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ABSTRACT

A real alternative to Lagrange point very low perturbed
orbits, for universe observation missions, is high eccen-
tric Earth orbits. Combination of high eccentricity and
very large semi-major axis leads to orbits with an im-
portant part of flight time far from Earth and its pertur-
bations. Modeling this particular relative motion is the
scoop of this paper.
Main perturbation in HEO orbits are solar radiation pres-
sure (SRP) and lunisolar effects, but formations are
mainly affected by SRP effects. The modellization of
its effects is done in two ways. First we introduce the
SRP effects in the equations of the relative acceleration.
Second, we obtain explicit analytical expressions of the
temporal evolution of the relative motion. Resulting ex-
pressions enable very fast computations.
These models are used to study HEO missions. We focus
on two different problems: estimation of thrust for station
keeping and evaluation of collision risk. We also con-
sider the influence of the difference of ratio surface/mass
between satellites.

Key words: formation flying, HEO orbits, solar radiation
pressure.

1. INTRODUCTION

Formation flying has become one of the most interesting
techniques for space observations. Multiple satellites
systems enables large base interferometry and telescopes
with high focal length. As these systems need a very high
precision on control orbit and determination, Lagrange
point orbits are very well-suited. A real alternative to
these orbits are HEO (high eccentricity orbit) orbits with
very large semi-major axis. This kind of orbits has a
short very perturbed passage on the perigee, which is
not well-adapted for observations, and a very long low
perturbed passage on the apogee, where the conditions
for observation are particulary good. Observations are
possible since the formation is above Van Allen radiation
belt. In some cases, more than 85% of the orbit can
be used for observation. During the observation, the

dynamics of the formation, even if is a central body
dynamics, is quite particular. First, because of the so
high eccentricity (bigger than 0.7), and second because
main perturbations are not the same as in LEO (low Earth
orbits) orbits. While in LEO orbits drag and J2 effects
have important effects, in HEO main perturbation are
solar radiation pressure and lunisolar effects. Lunisolar
differential perturbations on the formation keep small
because of the small distance between satellites, but
SRP effects might have big consequences if the satellites
do not have the same ratio between their surface and
their masse ( S

m ), as its the case in many formations. In
order to study the effects of this perturbation, this paper
presents a modellization of relative motion taking into
account SRP perturbations

Modelling relative motion has been done classi-
cally through its cartesian coordinates, with Clohessy-
Wilthsire equations [6] and its extension to elliptical ref-
erence orbit, known as Lawden equations [11]. This ap-
proach is well-suited for the computation of relative ac-
celerations, but it is not so useful to obtain closed form
solutions of perturbed problem. More recently, the in-
troduction of differential orbital elements has been an is-
sue to the problem [8], [9] .This method takes use of the
orbital elements to extrapolate the orbit. It has been ex-
tensely used to study main perturbations on LEO orbits
[2], and it is also useful for SRP perturbations. The au-
thors have not found any paper modelling SRP effects on
formation flying.
Effects of SRP on orbital elements has been largely stud-
ied [10], [1], [4]. Here, we use a similar approach, but
we introduce the mean anomaly as independent variable.
Moreover, we compute its differential effects on the for-
mation using differential orbital elements. We also use
classical approach with Lawden equations perturbed with
a differential SRP.

We use our analytical model to study two problems re-
lated with formation flying. For numerical simulations,
we use the parameters of Italian-French formation flying
SIMBOL-X. The first handled problem is estimation of
necessary maneuvers. As control method, we have used
an ideal open loop system with no errors. We focus on the
dynamics of the problem. The system supplies the neces-
sary acceleration to force non-propelled relative orbit to
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describe the necessary relative trajectory for observation.
These simulations have shown the influence of the solar
radiation pressure over the keplerian motion.
Second problem deals with the collision risk. It appears
in case of propulsion system failure. Once the failure is
produced, relative trajectory is no more the necessary tra-
jectory for observation, but natural non-propelled trajec-
tory. The natural trajectory can lead to a collision be-
tween satellites. It is interesting to evaluate the risk of
each observation in order to classify them and avoid the
most dangerous ones.
Paper is structured as follows. First section is the intro-
duction, second section is devoted to the modellization of
the solar radiation pressure. Third section is dedicated to
the effects of SRP on FF. Four section deals with station
keeping and collision risk. We finish with some conclu-
sions.

2. MODELLING SOLAR RADIATION PRES-
SURE

First, we compute the effects of SRP in a generic or-

bit defined through its classical orbital elements
−−→
EO :

(a, e, i,Ω, ω,M)
T

. We also use classical variables η =√
1 − e2 and n =

√

µ
a3 . Solar radiation pressure pro-

duces a force in all satellites which writes:

−→
f SRP = −σ

S

m
−→u Sun (2)

where S is the surface of the satellite perpendicular to
the direction of the Sun, m is its masse, and σ is a con-
stant which includes the effects of the distance to the Sun,
and the reflectivity of the satellite. We take σ = 7.10−6.
The value of this variable as function of the reflectivity of
the satellite. We have taken a conservative value. Vector−→u Sun is an unitary vector pointing to the Earth from the
Sun, so we neglect the distance between the satellite and
the Earth, with respect to the distance Sun-satellite.
This force does not act when Earth shadows the Sun. As
we work in eccentric orbits with very high semi-major
axis, shadows regions are negligible. For example, for
a = 100000 km, and e = 0.7, shadow region never is
higher than 4% of the orbit. So, supposing that there is
no shadow, SRP force can be derived from a potential:

USRP = −σ
S

m
rsat

−→u sun.−→u sat (3)

Vector −→u sat is the position of the satellite with respect
the Earth, and rsat the distance between the satellite
and the Earth. Integration of this potential can be done
through Lagrange planetary equations as it is done in
[10]. Our method differs from Kozai [10] since we in-
troduce mean anomaly instead of use eccentric anomaly.
Approximated integration of Lagrange equations gives

temporal evolution of SRP perturbations (δ
−−→
EO|SRP (t)),

which we copy in equation (1).

In these equations, we use Bessel functions Js(x),
and its derivatives with respect the argument J ′

s(x)



We also use intermediary geometrical functions F
and G and its derivatives with respect the angles
(Fi,FΩ,Fω,Gi,GΩ,Gω) .

F = As (cos Ω cos ω − sinΩ sin ω cos i) (4)

+Bs (sinΩ cos ω + cos Ω sin ω cos i)

+Cs sin ω sin i

G = −As (cos Ω sin ω + sinΩ cos ω cos i) (5)

+Bs (− sinΩ sin ω + cos Ω cos ω cos i)

+Cs cos ω sin i

As, Bs, Cs are the cosinus directors of the position of the
Sun with respect to the Earth. It is:

−→u Sun = (As, Bs, Cs)
T

(6)

3. EFFECTS OF SOLAR RADIATION PRES-
SURE ON FORMATION FLYING

Thereafter, we use two different representations of rela-

tive motion: i) relative position and velocity (−→ρ , −̇→ρ ) with
respect to a rotating reference frame linked to a reference

orbit, and ii) the differential orbital elements (∆
−−→
EO), it

is, the difference of orbital elements between the refer-
ence orbit and the studied orbit. In both cases, we use

a reference orbit defined by its orbitals elements
−−→
EOref .

We also use following notation for relative position and
velocity:

−→ρ = (ρR, ρT , ρN )
T

−̇→ρ = (ρ̇R, ρ̇T , ρ̇N )
T

(7)

There are two different ways to introduce the effects of
SRP in relative motion: i) writing the equations of the
relative acceleration, ii) introducing the perturbation on
the differential orbital elements.

3.1. Relative acceleration

Using relative dynamics, we can get the acceleration rel-
ative to a rotating reference frame linked to an eccentric
orbit which correspond to the orbit of the free satellite.
After some computation and the linearization of the equa-
tions, we get (8):

−̈→ρ = − µ
−→ρ
r3

+
3µ

r3
(ρR, 0, 0) + θ̈(ρT ,−ρR, 0)

− θ̇2(ρR, ρT , 0) + 2θ̇(−ρ̇R, ρ̇T , 0) + ∆
−→
f SRP |RTN

(8)

which are equivalent to Lawden’s equations [11] per-

turbed with SRP differential force. θ̇ its the rotational
velocity of the reference frame and θ̈ its derivative. They
are given in [3] as:

θ̇ =
n

(1 − e2)3/2
(1 + e cos f)2 (9)

θ̈ = −2n2e sin f

(

1 + e cos f

1 − e2

)3

∆
−→
f SRP is the difference of force due to the solar radia-

tion pressure between the two satellites, projected in the
local orbital frame RTN. The difference of force is given
by a difference of S

m between satellites:

∆
−→
f SRP = −σ∆

S

m
−→u Sun (10)

Direction of the force depends on the epoch and on the
reference orbital elements.

3.2. Differential orbital elements

Formation flying is also completely characterized us-
ing the differential orbital elements between two orbits.
Since we neglect the distance Earth-satellite and the ef-
fects of the SRP are linear with the parameter S

m , differ-
ential effects of SRP are given just in case the parameter
S
m is not the same for both satellites. In this case, differ-
ential effects due to the SRP read:

∆
−−→
EO(t)|SRP =

∆ S
m

S
m |ref

δ
−−−−→
EOref (t)|SRP (11)

where ∆ S
m is the difference of S

m between satellites.
Conversion between differential orbital elements and
cartesian coordinates can be easily done using matrices
given in [5].

4. APPLICATION TO UNIVERSE OBSERVA-
TION MISSIONS

In this section we study a Universe observation mission,
placed in a HEO orbit, using a single telescope with a
big focal length. Telescope would be distributed on two
satellites. One satellite would be in free flight while the
position of the second satellite would be forced in order
to keep focal length and observation direction. The orbit
of the first satellite will be used as reference orbit, and
we would compute necessary maneuvers to be realized
into second satellite. For our simulations, we use orbital
parameters of Italian-French mission SIMBOL-X [7]. It



is:

aref = 1064267 km eref = 0, 75 iref = 6◦

Ωref = 90◦ ωref = 0◦

Observations are taken while the satellite is above Van
Allen radiation belt, and different sources should be ob-
served during a single orbit. When satellites are not ready
for observation, when they are behind Van Allen belt, for-
mation must not be kept, but for operability reasons it
seems simpler to keep configuration all along the orbit.
The most defining variable of the formation is the dis-
tance between satellites d, which must be kept during all
the mission. Relative position is defined by this distance,
and by the position of the observed source on the sky,
which is given through its longitude (α) and latitude (β)
with respect to an inertial equatorial Earth-centered ref-
erence frame. In this inertial reference frame, relative po-
sition reads:

−→x |IJK = d(cos α cos β, sin α cos β, sin β) (12)

Transforming this motion in the local orbital frame, we
get:

−→x |RTN =
(

K1 cos uref + K2 sin uref ,

K3 cos uref + K4 sin uref ,K5

)T (13)

where u = ω + f , f is the true anomaly, and with the
coefficients:

K1 = d
(

cos Ω cos α cos β + sinΩ sin α cos β
)

K2 = d
(

− sinΩ cos i cos α cos β

+cos Ω cos i sin α cos β + sin i sin β
)

K3 = d
(

− sinΩ cos i cos α cos β

+cos Ω cos i sin α cos β + sin i sin β
)

K4 = d
(

− cos Ω cos α cos β − sinΩ sin α cos β
)

K5 = d
(

sinΩ sin i cos α cos α cos β

− cos Ω sin i sin α cos β + cos i sin β
)

4.1. Station keeping

Precedent motion, which will be referenced as −→x obs, nec-
essary for taking observations, does not correspond in any

case with the natural relative orbit of the satellite −→x nat,
and it is forced through a certain number of maneuvers.
The frequency of the maneuvers depends on the neces-
sary precision of the formation. In order to simplify, we
suppose a continuous thrust, ∆−→a , (which is not far from
the reality). Necessary thrust can be estimated as the
difference between the natural acceleration and observa-
tion acceleration. Natural acceleration is computed using
equations (8) and observation acceleration is computed
using the derivatives of equation (13):

∆−→a = |−→a nat −−→a obs| (14)

The magnitude of impulsions depends on a certain num-
ber of variables: position of observation source, epoch
of observation, position along the orbit, difference of S

m
between satellites. By the following we analyze most rel-
evant ones.

Thrust along the orbit For all simulations, we use the
parameters of SIMBOL-X mission:

d = 20m ∆
S

m
= 3, 52.10−3m2/kg
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Figure 1. Thrust along orbit for Keplerian motion

Figures (1) and (2) show the variation of the thrust along
the orbit. Different curves correspond to different obser-
vation directions. Simulations have been done with ini-
tial time 20th february 2012 at midnight. Figure (1) cor-
responds to necessary thrust for keplerian motion, while
(2) corresponds to motion perturbed with SRP. Both fig-
ures show that main thrust is concentrated in the passage
of the perigee, while in the apogee thrust remains nearly
constant. In both cases, observation direction does not
play a major role. Mean value of non-perturbed motion
is 3.10−9m/s2, while in perturbed case is 3.10−8m/s2.
As we will see later, this difference is function of param-
eter ∆ S

m .
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Figure 2. Thrust along orbit for SRP perturbed motion

Influence of the epoch of the year Figures (3) and (4)
show the mean thrust along an orbit for the different di-
rections of observations on the sky, and for two different
dates: in summer (21st june) , and winter (21st decem-
ber).
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Figure 3. Thrust as function of observation position in
summer

Figures show how there are privileged regions where ob-
servations are less fuel consumers than others. These re-
gions move along the year. Constraints on observations
(observation direction must be perpendicular to the po-
sition of the Sun) prevents of taking advantage of these
observation regions.

Influence of the difference of SRP From a practical
point of view, nowadays the only free parameter is ∆ S

m .
The reference orbit is fixed for station keeping consid-
erations, and the direction of observation sources must
sweep all the sky. Moreover, ∆ S

m is not fixed only by the
design, since it changes with the orientation of satellites
with respect to the Sun.
Next figure (5), show the effect of changing the value of
∆ S

m on the necessary thrust. We have computed a mean
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Figure 4. Thrust as function of observation position in
winter

value for all the possible sources and over the orbit. Mean
value of thrust has been computed along the orbit and for
different observation directions. Different curves corre-
spond to different epochs of observation.
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Figure 5. Influence of the difference of S
/ m on the thrust

The figure presents three zone: i) keplerian zone, ii) tran-
sition zone, iii) SRP zone. In the first zone SRP effects
are negligible with respect to the keplerian effects. It
means that any changing in the value of ∆ S

m change the
thrust. In the third zone, SRP effects dominate keplerian
ones. Since the perturbation is linear with ∆ S

m , so it is
the thrust. The second zone is the transition between two
regimes. It may be interesting to design spacecraft in or-
der to operate in first zone.

4.2. Collision risk

Collision risk appears in case of propulsion system fail-
ure. In this case, relative motion is no more the described
trajectory for observations, but the non-propulsed. Sup-
posing that the failure may be recoverable after a while,



it is necessary to verify that during this time satellites do
not collide. In order to do so, we have analyzed different
observation trajectories and the influence of different pa-
rameters.
We have used our closed analytical solution for the ex-
trapolation of the orbit. It enables very fast computation
and computation time is much more small than integra-
tion relative accelerations.
For each observation trajectory we have defined two pa-
rameters:

• minimum distance: It is defined as follows. For each
instant of the observation trajectory, we supposed
a failure of the system and we propagate resulting
non-propulsed motion during a security time. We
determine the minimum distance for this extrapo-
lation. Minimum distance is defined as the mini-
mum of all the extrapolations. If minimum distance
is bigger than a safety radius, observation trajectory
is safe. If not, the trajectory presents a risk. Second
parameter evaluates the risk.

• percentage of orbit with collision risk: In the case
where observation trajectory is not safe, this param-
eter is used to evaluate how risky it is. It measures
the percentage of the observation trajectory where a
failure of the system leads to a no-propulsed trajec-
tory violating safety radius.

Safety radius (RS) and security time (TS) must be speci-
fied in mission requirements. In our simulations we use:
RS = 3 m., TS = 1 orbit

Following two figures (6), (7) have been obtained for
Simbol-x mission, at the 21th february 2012. First fig-
ure (6) shows the minimum distance of the observation
trajectory as function of the direction of observation. A
large part of observations presents no risk, while risky
regions are concentrated in the poles. Second figure (7)
show the most risky regions, where a failure of propul-
sion system leads unavoidably to a collision.
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Figure 8. Influence of ∆ S
m in the collision risk

Role of the ∆ S
m Last figure (8) shows the influence of

the parameter on the collision risk. We have computed
the number of risky observation trajectories with respect
to all the possible observation directions as function of
the difference of S

m between satellites. Figure shows that

bigger values of ∆ S
m are less risky than smaller ones.

This phenomenon has a physical explanation since the
difference of SRP tends to separate the satellites. At the
sight of the figure, parameter ∆ S

m should be, at least,

6.10−4. In the figure, we have plot the same curve for
different epochs in order to prove that it has few influ-
ence on the result.

5. CONCLUSIONS

This paper presents the necessity of using different ap-
proaches to solve different problems. Cartesian coordi-
nates are well-adapted for control problems, but, as we
have shown they do not enable easy integration. For fast



extrapolation of orbits, it is better to use differential or-
bital elements.
So, in this paper we have presented two analytical ways
to take into account solar radiation pressure in formation
flying. First, is devoted to obtain relative accelerations.
Second, we have introduced the perturbation on the ex-
trapolation of the orbit. This method obtains good results
and is much faster than direct integration of equations of
motion. In the second part of the paper, we have studied
the effects of the perturbation on HEO orbits for Universe
observation. We have focused on the role of parameter
∆ S

m . We have showed how it plays an important role on
the size of maneuvers and how it can also be used to mini-
mize collision risk. Precedent figures show the parameter
should have a value near 5.10−4. Bigger values lead to
more fuel consumer configurations, while smaller values
increase collision risk.
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