DZPM technique.

(Soummer et al. 2003). The radial transmission t(r) of the
DZPM is then simply:

t(r) = Π

(
r
d1

)
eıϕ1 +

[
Π

(
r
d2

)
− Π

(
r
d1

)]
eıϕ2 +

[
1 − Π

(
r
d2

)]
,(10)

or:

t(r) = 1 − Π
(

r
d1

) [
eıϕ2 − eıϕ1

] − Π (
r
d2

) [
1 − eıϕ2

]
. (11)

The wave amplitude after the mask is written:

ΨB(r, λ) =
1
ıλ f
Ψ̂A

(
r
λ f

)
× t(r). (12)

The analytical computation here is analog to the PARRC for-
malism, but with two coronagraphic terms instead of a unique
coronagraphic term (see Eq. (6) of Soummer et al. 2003). The
chromatic complex amplitude in the pupil plane C is obtained
by performing a scaled FT of Eq. (12), to obtain:

Ψ−C(r, λ) = ΨA(r)

−ΨA(r) ∗ λ0

λ

a1

2 r
J1

(
π a1 r

λ0

λ

) [
eıϕ2 − eıϕ1

]
−ΨA(r) ∗ λ0

λ

a2

2 r
J1

(
π a2 r

λ0

λ

) [
1 − eıϕ2

]
, (13)

as detailed for the case of a simple mask (Aime & Soummer
2002).

The two-dimensional convolution product can be computed
analytically, making use of the chromatic kernel K0(ξ, r, a)
(Soummer et al. 2003). Equation (13) then becomes:

Ψ−C(r, λ) = ΨA(r)

−(2 π)2
∫ D

2

0
ξΦ(ξ) K0

(
ξ, r, a1

λ0

λ

)
dξ

[
eıϕ2 − eıϕ1

]
−(2 π)2

∫ D
2

0
ξΦ(ξ) K0

(
ξ, r, a2

λ0

λ

)
dξ

[
1−eıϕ2

]
, (14)

recalling the kernel expression:

K0(ξ, r, a) =
a r J0(a π ξ) J1(a π r) − a ξ J0(a π r) J1(a π ξ)

4 π
(
r2 − ξ2) , (15)

and its limit for r = ξ:

K0(ξ, ξ, a) =
1
8

a2
[
J2

0(a π ξ) + J2
1(a π ξ)

]
. (16)

A Lyot Stop is set to remove the light diffracted outside the
aperture:

Ψ+C(r, λ) = Ψ−C(r, λ) × Π
( r
D

)
· (17)
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A Lyot Stop diameter reduction can be eventually optimized,
but with entrance pupil apodization, this point is no longer es-
sential (Aime et al. 2001). Finally, an expression of the residual
chromatic focal intensity can be obtained by applying a scaled
Hankel Transform to Eq. (17).

The coronagraphic effect can be analyzed in the pupil
plane C, as in the previous studies: for a classical R&R (or
Lyot) coronagraph, the amplitude in plane C is written as the
subtraction of two waves: the direct wave (the pupil complex
amplitude) and the wave diffracted by the mask. For the DZPM,
Eq. (13) is analogous to Eq. (6) of Soummer et al. (2003), but
for the fact that there are three different complex profiles to
match in the pupil plane C.

An entrance pupil apodization is also necessary for the
DZPM, as for R&R or Lyot masks (Aime & Soummer 2002)
since the smooth diffracted amplitudes cannot perfectly match
a flat entrance pupil amplitude. However, we may consider here
a complex apodization, which can be obtained by adding radi-
ally symmetric aberrations (defocus and any order of spherical
aberration) to the wavefront in the entrance pupil .

The reasoning we made at the center of the pupil must hold
in each point of the pupil, as suggested by Eq. (13): the two
subtracted wavefronts, expressed by the convolution products,
are balanced by the two complex coefficients e ıϕ2 − eıϕ1 and
1 − eıϕ2 , with the effect of rotating the wavefronts in the com-
plex plane and modifying their amplitude. This triple complex
wavefront addition is represented in Fig. 9 inside the aperture
(the two subtractive wavefronts extend beyond the pupil aper-
ture). When the wavelength varies over the band, their shape,
rotation angle and amplitude are modified (modification of the
kernel of Eq. (14) and of the two complex coefficients). The
goal is to obtain a compensation of these effects so that the ad-
dition of the two diffracted wavefronts remains approximately
opposite to the entrance pupil amplitude over the bandpass
(Fig. 9).

3.2. Optimization

The optimal configuration that fits the above reasoning can be
obtained by minimizing the mean polychromatic residual en-
ergy inside the aperture (the Lyot Stop). This criterion can be
written:

R =
1

T ∆λ

∫ λ0+∆λ/2

λ0−∆λ/2

∫ D/2

0
2 π r |Ψ−C(r, λ)|2dr dλ, (18)

where the normalization by T corresponds to the throughput of
the apodization alone:

T =
∫ D/2

0
2 π r |Φ(r)|2dr. (19)

Note that we assume here a white object and a square band-
width for simplicity.

3.2.1. Results without entrance pupil apodization

We first analyse the case of the DZPM technique for a raw un-
apodized aperture: the problem depends on the four parame-
ters d1, d2, z1, z2. Several solutions exist; S1 and S2 can still

Re

Im

Fig. 9. Heuristic illustration of Eq. (13). With the DZPM, there are
three complex profiles to match: the apodized pupil ΨA(r) and the two
complex wavefronts Ψ2(r) and Ψ3(r). The sum of these two complex
wavefront is expected to be real and to match the opposite of the pupil
complex amplitude. Note that the two wavefronts Ψ2(r) and Ψ3(r)
extend beyond the pupil aperture (not represented here). When the
wavelength varies across the bandwidth, we expect to obtain a com-
pensation of the shape modification and rotation for Ψ2(r) and Ψ3(r)
to obtain an achromatic coronagraphic effect.

be identified from their phase steps (the values are similar to
the results for optimization at the center of the pupil), but with
different mask sizes. In Fig. 10, we have represented the crite-
rion R for S1 and S2, compared to the unapodized R&R tech-
nique. In this case, without apodization, S2 shows a signifi-
cant improvement over the R&R technique and S1 is equivalent
to R&R. This improvement with S2 can be very interesting in
cases where the pupil is not available for apodization, such as
for the coronagraphic mode in the NGST/MIRI instrument.

3.2.2. Results with entrance pupil apodization

Numerous possibilities have been tested. First, a pure phase
apodization was tried unsuccessfully and abandoned. The pure
amplitude apodization gives a great improvement, as expected.
However, prolate apodizations that are the eigenfunctions of
the kernels of Eq. (14) cannot be used for the DZPM technique:
the same apodization functionΦ(r) appears in the two integrals
of Eq. (14) and it cannot simultaneously be the eigenfunction
for the two different kernels.

We have instead used a polynomial apodization function.
It appeared from ours tests that a fourth order polynomial is
sufficient. For the additional phase apodization, we tested the
influence of several radial orders, but only defocus plays a role
(and only for S2). The complex apodization to optimize is then
written as:

Φ(r) = (1 + α r2 + β r4) e
2 ı π
λ (χ r2). (20)
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Fig. 10. Illustration of the residual integrated energy over the entire
pupil, for the full pupil optimization without apodization. The com-
parison is made for unapodized and uncompensated R&R (full line),
Prolate Apodized R&R (dash dotted), S1 (dotted line) and S2 (dashel
line). Respectively, the mean chromatic residual energies are 6.8%,
5.0% and 2.2%. S2 shows a significant improvement over R&R. An
optimization over a smaller bandwidth increases the effect. This result
is interesting for instruments for which the pupil cannot be apodized
(e.g. NGST).
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Fig. 11. Results of the optimization in the entire pupil, including com-
plex apodization (amplitude + slight defocus) for bandwidths 40%,
30%, 20% and 10%. The representation is similar to in Fig. 5. The
full pupil optimization leads to a differentiation of the mask dimen-
sions for each of the phase steps solutions. Only the two solutions S1
and S2 are represented. Note that only S2 requires a slight defocus.

The optimization problem now includes 7 parame-
ters (d1, d2, z1, z2, α, β, χ). As in Fig. 5, we still find four
main groups of solutions for the phase steps (z1, z2). However,
with apodization, a single group no longer exists in the (d 1, d2)
plot. A group of mask dimensions (d1, d2) corresponds to
each of the four phase groups of solutions (z 1, z2). The two
solutions S1 and S2 can still be identified and are represented
in Fig. 11. Note that the values also depend on the bandwidth
(this dependence will be analysed in the discussion). The
corresponding DZPMs are represented in Fig. 12 and a typical
entrance pupil apodization is given in Fig. 13.

The best solution, that we will consider in the following,
is S2, especially when complex apodization is used. A slight
defocus (simply defocusing the mask from the focal plane) pro-
vides for example a gain of 3 on the integrated energy for a
bandwidth of 40% and a gain of 15 for a bandwidth of 20%.
This defocus is very small and corresponds typically to λ/20 at
the edge of the entrance pupil.
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Fig. 12. Representation reflection DZPMs for S1(left) and S2(right)
with 40% bandwidth. the vertical axis represents the Optical Path
Difference at the wavelength λ0. The horizontal extension of the plots
corresponds to the dimension of the core of the diffraction pattern.
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Fig. 13. Radial cut of the normalized amplitude at the entrance pupil
ΨA(r) = Φ(r)Π(r/D) (dimensionless) for S2 and 40% bandwidth. The
apodizations obtained for other bandwidths are very similar.

We have represented in Fig. 14 the normalized residual en-
ergy R (bandwidth of 40%), as a function of the phase steps z 1

and z2; the other parameters are constant and correspond to
S2 values. The comparison with Fig. 6 shows that the gen-
eral aspect is similar, but with a clearly identifiable global
minimum. These precautions and two dimensional representa-
tions guarantee that the solution does not correspond to a local
minimum.

Another interesting representation is to consider again the
wave amplitude in the complex plane, at different positions in
the coronagraphic pupil. The complex amplitude still describes
a γ-like folded curve, at each point of the pupil. The evolution
is given in Fig. 15 for a 40% bandwidth and several positions
along a radial cut of the pupil.

The numerical values of the optimal parameters and sum-
mary of the performances for the best solutions are given in
Table 1. Illustrations of the results for several wavelengths are
given in Fig. 16. The normalized energy criterion (R) is rep-
resented in Fig. 17 and can be compared to the uncorrected
PARRC corresponding curve (Fig. 2): a very high improve-
ment is brought by the double zone approach. The entrance
pupil apodization has a throughput (roughly 60%) comparable
to the PARRC ideal case (73%).

Results in the focal plane are represented in Fig. 18:
we have computed the mean polychromatic residual intensity
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Table 1. Comparison of the performances for the different techniques: PARRC, DZPM without and with apodization. The normalized residual
energy R is normalized to the trhroughtput. The intensity levels are coronagaphic extinction ratios, i.e. the normalization is made by the
maximum of the PSF without coronagraph (with apodization alone). The phase steps are given in optical path difference (OPD).

Technique Band Apod. Mask 1 Mask 2 OPD1 OPD2 Defoc. Res. Ener. level @ level @ level @
(%) T a1 a2 2 z1 2 z2 χ R 1.5λ/D 3λ/D 7λ/D

Airy 40% None None None None None None 1 1.0 × 10−2 1.1 × 10−3 1.0 × 10−4

R&R 40% None 1.05/D None 1/2 λ0 None None 6.8 × 10−2 1.1 × 10−3 1.8 × 10−4 1.0 × 10−5

DZPM S2 40% None 0.94/D 1.42/D 0.41 λ0 0.81 λ0 None 2.2 × 10−2 1.2 × 10−3 1.0 × 10−4 5.6 × 10−6

PARRC 40% 72.6% 1.06/D None 1/2 λ0 None None 6.0 × 10−2 5.0 × 10−4 6.8 × 10−5 3.7 × 10−6

DZPM S1 40% 41.0% 0.71/D 1.50/D 0.93 λ0 0.47 λ0 None 1.3 × 10−2 7.0 × 10−4 4.0 × 10−5 2.0 × 10−6

DZPM S2 40% 59.5% 0.88/D 1.45/D 0.35 λ0 0.74 λ0 None 8.2 × 10−3 4.6 × 10−4 3.0 × 10−5 1.7 × 10−6

DZPM S2 40% 57.3% 0.90/D 1.53/D 0.34 λ0 0.73 λ0 −0.20 2.5 × 10−3 4.8 × 10−5 4.7 × 10−6 2.3 × 10−7

R&R 20% None 1.05/D None 1/2 λ0 None None 2.4 × 10−2 1.0 × 10−3 1.0 × 10−4 7.0 × 10−6

DZPM S2 20% None 1.03/D 1.41/D 0.47 λ0 0.92 λ0 None 1.5 × 10−2 1.0 × 10−3 5.6 × 10−5 4.4 × 10−6

PARRC 20% 72.6% 1.96/D None 1/2 λ0 None None 1.5 × 10−2 1.3 × 10−4 1.5 × 10−5 1.0 × 10−6

DZPM S1 20% 44.6% 0.71/D 1.51/D 0.96 λ0 0.48 λ0 None 3.2 × 10−3 2.0 × 10−4 7.0 × 10−6 1.0 × 10−6

DZPM S2 20% 63.2% 0.95/D 1.36/D 0.40 λ0 0.77 λ0 None 5.0 × 10−3 3.1 × 10−4 2.5 × 10−5 1.3 × 10−6

DZPM S2 20% 58.3% 0.93/D 1.55/D 0.34 λ0 0.74 λ0 −0.22 3.2 × 10−4 1.0 × 10−5 1.0 × 10−6 1.0 × 10−7
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Fig. 14. Illustration of the polychromatic residual energy criterion R
for a bandwidth of 40% and the mask dimensions of S2, the rep-
resentation is similar to Fig. 6. The contour scaling is logarithmic
with 10 equally-spaced contours between 10−3 and 1 (dark shading
corresponds to lower values). Complex apodization is used with a
fourth order polynomial amplitude and a defocus. The presence of de-
focus breaks the symmetry with respect to the origin that was observed
in Fig. 6 and permits a better unique global minimum (S2).

integrated over the bandwidth, and compared it to the results
for PARRC and for entrance pupil apodization alone (simply
removing the mask). Note that these intensities are normal-
ized to the maximum of the intensity without the mask, so that
the intensities can be read directly as coronagraphic extinction
ratio.

4. Discussion

4.1. Dependence on bandwidth

In Fig. 19 we have studied the evolution of the mask di-
mensions (d1, d2) and phase steps (z1, z2), as the bandwidth
decreases from 40% to zero (monochromatic). For S1, the
monochromatic limit correspond to a π-phase ring. This phase
ring solution is easily understood in the monochromatic case,
with the simple reasoning at the center of the pupil, a in Sect. 2.
For S2, the monochromatic limit solution is the PARRC so-
lution. The defocus tends towards zero, and the amplitude
apodization correspond to the analytical prolate solution. The
mask size is also the theoretically predicted value for PARRC
(Soummer et al. 2003). The existence of two solutions S1
and S2 can then be understood as the polychromatic general-
ization of the two monochromatic solutions: a π phase mask or
a π phase ring. This explains also the greater interest for S2,
since it is related to the PARRC which permits the total extinc-
tion in the monochromatic case.

4.2. Effect of central obscuration

The R&R Phase Mask coronagraph does not depend much on
pupil shape (Guyon & Roddier 2002) and can even be used
with arbitrary filled or segmented apertures. This is because
the wave diffracted by the mask (i.e. the subtractive corona-
graphic wavefront) is a smooth curve that does not depend on
the aperture shape. The DZPM is based on the same principle
as the R&R and benefits from the same effect. This is a great
advantage over some of the other coronagraphic techniques, for
example considering the hexagonally segmented NGST pupil.

We present here a simulation for 14% obscuration (similar
to the ESO-VLT pupil). The central obscuration is simply mod-
elled by the secondary mirror, ignoring the effect of secondary
spiders.
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Table 2. Results and performances of the optimization with a central obscuration of 14%. The results are similar to those obtain without
obscuration.

Technique Band Apod. Mask 1 Mask 2 OPD1 OPD2 Defoc. Res. Ener. level @ level @ level @

(%) T a1 a2 2 z1 2 z2 χ R 1.5λ/D 3λ/D 7λ/D

DZPM S2 40% 58.2% 0.91/D 1.57/D 0.34 λ0 0.73 λ0 −0.21 1.8 × 10−3 3.3 × 10−5 4.4 × 10−6 3.6 × 10−7

DZPM S2 20% 58.0% 0.95/D 1.59/D 0.34 λ0 0.74 λ0 −0.23 2.3 × 10−4 1.2 × 10−5 1.4 × 10−6 1.0 × 10−7
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Fig. 15. Illustration of the amplitude in the complex plane, for different positions in the coronagraphic pupil, to be compared with Fig. 8. Here
the curves correspond to S2, with same parameters as Fig. 14 (complex apodization and 40% bandwidth).
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Fig. 16. Results for the solution S2, us-
ing apodization and defocus. Left: intensi-
ties in the coronagraphic pupil inside the
Lyot Stop for several wavelengths within the
20% band. Right: radial cuts of the resid-
ual intensities of a star in log scale (colored
in the on-line version). The intensities are
normalized at the origin to directly read the
coronagraphic extinction ratio at a given an-
gular distance from the on-axis unresolved
star.
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Fig. 17. Results for the S2 using apodiza-
tion + defocus: residual star energy in-
tegrated inside the exit pupil and nor-
malized to the apodizer throughput T , as
a function of the wavelength. E(λ) =
1
T

∫ D/2

0
2 π r |ΨC(r, λ)|2dr. This result can be

compared to Fig.2 corresponding to the
PARRC case.

This procedure preserves the radial symmetry of the pupil
(Soummer et al. 2003), allowing an adaptation of the formalism
of Sect. 3.1. To extend the method to arbitrary pupil shapes,
a fully numerical approach is required, but this is outside the
scope of the present paper.

The results and performance calculations in the case of cen-
tral obscuration are summarized in Table 2: the performance is
similar to the case without obscuration. Illustrations are given
in Figs. 20 and 21, comparing the intensities before and after
the Lyot stop.

4.3. Triple zone

With the single point reasoning, three vectors are sufficient to
obtain a zero complex amplitude. However, considering Fig. 15

we see that the three vector compensation is not perfect every-
where inside the coronagraphic pupil. Introducing a fourth vec-
tor provides further degrees of freedom for the optimization,
and may improve the nulling.

This can be done by adding a second annular zone. The
formalism can be adapted straightforwardly from the dual zone
configuration, introducing a third diameter d 3 and phase step z3.
Several solutions exist and the complexity is largely increased
for the optimization. We give some results, summarized in
Table 3. A gain exists, roughly of a factor 2 to 3. However the
realization (Fig. 22) of a the mask would be more difficult.

This improvement of the technique using three zones in-
stead of two may suggest one to search for a continuous phase
shift. It is not excluded that further improvement of the tech-
nique may be obtained in this case.
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Fig. 18. Residual intensities in the focal plane for the solution S2 using apodization and defocus. The intensities, represented in log scale are
integrated over the bandwidth, assuming a square bandwidth and a white object. Comparison to PARRC and apodization alone, just removing
the mask. All curves are normalized at the origin to directly read the coronagraphic extinction ratio at a given angular distance from the on-axis
unresolved star.
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Fig. 19. Influence of the bandwidth on the
mask paramters. The diamonds correspond
to the inner phase mask r1 and z1, and
the stars correspond to the outer phase
ring r2 and z2. Top: illustration for S1. The
monochromatic limit case corresponds to a
π phase ring: 2z1 = λ0 and 2z2 = λ0/2.
Bottom: illustration for S2. The monochro-
matic limit case corresponds to the perfect
PARRC 2z1 = λ0/2 and 2z2 = λ0 (same
apodization, same mask values, and no
defocus).
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Fig. 20. Illustration of the results for solution S2 with a central obscuration of 14%. Left: entrance apodization (radial cut in the entrance pupil
of the normalized wave amplitude). Center: intensities in plane C for several wavelengths, before the Lyot stop. Most of the star light is rejected
outside the aperture and inside the central obscuration. Right: zoom inside the Lyot Stop: the DZPM is not affected by the central obscuration
(as the R&R phase mask): the central zone of the pupil is completely eliminated by the Lyot Stop.
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Table 3. Results and performances of the optimization with a central obscuration of 14%. The results are similar to those obtain without
obscuration.

Band Apod. Mask 1 Mask 2 Mask 3 OPD1 OPD2 OPD3 Defoc. Res. Ener. level @ level @ level @

(%) T a1 a2 a3 2 z1 2 z2 2 z2 χ R 1.5λ/D 3λ/D 7λ/D

40% 48.1% 0.70/D 1.26/D 1.70/D 0.22 λ0 0.54 λ0 0.84 λ0 −0.20 8.6 × 10−4 1.8 × 10−5 1.65 × 10−6 1.0 × 10−7

20% 48.6% 0.65/D 1.22/D 1.69/D 0.20 λ0 0.51 λ0 0.82 λ0 −0.22 1.2 × 10−4 4.4 × 10−6 5.6 × 10−7 5 × 10−8
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Fig. 21. Illustration of the polychromatic
residual focal intensities for solution S2
(bandwidth 20%), with complex apodiza-
tion (apodization + defocus) and a cental
obscuration of 14%. The intensities are inte-
grated over the bandwidth. The performance
is similar to that of the full aperture case.

5. Conclusion

In this paper, we have proposed a new coronagraphic concept
that is an evolution of the apodized Roddier & Roddier Phase
Mask technique. With this approach we include the chroma-
tism problems in the analysis of the Phase Mask principle.
Considerations of achromatic nulling at the center of the coro-
nagraphic pupil lead to the introduction of a second, doughnut-
shaped phase mask zone, surrounding the original phase disk.
In this case of a dual-zone phase mask, the required phase shifts
are no longer π. The overall mask diameter is a little bit larger
than the R&R Phase Mask, of the order of 60% of the diameter
of the Airy core.

As expected, entrance pupil apodization is also needed for
the DZPM to obtain a satisfactory nulling. The analytical pro-
late spheroidal apodizations cannot be applied to the DZPM
and we have performed a numerical study instead. However,
the amplitude apodization can be well described by a simple
polynomial expansion, that can be limited to two terms (fourth
order). The interest for complex apodization has been inves-
tigated, and it appeared that a slight defocus on the entrance
pupil (i.e. the DZPM is not exactly in the focal plane) permits
a considerable improvement of the technique.

The optimal solutions have been obtained numerically, us-
ing classical minimization techniques. All the computations
in this paper have been made semi-analytically, taking advan-
tage of the formalism developed for coronagraphy with circu-
lar apertures (Soummer et al. 2003). For arbitrary pupil shapes
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Fig. 22. Representation of the Optical path difference in units of the
central wavelength λ0 for the triple zone solution for 40%.

including segment edges and secondary mirror spiders, a fully
numerical approach must be developed. This is trivial although
computationally heavier.

Although total polychromatic extinction has not been
achieved, a very high coronagraphic extinction ratio can be
reached. One of the main advantages of the technique is
to accept centrally obscured apertures without performance
degradation. For example, with a 14% obscuration (VLT-
like) and 40% bandwidth, the mean polychromatic intensity
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dynamic is of 2.5×104 at 1.5λ/D, 2.5×105 at 3λ/D and 2.7×106

at 7λ/D.
For the NGST/MIRI coronagraph with a hexagonally seg-

mented telescope pupil (TRW concept), a similar performance
can be expected if apodization could be applied. If not, a more
limited performance can be expected (see Table 1, DZPM with-
out apodization).

The technique is well suited for very large bandwidths:
the coronagraphic performance remains high even for a band
of 40%. This point makes the technique particularly well
adapted to scientific objectives for which the chromatic charac-
terization is essential (detection and characterization of Jupiter-
like planets, debris disks etc.). The technique can be used for
smaller bandwidths, and will always give better performance
than the R&R reference without chromatic compensation. It is
also interesting to consider the possibility of optimizing two
narrow bands separately, taking advantage of the two minima
observed in the residual energy curve. In particular, this would
be very interesting for differential imaging. We have not illus-
trated this aspect here since the main characteristic is its interest
for large bandwidths.

Additional gain can be brought to the technique using an
optimized Lyot Stop (with a possible improvement by a fac-
tor 1.5 to 2, from our tests).

Another advantage of the proposed technique is its rela-
tive simplicity of practical realization. In this paper, we have
considered the case of a reflective phase mask, but the same
principle can be applied to transmissive masks, by including
the dispersion laws in the analytical relations. Using different
materials for each zone or even combinations of materials adds
degrees of freedom and may improve the performance further.

Introducing a third zone improves the achromatization and
the gain reaches roughly a factor 3 for a 40% band. However,
the complexity is much higher from the point of view of its
realization. This suggests that the use of a continuous phase
shifting mask may improve the performance further. This will
be the subject of future studies.

Several points remain to be studied, in particular the sen-
sitivity to deviations from the perfect case, and a comparison
with the performance of other coronagraphic techniques. The
analysis of the performance, applied to realistic scientific ob-
jects, remains the most essential point to be studied.
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