Interactions between thin- and thick-skinned tectonics at the northwestern front of the Jura fold-and-thrust belt (eastern France)

Herfried Madritsch, 1 Stefan M. Schmid, 1 and Olivier Fabbri 2

Received 26 February 2008; revised 6 June 2008; accepted 18 June 2008; published 4 October 2008.

[1] This study investigates spatial and temporal interactions of thin- and thick-skinned tectonics in a classical foreland setting located at the front of the Jura fold-and-thrust belt in eastern France. The working area coincides with the intracontinental Rhine-Bresse Transfer Zone and represents the most external front of the deformed Alpine foreland. The investigation combines analyses of largely unpublished and newly available subsurface information with our own structural data, including an exhaustive paleostress analysis and geomorphologic observations. Results are provided in the form of a new tectonic map and a series of regional cross sections through the study area. The Besançon Zone, forming the most external part of the thin-skinned fold-and-thrust belt, encroached onto the Eo-Oligocene Rhine-Bresse Transfer Fault System until early Pliocene times. Thrust propagation was largely controlled by the Late Paleozoic to Paleogene preexisting fault pattern that characterizes the Rhine-Bresse Transfer Zone. Thick-skinned deformation, dominant throughout the Avant-Monts Zone located farther to the west, was associated with compressional to transpressional reactivation of such faults. Overprinting and crosscutting criteria of fault slip data allow distinguishing between systematically fanning maximum horizontal stress axes that define the front of the thin-skinned Jura fold-and-thrust belt and consistently NW–SE directed maximum horizontal stress axes that characterize deformation of the autochthonous cover of the foreland, which is affected by thick-skinned tectonics. Tectonic and geomorphic analyses indicate that thick-skinned tectonics started at a very late stage of foreland deformation (post-early Pliocene). Geomorphic observations imply that deformation between Mesozoic cover and basement is locally still decoupled. However, overprinting relationships and recent seismicity suggest that present-day tectonic activity is thick skinned, which probably reflects ongoing tectonic underplating in the Alpine foreland.

1. Introduction

[2] During the evolution of an orogenic wedge, transmission of collision-related compressional stresses into the foreland can give rise to thin- or thick-skinned foreland deformation. The tectonic style of foreland deformation is controlled by the level at which decoupling (or décollement) at the base of the orogenic wedge occurs: near the basement-cover interface, within the basement of the upper crust, or even deeper within the lithosphere [Ziegler et al., 2002].

[3] According to the definition of Chapple [1978], thin-skinned deformation involves the development of a shallow, gently dipping décollement horizon composed of rheologically weak rocks such as evaporites or shales typically located near or at the base of a sedimentary cover sequence. Rocks immediately beneath the basal décollement level, including the crystalline basement, remain undeformed and become shortened elsewhere, i.e., in the more internal parts of the orogen. The wedge geometry of the deformed sedimentary cover above the décollement and the mechanics of thin-skinned foreland fold-and-thrust belts are described by the critical taper theory [Chapple, 1978; Davis et al., 1983].

[4] Conversely, thick-skinned deformation, as used in this contribution, involves deformation within the crystalline basement that underlies the sedimentary sequence; crystalline basement and sedimentary cover are deformed together. Basement shortening in the foreland of the orogen requires the existence of a crustal-scale décollement that allows for the transmission of compressional orogenic stresses [Coward, 1983]. The crustal décollement may ramp up into shallow upper crustal levels or extend far out into the foreland, causing inversion of sedimentary basins. In both cases, thick-skinned deformation mostly involves the compressional to transpressional reactivation and inversion of preexisting crustal discontinuities [Lacombe and Mouthereau, 2002; Ziegler et al., 2002; Pfiffner, 2006].

[5] The concepts of thin- and thick-skinned tectonics represent extreme cases, and transitions between the two modes of contractional deformation may occur (e.g., “base-
ment involved thin-skinned tectonics” of Pfiffner [2006, p. 153]). The understanding of the way thin- and thick-skinned tectonics interact in space and time represents a key question for the dynamics of foreland deformation in collisional orogens, particularly regarding the sequence of deformation in foreland fold-and-thrust belts. Accordingly, many studies addressed this topic in recent years and revealed complex interferences of the different tectonic styles, also in fold-and-thrust belts that have long been treated as classical examples of thin-skinned deformation, such as the Apennines [Tozer et al., 2002; Calabrò et al., 2003], the Zagros fold-and-thrust belt [Molinaro et al., 2005; Mouthereau et al., 2007] or the fold-and-thrust belt of NW Taiwan [Lacombe et al., 2003]. The sequence of deformation events in foreland settings that are characterized by different deformational styles is very difficult to establish and is variable within different natural settings [Lacombe and Mouthereau, 2002]. Thick-skinned deformation often sets in during a late stage of deformation and follows initial thin-skinned tectonics; this potentially leads to thick-skinned refolding of shallow thin-skinned thrust nappes [Molinaro et al., 2005]. On the other hand, there are also natural examples where thick-skinned tectonics occurred during initial stages of foreland deformation far in front of the orogen, controlling the later development of the thin-skinned foreland fold-and-thrust belt [Lacombe et al., 2003].

This study analyzes and discusses temporal and spatial interactions of thin- and thick-skinned tectonics that characterize the northwestern front of the Jura fold-and-thrust belt in eastern France, that is the most external part of the Alpine orogen. Discussions regarding the formation and tectonic style of the Jura fold-and-thrust belt date back to the beginning of the last century (see review by Sommaruga [1997]). Although some authors considered pure thick-skinned formation of this fold-and-thrust belt [Aubert, 1945; Pavoni, 1961], the large majority of authors agree that it initially developed along a shallow décollement horizon formed by Middle to Late Triassic evaporites and that it, hence, represents the type example of a thin-skinned foreland fold-and-thrust belt [Buxtorf, 1907; Laubscher, 1961; Burkhard, 1990; Burkhard and Sommaruga, 1998]. However, in addition to thin-skinned deformation, a thick-skinned tectonic style, involving compressional to transpressional reactivation of preexisting basement discontinuities in front, beneath and in the immediate hinterland of the Jura fold-and-thrust belt, was also reported [Gueulec et al., 1990; Pfiffner et al., 1997; Rotstein and Schaming, 2004; Ustaszewski and Schmid, 2007]. Both deformation styles apparently occurred during the latest stages of the evolution at the northwesternmost edge of the Alpine collision zone, i.e., during Neogene to recent times. The exact timing and the mutual relations between these two styles of deformation are, however, ill defined and still controversial.

For the first time, this contribution provides evidence for thick-skinned deformation from the northwestern front of the thin-skinned fold-and-thrust belt. The study focuses on the time constraints regarding the two contrasting styles of deformation by analyzing and discussing subsurface, structural, geomorphic and geophysical data. Thereby it also contributes to the ongoing scientific debate as to which style of deformation and associated stress field characterizes the neotectonic activity along the northwestern front of the Jura Mountains [e.g., Becker, 2000]. Ongoing deformation in the area is indicated by low to medium seismicity [Deichmann et al., 2000; Kastrup et al., 2004] and, additionally, by ample evidence for ongoing deformation provided by studies in tectonic geomorphology [Dreyfuss and Glangeaud, 1950; Campy, 1984; Giamboni et al., 2004; Madritsch, 2008]. The question whether thin-skinned, thick-skinned, or a combination of both modes are active at present is of prime importance for any seismic hazard assessment [Meyer et al., 1994; Nivière and Winter, 2000; Ustaszewski and Schmid, 2007].

2. Tectonic Setting

The area of investigation is part of the northwestern foreland of the European Alps and is located in eastern France (Figure 1). Furthermore, it coincides with the Rhine-Bresse Transfer Zone (RBTZ) [Laubscher, 1970; Illies and Greiner, 1978; Bergerat and Chorowicz, 1981], a central segment of the European Cenozoic Rift System. The latter extends over a distance of approximately 1100 km from the North Sea coast to the western Mediterranean [Ziegler, 1992]. The formation of this rift system is interpreted to result from the buildup of syncollisional compressional intraplate stresses in the forelands of the Pyrenees and the Alps [Dèzes et al., 2004]. Late Eocene to Oligocene extension led to the opening of the NNE–SSW striking Rhine and Bresse grabens (Figure 1). The ENE–WSW striking RBTZ cuts trough the autochthonous Mesozoic sediments of the Burgundy Platform and is inferred to have transferred crustal extension between the Rhine and Bresse grabens by sinistral strike-slip motion under ongoing north-south compression [Bergerat, 1977] or, alternatively, by sinistral transtension or oblique extension in an roughly E–W oriented extensional stress field [e.g., Lacombe et al., 1993; Madritsch, 2008] (inset of Figure 2).

The formation and evolution of the European Cenozoic Rift System, and particularly that of the RBTZ, was clearly controlled by structural inheritance of preexisting Late Paleozoic basement faults that are part of the Burgundy Trough (Figure 2) [Laubscher, 1970; Bergerat and Chorowicz, 1981; Schumacher, 2002; Madritsch, 2008]. This ENE–WSW striking Permo-Carboniferous graben system, which parallels the later formed Cenozoic RBTZ (Figure 2), extends from the northern French Massif Central in the west to the southern end of the Rhine Graben in the east, where it connects with the graben systems of northern Switzerland and southern Germany [Boigk and Schönreich, 1970; Debrand-Passard and Courboulex, 1984; Ziegler, 1992; Diebold and Noack, 1997]. Its formation is probably related to the activity of a Late Variscan, dextrally transtensive, trans-European shear zone [Ziegler, 1986; Schumacher, 2002; McCann et al., 2006]. In the western part of the study area, the Burgundy Trough includes the La Serre Horst (LSH in
Figure 1. Geological setting of the study area. Subdivisions of the Jura fold-and-thrust belt are taken from Chauve et al. [1980]. Note the difference between this classical subdivision and the new subdivision of the Avant-Monts Zone based on the results of this study, as presented in Figure 3. AMF, Avant-Monts Fault; AMZ, Avant-Monts Zone as defined by Chauve et al. [1980]; FB, Faisceau Bisontin; FL, Faisceau du Lomont; FQ, Faisceau de Quingey; FJ, Ferrette Jura; LSH, La Serre Horst; MP, Montbéliard Plateau; OGF, Ognon Fault; RBTZ, Rhine-Bresse Transfer Zone. Inset LRG, Lower Rhine Graben; URG, Upper Rhine Graben; BG, Bresse Graben.

Figure 1). This horst exposes pre-Mesozoic strata and is part of a larger Late Paleoecozoic structural high, the La Serre Horst Structure (LSHS in Figure 2) that extends westward into the Bresse Graben [Rat, 1976; Chauve et al., 1983; Coromina and Fabbri, 2004; Madritsch, 2008]. The reactivation of these Late Paleoecozoic structures during the Eo-Oligocene formation of the Rhine-Bresse Transfer Zone resulted in a complex pattern of intersecting NNE–SSW and ENE–WSW striking normal faults [Lacombe et al., 1993; Madritsch, 2008].

[10] During the early Miocene the crustal stress field in the area of investigation changed. This was due to fundamental changes in deformation processes at the lithosphere scale and related to ongoing Alpine collision [Bergerat, 1987; Dézes et al., 2004]. The Jura fold-and-thrust belt whose northwestern rim parallels the RBTZ (Figure 1) formed in response to this stress field change. The some 400 km long belt is bounded to the SE by the rigidly displaced flexural Molasse Basin and hence represents the northwestern deformation front of the Alpine orogen.

[11] The Jura fold-and-thrust belt is considered as a type example for a thin-skinned foreland fold-and-thrust belt and its initial formation is nowadays widely accepted to be the result of distant push (“Fernschub”) [Buxtorf, 1907; Laubscher, 1961, 1978; Burkhard, 1990; Sommaruga, 1997; Sommaruga and Burkhard, 1997]. Crustal shortening and nappe stacking in the external crystalline massifs of the Alps induced a decoupling of deformation between the undeformed crystalline basement that gently dips toward the hinterland and the detached Mesozoic cover along Middle to Late Triassic evaporites [Burkhard, 1990; Schmid et al., 1996; Burkhard and Sommaruga, 1998]. The Mesozoic cover was displaced far into the northern foreland. Horizontal shortening estimates from balanced cross sec-
tions across the arcuate shaped fold-and-thrust belt range from zero at its northeastern termination to an average of about 30 km in its central part [Burkhard, 1990; Philippe et al., 1996]. At its northern and western rim the Jura fold-and-thrust belt encroached onto the European Cenozoic Rift System [Laubscher, 1986; Guellec et al., 1990; Ustaszewski and Schmid, 2006]. Preexisting extensional structures related to the rift system did not only control the geometry and distribution of the most frontal thin-skinned thrusts and folds but also the propagation style of the entire fold-and-thrust belt that typically features divergent stress and strain trajectories toward the deformation front [Laubscher, 1972; Philippe et al., 1996; Hindle and Burkhard, 1999; Homberg et al., 1999; Affolter and Gratier, 2004].

[12] Most authors consider the formation of the thin-skinned Jura fold-and-thrust belt as a rather short-lived event. Near its northern rim the maximum age for the onset of thin-skinned deformation is inferred from the Bois de Raube formation, which reveals a biostratigraphic age between 13.8 and 10.5 Ma years and whose sedimentation predated thin-skinned Jura folding in that area [Ka¨lin, 1997]. A maximum age of 9 Ma can be inferred from the western front of the Jura fold-and-thrust belt that typically features divergent stress and strain trajectories toward the deformation front [Laubscher, 1972; Philippe et al., 1996; Hindle and Burkhard, 1999; Homberg et al., 1999; Affolter and Gratier, 2004].

[13] Termination of thin-skinned Jura folding is less well constrained. Undeformed karst sediments have been detected in a fold limb located in the central part of the fold-and-thrust belt; their biostratigraphic age implies that folding terminated before some 4.2–3.2 Ma ago in this area [Bolliger et al., 1993; Steininger et al., 1996]. In the case that propagation of the fold-and-thrust belt toward the foreland was in sequence, which is not always the case as illustrated by the results of recent analog models [Costa and Vendeville, 2002; Smit et al., 2003], thin-skinned deformation may have operated longer in the more external parts of the fold-and-thrust belt [Ustaszewski and Schmid, 2006]. Evidence for ongoing deformation from the northern and northwestern front of the fold-and-thrust-belt is indeed provided by studies in tectonic geomorphology [Dreyfuss and Glangeaud, 1950; Campy, 1984; Meyer et al., 1994; Nivie`re and Winter, 2000; Giamboni et al., 2004; Madritsch, 2008].

[14] The style of post-early Pliocene and recent deformation, however, is a matter of debate. While some authors proposed that thin-skinned deformation is presently still ongoing [Nivie`re and Winter, 2000; M¨uller et al., 2002], others, on the basis of the interpretation of seismic reflection data, proposed that thick-skinned present-day activity affects the frontal-most Jura folds [Giamboni et al., 2004; Rotstein and Schaming, 2004; Ustaszewski and Schmid, 2006]. Giamboni et al. [2004] and Ustaszewski and Schmid [2007] hold this type of deformation exclusively responsible for all post-2.9 Ma folding of the middle-late Pliocene Sundgau gravels. According to these authors, ongoing thick-skinned deformation involves the inversion of Paleozoic and/or Paleogene basement faults in dextral transpression. On the basis of their observations, made east of our area of investigation and at the southern rim of the Rhine Graben (Figure 1), they proposed that thick-skinned deformation postdated thin-skinned Jura folding and that thin-skinned thrusting came to a halt by the early Pliocene. However, this remains a hypothesis, and furthermore, it is a
matter of debate as to whether this proposition applies for the area of the Rhine-Bresse Transfer Zone, i.e., over the entire length of the front of the Jura fold-and-thrust belt. Moreover, a temporal coexistence of both styles of deformation, before or after the early Pliocene, cannot be excluded [Meyer et al., 1994; Nivière and Winter, 2000]. This study will add new field and subsurface data in order to test such hypotheses over a large area located along the northwestern front of the Jura fold-and-thrust belt (Figure 1).

Commonly the Jura fold-and-thrust belt is divided into two major parts [Chauve et al., 1980; Philippe et al., 1996; Sommaruga, 1997] (Figure 1): (1) The internal or “folded” Jura, which features intense shortening along the discrete southeastern border adjacent to the Molasse basin and which is characterized by major folds, thrusts and tear faults, and (2) the more external Plateau Jura farther to the north, which comprises largely undeformed tabular areas (“plateaus”), separated by narrow zones of intense deformation. The latter form discrete map-scale linear structures (“faisceaux”) along which shortening is concentrated. The ENE–WSW striking Faisceau Bisontin is the northwesternmost of these narrow deformation zones. Eastward it connects with the Faisceau du Lomont; southwestward it splays into north-south striking deformation zones, the Faisceau de Quingey being the most prominent and external one (Figure 1). The latter clearly marks the western border of the Jura fold-and-thrust belt with the Eo-Oligocene Bresse Graben.

The exact location of the northwestern front of the thin-skinned Jura fold-and-thrust belt is still ill defined. A large area northwest of the Faisceau Bisontin, often referred to as Avant-Monts Zone, is also weakly deformed (Figure 1) [Chauve et al., 1980; Philippe et al., 1996; Sommaruga, 1997], but it remains unclear whether this area is also part of the thin-skinned tectonics. The prominent ENE–WSW striking Avant-Monts Fault and the westerly adjacent La Serre Horst define the northern boundary of the Avant-Monts Zone (AMZ in Figure 1) toward the Burgundy Platform that shows no signs of contractional deformation (Figure 1). Another zone of weak shortening, the Montbéliard Plateau (MP in Figure 1), is located farther east and also north of the supposed front of the thin-skinned fold-and-thrust belt (Faisceau du Lomont, FL in Figure 1). Gentle folding is observed well north of the Faisceau du Lomont all the way toward the southwestern rim of the Rhine Graben [Giamboni et al., 2004]; the easternmost folds north of the Faisceau de Lomont and within our study area terminate near the city of Montbéliard [Contini et al., 1973]. However, previous authors did not consider this area as part of the Avant-Monts Zone nor as belonging to the thin-skinned Jura fold-and-thrust belt [Chauve et al., 1980; Philippe et al., 1996; Sommaruga, 1997]. It remains unclear whether all the above mentioned weakly deformed areas were also a part of the thin-skinned fold-and-thrust belt or whether they were deformed in a thick-skinned manner. The locations of the Avant-Monts Zone and the Montbéliard Plateau coincide with the RBTZ that was reported to have been reactivated in a transpressional, thick-skinned manner east to our study area [Giamboni et al., 2004]. Hence, in regard to expected interactions between thin and thick-skinned styles of deformation, the Avant-Monts Zone and similar weakly deformed areas at the front of the Jura fold-and-thrust belt are of special interest to this study.

For clarity, we had to propose a new tectonic subdivision, presented in Figure 3 and discussed in sections 3.1 and 3.2, when presenting our data. We subdivide the areas located north of the well defined and substantially detached parts of the thin-skinned Jura fold-and-thrust belt, i.e., the areas which feature weak contractional deformation, as follows, going from west to east: (1) the Avant-Monts Zone that will turn out to be dominated by thick-skinned deformation, (2) the Besançon Zone for which we will present evidence for a thin-skinned style of deformation, bordered by the Chailluz Thrust to the north, and (3) the Montbéliard Plateau in the east, only mildly affected by Neogene deformation and largely characterized by thick-skinned deformation.

3. Results

3.1. Subsurface Analysis

The locations of the subsurface data analyzed are given in Figure 4. Geological logs of boreholes, dating back to the early 20th century, were obtained from the BRGM archive. These reports also include results of reflection seismic campaigns carried out by Safrep in the 1950s yielding additional subsurface information. Total and Gaz de France generously provided more recent seismic reflection data, those of Gaz de France being accessible to an academic institution for the first time. All of the seismic reflection data have been commercially processed and were available to us for interpretation in form of a paper copy.

The analyses and correlations of borehole and seismic reflection data revealed significant differences in the structural style that occur at the northern rim of the Avant-Monts Zone and the Besançon Zone, i.e., along the strike of the prominent ENE–WSW Avant-Monts Fault (“AMF” in Figure 1).

A borehole located at Chailluz (Figures 4, 5, and 6) in the Besançon Zone, and immediately south of the Avant-Monts Fault, provides key information. It reveals a low-angle thrust fault at a depth of 113 m (Figure 6). In the subsurface this thrust places Triassic evaporites over Late Jurassic limestones. The associated anticline was mapped as the “Chailluz Anticline” at the surface and is interpreted as a thrust related fault bend fold [Suppe, 1983]. Undoubtedly, this structure is typical for the thin-skinned style of the Jura fold-and-thrust belt [Martin and Mercier, 1996], that is well documented and described by seismic reflection data throughout the more internal parts of the Jura fold-and-thrust belt [Sommaruga, 1997]. Hence, we regard the Besançon Zone as a part of the northwestern most thin-skinned Jura fold-and-thrust belt, which propagated into an area located well north of the Faisceau Bisontin (Figure 5). The segment of the Avant-Monts Fault bordering the Besançon Zone to the north is defined as the Chailluz Thrust and represents the outer most thrust of the thin-skinned Jura. This is the principal reason for separating the
Besançon Zone from the Avant-Monts Zone located farther to the west (Figure 3) where we found no indications for such shallow decoupling, as discussed below.

[21] Farther west, along strike of the Avant-Monts Fault, the MoutheTOT borehole penetrated another anticline (the MoutheTOT Anticline; Figures 5 and 6). This borehole, however, displays an undisturbed Mesozoic succession. The potential décollement in Middle to Late Triassic evaporites was not tectonically thickened (Figure 6) and remained undeformed. Hence, the previously described low-angle Chailluz Thrust detected in borehole Chailluz cannot be traced along strike farther to the west. This indicates that the front of the decoupled Jura fold-and-thrust belt steps back from the Avant-Monts Fault along a series of NNE–SSW striking transverse structures, which delimit the Besançon Zone from the Avant-Monts Zone located farther west. Ultimately these transverse structures link up with the Faisceau de Quingey (see Figure 3).

[22] Furthermore, newly available seismic reflection data across the Avant-Monts Zone provided by Gaz de France (Figure 7) lack evidence for a thin-skinned origin of the Moutherot Anticline. The logs from the Moutherot and Gendrey 1 wells (Figure 6) allowed for the calibration of the reflectors of this seismic section. Both boreholes are located in the immediate vicinity of the seismic line.

Figure 3. Tectonic map of the study area, showing the new subdivision based on the results of this study (see text for discussion). Note the traces of three cross sections shown in Figure 8. AMF, Avant-Monts Fault; AMZ, Avant-Monts Zone; BZ, Besançon Zone; BG, Bresse Graben; CHT, Chailluz Thrust; FB, Faisceau Bisontin; FL, Faisceau du Lomont; FQ, Faisceau de Quingey; LSH, La Serre Horst; ND, Noidans Basin; OGF, Ognon Fault.

Figure 4. Map depicting the location of subsurface data analyzed in this study and traces of regional cross sections shown in Figure 8. Wells used for the construction of the regional cross sections depicted in Figure 8 are labeled in italics. Gray lines indicate the outlines of the tectonic units shown in Figure 3.
(Figures 4 and 5) and both penetrate the entire Mesozoic succession. The Mesozoic cover sediments are characterized by high-amplitude, continuous reflections. By contrast, the underlying Permian strata recorded in both boreholes feature discontinuous reflections and an occasionally rather chaotic seismic character. In the central part of the seismic section, Permian reflections unconformably lap against the subhorizontal and continuous Mesozoic reflections; they mark the base Mesozoic angular unconformity.

The top of the Early Triassic Buntsandstein Formation, located at 300 to 350 ms two-way traveltime (TWT), provides a well-pronounced reflector that is located below the Middle to Late Triassic evaporites, i.e., the potential décollement horizon. The top of this evaporitic succession, Permian reflections unconformably top lap against the subhorizontal and continuous Mesozoic reflections; they mark the base Mesozoic angular unconformity.

The central part of the seismic section located south of the Avant-Monts Fault, however, displays several E–W striking and steeply north dipping normal faults. These formed during Paleogene extension in the Rhine-Bresse Transfer Zone and they systematically downfault the northern compartments. Most importantly, the westernmost segment of the Avant-Monts Fault, displayed in the northern part of the reflection seismic profile (Figure 7), is clearly seen to represent a steep reverse fault dissecting the entire Mesozoic succession. Hence, this western segment of the Avant-Monts Fault is rooted in the basement and probably represents an inverted former Paleogene normal fault. A contour map of the base Mesozoic in the western Avant-Monts Zone and the area of the La Serre Horst, established on the basis of the entire seismic data set [Madritsch, 2008], further supports such an interpretation. Interestingly, normal fault inversion occurs only along the south dipping normal faults whereas the north dipping normal faults appear hardly affected by reactivation. Similar observations are reported from other thick-skinned inversion settings, e.g., the fold-and-thrust belt of northwestern Taiwan [Lacombe et al., 2003].

Farther west, thick-skinned thrusting along the Avant-Monts Fault is kinematically linked to the La Serre Southern Fault [Coromina and Fabbri, 2004; Madritsch, 2008] which forms the southern boundary of the Late Paleozoic La Serre Horst and which has been reactivated during Paleogene extension and the formation of the Rhine-
Bresse Transfer Zone [Madritsch, 2008]. This confirms the interpretation that the Avant-Monts Fault, as seen in Figure 7, formed by the inversion of a preexisting Paleogene normal fault, that in turn is inferred to have formed along Late Paleozoic structures (see interpretation in the section of Figure 8c). Note that the small amplitude of the Moutherot Anticline (Figures 6, 7, and 8c), formed as a result of thick-skinned normal fault reactivation, only features a very gentle surface expression (Figure 5) and is hardly visible in the seismic reflection image (Figure 7). This implies that the amount of shortening of the Mesozoic cover associated with this structure is smaller than that associated with thin-skinned fault-related folding above the low-angle Chailuz Thrust farther to the east.

[25] In summary, thick-skinned shortening observed throughout the Avant-Monts Zone strongly contrasts with the thin-skinned style of deformation found in the Besançon Zone, where the frontal Chailuz Thrust is soling off as a low-angle listric thrust fault within the décollement layer provided by the Late Triassic evaporites (Figure 8b).

3.2. Regional Tectonic Synthesis

[26] The results of the subsurface data analysis (Figures 4, 5, 6, and 7), together with the study of the available geological maps [Dreyfuss and Kunz, 1969, 1970; Dreyfuss and Théobald, 1972; Contini et al. 1973; Bonte, 1975; Chauve et al., 1983], lead to a new tectonic interpretation, and accordingly, the subdivision of units along the northwestern front of the Jura fold-and-thrust belt proposed in Figure 3. The following five different tectonic zones are distinguished:

[27] 1. The Vesoul Plateau is part of the autochthonous European foreland, which lacks map-scale contractional deformation features related to Neogene compression. To the west, the Vesoul Plateau borders the Eo-Oligocene Bresse Graben. Its southern and southeastern border follows the Ognon Fault [Ruhland, 1959], a Paleogene age NE–SW striking normal fault that formed along a preexisting Paleozoic discontinuity (see profile A–A0 in Figure 8).

[28] 2. The Avant-Monts Zone features post-Paleogene thick-skinned reactivation of preexisting Paleogene to Paleozoic normal faults and is bordered by the crystalline La Serre Horst in the northwest. It is thus not part of the thin-skinned Jura fold-and-thrust belt.

[29] 3. The newly defined Besançon Zone (formerly considered as the eastern part of the Avant-Monts Zone) is affected by thin-skinned Neogene shortening and hence represents the northwesternmost segment of the Jura fold-and-thrust belt.

[30] 4. The Montbéliard Plateau farther to the east consists of autochthonous Mesozoic strata tilted southward during Miocene age uplift of the Vosges Mountains [Ziegler, 1992; Bourgeois et al., 2007]. To the west, the Montbéliard Plateau wedges out between the Ognon Normal Fault in the north and the Besançon Zone in the south. To the east it borders the Rhine Graben. In contrast to the Vesoul Plateau, this area includes isolated anticlines such as those near Montbéliard (Figure 3) [Contini et al., 1973] and was, hence, presumably affected by late Miocene to recent contraction. The origin of these structures, thick- or thin-skinned, remains controversial [Nivière and Winter, 2000; Ustaszewski and Schmid, 2007].

[31] 5. The Ornans Plateau is part of the Plateau Jura proper and delimited to the northwest by the Lomont, Bisontin, and Quingey deformation zones (faisceaux). While
the N–S striking Faisceau de Quingey clearly represents the front of the Jura fold-and-thrust belt toward the Eo-Oligocene Bresse Graben [Guellec et al., 1990], the ENE–WSW striking Faisceau Bisontin is an internal thrust bundle that marks the boundary between Ornans Plateau and Besançon Zone, both these zones being affected by thin-skinned décollement. eastward, the Faisceau Bisontin merges into the E–W striking Faisceau du Lomont, connected with the Mont Terri–Landsberg Line [Guerler et al., 1987].

The sections shown in Figure 8 were constructed by integrating existing geological maps [Dreyfuss and Kuntz, 1969, 1970; Dreyfuss and Théobald, 1972; Contini et al., 1973; Bonte, 1975; Chauve et al., 1983] and our own field measurements with unpublished well data and seismic sections. Well logs yield rather constant thickness of Mesozoic strata that could be extrapolated throughout the area. While several wells document the existence of the Late Paleozoic Burgundy Trough underneath the Mesozoic cover, the overall geometry and location of border faults of this through system are not precisely known [Debrand-Passard and Courbouleix, 1984] (Figure 2). We assumed that border faults of the Late Paleozoic trough system predetermined the location of major Paleogene normal faults, generally assumed to have formed by their reactivation [Laubscher, 1970; Illies, 1972; Bergerat and Chorowicz, 1981].

[32] The easternmost section (Figure 8a) crosses the Faisceau du Lomont where the locus of the outermost thin-skinned folds (Clerval Anticline and Lomont Anticline in Figure 8a) appears to be controlled by preexisting normal faults that formed at the southern margin of the Eo-Oligocene Rhine-Bresse Transfer Zone. The latter caused an offset of the Triassic décollement horizon and flexuring of the overlying sediments, structures also described farther east and throughout the southern Upper Rhine Graben area [Ustaszewski et al., 2005a; Ford et al., 2007] as well as throughout the easternmost Jura [Laubscher, 1986]. These flexures triggered the formation of thrust-related anticlines during thin-skinned Neogene contraction [Martin and Mercier, 1996].

[33] Farther west (Figure 8b), however, the thin-skinned fold-and-thrust belt propagated farther into the foreland, far beyond the Faisceau Bisontin, i.e., in front of the Besançon Zone that encroached far outward, all the way to the Chailluz Anticline and onto the preexisting normal faults of the Rhine-Bresse Transfer Zone. The Chailluz Anticline is associated with the outermost thin-skinned Chailluz Thrust, as is well documented by the Chailluz borehole (Figures 5 and 6) [Martin and Mercier, 1996].

[34] The westernmost section (Figure 8c) crosses the Avant-Monts Zone and also integrates a seismic reflection section across the Moutherot Anticline and the western segment of the Avant-Monts Fault (Figures 5, 6, and 7). The latter represents a steep reverse fault that dissects the whole Mesozoic succession and particularly the supposed thin-skinned detachment horizon in Middle to Late Triassic evaporites. It is hence clearly related to basement rooted shortening by thick-skinned inversion of preexisting normal faults; it is not part of classical thin-skinned deformation. In section 8c the front of the Jura fold-and-thrust belt is located farther to the south and once more sketched out by a preexisting Paleogene normal fault. The Routelle Anticline is interpreted to have formed along the normal fault flexure.

Figure 7. NNW–SSE oriented seismic reflection line across the Avant-Monts Zone (see Figures 4 and 5 for location). Correlations between seismic reflectors and stratigraphy are based on geological logs of boreholes Moutherot and Gendrey 1 (Figure 6). Note that the Avant-Monts Fault in the northern part of the section appears as a steep reverse fault that crosscuts the whole Mesozoic succession, including the supposed décollement horizon within Middle to Late Triassic evaporites (reflector M). This clearly indicates thick-skinned tectonics along this segment of the fault, probably associated with inversion of a preexisting normal fault. (Seismic data courtesy of GAZ de France).
Figure 8
It is located north to the Faisceau de Quingey and is therefore part of the Besançon Zone.

3.3. Brittle Tectonics and Paleostress Analysis

[36] An extensive analysis of outcrop-scale brittle structures was carried out throughout the study area. This analysis attempted to better constrain possible differences in the kinematics and timing of deformation between areas affected either by a thick- or a thin-skinned or, alternatively, by both styles of deformation.

3.3.1. Methodology

[37] The analysis of fault slip data is based on inferring either incremental strain or stress from a set of fault planes and associated directions of slip. Therefore two different basic hypotheses underlying paleostress methodology can be distinguished.

[38] The kinematic approach assumes that the slip direction on a fault plane is parallel to the maximum resolved shear strain rate governed by a large-scale homogeneous strain rate tensor [Twiss and Unruh, 1998]. This approach is considered to be very robust and basically describes the observed displacements. In fact, the results of kinematic “paleostress” analyses yield the approximate orientation of the principal axes of incremental strain based on the graphical or numerical construction of “kinematic axes”, or p-t axes, for each fault-slip pair [Marrett and Allmendinger, 1990; Twiss and Unruh, 1998]. By contrast, the stress hypothesis, also referred to as dynamic analysis, assumes that the slip direction on a fault plane is parallel to the direction of maximum resolved shear stress induced by a large-scale homogeneous stress field [Wallace, 1951; Angelier, 1990]. The results of dynamic analyses yield the orientation of the principal axes of stress ($\sigma_1 > \sigma_2 > \sigma_3$) and in this sense represent a genetic interpretation of the observed structures [Marrett and Peacock, 1999].

[39] Besides these principle assumptions, paleostress analysis further assumes that the analyzed rock is physically and mechanical isotropic and behaves as a rheologically linear material [Twiss and Unruh, 1998]. Therefore fault orientation in prefractured rocks should be random and different faults should not kinematically interact with each other. Pollard et al. [1993] pointed out that these requirements are often unrealistic. However, in cases where displacements on fault planes are small with respect to fault length, these conditions are likely to be fulfilled [Lacombe et al., 2006].

[40] In this study we applied a combined kinematic-dynamic approach by applying the kinematic p-t axes method [Marrett and Allmendinger, 1990] as well as the dynamic Right-Dihedra method [Angelier and Meckler, 1977; Pfiffner and Burkhard, 1987]. The latter method is considered as the simplest but also the most robust dynamic paleostress approach [Angelier, 1989]. While Direct Inversion methods calculate a theoretical “best fit” stress tensor and the stress ratio [Angelier, 1990], the Right-Dihedra method delivers an estimation of the possible orientations of the principal stress axes with the most likely orientation computed at point maxima of superimposed compressional and tensional dihedra, calculated for each fault slip pair [Angelier and Meckler, 1977; Pfiffner and Burkhard, 1987]. Therefore the Right-Dihedra method also considers movements along a nonrandom set of preexisting and hence reactivated fault planes that are not necessarily oriented ideally in terms of a theoretical best fit reduced stress tensor. Comparative studies [Meschede and Decker, 1993] have shown that the Right-Dihedra method, in contrast to Direct Inversion methods, is less sensitive to highly asymmetric fault plane associations such as commonly found in tectonic settings of polyphase brittle deformation as the study area.

[41] In the northwestern Alpine foreland four consecutive major paleostress fields were proposed to have been active in Cenozoic times [Bergerat, 1987]. These were reconstructed by numerous investigations in neighboring areas [Lacombe et al., 1993; Homberg et al., 2002; Rocher et al., 2003] and were also encountered in the course of this study [Madritsch, 2008]. These stress fields are (1) NNE–SSW shortening, attributed an early Eocene age by most authors, related to the Pyrenean orogeny, (2) E–W to NW–SE directed extension, related to the Oligocene formation of the European Cenozoic Rift System, including the Rhine-
Bresse Transfer Zone, (3) minor NE–SW directed shortening of probably early Miocene age, and (4) overall NW–SE shortening of late Miocene to recent age related to the Alpine collision.

A discussion of the entire paleostress data set and the complete deformation sequence in the study area is beyond the scope of this presentation. The reader is referred to previous investigations mentioned above and to further discussions of Madritsch [2008] regarding our working area. Here we concentrate on the latest, i.e., the late Miocene to recent deformation event. Attributing fault slip data sets to a specific event is difficult, especially in the area...
of investigation where all fault slip data were collected in Mesozoic rocks and where no stratigraphic age control is available. However, field observations such as overprinting criteria between differently oriented striations on one and the same fault plane (Figure 9a), crosscutting relationships between different and kinematically incompatible fault planes (Figure 9b), and finally, rotation of fault slip pairs in folded areas (Figure 9c) enabled for establishing a relative chronology of the deformation events observed that could be correlated with that established for neighboring areas [Bergerat, 1987; Lacombe et al., 1993; Homberg et al., 1999; Lacombe and Obert, 2000; Homberg et al., 2002; Rocher et al., 2003].

Of particular importance for the purpose of this study is the distinction between strike-slip fault sets that are related to an early Eocene and so-called “Pyrenean” event [Letouzey, 1986; Bergerat, 1987] on one side from those that are related to early Miocene to recent structures formed in the context of the Alpine collision and the formation of the Jura fold-and-thrust belt, on the other side. Structures related to the latter, i.e., the late Miocene to recent deformation events, can be identified as they commonly overprint normal faults related to the prominent Eo-Oligocene extension that led to the formation of the Rhine-Bresse Transfer Zone (Figure 9a) [Bergerat, 1987; Lacombe et al., 1993]. Furthermore, in folded areas the relative age of fracture development and related stress regime with respect to folding may be obtained [Homberg et al., 1999] (Figures 9c and 10). In most cases stresses within the crust fulfill the Andersonian law [Anderson, 1942; Brudy et al., 1997] that predicts two horizontally and one vertically oriented principal stress axes. If this is not the case the fault set has been tilted after its formation, provided it formed near the earth’s surface. In such cases none of the principal stress axes are vertical and two axes lie within the inclined bedding plane [Homberg et al., 1999] (Figure 10). Rotated fault slip data sets and related paleostress axes fulfill the Andersonian model after back tilting along the strike of the bedding plane by the amount of bedding dip (Figure 10). This criterion has already been successfully applied throughout the area, defining the widespread NW–SE trending “Alpine” compression. The tilting is evident from the orientation of the paleostress axes prior and after back tilting along a rotation axis parallel to the bedding strike (black dashed line) by the amount of the dip of the bedding. Faults are shown in stereographic lower hemisphere equal-area projections; circles, squares, and triangles mark the maximum, intermediate, and minimum axes of incremental stress, respectively.

The results of the paleostress analysis are given in Table 1 and are displayed in Figures 11 and 12 in the form of a stress tensor map and related stereo plots. All measurements, with a few exceptions only (sites 12, 69, 70, 73), were taken in Middle (Bathonian to Bajocian) or Late Jurassic (Oxfordian
<table>
<thead>
<tr>
<th>No.</th>
<th>Locality</th>
<th>X</th>
<th>Y</th>
<th>Age</th>
<th>Tectonic Regime</th>
<th>Tectonic Unit</th>
<th>N</th>
<th>Quality</th>
<th>Rot.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bart</td>
<td>1</td>
<td>2</td>
<td>3.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>320</td>
<td>1</td>
<td>76</td>
</tr>
<tr>
<td>2</td>
<td>Mont Bart</td>
<td>2</td>
<td>3</td>
<td>3.0</td>
<td>reverse</td>
<td>Montbe àliard Plateau</td>
<td>330</td>
<td>1</td>
<td>81</td>
</tr>
<tr>
<td>3a</td>
<td>Bavans</td>
<td>3</td>
<td>4</td>
<td>6.0</td>
<td>reverse</td>
<td>Montbe àliard Plateau</td>
<td>6</td>
<td>1</td>
<td>77</td>
</tr>
<tr>
<td>3b</td>
<td>Bavans</td>
<td>3</td>
<td>4</td>
<td>6.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>141</td>
<td>1</td>
<td>83</td>
</tr>
<tr>
<td>4</td>
<td>Colombiere Fontaine</td>
<td>4</td>
<td>5</td>
<td>3.5</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>335</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>5</td>
<td>Longevelle</td>
<td>5</td>
<td>6</td>
<td>3.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>149</td>
<td>9</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>Longevelle West</td>
<td>6</td>
<td>7</td>
<td>3.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>159</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>L'Isle sur le Doubs</td>
<td>7</td>
<td>8</td>
<td>2.5</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>147</td>
<td>7</td>
<td>86</td>
</tr>
<tr>
<td>8a</td>
<td>Anteuil</td>
<td>8</td>
<td>9</td>
<td>1.8</td>
<td>transpressional</td>
<td>Besanc èon Zone</td>
<td>184</td>
<td>1</td>
<td>282</td>
</tr>
<tr>
<td>8b</td>
<td>Anteuil</td>
<td>8</td>
<td>9</td>
<td>1.8</td>
<td>strike-slip</td>
<td>Besanc èon Zone</td>
<td>142</td>
<td>1</td>
<td>48</td>
</tr>
<tr>
<td>9</td>
<td>Clerval</td>
<td>9</td>
<td>10</td>
<td>1.7</td>
<td>transpressional</td>
<td>Besanc èon Zone</td>
<td>170</td>
<td>3</td>
<td>272</td>
</tr>
<tr>
<td>10</td>
<td>L'Hopital St. Lieffroy</td>
<td>10</td>
<td>11</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>322</td>
<td>0</td>
<td>53</td>
</tr>
<tr>
<td>11</td>
<td>Soye</td>
<td>11</td>
<td>12</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>147</td>
<td>7</td>
<td>272</td>
</tr>
<tr>
<td>12</td>
<td>Vellechevex</td>
<td>12</td>
<td>13</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>157</td>
<td>2</td>
<td>58</td>
</tr>
<tr>
<td>13</td>
<td>Vellechevex</td>
<td>12</td>
<td>13</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>135</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>14</td>
<td>Chaudefontaine</td>
<td>14</td>
<td>15</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>135</td>
<td>1</td>
<td>46</td>
</tr>
<tr>
<td>15</td>
<td>Tallans</td>
<td>15</td>
<td>17</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>155</td>
<td>2</td>
<td>258</td>
</tr>
<tr>
<td>16</td>
<td>Gouhenans</td>
<td>16</td>
<td>18</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>157</td>
<td>5</td>
<td>286</td>
</tr>
<tr>
<td>17</td>
<td>Amagney</td>
<td>17</td>
<td>19</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>157</td>
<td>5</td>
<td>286</td>
</tr>
<tr>
<td>18</td>
<td>Chaudanne</td>
<td>18</td>
<td>20</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>138</td>
<td>6</td>
<td>241</td>
</tr>
<tr>
<td>19</td>
<td>Besancon/Temis</td>
<td>19</td>
<td>21</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>139</td>
<td>5</td>
<td>36</td>
</tr>
<tr>
<td>20</td>
<td>Beure</td>
<td>20</td>
<td>22</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>144</td>
<td>7</td>
<td>282</td>
</tr>
<tr>
<td>21</td>
<td>Baume-les-Dames East</td>
<td>21</td>
<td>23</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>138</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>22</td>
<td>Champlive</td>
<td>22</td>
<td>24</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>132</td>
<td>2</td>
<td>224</td>
</tr>
<tr>
<td>23</td>
<td>Amagne</td>
<td>23</td>
<td>25</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>138</td>
<td>6</td>
<td>241</td>
</tr>
<tr>
<td>24</td>
<td>Tallans</td>
<td>24</td>
<td>26</td>
<td>2.0</td>
<td>strike-slip</td>
<td>Montbe àliard Plateau</td>
<td>154</td>
<td>4</td>
<td>292</td>
</tr>
<tr>
<td>25</td>
<td>Besancon/St.Léonard</td>
<td>25</td>
<td>27</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>322</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>26</td>
<td>Besancon/Decree</td>
<td>26</td>
<td>28</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>322</td>
<td>0</td>
<td>77</td>
</tr>
<tr>
<td>27</td>
<td>Besancon</td>
<td>27</td>
<td>29</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>28</td>
<td>Besancon</td>
<td>28</td>
<td>30</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>29</td>
<td>Besancon</td>
<td>29</td>
<td>31</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>30</td>
<td>Besancon</td>
<td>30</td>
<td>32</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>31</td>
<td>Besancon</td>
<td>31</td>
<td>33</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>32</td>
<td>Besancon</td>
<td>32</td>
<td>34</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>33</td>
<td>Besancon</td>
<td>33</td>
<td>35</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>34</td>
<td>Besancon</td>
<td>34</td>
<td>36</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>35</td>
<td>Besancon</td>
<td>35</td>
<td>37</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>36</td>
<td>Besancon</td>
<td>36</td>
<td>38</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>37</td>
<td>Besancon</td>
<td>37</td>
<td>39</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>38</td>
<td>Besancon</td>
<td>38</td>
<td>40</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>39</td>
<td>Besancon</td>
<td>39</td>
<td>41</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>40</td>
<td>Besancon</td>
<td>40</td>
<td>42</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>41</td>
<td>Besancon</td>
<td>41</td>
<td>43</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>42</td>
<td>Besancon</td>
<td>42</td>
<td>44</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>43</td>
<td>Besancon</td>
<td>43</td>
<td>45</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>44</td>
<td>Besancon</td>
<td>44</td>
<td>46</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td>Besancon</td>
<td>45</td>
<td>47</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>46</td>
<td>Besancon</td>
<td>46</td>
<td>48</td>
<td>2.0</td>
<td>transpressional</td>
<td>Montbe àliard Plateau</td>
<td>307</td>
<td>5</td>
<td>64</td>
</tr>
<tr>
<td>No.</td>
<td>Locality</td>
<td>X</td>
<td>Y</td>
<td>Age</td>
<td>Tectonic Unit</td>
<td>σ1 Azi</td>
<td>Pl</td>
<td>σ2 Azi</td>
<td>Pl</td>
</tr>
<tr>
<td>-----</td>
<td>------------------</td>
<td>------</td>
<td>------</td>
<td>-----------</td>
<td>-------------------</td>
<td>--------</td>
<td>----</td>
<td>--------</td>
<td>----</td>
</tr>
<tr>
<td>47</td>
<td>Busy</td>
<td>87473</td>
<td>2247858</td>
<td>Bajocien/</td>
<td>Faisceau Biaison</td>
<td>320 14</td>
<td>228 9</td>
<td>106 73</td>
<td>0.36</td>
</tr>
<tr>
<td>48</td>
<td>Bussières</td>
<td>870356</td>
<td>2246736</td>
<td>Bajocien</td>
<td>Besançon Zone</td>
<td>141 1</td>
<td>288 89</td>
<td>51 1</td>
<td>strike-slip</td>
</tr>
<tr>
<td>49</td>
<td>Routelle</td>
<td>866878</td>
<td>2245389</td>
<td>Bajocien</td>
<td>Besançon Zone</td>
<td>333 4</td>
<td>81 78</td>
<td>242 11</td>
<td>0.49</td>
</tr>
<tr>
<td>50</td>
<td>Abbans Dessous</td>
<td>866873</td>
<td>2240676</td>
<td>Bajocien</td>
<td>Besançon Zone</td>
<td>160 11</td>
<td>273 64</td>
<td>66 23</td>
<td>0.49</td>
</tr>
<tr>
<td>51</td>
<td>Quingey</td>
<td>870693</td>
<td>2239788</td>
<td>Bathonien</td>
<td>Faisceau de Quingey</td>
<td>132 6</td>
<td>16 77</td>
<td>224 12</td>
<td>0.26</td>
</tr>
<tr>
<td>52</td>
<td>Pointvillers</td>
<td>870132</td>
<td>2236637</td>
<td>Portlandien</td>
<td>Faisceau de Quingey</td>
<td>306 11</td>
<td>117 79</td>
<td>216 2</td>
<td>strike-slip</td>
</tr>
<tr>
<td>53a</td>
<td>Ivrey</td>
<td>871478</td>
<td>2227659</td>
<td>Bajocien</td>
<td>Besançon Zone</td>
<td>106 2</td>
<td>16 5</td>
<td>215 84</td>
<td>reverse</td>
</tr>
<tr>
<td>53b</td>
<td>Ivrey</td>
<td>871478</td>
<td>2227659</td>
<td>Bajocien</td>
<td>Faisceau de Quingey</td>
<td>142 10</td>
<td>294 79</td>
<td>51 5</td>
<td>strike-slip</td>
</tr>
<tr>
<td>54</td>
<td>St. Jospeh</td>
<td>866890</td>
<td>2224486</td>
<td>Portlandien</td>
<td>Faisceau de Quingey</td>
<td>289 1</td>
<td>126 87</td>
<td>19 1</td>
<td>strike-slip</td>
</tr>
<tr>
<td>55</td>
<td>Port Lesney</td>
<td>863736</td>
<td>2229006</td>
<td>Rauracien</td>
<td>Faisceau de Quingey</td>
<td>133 x 2</td>
<td>24 83</td>
<td>223 8</td>
<td>strike-slip</td>
</tr>
<tr>
<td>56</td>
<td>Pin</td>
<td>865868</td>
<td>2265924</td>
<td>Sequaniäen</td>
<td>Vesoul Plateau</td>
<td>169 1</td>
<td>30 88</td>
<td>259 1</td>
<td>strike-slip</td>
</tr>
<tr>
<td>57</td>
<td>Chauvonne</td>
<td>869907</td>
<td>2259640</td>
<td>Sequaniäen</td>
<td>Besançon Zone</td>
<td>101 2</td>
<td>8 63</td>
<td>192 27</td>
<td>0.43</td>
</tr>
<tr>
<td>58</td>
<td>Champagné</td>
<td>869795</td>
<td>2255489</td>
<td>Aalenien</td>
<td>Besançon Zone</td>
<td>344 9</td>
<td>146 81</td>
<td>250 2</td>
<td>strike-slip</td>
</tr>
<tr>
<td>59</td>
<td>Chenaudin</td>
<td>869683</td>
<td>2251673</td>
<td>Bajocien</td>
<td>Besançon Zone</td>
<td>112 7</td>
<td>339 80</td>
<td>203 7</td>
<td>strike-slip</td>
</tr>
<tr>
<td>60</td>
<td>St. Vit</td>
<td>865082</td>
<td>2248531</td>
<td>Bathonien</td>
<td>Besançon Zone</td>
<td>126 2</td>
<td>13 86</td>
<td>216 4</td>
<td>strike-slip</td>
</tr>
<tr>
<td>61</td>
<td>Fraisans</td>
<td>860033</td>
<td>2243930</td>
<td>Rauracien</td>
<td>Avant-Monts Zone</td>
<td>308 4</td>
<td>69 82</td>
<td>217 7</td>
<td>strike-slip</td>
</tr>
<tr>
<td>62</td>
<td>Ranchot</td>
<td>837564</td>
<td>2244604</td>
<td>Bathonien</td>
<td>Avant-Monts Zone</td>
<td>150 2</td>
<td>311 88</td>
<td>60 1</td>
<td>strike-slip</td>
</tr>
<tr>
<td>63</td>
<td>Montepain</td>
<td>855656</td>
<td>2244379</td>
<td>Callovien</td>
<td>Avant-Monts Zone</td>
<td>167 12</td>
<td>5 76</td>
<td>256 3</td>
<td>0.54</td>
</tr>
<tr>
<td>64</td>
<td>Maray</td>
<td>857676</td>
<td>2261435</td>
<td>Rauracien</td>
<td>Vesoul Plateau</td>
<td>325 15</td>
<td>115 73</td>
<td>233 8</td>
<td>0.5</td>
</tr>
<tr>
<td>65</td>
<td>Montagney</td>
<td>852290</td>
<td>2258967</td>
<td>Bajocien</td>
<td>Vesoul Plateau</td>
<td>299 5</td>
<td>45 74</td>
<td>208 15</td>
<td>0.44</td>
</tr>
<tr>
<td>66</td>
<td>Taxenne</td>
<td>853637</td>
<td>2252571</td>
<td>Bajocien</td>
<td>Avant-Monts Zone</td>
<td>295 13</td>
<td>171 65</td>
<td>30 19</td>
<td>0.59</td>
</tr>
<tr>
<td>67</td>
<td>Gendry</td>
<td>852178</td>
<td>2251000</td>
<td>Bathonien</td>
<td>Avant-Monts Zone</td>
<td>118 2</td>
<td>223 82</td>
<td>28 7</td>
<td>strike-slip</td>
</tr>
<tr>
<td>68</td>
<td>Orchamps</td>
<td>849709</td>
<td>2243594</td>
<td>Bathonien</td>
<td>Avant-Monts Zone</td>
<td>327 1</td>
<td>220 88</td>
<td>57 2</td>
<td>strike-slip</td>
</tr>
<tr>
<td>69</td>
<td>Forêt de la Serre</td>
<td>844772</td>
<td>2247072</td>
<td>Paleozoic Granite</td>
<td>Avant-Monts Zone</td>
<td>330 7</td>
<td>81 71</td>
<td>238 17</td>
<td>0.46</td>
</tr>
<tr>
<td>70</td>
<td>Misseyn</td>
<td>843650</td>
<td>2249429</td>
<td>Permian Volcanic</td>
<td>Avant-Monts Zone</td>
<td>333 7</td>
<td>181 82</td>
<td>64 4</td>
<td>strike-slip</td>
</tr>
<tr>
<td>71</td>
<td>Peintre</td>
<td>839722</td>
<td>2248756</td>
<td>Bathonien</td>
<td>Vesoul Plateau</td>
<td>300 14</td>
<td>189 56</td>
<td>38 30</td>
<td>0.51</td>
</tr>
<tr>
<td>72</td>
<td>Amagne</td>
<td>844435</td>
<td>2246175</td>
<td>Bajocien</td>
<td>Avant-Monts Zone</td>
<td>340 7</td>
<td>82 61</td>
<td>246 28</td>
<td>0.53</td>
</tr>
<tr>
<td>73</td>
<td>Jouhe</td>
<td>839384</td>
<td>2242920</td>
<td>Aalenien</td>
<td>Avant-Monts Zone</td>
<td>151 5</td>
<td>260 76</td>
<td>60 13</td>
<td>0.46</td>
</tr>
<tr>
<td>74</td>
<td>Authume</td>
<td>839385</td>
<td>2239778</td>
<td>Bathonien</td>
<td>Avant-Monts Zone</td>
<td>152 6</td>
<td>31 78</td>
<td>243 10</td>
<td>strike-slip</td>
</tr>
<tr>
<td>75</td>
<td>Mont Roland</td>
<td>837702</td>
<td>2239442</td>
<td>Bathonien</td>
<td>Avant-Monts Zone</td>
<td>156 5</td>
<td>45 75</td>
<td>247 14</td>
<td>0.55</td>
</tr>
<tr>
<td>76</td>
<td>Montenaire</td>
<td>837702</td>
<td>2238544</td>
<td>Bajocien</td>
<td>Avant-Monts Zone</td>
<td>140 10</td>
<td>25 68</td>
<td>234 20</td>
<td>0.46</td>
</tr>
<tr>
<td>77</td>
<td>Dampierre</td>
<td>834224</td>
<td>2234180</td>
<td>Sequaniäen</td>
<td>Besançon Zone</td>
<td>148 6</td>
<td>51 52</td>
<td>243 37</td>
<td>0.32</td>
</tr>
</tbody>
</table>

Numbers refer to Figures 10 and 11. Coordinates (XY) given in meters (France II Lambert Conformal Conic system); σ1, σ2, σ3, maximum, intermediate, and minimum principal stress axes; Azi, azimuth; Pl, plunge; N, number of fault slip pairs considered for paleostress calculation; n, number fault slip pairs with no indication of slip direction; Φ, stress ratio from NDA paleostress calculation indicating the tectonic regime (Φ ~ 0.25 transpression; Φ ~ 0.5 reverse/strike-slip faulting compare Figure 12); quality: 1 excellent, 2 good, 3 poor.; Rot, data sets that were inferred to be tilted and back rotated before paleostress calculation (compare Figure 10).
to Kimmeridgian) limestones. Slickolites were the most frequently available sense of slip indicators; calcite slickenfibres and lunate fractures [Petit, 1987] were also used. The kinematic indicators were ranked according to quality from 1 (excellent) to 3 (poor) (see Table 1). Bedding was subhorizontal at most sites investigated during this study. At localities where the inclination of the bedding exceeded 20° its orientation is indicated in Figure 12 (dashed gray lines). Fault sets that were interpreted to have been tilted by folding and were back-rotated prior to paleostress calculations (Figure 10) and are noted in Table 1.

The field data were processed with the Windows-based computer program TectonicsFP (F. Reiter and P. Acs, TectonicsFP, Innsbruck, Computer Software for Structural Geology, version 2.0 PR, 1996–2000, available at http://www.tectonicsfp.com/). Data sets from each locality were separated into homogenous subsets, based on overprinting and/or crosscutting criteria. In addition we applied the pole projection plot [Meschede and Decker, 1993] and the p-t axes method [Marrett and Allmendinger, 1990] in order to graphically test the fault sets for kinematic homogeneity [Madritsch, 2008]. Thereby incompatible fault-striation pairs within a given subset were detected and reconsidered as being part of another subset by additionally taking into account the quality of the slip indicator. The Right-Dihedra method [Angelier and Mechler, 1977; Pfiffner and Burkhard, 1987] was then used for calculating the orientation of the principal stress axes ($s_1 > s_2 > s_3$). The comparison of the results of the kinematic p-t axes with those obtained by the dynamic Right-Dihedra method in this study revealed similar results. The orientation of incremental strain and the principal stress axes coincided, which indicates coaxial deformation.

The orientation of these axes yields the tectonic regime at any given location. In this contribution we do not discuss extensional and transtensional stress states that occur widespread throughout the area but which are related to older, i.e., post-Jurassic to Eo-Oligocene deformation.

Figure 11. Map showing the azimuth (bars) of the axes of maximum principal stress (σ_1), superimposed on a schematic version of the structural map of the study area presented in Figure 3. Numbers next to the bars, given in different gray tone depending on the tectonic regime, refer to Table 1 and Figure 12. The stippled line marks the boundary between two paleostress provinces (see text for discussion). AMZ, Avant-Monts Zone; BZ, Besançon Zone; FB, Faisceau Bisontin; FL, Faisceau du Lomont; FQ, Faisceau de Quingey; LSH, La Serre Horst.

Figure 12. Stereographic lower hemisphere equal-area projection of fault slip data obtained in the study area and results of the Right-Dihedra paleostress determination. Circles, squares, and triangles mark the maximum, intermediate, and minimum principal stress axes, respectively (see Table 1 and Figure 11 for details and the location of observation points). Dashed gray lines mark the bedding orientation were inclined more than 20°.
events [see Letouzey, 1986; Bergerat, 1987; Lacombe et al., 1993; Rocher et al., 2003; Madritsch, 2008]. Concentrating on the overall NW–SE shortening of late Miocene to recent age related to the Alpine collision we only distinguish between reverse faulting (σ1 horizontal, σ3 subvertical, well defined point maxima of p and t axes) and strike-slip faulting (σ1 and σ3 horizontal, well defined point maxima of p and t axes). Furthermore, intermediate cases of transpression (σ1 horizontal, σ2 and σ3 ill defined, p axes clustered around a point maximum, great circle distribution of t axes) were observed at sites where kinematically compatible reverse and strike-slip faults coexist in the absence of crosscutting or other overprint criteria (e.g., sites 36, 37, and 38, Table 1). As the Right-Dihedra method does not yield the stress ratio \(\Phi = (\sigma_2 - \sigma_3)/(\sigma_1 - \sigma_3) \) such intermediate stress states are ill defined. In questionable cases, i.e., when σ3 exhibits a significant plunge (10–80º), we additionally performed a numeric-dynamic paleostress calculation applying the NDA method [Spang, 1972; Sperner et al., 1993] (noted in Table 1). The results of this paleostress calculation were always in good agreement with the Right Dihedra method and yielded the stress ratio (Φ) in order to unambiguously define such intermediate tectonic regimes (transpression, \(\Phi \sim 0.25 \); reverse and strike-slip faulting, \(\Phi \sim 0.5 \)).

3.3.2. Results

[47] The paleostress analysis indicates that the overall Neogene to recent maximum horizontal stress is oriented NW–SE throughout the area (Figures 11 and 12). This is in agreement with former studies from neighboring areas that applied Direct Inversion methods [Bergerat, 1987; Lacombe et al., 1993; Homberg et al., 2002]. Subtle variations in the orientation of paleostress axes, especially the azimuth of the maximum principal stress axis (σ1), and different types of outcrop-scale brittle structures observed at the various sites, allow for a distinction between an internal and an external paleostress province (Figures 11 and 13). The former comprises the areas governed by thin-skinned deformation, the latter is located north and northwest of the front of the thin-skinned fold-and-thrust belt, comprising the areas of the foreland that are partly affected by thick-skinned deformation.

[48] The internal paleostress province, characterized by a thin-skinned deformation style, extends along the Lomont,
Bisontin, and Quingey faisceaux and the Plateau Jura proper and also includes the Besançon Zone. Throughout this province the orientation of the maximum principal stress axes (s_1) undergoes a discernible and systematic change in orientation (Figures 11 and 13): s_1 strikes N–S in the east, gradually turns over to a NW–SE orientation farther west, and finally into the WNW–ESE direction observed in the southwest. This fanning stress pattern was also noted by previous authors [e.g., Laubscher, 1972; Homberg et al., 1999, 2002] and represents a typical phenomenon associated with the thin-skinned tectonics of the arcuate thin-skinned Jura fold-and-thrust belt [Philippe et al., 1996; Hindle and Burkhard, 1999; Affolter and Gratier, 2004].

The stress trajectories in the internal paleostress province are most often defined by steep conjugate strike-slip faults that define a strike-slip tectonic regime (white arrows, s_1 and s_3 horizontal s_2 vertical) (Figures 11 and 12). Almost everywhere such strike-slip faults were found to overprint and reactivate older preexisting normal faults or extension gashes (Figure 9a). The latter are interpreted as having formed during the prominent Eo-Oligocene extension [Lacombe et al., 1993; Madritsch, 2008]. In the eastern part of the study area, where strike-slip faults indicate N–S directed stress orientations similar to those related to the “Pyrenean” shortening of presumably early Eocene age [Bergerat, 1987; Homberg et al., 2002], overprinting criteria in respect to Eo-Oligocene extensional structures provide the main criterion for their attribution to Neogene age deformation. Moreover, in areas affected by Neogene folding these fault sets are strictly perpendicular to the trend of the Neogene thrust faults and fold axes, which makes their attribution to Neogene deformation even more likely (Figures 11 and 14).

At some localities, near the major deformation fronts of the Faisceau du Lomont, Bisontin and Quingey or, alternatively, at the northern rim of the Besançon Zone, shortening is taken up by low-angle thrust faults that define a tectonic regime of reverse faulting (Figures 11 and 12, e.g., sites 39, 40, and 53). These faults consistently developed during a late stage of folding (Figure 14). At other sites, mostly located at the northwestern rim of the Besançon Zone, an intermediate tectonic regime of transpression was inferred (gray arrows in Figure 11, e.g., sites 36, 37, 38, and 50). Throughout the Jura fold-and-thrust belt, a tectonic regime characterized by permutations of s_2 and s_3 was found to be typical for areas characterized by tear faults and lateral ramps [Laubscher, 1972; Homberg et al., 2002; Ustaszewski and Schmid, 2006].

Differing paleostress axis orientations at a given locality could, in many places, be explained by strain partitioning controlled by the availability of preexisting normal faults, and could hence be theoretically related to a unique tectonic event. However, there are some key outcrops where systematic overprinting relationships between two separate Neogene deformation phases of different orientation were observed. At site 53 along the Faisceau de Quingey, top-to-the-west low-angle thrust faults, which reflect E–W shortening, are overprinted by strike-slip faults that yield NW–SE shortening (Figure 9b). Another evidence is provided at locations 3, 8, and 9 north of the Faisceau du Lomont (Figure 11), where N–S striking strike-slip faults indicating NW–SE directed shortening are seen to postdate N–S directed shortening related to the folding of
the Clerval and Montbéliard Anticlines (Figures 3, 8a, 9c, and 14). Hence the fanning stress trajectories observed along the Quingey and Bisontin faisceaux appear to be overprinted by consistently NW–SE oriented paleostress trajectories.

[52] These combined regional observations result in a sequence of compressional brittle deformations that initiated in the late Miocene in this part of the Jura fold-and-thrust belt [Becker, 2000; Ustaszewski and Schmid, 2006] (Figure 14a). Figure 14 illustrates the situation along the Clerval Anticline that is located at the eastern margin of the study area and north to the Faisceau du Lomont, and is therefore part of the Besançon Zone (Figures 3 and 8a). Toward the west the fold links up with shallow thrust faults. These observations, together with interpretations of seismic reflection data, strongly suggest a thin-skinned formation of

Figure 14. Faulting and folding relationships observed along the Clerval Anticline (see Figure 3 for location). Fault slip data are displayed in form of stereographic lower hemisphere equal-area projection; \(\sigma_1\), \(\sigma_2\), and \(\sigma_3\) are shown by circles, squares, and triangles, respectively. Gray dashed lines show the orientation of bedding. (a) Succession of brittle deformations with respect to folding. Arrows show the orientation of \(\sigma_1\) as observed at the site, and stippled lines show regional variations. (b) Early stage strike-slip faults slightly tilted by folding. (c) Shaded digital elevation model of the Clerval Anticline (horizontal resolution 50 m). Synfolding to postfolding low-angle thrust faults are observed in the core of the anticline, confining N–S shortening perpendicular to the fold axis. The youngest fault sets comprise strike-slip faults, confining NW–SE shortening oblique to the fold axis (compare Figures 9b and 9c for relative age criteria). Also note the antecedent post-2.9 Ma course of the Doubs River with respect to the fold structure and the distribution of terraces derived from the eroded Sundgau and Forêt de Chaux gravels.
the fold structure, at least during an initial stage, when it probably nucleated along a preexisting normal fault (see interpretation given in Figure 8a).

[55] The earliest compressional structures observed in the Clerval area are strike-slip faults (Figure 14b). The deduced paleostress axes trend oblique to the fold axis. These fault sets are always to some extent affected by folding (Figure 14b), which hints toward a prefolding to synfolding formation. These structures are inferred to have formed in early Eocene (“Pyrenean compression” [Bergerat, 1987]) or, alternatively, in early Neogene times when found to overprint normal faults [Homberg et al., 2002; Madritsch, 2008], and they will not be further discussed here. Reverse faults indicate paleostress axes oriented perpendicular to the fold axis, and they dissect the folded beds (Figure 14c). This suggests a synfolding to postfolding age. The youngest fault set comprises strike-slip faults that define NW–SE directed shortening oblique to the fold axis (Figure 14c). As outlined above, these fault sets frequently overprint reverse faults and are hardly affected by folding (Figures 9b and 9c). This is in agreement with observations from the internal Jura fold-and-thrust belt [Homberg et al., 2002].

[52] Unfortunately, overprinting criteria allowing for distinguishing distinct events during the Neogene to recent history of faulting are restricted to areas were stress trajectories related to such different shortening events are oriented at a high angle to each other, which is only the case in the far east and west of the study area (Figure 11). Accordingly, no polyphase overprinting Neogene to recent stress trajectories were detectable in the central part of the study area, e.g., the Besançon Zone, where strike-slip and reverse faults commonly yield parallel shortening directions. Notably, the observation that the youngest recorded fault sets defining NW–SE shortening are not, or hardly, affected by folding does not account for the northern rim of the Besançon Zone. Along the Chailluz Anticline these fault sets are frequently tilted and appear to have formed before or during rather than after folding (Figures 5 and 8b, e.g., site 26, 28, and 35).

[55] The external paleostress province (Figure 11) comprises the Montbéliard and Vesoul plateaux as well as the Avant-Monts Zone. The orientation of σ1, as defined by the youngest detected fault sets in this province, scatters slightly between NW–SSE to WNW–ESE. However, and most importantly, the systematic fanning observed along the front of the thin-skinned thrust belt is not detectable throughout this area (Figures 11 and 13). This is best seen at the northern (sites 4–11, Figure 14) and western (51–55 and 61–63) boundary of the fold-and-thrust belt. In both these areas σ1 strikes consistently NW–SE in the external paleostress domain, whereas to the south, and hence within the thin-skinned fold-and-thrust belt, the orientation of σ1 is N–S in the eastern part and WNW–ESE in the western part, respectively. The type of rather consistently NW–SE directed stress trajectories is recorded far into the stable foreland NW of the study area [Bergerat, 1987; Lacombe and Obert, 2000; Rocher et al., 2004].

[56] The stress tensors obtained from the external stress province, similarly to the findings in the internal province, are confined by steep strike-slip faults that reactivated preexist-

21 of 31
provenance and deposited the Sundgau and Forêt de Chaux gravels (SFC, see inset in Figure 15) in the area south of the Chailluz anticline during the middle Pliocene (4.2 to 2.9 Ma) [Petit et al., 1996; Giamboni et al., 2004; Madritsch, 2008]. Since the thin-skinned Chailluz anticline controls the location of this drainage divide it indicates a minimum age of 4.2 Ma for structural uplift related to this structure. The consequent pattern of tributary streams around the fold structure implies that the rock uplift associated with folding was either too rapid for the streams to maintain their course over the anticline [Burbank et al., 1996], or alternatively, the fold structure evolved prior to the tributary pattern. We favor the latter interpretation, which is constrained by the observation that no significant wind gaps can be observed along the fold crest. Moreover, during the erosion of the Sundgau and Forêt de Chaux gravels caused by post-2.9 Ma relative rock uplift along the Rhine-Bresse Transfer Zone (see distribution of SFC in the inset of Figure 15) no Alpine derived sediment was apparently shed northward beyond the Chailluz anticline into the Ognon valley [Campy, 1984; Madritsch, 2008].

Nevertheless, subsequent deformation postdating the middle Pliocene is recorded in the area south of the Chailluz Anticline and throughout the internal parts of the Besançon Zone affected by thin-skinned deformation. This is evidenced by differential erosion of the post-2.9 Ma old deformation marker horizon provided by the Sundgau and Forêt de Chaux gravels [Campy, 1984; Madritsch, 2008]. Post-mid-Pliocene folding is inferred along the thin-skinned Clerval Anticline (Figure 14). The highly sinuous Doubs river that developed out of the Paleo-Aare braided river system since the late Pliocene, which incised into the eroded Sundgau and Forêt de Chaux gravel plane (see inset of Figure 15), reveals an antecedent course with respect to the fold structure. Plio-Pleistocene terraces composed of coarse gravels of Alpine provenance are found to the north and south of the anticline [Contini et al., 1973; Madritsch, 2008]. This indicates that fold growth along the Clerval Anticline continued after the deposition of the Sundgau and Forêt de Chaux gravels. This interpretation is constrained by the recent detection of Sundgau and Forêt de Chaux gravel remnants on top of other anticlines located north to the

Figure 15. Synthetic drainage pattern calculated with ArcGIS software and drainage divide (dashed line) superimposed on a shaded digital elevation model (horizontal resolution 50 m). The inset in the upper left shows the regional drainage pattern and the distribution of the Sundgau and Forêt de Chaux gravels (SFC). The area is characterized by a ENE–WSW striking drainage divide between the drainage areas of the Ognon and Doubs rivers, which both flow toward the SW into the Bresse Graben (BG see inset) and by N–S trending tributary streams. Note the trend of the drainage divide that follows the boundary of the thin-skinned Besançon Zone, as well as the difference in drainage pattern of tributary streams, which reveal a consequent pattern around the thin-skinned Chailluz Anticline but which are antecedent with respect to the thick-skinned Moutherot Anticline. AMF, Avant-Monts Fault; AMZ, Avant-Monts Zone; BG, Bresse Graben; BZ, Besançon Zone; SFC, Sundgau and Forêt de Chaux gravels; URG, Upper Rhine Graben; VG, Vosges Mountains.
Faisceau Bisontin. Within this area folding within the internal parts of the thin-skinned fold-and-thrust belt even continued into late Pleistocene times, as is evident from the differential offsets of paleomeanders recently dated by optical stimulated luminescence [Madritsch, 2008]. These observations are in contrast to the northern Jura front farther to the east, where post-2.9 Ma folding of the Sundgau gravel base only occurs in an area located north of the front of the thin-skinned Jura fold-and-thrust belt [Giamboni et al., 2004; Ustaszewski and Schmid, 2007].

4. Discussion

4.1. Spatial and Temporal Interactions of Thin and Thick-Skinned Tectonics

[62] The data presented provide evidence for two contrasting styles of Neogene to recent contraction along the northwestern Jura front:

[63] 1. Thin-skinned deformation of the Jura fold-and-thrust belt that also dominates the Besançon Zone is characterized by a gently dipping, shallow décollement, penetrated by the borehole of Chailluz (Figures 6 and 8b). Paleostress directions associated with thin-skinned tectonics strike N–S to E–W and reveal a consistently fanning pattern, also detected during previous studies [Laubscher, 1972; Homberg et al., 1999; Ustaszewski and Schmid, 2006].

[64] 2. Thick-skinned deformation, involving both Mesozoic cover and Paleozoic basement, takes place under more or less consistently NW–SE directions of maximum horizontal stress within the area of investigation. This deformation is associated with compressional to transpressional reactivation of preexisting normal faults of Paleogene to Paleozoic age, which also resembles observations from neighboring areas [Giamboni et al., 2004; Rotstein and Schaming, 2004; Ustaszewski and Schmid, 2007].

[65] The complex structural setting at the northwestern Jura front is schematically illustrated in Figure 16 and results from spatial interferences between the two different styles of deformation. The data clearly indicate that both thin- and thick-skinned shortening postdate Paleogene extension that was associated with the formation of the European Cenozoic Rift System, as is witnessed by the reactivation of mesoscale to macroscale Paleogene normal faults. Hence, both styles of deformation are related to contraction that affected the northern Alpine foreland from the Miocene onward, as a consequence of ongoing Alpine collision [Bergerat, 1987; Dézes et al., 2004]. Earlier thick-skinned shortening in the area related to the late Eocene “Pyrenean” compression, as documented for more external parts of the Alpine foreland [Lacombe and Obert, 2000], cannot be entirely excluded. Such earlier deformation would, however, be of minor importance and completely overprinted by later tectonic events, primarily by the Eo-

Figure 16. Sketch illustrating Neogene to present interactions between thin- and thick-skinned tectonics at the northwestern front of the Jura Mountains. (a) Late Miocene to early Pliocene development of the thin-skinned Jura fold-and-thrust belt, involving the formation of the mildly detached Besançon Zone that propagated onto the Rhine-Bresse Transfer Zone and the underlying Late Paleozoic Burgundy Trough. The thin-skinned deformation front is characterized by fanning stress trajectories and sketched out by precollisional structures. (b) Thick-skinned tectonics, best documented along the Avant-Monts Fault (AMF), and interpreted in terms of a partial compressive to dextrally transpressive reactivation of the RBTZ. Basement rooted inversion tectonics and further growth of older thin-skinned structures interfered in the Besançon Zone were deformation continued into Pleistocene times. Note that in contrast to our working area, the area of the eastern Upper Rhine Graben appears to be rather dominated by a present-day regime of transtension to strike-slip deformation [Kastrup et al., 2004]. Thick black lines mark tectonically active structures. Small arrows mark paleostress trajectories as observed in this study. Large arrows mark the presumed Neogene to recent orientation of maximum principal stress (see text for further discussion). AMF, Avant-Monts Fault; AMZ, Avant-Monts Zone; BG, Bresse Graben; BZ, Besançon Zone; LSH, La Serre Horst; LSSF, La Serre Southern Fault; OGF, Ognon Fault; RBTZ, Rhine-Bresse Transfer Zone; URG, Upper Rhine Graben.
Oligocene extensional reactivation of Late Paleozoic basement structures [Madritsch, 2008].

[66] The propagation of the Jura fold-and-thrust belt appears to be controlled by preexisting structures, as is its northernmost front in the foreland (Figure 16a). The deformation front of the substantially detached part of the Jura fold-and-thrust belt, as defined by the Lomont, Bisontin, and Quingey faiceaux, coincides with the southern rim of the Paleogene Rhine-Bresse Transfer Zone that is inherited from the Late Paleozoic Burgundy Trough (Figures 2 and 16). The Faisceau du Lomont in the eastern part of the study area does not form a clearly defined external front of thin-skinned deformation, and this resembles the situation found along the Jura front farther to the east [Laubscher, 1983]. This is, for example, documented by the Clerval Anticline that is located north of the Faisceau du Lomont (Figures 8a and 14), which we interpret as representing a thin-skinned structure whose location is controlled by a preexisting normal fault. A thin-skinned style of deformation cannot be excluded for the Montbéliard Anticline neither, a structure located within the northeastward adjacent Montbéliard Plateau (Figure 3; compare Laubscher [1983]). However, to the east of the Montbéliard area, Giamboni et al. [2004] and Ustaszewski and Schmid [2007] provided evidence from seismic reflection data that suggests a predominance of thin-skinned tectonics in front of the eastern prolongation of the Faisceau du Lomont.

[67] The northward propagation of the only mildly displaced part of the thin-skinned Jura fold-and-thrust belt, the Besançon Zone, beyond the Faisceau du Lomont and the Faisceau Bisontin in the central part of the study area was also largely controlled by the preexisting Paleogene and Paleozoic fault pattern of the Rhine-Bresse Transfer Zone onto which the thrust sheet encroached, probably during a latest stage of thin-skinned deformation (Figure 16a). The NNE–SSW striking western boundary of the Besançon Zone coincides with a major Paleogene normal fault that can be traced from the eastern border fault of the Bresse Graben in the south all the way into the Vesoul Plateau to the north (Figures 3 and 5). It separates the Besançon Zone from the preexisting structural high, namely, the Late Paleozoic La Serre Horst Structure that was reactivated during Eo-Oligocene extension, and it also partly includes the Avant-Monts Zone (Figures 2 and 14) [Madritsch, 2008]. The normal fault is inferred to have acted as a lateral ramp, inducing sinistrally transpressive deformation of the detached cover during its northward propagation. This is expressed by NNE–SSW striking folds and thrust faults mapped west of the city of Besançon, which are markedly oblique to the overall NW–SE orientation of shortening, and by a tectonic regime of transpression such as indicated by the paleostress analysis (Figures 3, 5, and 11). Possibly, the formation of this lateral ramp was related to early stage thick-skinned tectonics that interacted with the thin-skinned thrust sheet; a similar process has been described from the fold-and-thrust belt of northwestern Taiwan [Lacombe et al., 2003].

[68] The existence of a lateral ramp inducing sinistrally transpressive deformation of the detached cover was also invoked for the Ferrette Jura, located east of our study area, which propagated onto the southernmost Upper Rhine Graben (FJ in Figure 1) [Ustaszewski and Schmid, 2006]. There, the propagation of the thin-skinned thrust sheet along a lateral ramp caused transpression and a significant gradient of shortening, the largest amounts of shortening being located close to the ramp. An analogous process is also inferred for the Besançon Zone on the basis of map view and cross sections (Figures 3, 5, and 8). Particularly, the Chailluz Anticline at the front of the Besançon Zone shows amounts of shortening that continuously decrease from west (near the Chailluz borehole) to east (see topographical expression of the anticline in Figure 5), where the boundary drawn between thin-skinned Besançon Zone and Montbéliard Plateau, largely characterized by thick-skinned deformation, had to be drawn rather artificially in Figure 3.

[69] Occurrence and location of thick-skinned deformation (Figure 16b), as observed in the Avant-Monts Zone, are also closely related to the presence of preexisting faults. As is evident from the seismic data set from this area (Figures 7 and 8c) the western segment of the Avant-Monts Faults formed by inversion of a preexisting Paleogene fault related to graben formation. Since the western prolongation of the Avant-Monts Fault abuts the La Serre Southern Fault that forms the southeastern boundary of the La Serre Massif (Figures 3 and 5) and represents a horst structure, inversion of Paleozoic structures, or combined Paleozoic and Paleogene structures, is likely. Compressive to dextrally transpressive shortening, as observed along the Avant-Monts Fault, is transferred toward the west along the La Serre Southern Fault, as can be implied by the results of the paleostress analysis that yields transpression in that area. In the eastern part of the study area the Avant-Monts Fault connects with the NNE–SSW striking Ognon Normal Fault (Figures 1, 3, 8a, and 16b). Similar to the La Serre Southern Fault it represents a major Paleogene normal fault that reactivated a Paleozoic fault traceable into the basement of the Vosges Mountains [Ruhland, 1959]. A mild transpressive inversion is inferred along this fault from geomorphic observations [Theobald et al., 1977; Campy, 1984; Madritsch, 2008].

[70] Thick-skinned deformation is interpreted to result in the partial inversion of the intracontinental Rhine Bresse Transfer Zone and the underlying Late Paleozoic Burgundy Trough due to a change from sinistral transtension, active in the Eo-Oligocene [Lacombe et al., 1993; Madritsch, 2008] (Figure 2), to dextral transpression from the Neogene onward [Laubscher, 1970; Ustaszewski and Schmid, 2007] (Figure 16b). However, as no surface or subsurface continuation of the Avant-Monts Fault can be traced eastward into the Rhine Graben (Figure 16b), we do not infer a throughgoing reactivation of the intracontinental Rhine-Bresse Transfer Fault Zone. Instead, we suspect that compressive to dextrally transpressive shortening during the Neogene along the western segment of the Avant-Monts Fault was not transferred all along the northern rim of Rhine-Bresse Transfer Zone toward the Rhine Graben, but was taken up and transferred by transpressive reactivation of the Ognon Normal Fault (Figures 1, 3, 8a, and 16b). Thick-skinned
partial reactivation of the Rhine-Bresse Transfer Zone spatially interferes with thin-skinned structures within the Besançon Zone where the Jura fold-and-thrust belt encroached onto the transfer zone (Figures 8b and 16b).

While the coexistence of both types of deformation is well documented in the study area, the question arises as to whether these two Neogene age modes of deformation also coexisted in time [Meyer et al., 1994; Nivière and Winter, 2000], or alternatively, if a younger thick-skinned deformation event followed older thin-skinned deformation, as was proposed by Ustaszewski and Schmid [2007].

The brittle tectonic investigations carried out during this study lead to the conclusion that the most recent paleostress trajectories recorded in the area fairly consistently strike NW–SE and are confined by steep strike-slip faults. In the intensively deformed areas along the Biston, Lomont, and Quingey faisceaux these trajectories frequently overprint fanning stress trajectories related to an early stage of thin-skinned deformation (Figures 11, 16a, and 16b). The late stage persistence of the consistently NW–SE directed stress field beyond the main phase of thin-skinned folding and thrusting within the Jura fold-and-thrust belt has also been recognized in its internal parts [Homberg et al., 2002]. Folding along the northern rim of the Besançon and Avant-Monts Zone persisted beyond this very latest brittle deformation stage as is evident from several faulting-folding relationships (e.g., sites 35, 36, 37, and 66). Most notably along the thick-skinned Avant-Monts Fault, a clear rotation of the youngest observed fault slip sets due to folding along the Moutherot Anticline can be observed (Figure 10), suggesting late stage activity of thick-skinned tectonics. Furthermore, geomorphic observations indicate that the thick-skinned Moutherot Anticline formed after the thin-skinned Chailluz Anticline, the latter revealing a minimum age of 4.2 Ma (Figure 15).

Within the Besançon Zone, where the different tectonic styles potentially interfere (Figures 8b and 16), crosscutting relationships can be inferred from structural data. Large-scale outcrops within the city of Besançon (Figure 17) display the main thrust fault related to the Faisceau Bisontin, a south dipping low-angle thrust fault, to be dissected by younger south facing reverse faults. These steep reverse faults are interpreted as basement-rooted former normal faults of Paleogene age that parallel the Faisceau Bisontin, a south dipping low-angle thrust fault, and form the southern rim the Rhine-Bresse Transfer Zone [Martin and Mercier, 1996]. Hence, they are not regarded as décollement-related back thrusts. This interpretation is largely based on the observation that the footwall of the low-angle thrust fault is characterized by steeply dipping Mesozoic strata; this is typical for extension-related flexures observed along major normal faults throughout the study area (Figures 8a and 8c) and farther to the east within the southern Upper Rhine Graben [Ustaszewski et al., 2005a; Ford et al., 2007]. Moreover, the occurrence of Oligocene synrift sediments along strike points to the existence of Paleogene graben structures in the area [Glangeaud, 1949; Dreyfuss and Kunz, 1969; Chauve et al., 1980]. In the light of the new subsurface data from the Avant-Monts Zone these field observations strongly suggest the interpretation that redeformation of the shallow thrust fault was caused by basement rooted thick-skinned deformation associated with inversion of preexisting basement faults.

Throughout the internal parts of Besançon Zone tectonic activity related to ongoing shallow décollement along the Triassic evaporites, associated with further growth of folds that initially formed during the thin-skinned stage of deformation (early Pliocene [Becker, 2000; Ustaszewski and Schmid, 2007]), is strongly suggested given the differential erosion of the mid-Pliocene Sundgau and Forêt de Chaux gravels throughout that area [see Campy, 1984; Madritsch, 2008]. This hypothesis is constrained by the observation that active folding within parts of the Besançon Zone, occurs localized and in response to focused Pleistocene river incision [Dreyfuss and Glangeaud, 1950; Madritsch, 2008]. According to recent numerical models [Simpson, 2004], enhancement of deformation by this kind of surface process requires that river incision and plastic deformation by buckling occur simultaneously under regional horizontal compression.

4.2. Style of Neotectonic Deformation

Data on the present-day tectonic activity within the study area are available from seismic and seismotectonic evidence, as well as from in situ borehole measurements of recent stress within the sedimentary cover. Figure 18 shows a compilation of data comprising the instrumentally recorded earthquakes with Mw magnitude larger than 3, extracted from the databases of the Réseau National de Surveillance Sismique (2007, http://renass.u-strasbg.fr/) and the Swiss Seismological Service ETHZ, Regional moment tensor catalogue, 2007, available at http://www.seismo.ethz.ch/mt/). Published focal mechanisms were compiled from various sources [Dorel et al., 1983; Bonjer et al., 1984; Pavoni, 1987; Nicolas et al., 1990; Plenefisch and Bonjer, 1997; Lopes Cardozo and Grob, 2005; Baer et al., 2005, 2007; Swiss Seismological Service ETHZ, Regional moment tensor catalogue, 2007, available at http://www.seismo.ethz.ch/mt/]. Orientations of maximum horizontal stress σ1 were obtained from the 2005 world stress map release [Reinecker et al., 2005] and from Becker and Werner [1995], mostly derived from in situ borehole measurements carried out within the Mesozoic cover using the borehole sloter and doorstopper method that are discussed in detail by Becker [2000].

Seismicity in the northern Alpine foreland is low to moderate. The Rhine-Bresse Transfer Zone shows a significantly lower activity in comparison to the Rhine Graben area [Baer et al., 2007], leading to a rather poorly defined present-day stress field [Kastrup et al., 2004]. The direction of σ1 is mostly within a western or northern quadrant and hence most probably approximately strikes NW–SE. The analysis of focal depths of earthquakes clearly shows that ongoing deformation also involves the crystalline basement, all the way down to the Moho [Deichmann et al., 2000]. Throughout the central Jura fold-and-thrust belt and the Rhine-Bresse Transfer Zone, earthquakes are mostly found...
far below the supposed thin-skinned décollement horizon, although there are also apparently shallow events, such as for example recorded around the city of Neuchâtel [Baer et al., 2007]. Focal mechanisms of deep earthquakes underneath the Jura fold-and-thrust belt mostly feature strike-slip regimes. In contrast to the neighboring Rhine Graben area, which is characterized by strike-slip or transtension [Kastrup et al., 2004], the deep earthquakes observed within the Rhine-Bresse Transfer Zone also reveal pure to oblique thrust faulting mechanisms [Lopes Cardozo and Granet, 2003; Baer et al., 2005]. The surface projection of the earthquake of Besançon [Baer et al., 2005] (23 February 2004; MI 4.8; depth 15 km; marked by white square in Figure 18) that features a focal mechanism indicating oblique thrusting has been interpreted to coincide with the trace of the Avant-Monts Fault (see inset of Figure 18, modified from Conroux et al. [2004]). Notably, this accounts only for the fault plane solution based on first motion polarities but not the one based on full-waveform moment tensor inversion (for details, see Baer et al. [2005]).

Figure 17. Section across the Faisseau Bisontin near the town of Besançon. (a) Panorama and cross section across the Faisseau Bisontin near the town of Besançon (see Figure 5 for location). Large-scale outcrops provide field evidence for an offset of the northwest facing low-angle thrust fault associated with the Faisseau Bisontin by thick-skinned steep reverse faults. (b) Sketch showing the interpretation of the evolution along this profile. Normal faults, formed during the Eo-Oligocene evolution of the Rhine-Bresse Transfer Zone, predetermine the location of the later formed steep reverse faults. Such normal faulting well explains flexuring of the Mesozoic strata in the hanging wall of the normal fault and deposition of synrift sediments nearby. During an intermediate stage the main phase of thin-skinned Jura folding the thrust fault associated with the Faisseau Bisontin was localized along the preexisting Paleogene flexure. In a third stage (late Pliocene to recent?) the normal fault was inverted, which led to the dissection of the low-angle thrust fault and top-to-the-SE superposition of its footwall over its hanging wall as observed at the outcrop.
Figure 18. Neotectonic activity within the working area, as documented by focal mechanisms and in situ stress measurements from borehole slotter and doorstopper tests [Becker and Werner, 1995; Becker, 2000]. Further orientations of maximum horizontal stress are taken from the 2005 World Stress Map release [Reinecker et al., 2005]. Earthquake epicenter locations and depths are taken from the databases of the Réseau National de Surveillance Sismique (2007, http://renass.u-strasbg.fr/) and the Swiss Seismological Survey (Swiss Seismological Service ETHZ, Regional moment tensor catalogue, 2007, available at http://www.seismo.ethz.ch/mt/). The focal mechanisms are compiled from various sources (see text). Stippled lines indicate the maximum horizontal shortening directions obtained from paleostress analysis during this study (compare Figure 11). Thick black lines indicate basement-rooted faults related to Late Paleozoic and Eo-Oligocene extension or transtension (modified from Debrand-Passard and Courboulex [1984], Philippe et al. [1996], and Ustaszewski et al. [2005b]). Note the extent of the thin-skinned Jura fold-and-thrust belt, which also includes the newly defined Besançon Zone and the Pliocene Sundgau and Forêt de Chaux gravels that are eroded in the latter area (compare Figure 3 and 15). BZ, Besançon Zone; OP, Ornans Plateau; VP, Vesoul Plateau. The inset in the bottom right shows a simplified cross section, modified from Conroux et al. [2004], and illustrates the surface projection of the focal mechanism of the earthquake of Besançon (23 February 2004; MI 4.8; depth 15 km [Baer et al., 2005] marked by white square) that coincides with the trace of the Avant-Monts Fault.
[77] This evidence strongly supports the suggestion that currently active thick-skinned tectonics involves transpressional to compressional reactivation of structures related to the Paleogene Rhine-Bresse Transfer Zone and the Paleozoic Burgundy Trough System (Figure 18). Similar observations suggest basement inversion in the area along the southern boundary of the Jura fold-and-thrust belt adjacent to the Molasse basin that have been interpreted as being caused by the accretion of new basement nappes during ongoing tectonic underplating in northern Alpine foreland [Pfiffner et al., 1997; Mosar, 1999; Lacombe and Moutherneau, 2002; Ustaszewski and Schmid, 2007].

[78] While there is ample evidence for ongoing thick-skinned tectonic activity, the question as to whether thick-skinned tectonics is still active today [Niviere and Winter, 2000; Muller et al., 2002], or alternatively, if it ceased by early Pliocene times [Ustaszewski and Schmid, 2007], is more difficult to answer. On the basis of in situ stress measurement data, partly shown in Figure 18, Becker [2000] concluded that thin-skinned deformation did cease, on the basis of a series of arguments. He pointed out that recent stress provinces do not coincide with the tectonic zonation of the Jura Mountains and that the orientation of recent stress axes is similar in areas affected by thin-skinned deformation and areas in the foreland not affected by this style of deformation. Becker [2000] raised further arguments against ongoing thin-skinned tectonics such as the deviation between paleostresses and recent stresses and the parallelism of the directions of the maximum horizontal stresses derived from surface in situ stress measurements and those obtained from focal mechanisms within the basement, arguing against persisting decoupling between basement and cover.

[79] While the arguments discussed above clearly apply for the southwestern and northern part of the thrust belt, the situation is not as clear in our area of investigation, particularly within the Besançon Zone (Figure 18). As mentioned by Becker [2000], this is about the only area within the entire Jura fold-and-thrust belt where stress provinces defined by in situ stress measurements correlate well with the tectonic units. Unfortunately, there are not enough in situ stress data available for testing if the orientation of the present-day direction of σ1 changes north of the Besançon Zone, i.e., outside the area affected by thin-skinned deformation. However, from the results of our paleostress analysis (compare Figure 11), one would actually expect them to be parallel in that area. Within the Besançon Zone and along the faisceaux the recent orientation of σ1 obtained by in situ measurements almost perfectly fits the shortening directions obtained by this study (Figure 11) and they show a deviation from the σ1 orientation obtained from nearby focal mechanisms by almost 60° in some cases. This implies that the stress field within the sedimentary cover stayed the same throughout this area from at least early Pliocene times to the present-day. Moreover, further growth of folds that initially formed during the thin-skinned stage of deformation indicates that there still is decoupling between sedimentary cover and crystalline basement. Such decoupling is likely to be rooted within the basement by fault reactivation nearby (Figure 17). Shallow thrusting probably occurs simultaneously with deep-seated thick-skinned inversion that affects the underlying basement nearby and is therefore not thin-skinned in a strict sense and according to original definition by Chapple [1978]. On the other hand, and in the light of insufficient knowledge about the exact geometry of the subsurface in the area, recent tectonic activity related to ongoing décollement of the Jura fold-and-thrust belt throughout the Besançon Zone cannot be excluded.

5. Conclusions

[80] This investigation leads to a new structural subdivision of the northwestern front of the Jura fold-and-thrust belt. The area located in front of the substantially detached parts of the Jura fold-and-thrust belt is divided into two parts characterized by different styles of deformation: (1) the Besançon Zone that represents the northwestern most and only mildly detached segment of the thin-skinned Jura fold-and-thrust belt that encroached onto the Rhine-Bresse Transfer Zone, and (2) the Avant-Monts Zone proper where seismic reflection data document thick-skinned shortening associated with the reactivation of preexisting normal faults of the Rhine-Bresse Transfer Zone.

[81] Paleostress analysis yields fanning north over NW to SE directed orientation of σ1, predominantly achieved by strike-slip faulting within the Mesozoic cover.

[82] Kinematic and geomorphic observations allow establishing a relative chronology of the different deformation styles. Thick-skinned tectonics initiated during or slightly after the latest stages of the main phase of thin-skinned Jura folding and thrusting, at the earliest at around 4.2 Ma, i.e., during the early Pliocene.

[83] Within the Besançon Zone, where the thin-skinned fold-and-thrust belt encroached onto the Rhine-Bresse Transfer Zone, deformation continued after the late Pliocene (post-2.9 Ma), as is evident from the erosion of the Sundgau and Forêt de Chaux gravels throughout that area. There is abundant structural evidence for presently ongoing thick-skinned shortening, as is confirmed by present-day seismicity. Ongoing growth of folds within the Besançon Zone that formed during an earlier thin-skinned stage of deformation appears to be positively coupled to erosion and is thus probably related to deformation along the evaporite décollement horizon. Although this deformation is likely to be rooted within the basement by fault reactivation nearby, ongoing thin-skinned deformation cannot be excluded. Hence, at the northwestern Jura front deep-seated seismicogenic thick-skinned tectonics and, presumably largely aseismic, shallow décollement tectonics may interact in space and time from early Pliocene times (4.2 Ma) to the present.

[84] The results of this study highlight the crucial role of preexisting structures on the evolution of foreland fold-and-
thrust belts, also in settings where deformation is governed by classical thin-skinned tectonics. In the case of the northwestern Jura front preorogenic extensional faults first controlled the nucleation of shallow thrust faults and folds due to the offset of the décollement horizon and extensional flexuring of the sedimentary sequence. Lateral ramps inherited preexisting horst and graben structures and controlled the propagation of thin-skinned thrust sheets beyond the front of the thrust belt. Late stage thick-skinned inversions of deep-seated preexisting normal faults occasionally led to the thick-skinned redefinition of older thin-skinned structures.

[85] Acknowledgments. This project was funded by ELTEM and carried out within the framework of the EUCOR URGENT project. The authors are indebted to Gaz de France for the authorization to analyze and publish seismic reflection data as well as to BRGM and Total for further collaboration. We also would like to thank Patrick Rolin, Kamill Ustaszewski, Pierre Dézes, and the entire past and present Basel EUCOR-URGENT team for helpful discussions. We particularly thank the initiator of this project, Peter Ziegler, for his comments on early versions of the manuscript. Detailed and constructive reviews by Olivier Lacombe and Adrian Pfliffer significantly improved an earlier version of the manuscript.

References

Anderson, E. M. (1942), The Dynamics of Faulting and Dyke Formation With Applications to Britain, 269 pp., Oliver and Boyd, Edinburgh, U.K.

Bolliger, T., B. Engesser, and M. Weidmann (1993), Premiere d·couverte de m·anifester m·oleculaire dans le Jura neuchâtelois, Eclogae Geol. Helv., 86, 1031–1068.

Brudy, M. D. Zoback, K. Fuchs, F. Rumel, and J. Baumgartner (2007), FC5005

Guellec, S., J. L. Mugnier, M. Tardy, and F. Roure

Ford, M., C. Le Carlier de Veslud, and O. Bourgeois

Glangeaud, L. (1949), Les caractéres structuraux du

TC5005

J. Struct. Geol.

O. Fabbri, UMR Chrono-Environnement, Université de Franche-Comté, Route de Gray 16, F-25030 Besançon CEDEX, France. (olivier.fabbri@univ-fcomte.fr)

H. Madritsch and S. M. Schmid, Geologisch-Paläontologisches Institut, University of Basel, Bernoullistr. 52, CH-4056 Basel, Switzerland. (herfried.madritsch@unibas.ch; stefan.schmid@unibas.ch)