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Abstract

Numerous pattern recognition tasks set in the probabilistic framework face the fol-
lowing issue : it is expensive to evaluate the likelihood function for test data, when
there are given very many candidate probabilistic models for explaining this data. We
consider the application of this general and important problem to speaker recogni-
tion for indexing and retrieval purposes in radio archives. More precisely, we propose
to reduce complexity at query time, by prior organization of speaker models into a
hierarchy. This is very classically done for multi-dimensional vectors, but we propose
herein a technique for building a hierarchy of probabilistic models, in the case these
models take the form of a Gaussian mixture. From a closed-form approximation
of Kullback-Leibler divergence between parent and children, an optimality criterion
and an optimization technique are derived, from which we propose an efficient ap-
proach for building a tree of models, using clustering techniques (dendrogram-based
or k-means-like). The proposed scheme is evaluated on real data.
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1 Context and goal

Enhanced content-based indexing, browsing and retrieval in large amounts of
audio documents requires prior temporal structuring of this content and la-
belling of entities extracted, such as assigning the identity of a speaker to a
temporal segment (a task also known as "speaker diarization"). A considerable
amount of work has been put forward in this field, during the past ten years
(Bimbot et al., 2004). In this paper, we focus on the task of text-independent
speaker recognition, applied to spoken radio archives. The front-end to the
contribution is a classical one. We partition the audio stream into speaker-
homogeneous segments by detecting changes in speaker turns. Each speaker is
characterised by a probability density estimate of its Mel-cepstral feature vec-
tors (MFCC). This density is modelled as a Gaussian mixture model (GMM),
as this provides an effective trade-off between ability to describe complex den-
sities and ability to estimate correctly the parameters of this model from a
limited amount of training data, which is especially challenging in the rela-
tively high dimension spaces formed by Mel-cepstral coefficients (between 10
and 40, generally).

Ideally, indexing of an audio stream in carried out incrementally. In such a
case, the task of speaker matching is encountered at two stages: when two
temporally disconnected segments contain the same speaker and should be
labelled as such, and when a user formulates a query. The need for incremen-
tality, i.e. the ability to accommodate for new speakers in the database, or
refine already enrolled speaker models as new information is made available,
affects a design choice of the scheme: we make use of generative models, rather
than techniques that discriminate between speakers.

A typical solution to speaker recognition consists in exploring exhaustively
the set of the S, ..., Sy enrolled speaker models and evaluating the likehood
of the query data given each candidate model. The point this paper wishes
to address here pertains to scaling up such a system to a large number of
speakers, by organizing the set of candidate speaker models in the form of
a tree, with a view to obtaining a sub-linear (i.e. < O(M)) computational
cost at evaluation time. Clearly, the matter is to trade a significant speed up
against minimal loss recognition accuracy, relatively to exhaustive search.

There exist alternative work directions for reducing cost: cepstral subspaces
(Nishida and Ariki, 1998; Zhou and Hansen, 2002; Upendra et al., 2001),
anchor models (Mami and Charlet, 2002; Sturim et al., 2001), that express
speakers in a basis of reference speakers, or considering only a few dominant
Gaussians in the mixture. These approaches propose speeding up by reducing
the evaluation per speaker but remain O(M) ; our work direction is orthogonal
and complements it.



The task relates tightly to the classical issue of indexing structures for multi-
dimensional data. The database community has put forward a considerable
amount of contributions based on a variety of tree structures (Berrani et al.,
2003; Zezula et al., 2006). The particularity of the current problem arises from
the nature of the entities to index, namely probability distributions, for which
classical indexing structures are inappropriate. Extending such structures to
handle probabilistic representations is one of the most important current is-
sues, since it has a major impact on the ability to scale up applications to
large amounts of data.

The remainder of this paper is organized as follows. Section 2 provides the
following preliminary material: given a set of sibling speaker models and their
parent, how do we define the representativity of the parent with respect to its
children ? Then, how do we build a parent that possesses an optimal represen-
tativity 7 Section 3 exploits proposals made above to define several alternative
techniques for grouping similar speakers and organizing a set of models into
a tree. Section 4 reports experimental results, while we provide concluding
remarks in section 5.

2 Child-to-parent relation

Let us consider a set of M enrolled speaker models, i.e. M Gaussian mixture
models. The manner by which the parameters of these models are estimated is
not central in the present proposal: it may be through conventional EM-based
estimation (Bishop, 1995) or, more effectively from limited training data, a
point estimate from Bayesian learning with universal background model as a
prior density (Ben et al., 2004). It suffices to say here that model % is expressed
as:

&mziwmw 1)

where Nj(x) is a Gaussian component which mean is u} and covariance X,
while wj, are scalar weights.

Let us assume recognition is based on maximum likelihood of the query data
D, over the set of M candidate models (the scheme extends directly to maxi-
mum a posteriori). Exhaustive maximum likelihood search forms the baseline
technique, against which we propose improvement.

We aim at forming a hierarchy of speaker models by grouping the M models
bottom-up. To justify the criterion proposed below for parent-child similarity,
let us consider the simplest tree, where two speakers S7 and S, are represented
by a single father Si5, which also takes the form of a Gaussian mixture model.
This extends directly to an arbitrary number of children.



The cost reduction at query time, when the tree is explored root-to-leaf, is
obtained by computing a single value p(D|S2) instead of both p(D|S;) and
p(D|S,). Consequently, Si2 should thus be designed so that p(D|S)2) is as
close as possible to both p(D|S7) and p(D|Ss), in order to keep classification
error as close as possible to that of exhaustive search. The number mq5 of
Gaussian components in Sis should also be clearly smaller than my + mo to
ensure computational cost reduction of evaluation.

The next two subsections respectively define (sec. 2.1) an optimality criterion
for a parent, given its children, and (sec. 2.2) expose how we optimise this
criterion to actually determine the parent model from given children.

2.1 Defining a low-cost, minimal KL loss measure between parent and child

The expected loss in log-likelihood caused by approximating both S; and S,
by Sis is expressed as:

Es [In p(D|Sy) ] — Esg,[In p(D|S12) |, where k=12 (2)

Assuming all candidates are equally probable, the optimal mixture @ mini-
mizing this loss is thus defined as:

. / Sy(2) In Sis(z) do — / Sy(2) In Spa(z) dz|  (3)

Sy = arg H}Sin

where integrals span the feature space and § is the search space, discussed
below. This corresponds in fact to minimising the Kullback-Leibler divergence
K L(S142||S12) (Bishop, 1995), where Syyo(z) designates $(S1(z)+ Sa(2)), i.e.:

S» = argmin [— / Spia(a) tn 2220) dx] (4)

n
51+2(x)

A major issue for the practical computation of (4) is the lack of closed form for
this divergence, in the case of Gaussian mixtures. To avoid expensive Monte-
Carlo evaluation (Chen et al., 2005), we propose a closed form through the
following approximation. Linearity of the integral applied to (3) provides:

mi+m2

> whiy [ Ni(@) in Sua(a) do (5)

%

Sia = argrr}Sin l—

In each term of the sum in (5), we approximate the mixture Si5 by only one
of its Gaussian components, selected as the best approximation to Ni,,, in



the KL sense. This leads to the following similarity measure, denoted below
K L,, for K Lyaified, between a reference model Sy, which contains too many
components to be efficient, and its approximation Sis:

St2 = argmin [KLp (5112 512)]
. mi1+ma : mia ; y
= argmin Z Wiy2 fjnzl? K L(N{ ,[[N1,) (6)
i=1

The following expression is used for comparing a child model and its parent
model in the tree:

Mk myg ) .
KLy (S]|S12) = 3_wp min KL(NG||N), k= 1,2 (7)
=1 -

This similarity measure can easily be computed at low-cost, since the Kullback
divergence between two Gaussians, which parameters are (111, 21) and (2, Xs),
benefits from the following closed-form expression:

~(logre— + Tr(33"51) + (p1 — p2) 55" (11 — p2) — 0) (8)

where ¢ is the dimension of the feature space. It may be demonstrated (Gold-
berger and Roweis (2004)) that optimising (6) amounts to finding an opti-
mal discrete mapping © between the m; + ms components of S; and the
mia (< my 4+ ms) components of Sis. This involves reducing the number of
components in the mixture Si o to build Si2, while minimizing density dis-
torsion, in the KL,, sense. The search space S thus consists in all ways of
grouping the m; 4+ my components into m groups.

2.2 Search for the optimal parent mizture

The search space cannot in practice be searched exhaustively if there are
more than 10 components, which we typically encounter. Hence, we optimise
locally criterion (7) with an iterative scheme detailed in Algorithm 1 below.
It is adapted from a technique proposed by Goldberger and Roweis (2004),
in the context of hierarchical clustering of Gaussians (rather than Gaussian
mixtures). The procedure bears analogy with the classical k-means algorithm,
in that it operates local optimization by alternatively assigning elements to
groups and re-computing group representatives. In our context, the elements
are the components of S5 and the representatives those of Sis.

As often done with k-means, the initial assignments 7° from which local op-
timisation proceeds could be drawn randomly. Our context suggests a more



effective initialisation criteria in our context: since generally, Gaussian compo-
nents coming from the same mixture are not redundant, we draw 7° at random
with the constraint that components arising from the same mixture are not
initially grouped. The iterative scheme may still regroup them later, if the
data drives it that way. As it is practically desirable to draw multiple starting
points to retain the best local optimum, this strategy improves sampling of
the search space.

3 Grouping speaker models

This section applies the child-to-parent relation criteria and optimization tech-
nique presented in the previous section to three ways of organizing speaker
models into a search tree. Practically, the scope of this paper is restricted to a
single intermediate layer between the root and the leaves, and may be viewed
as clustering of speaker models.

3.1  Dendrogram-based grouping

We first present a transposition of the most classical data clustering to our
problem, namely bottom-up hierarchical clustering, where each leaf is a Gaus-
sian mixture model (see fig. 1):

1. a M x M similarity matrix is computed between models. Similarity be-
tween two mixtures S; and S5 is computed as :

K Lin(51][52) + K Ly (S2|51) (15)

2. the two most similar models are grouped and summarized as one (here,
not reducing Sy 4o to Sia, to keep a richer representation), and so on until
there remain only two nodes. The similarity matrix is updated after each
merge operation.

3. the dendrogram-tree obtained is cut (dashed line in fig. 1) so that the
number of nodes just above it is close to loga(M). These nodes inheritate
from all their (grand)children, and the corresponding mixture model are
determined by optimizing criterion (6). Doing so, a tree with a variable
of children is formed, which we use for searching.

As usually with hierarchical clustering, this technique is not incremental and
its complexity does not scale up well to large amounts of speakers (it does at
evaluation time, hence its interest, but not at tree construction time). Since
similarity between models is computed by means of K L,,, it only resorts to



Algorithm 1 Iterative optimisation algorithm for estimating the reduced
model Sy (criterion (7))

Start from a constrained random initialisation #° (or given, if available)
it=0
repeat
1. Re-fit mixture Sis:
given the current component clustering 7%, set initially or computed at
the previous iteration, update mixture model parameters as follows:

t

@Zt = arg min KLm(Sl+2, 812, 7ATZt) (9)
S12€8m5
where S,,,,, is the space of all mixture with m2 components that may be
formed by grouping components of M. This re-estimation in fact amounts
to updating each component of Sys as follows. For component j, algebra
leads to the following expressions:

Wl = > Wi (10)

iem=1(j)

. .1y wi i

ﬂ%Q _ Zzew 1(])Aj 1+2M1+2 (11)

A Wig
S Yier1() Wita(Bie + (Hi4o — fiio) (e — 1)) 19
= L (12)

12

where 771(j) is a light notation for #71%(5), the set of S;» that project
onto component j in Sis.

2. Grouping components:

for mixture S% obtained in Step 1, we seek the mapping 7!, defined
from {1,...,m; +my} into {1,...,my2}, which best groups components
of S1.» to build components of Si, in the following sense :

g+l — arg H%rin KLm(Sl+27 @777) (13)

In other words, each component ¢ of S1,5 projects onto the closest com-
ponent j of Si, according to their Kullback divergence ((14) below). In
this phase, we resort to exhaustive search among ’source’ components,
which has a low-cost, thanks to the availability of (8).

#4440 = argmin KL(V,,5l| V) (11
3.it=it+1
until convergence (i.e. 7t = 7)
compute
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Fig. 1. Hierarchical clustering applied to a set of Gaussian mixture models. (top) A
dendrogram is first built, then (bottom) cut to determine nodes (i.e. GMM) forming
the intermediate layer

model parameters rather than data, and is hence practically fast and usable
for a moderate number of speakers.

3.2 Iterative grouping

As an alternative to hierarchical clustering, we propose an iterative scheme
analogous to the k-means procedure, for which data elements are mixture mod-
els. It is detailed in fig.2. The criterion to optimize here generalizes the simple
parent-child relation optimality defined in section 2, over several parents :

> > K L (Sp|[Se) (16)

Sp € parents  S. € children of S

Algorithm 2 Tterative optimisation of parent model parameters

Start from random grouping of speaker models

repeat
1. Re-fit mixture of each parent using Algorithm 1.
This step involves itself a k-means-type algorithm that operates on Gaus-
sian components.
(rather than on Gaussian mixtures as the present Algorithm 2 does).
2. Re-assign each child of the complete set to the most similar parent

(in the K Ly, (Sparent||Schia) sense)
until convergence

An essential good property is that assignments of speaker models to groups
may easily be questioned, in contrast to dendrogram-based grouping. Conse-
quently, the iterative approach is amenable to incremental processing, i.e. it
can accomodate new speaker models at leaves and update the intermediate



layer by re-optimizing (16) locally and, if required, it would be quite easy to
extend the present scheme to allow the number of intermediate nodes to evolve
over time.

3.3  Ezploiting the approrimation error in the tree structure

Let us consider a tree obtained by either of the approaches presented in the

two previous subsections. Let S, denote a parent node and {5, Ss,...} its
children.

The main point made in the paper so far is as follows : we proposed a technique
for building S, so that it explicitely tries to approach all of children models
with respect to expected log-likelihood of data to be classified, i.e. it ensures
that, for any child log p(D|S,) ~ log p(D|S.). Computation savings come
from that log p(D|S,) is the only likelihood that needs to be computed in
the classification phase. This seems to us better founded than alternative
approaches for fast processing of numerous speaker models, such as anchor
models, where Euclidian distances are computed between likelihood vectors.

The further point we make here is that the resulting approximation error may
not only be minimized, but also taken into account in order to search the
tree more finely, in the classification phase, yet at approximately the same
computational cost. Rather than replacing, for all children k&, log p(D|Sk) by
log p(D|S,), the likelihood associated to each child node may be approximated
as:

log p(D|Skx) =~ log p(D|S,) + KL(S,||Sk) Jk=1,2,... (17)

child log-likelihood parent log-likelihood independent of data to classify

The main point here is that KL(S,||Sy) can be pre-computed and is inde-
pendent of the data to be classified. We advocate the use of the unscented
transform (Julier, 1996) for the practical computation of K L(S,||Sk), as it is
more accurate than K L,, used above. This approximation between Gaussian
mixtures does not only consider the closest Gaussian, but summarizes each of
them by concise statistics, leading to an overall light yet accurate computa-
tion. As a side remark, the properties of the unscented transform precluded
its use in the model grouping phase.

Because likelihood approximations that are now individual, per child, this sec-
ond point opens new possibilities for exploring the tree of models, for instance:

(1) searching exhaustively the set of children, by using log p(D|Sy), or,
(2) by pre-computing the maximum and minimum error between a parent
node and its children :



Exhaustive search Recognition accuracy
Query duration (sec) | 5 10 15
ML 100%

KLy, 75% | 82.5% | 85%

Table 1
Comparing performance of querying exhaustively the collection of speakers, based on
maximum likelihood classification (ML line) or computation of K L, between query
and each candidate model (K L,, line). This is examined for 5,10 and 15 seconds
queries.

M?;’I”LERR :mkHlKL(SpHSk), (18)

the corresponding cluster of speakers is characterised as having, with high
probability, its log-likelihood within [log p(D|S,) + Minggs,
log p(D|S,) + Mazgrr|, leading to again several possible search schemes.

4 Experimental results

All experiments reported below are applied to RealAudio streaming radio
broadcast data, in French language. The 13 first MFCC features vectors and
their temporal derivates are used. Temporal segmentation of the stream into
segments is carried out with the BIC criterion (a classical approximation
(Schwarz, 1978) to Bayesian hypothesis testing) over a 4 second sliding win-
dow. Individual speaker models are learned using Bayesian adaptation (Bim-
bot et al., 2004). The stream contains ordinary news programmes, including
occasional short jingles than can quite reliably be removed, thanks to their
acoustic properties in MFCC space, leaving essentially clean speech sections.

First experiments involve 20 speakers. Accuracy at query phase is evaluated
as follows : 40 samples from the 20 speakers are provided for classification (2
per speaker).

We first report an experiment conducting exhaustive search, where query-to-
model fitting is conducted by either using definition 15 or maximum likelihood
(see tablel). While maximum likelihood performs perfectly, K L,, far is less
effective (through much faster)

10



4.1  Results for dendrogram-based hierarchical clustering

Two alternative criteria are compared for measuring similarity between speak-
ers :

e the cross-likelihood, which requires resorting to the feature vectors, which
is undesirable from computational cost viewpoint, but should be reliable,
e definition (15), a symmetric version of K L,,.

The trees obtained in these cases are shown in fig. 4.1. It appears that the
tree build from K L,, similarity is well-balanced, actually better than the one
based on cross-likelihood.

When exploring the tree root-to-leaf, query-to-model comparison is evaluated
in two cases : (i) likelihood of the query data, given the model, or (ii) symmet-
ric KL,, as in 15. In both cases, the tree was built using definition 15. Results
are compared for 2 query lengths (5 and 10 seconds). Results are presened in
tab.2. As in the previous experiment, the use of K L,, for querying, instead of
ML, implies severe degradation. However, using ML, accuracy remains very
satisfactory, and the approach remains beneficial in the sense that : (i) explo-
ration is done through the tree rather than exhaustively, (ii) the tree is built
using K L,,, thus quite fast.
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Fig. 2. (a) Binary tree generated using the cross-likelihood scoring matrix between
20 speaker Gaussian mixtures. (b) Binary tree generated using the symmetric K L,,
between pairs of speaker models with an incremental perspective.

4.2 Results for a hierarchy build using iterative grouping of mizture models

Table 3 shows recognition accuracy obtained in the same conditions as previ-
ous, but the tree is built using the iterative scheme (Algorithm 2) rather than
the dendrogram-based approach. The quality of the results are very similar as
in the previous approach, which is encouraging, since this iterative approach
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Dendrogram-based hierarchy ML KL

Query duration 5 10 5 10
26 Gaussians 92.5% | 95% | 47.5% | 40%
16 Gaussians 95% 95% 50% 45%

Table 2
Recognition accuracy in the case speakers are organized in the tree obtained at
fig.4.1b (after cut). Two mixture complexities are considered.

Iterative grouping hierarchy ML KL

Query duration 5 10 5 10
26 Gaussians 90% | 92.5% | 45% | 55%
16 Gaussians 92.5% | 90% | 57.5% | 60%

Table 3
Recognition accuracy in the case speakers are organised in the tree obtained by
Algorithm 2. Two mixture complexities are considered.

is far more flexible than the dendrogram-based approach.

5 Conclusion

In this paper, we addressed the problem of scaling up speaker recognition to
a large number of speakers, by organizing the set of speaker models into a
search tree. The child-to-parent similarity may be measured and optimized
iteratively, using an approximation of KL-divergence, that leads to a low-cost,
tractable form. We define and evaluate two ways (dendrogram and iterative
grouping) in which this similarity can be exploited, leading to results that
loose little reliability with respect to exhaustive search, and offer promising
perspectives for speed up. The iterative model grouping procedure is partic-
ularly interesting, as is very flexible for incremental processing of the data.
There remain to generalise the proposal to more than two levels. Also, the
estimated KL divergence between parents and children, which is computed
anyway, could provide richer knowledge of the likelihood of data, given chil-
dren, than is currently done by simply considering the likelihood of data, given
the parent.
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