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Dimensionality cross-over is a classical topic in physics. Surprisingly it has not been searched
in micromagnetism, which deals with objects such as domain walls (2D) and vortices (1D). We
predict by simulation a second-order transition between these two objects, with the wall length as
the Landau parameter. This was confirmed experimentally based on micron-sized self-assembled
Co(111) dots.

Dimensionality cross-over is a rich topic in theoretical
and experimental physics. In magnetism this issue has
been widely addressed in the frame of magnetic order-
ing and critical exponents[1, 2]. Beyond this microscopic
level of matter it has been recognized from the early in-
vestigations of magnetism that magnetic materials are
often not uniformly magnetized on the long range, but
rather split in magnetic domains[3]. The study of do-
mains and domain walls (DWs), a field known as mi-
cromagnetism, has since been a major topic of mag-
netism. Micromagnetic objects have tentatively been
classified according to their dimensionality. Magnetic do-
mains are 3D, DWs are 2D, Bloch lines (i.e. so-called
either vortices or anti-vortices) are 1D, Bloch points
are 0D[4, 5]. Each entity may serve as a boundary to the
object of immediately-greater dimensionality: DWs are
found at domain boundaries, Bloch lines inside domain
walls to separate areas with opposite winding[3, 5], and
Bloch points separate two parts of a vortex with opposite
polarities[4, 6]. The study of DWs and vortices as objects
that can be moved[7] and even modified[8, 9, 10] in their
inner structure is a timely topic, driven by proposals of
their use in memory[11] and logic[12] devices. These op-
erations can be achieved using external magnetic fields[7],
or the spin-transfer effect[13] which promises a deeper
integration in spin-electronic devices. Despite these ac-
tive and timely studies the possibility of a dimensionality
cross-over between a DW and a magnetic vortex has not
been addressed. This is surprising as it is now recognized
that their structure is greatly modified dynamically dur-
ing the application of magnetic field or spin-polarized
current[14, 15]. Thus, beyond the aesthetics physical is-
sue of dimensionality crossover, the knowledge of how a
DW may switch reversibly to a magnetic vortex should
have a great importance in understanding and controlling
their static and dynamic features.

In this Letter we report the cross-over from a DW to a
magnetic vortex. We have considered micron-sized mag-
netic dots in a flux-closure state. Depending on the dot
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FIG. 1: Simulated magnetization states in flat Fe(110) dots
with size (a) 500×500×50 nm: vortex state and (b) 500×750×
50 nm: Landau state consisting of a Bloch wall separating two
antiparallel domains. The color stands for the direction of
magnetization along z, see right scale. In these open views the
only parts displayed as volumes are those were mz is greater
than 0.5. This highlights the central vortex or Bloch wall (red)
and the magnetization areas close to the vertical edges of
the prisms (blue). At all other places the surface displays
magnetization in the mid-height plane. (c-d) Views in the xz

plane, corresponding to the framed areas in a-b, respectively.

geometry (size and aspect ratio), the flux may be closed
around a vortex[8] or a DW of finite length[16]. It was
early discussed that the topology of such DW and vor-
tices should be identical, the former being obtain from
the latter by a continuous deformation[16, 17, 18]. Ow-
ing to this identical topology an issue arises naturally,
that of the possibility of a transition from a DW to a
magnetic vortex. We first show by the micromagnetic
simulation of dots with variable in-plane aspect ratios
that a wall tends to collapse into a vortex at a critical
length of a few tens of nanometers. The transition bears
the signature of second order, with the wall length as an
order parameter. This collapsing effect is then confirmed
quantitatively making use of Co(111) self-assembled epi-
taxial dots as model systems, driven by the dot lateral
aspect ratio around a mean hexagonal base.

Let us describe our methods. Micromagnetic simula-
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FIG. 2: Open symbols: length of the Bloch wall in the Landau
state for dot thickness 50 nm, plotted versus the dot lateral
asymmetry ∆l (length minus width, see inset sketch). Linear
line with slope +1: wall length in the simple geometrical Van
den Berg model (black line). Dotted line: asymptotic extrap-
olation from long dot, whose intercept with the x axis defines
the total collapsed. Inset: squared length of Bloch wall, same
x axis.

tions were performed using GL FFT, a custom-developed
finite-differences code based on the temporal integra-
tion of the Landau-Lifshitz-Gilbert equation[19]. The
cell size was 3.91 × 3.91 × 3.13 nm or lower and the pa-
rameters for bulk Fe at room temperature were used
to fit an well-characterized experimental case of self-
assembled dots displaying DWs[10]. The experimen-
tal systems consist of self-assembled micron-size Co(111)
dots[20], epitaxially-grown under ultra-high vacuum us-
ing pulsed-laser deposition[21]. These were grown on a
single-crystalline 10 nm-thick W buffer layer deposited
on sapphire (1120) wafers, and capped with a 5 nm-
thick Au layer to prevent oxidation. The wafer was
then thinned with mechanical polishing and ion milling.
Lorentz microscopy was performed in the Fresnel mode
using a JEOL 3010 microscope equipped with a GATAN
imaging filter. In this mode DWs (resp. vortices) are
highlighted as dark or bright lines (resp. dots) depend-
ing on the chirality of magnetization curling around the
DW/vortex[22]. The image are formed with a dedicated
mini-lens, while an axial magnetic field can be added
using the conventional objective lens. The samples were
prepared by applying a saturating 3 T magnetic field, and
then imaged at remanence.

We first present the results of micromagnetic simu-
lation. As a simple textbook case we considered flat
prismatic Fe(110) dots[10] with fixed height-over-width
ratio 0.2 and thickness 50 nm and above. The length,
taken along the in-plane Fe[001] direction, was varied
from 1 to 1.5 with respect to the width. As expected
for elongated dots of such thickness[16, 17, 18] a Landau
state occurs, displaying two main longitudinal domains

separated by a Bloch wall (FIG. 1b,d). The DW dis-
plays perpendicular magnetization in its core, while it
is terminated at each surface by an area with in-plane
magnetization, the Néel caps[23]. At each end of the
DW the magnetic flux escapes through a surface vor-
tex. We define the length of the DW as the distance
between the projections into the film plane of the locii
of these two vortices (FIG. 1d). From this definition a
vortex is a DW with zero length, such as found e.g. for
a dot with a square base (FIG. 1a,c). Series of simu-
lations of the equilibrium state for variable dot length
were performed the following way. At each stage the
magnetization map is stretched or compressed along the
length to serve as a crude input for the map of the next
value of length, for which the equilibrium state is again
calculated. The series was performed once with rising
length, then again with decreasing length back to the
square base. This yielded identical results, ruling out
the possibility of metastable configurations. To avoid
discretization artifacts the number of cells was kept con-
stant for all simulations of a dot of given height. Instead
the length of each cell was varied progressively to fit the
dot length. The dependence of the DW length with the
dot length is shown for thickness 50 nm on FIG. 2. For
significantly-elongated dots the wall length increases lin-
early with slope 1. In this regime the two surface vor-
tices are sufficiently apart one from another to have a
negligible interaction. Their position is essentially deter-
mined by the minimization of the energy of the triangu-
lar closure domain along the two short sides of the dot.
By a view of mind upon increasing the dot length the
new configuration may be constructed by adding an x-
independent (y, z) slab of DW at mid-length of the dot.
On the reverse in the low-length regime the DW length
decreases faster than slope 1, so that a vortex state is
reached before the dot has a square base. We define the
collapsed length as the difference between the length of
dot upon the collapse and the asymptotic linear variation
of wall length for an elongated dots (FIG. 2). Plotting the
square of the DW length versus the dot length reveals a
linear variation. The cross-over is therefore Landau-like,
i.e. of second order. Such transitions are always associ-
ated with a breaking of symmetry, which in the present
case is whether the top surface vortex shifts towards +x

or −x. The results are qualitatively similar for other
thicknesses.

The predictions of the simulations have been confirmed
experimentally. Self-assembled dots have been used for
this study because they display sharp and well-defined
edges, so that the dot length and aspect ratio can be mea-
sured with accuracy and confidence. We could not make
use of the well-characterized case of Fe(110) dots as these
dots are elongated by their crystallographic nature[21]
and thus always display DWs[24], not vortices. Instead
we developed self-assembled face-centered cubic Co(111)
dots. These display a trigonal symmetry reflecting their
crystalline structure, however with a base close to a reg-
ular hexagon (FIG. 3b). Contrary to previous studies
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FIG. 3: (a) True Z-scale 3D view of a 6 × 6µm AFM image
of self-assembled Co(111) dots (b) Open symbols: DW length
measured in Co(111) dots plotted versus the length expected
from the geometrical Van den Berg construction. The pre-
dictions from simulations for the estimated thickness of the
dot 100 nm are superimposed without adjustment, as guide
to the eye. Insets: typical Co dot displaying a vortex (up-
per left) along with the associated construction predicting a
DW (lower right, central blue line).

dealing with very thin dots thus found in a nearly single-
domain state[25], the thickness of our dots is in the range
100 − 200 nm inducing flux-closure states around a DW
or vortex. Owing to the natural spread of shape occur-
ring in epitaxial self-assembly we could study the length
of DWs as a function of the dot aspect ratio, by a statis-
tical investigation of an assembly of dots over the same
sample. For each dot we measured the experimental DW
length, and computed the expected DW length predicted
by the simple Van den Berg geometrical construction.
This construction is relevant for vanishing thickness and
infinite variable dimensions[26], and equals the dot asym-
metry used in the simulations so that a direct comparison

with the data of FIG. 2 is possible. FIG. 3b summarizes
this analysis, performed over more than 30 dots. Despite
the spread of thickness, lateral size and shape of the ex-
perimental dots, the collected results are quantitatively
consistent with the simulation predictions. The experi-
mental spread of points may be attributed first to errors
in the measurement of both the DW length and dot di-
mensions, second to the spread of dot thickness as the
collapsing length slightly depends on the thickness. De-
spite this spread, it shall be noticed that only vortices
are observed when the expected length lies below 40 nm.
This cannot be attributed to an experimental limitation
to identify short DWs, as many DWs with length be-
low 40 nm have been measured. These however all lie
for expected wall length above 40 nm. These correlations
lie above statistical fluctuations, which unambiguously
demonstrates the collapse of DWs towards vortices in a
quantitative agreement with simulations.

To conclude we have addressed a dimensionality cross-
over in micromagnetism, that of a magnetic domain
wall (DW, 2D) into a magnetic vortex (1D). Simulations
and experiments agree quantitatively that DWs collapse
into vortices at a critical length of a few tens of nanome-
ters, i.e. revealing a short-ranged attractive force be-
tween the two extremities of a DW. Beyond physics aes-
thetics and increasing fundamental knowledge, our in-
vestigation should prove useful when analyzing the in-
creasing number of experiments dealing with the behav-
ior of domain walls and vortices under the effect of pulsed
magnetic fields or spin-polarized currents, which undergo
complex variations of shape and length during their dy-
namics. This includes the case of e.g. the vortex state,
where a domain wall dynamically replaces the vortex[27],
or the multiplication of vortices or transformation of the
type of domain wall in magnetic stripes[14, 28].
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