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and Université Paris Diderot, Paris 7, France

fagnot@univ-mlv.fr
2 Laboratoire d’Informatique de Nantes-Atlantique (LINA), UMR CNRS 6241
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Abstract. Given a set of positive integers S, we consider the problem
of finding a minimum cardinality set of positive integers X (called a
minimum 2-generating set of S) s.t. every element of S is an element
of X or is the sum of two (non-necessarily distinct) elements of X. We
give elementary properties of 2-generating sets and prove that finding
a minimum cardinality 2-generating set is hard to approximate within
ratio 1 + ε for any ε > 0. We then prove our main result, which consists
in a representation lemma for minimum cardinality 2-generating sets.

1 Introduction

In this paper, we consider the problem of 2-generating a set of positive integers
S with a minimum cardinality set of integers X, where X is said to 2-generate
S if every element of S is an element of X or is the sum of two (non-necessarily
distinct) elements of X. We note that, in this context, X does not have to be a
subset of S. We refer to this problem as Minimum 2-Generating Set.

Minimum 2-Generating Set is a simple restriction of Minimum Gener-

ating Set (a natural problem in number theory) [4]. The Minimum Generat-

ing Set problem is defined as follows: Given a set of positive integers S, find a
minimum cardinality set of integers X such that every element of S is the sum of
a subset of X. Minimum Generating Set has been shown to be NP-hard [4],
and is related, among other things, to planning radiation therapy: elements of
S represent radiation dosages required at various points, while an element of
X represents a dose delivered simultaneously to multiple points. Note also that
both Minimum 2-Generating Set and Minimum Generating Set can be
seen as natural extensions of the Postage Stamp problem [13].

Strongly related to our work are minimum sum covers of finite Abelian groups
as investigated in [9,7]. A subset X of a finite Abelian group G is said to be
a sum cover of G if {x + x′ : x, x′ ∈ X} = G, a strict sum cover of G if
{x+x′ : x, x′ ∈ X ∧x 6= x′} = G, and a difference cover of G if {x−x′ : x, x′ ∈



X} = G. Swanson [19] gives some constructions and computational results for
maximum difference packings of cyclic groups. Haanpää, Huima, and Österg̊ard
compute maximum sum and strict sum packings of cyclic groups [10]. Fitch and
Jamison [7] give minimum sum and strict sum covers of small cyclic groups, and
Wiedemann [20] determines minimum difference covers for cyclic groups of order
at most 133.

Another area of research related to our work is the problem of covering a set of
strings S with a set X of substrings in S, where X is said to cover S if every string
in S can be written as a concatenation of the substrings in X [12,2] (see also [14]
and [3] for a more general treatment of the combinatorial rank). Covering a set
of strings S with a set X of substrings in S is indeed the Minimum Generating

Set problem for unary alphabet under the unary encoding scheme. To narrow
the context, notice that, given a set of binary strings S, finding a minimum
cardinality set X of substrings in S such that every string in S can be written as a
concatenation of at most two substrings in X is NP-complete (the proof being an
easy binary alphabet encoding of the result of Néraud [14]). Finally, Hajiaghayi
et al. [11] considered the Minimum Multicolored Subgraph problem, which
can be seen as a generalization of Minimum 2-Generating Set when every
integer in the input set is bounded by a polynomial in the length of the input.

This paper is organized as follows: we first recall basic definitions in Section 2,
and we then formally introduce the considered problem. In Section 3, we give
some elementary properties of 2-generating sets. Section 4 is devoted to prove
hardness of Minimum 2-Generating Set and we prove in Section 5 a repre-
sentation lemma. Notice that some proofs are omitted due to space constraints.

2 Preliminaries

We use N
∗ to refer to the set of all natural numbers excluding zero, i.e., N

∗ =
{1, 2, . . .}. Let S = {s1, s2, . . . , sn} ⊂ N

∗. For any k ∈ N
∗, we write kS for the

set of all integers that can be expressed as the sum of exactly k non necessarily
distinct integers of S, i.e., kS = {si1 + si2 + . . . + sik

: si1 , si2 , . . . , sik
∈ S}.

According to this definition, for any set S, S = 1S. A set X ⊂ N
∗ is a k-

generating set of S (or k-generates S) if S ⊆ ⋃k
i=1 iX. (Notice here that we

do not require the additional constraint
⋃k

i=1 iX ⊆ S.) It is called a minimum
k-generating set of S if X is a k-generating set of S of minimum cardinality.
The k-rank of S, denoted rkk(S), is the cardinality of a minimum k-generating
set of S. A set S ⊂ N

∗ is k-elementary if rkk(S) = |S|. Let min(S) and max(S)
stand for min{si : si ∈ S} and max{si : si ∈ S}, respectively. The length of S,
denoted len(S), is defined to be len(S) = max(S) − min(S).

We are now in position to define the Minimum k-Generating Set problem
we are interested in: Given a set S ⊂ N

∗, find a k-generating set X of S of
minimum cardinality. Actually, our main interest here is in finding minimum
2-generating sets, and hence we shall be concerned in this paper with Minimum

2-Generating Set only. Of particular importance, we assume hereafter any



reasonable (e.g. binary) encoding of any instance of Minimum 2-Generating

Set so that the input is in O(n log m) space, where n = |S| and m = max(S).
We assume readers have basic knowledge about graph theory [5] and we shall

only recall basic notations. We write G = (V,E) for a graph with vertex set V
and edge set E. For a graph G and a vertex u ∈ V , we write dG(u) for the degree
of u in G. A graph is bipartite if it does not contain an odd cycle.

3 Elementary properties

Generalities. To fix the context, we begin by giving easy bounds for rk2(S).

Lemma 1. For any S ⊂ N
∗ of cardinality n,

⌈

1
2 (
√

8n + 9 − 3)
⌉

≤ rk2(S) ≤ n.

Proof. The upper bound is trivial. To prove the lower bound, let X ⊂ N
∗ be a

2-generating set of S, and let k stand for |X|. For one, |X ∪ 2X| ≤
(

k
2

)

+ 2k. For
another, |X ∪ 2X| ≥ n since X 2-generates S. Combining the two inequalities
yields the claimed lemma. ⊓⊔

Combinatorial properties of intervals [8] will prove to be a simple but powerful
tool for 2-generating sets. We write [i : i + j] for the set of consecutive integers
(i.e., interval) {i, i+1, . . . , i+j}. For any interval system I, the matching number
of I, denoted ν(I), is the maximum number of pairwise disjoint intervals of I.
Let S = {si : 1 ≤ i ≤ n} ⊂ N

∗. Define the 2-generating interval system of S, in
symbols I2(S), to be I2(S) = {[⌈si/2⌉ : si] : si ∈ S}.

Lemma 2. Let S ⊂ N
∗ and X ⊂ N

∗ be a 2-generating set of S. Then, for every
s ∈ S, |X ∩ [⌈s/2⌉ : s]| 6= ∅.

Proof. Suppose the lemma is false. Then some s ∈ S is obtained by summing
at most 2 integers of X, each upper-bounded by ⌈s/2⌉ − 1. But 2(⌈s/2⌉ − 1) <
2((s/2 + 1) − 1) = s which yields the desired contradiction. ⊓⊔

Corollary 1. For any S ⊂ N
∗, ν(I2(S)) ≤ rk2(S).

It follows from Lemma 1 that if ν(I2(S)) = |S| then S is 2-elementary.
The converse is false as shown by S = {7, 8, 9}. The following application of
Corollary 1 will prove useful in the sequel.

Lemma 3. Let A = {ai : 1 ≤ i ≤ n} ⊂ N
∗ be such that (i) a1 ≥ 4 and (ii)

ai+1 > 4ai−3, 1 ≤ i ≤ n−1. Then, the set S = {2ai−1 : 1 ≤ i ≤ n}∪{4ai−3 :
1 ≤ i ≤ n} ⊂ N

∗ is 2-elementary.

Integer arithmetic sequences. An integer arithmetic sequence is a sequence of
integers such that the difference of any two successive members of the sequence
is a constant.

Lemma 4. Let S ⊂ N
∗ be an integer arithmetic sequence of length n. Then

rk2(S) = Θ(
√

n).



Proof. Write S = {s0 + ic : 0 ≤ i ≤ n − 1} for some s0 ∈ N
∗ and c ∈ N

∗.
Define X = X1 ∪ X2, where X1 = {s0 + ic⌈√n⌉ : 0 ≤ i ≤ ⌈√n⌉ − 1}, and
X2 = {ic : 1 ≤ i ≤ ⌈√n⌉ − 1}. An easy check shows that S ⊆ X ∪ 2X, and
hence X is a 2-generating set of S. Clearly, |X1| = ⌈√n⌉ and |X2| = ⌈√n⌉ − 1.
Therefore, |X| ≤ 2⌈√n⌉ − 1 ≤ 2(

√
n + 1) − 1 = 2

√
n + 1. Combining this with

Lemma 1 yields the claimed result. ⊓⊔

In case S is an arithmetic sequence of length n = k2, the above lemma
reduces to rk2(S) ≤ 2

√
n − 1. We also observe that Lemma 4 could be an issue

for dealing with dense sets. Define a set S ⊂ N
∗ to be ε-dense if |S| = ε len(S) for

some ε > 0. The following result is an immediate consequence of Lemma 4. We
also note that the (easy) proof can be turned into an approximation algorithm
with performance ratio O(

√
ε) for ε-dense sets.

Corollary 2. Let S ⊂ N
∗ be an ε-dense set of cardinality n. Then rk2(S) =

O(
√

n/ε).

Integer geometric sequences. An integer geometric sequence is a sequence of
numbers where each term, except the first one, is found by multiplying the
previous one by a fixed integer r ≥ 2 called the common ratio. Results turn out
to be more precise compared to arithmetic sequences.

Lemma 5. Let S ⊂ N
∗ be an integer geometric sequence of length n with com-

mon ratio r ≥ 2. Then, (i) rk2(S) = ⌈n/2⌉ if r = 2 and (ii) rk2(S) = n if
r > 2.

Proof. A straightforward application of Corollary 1 proves (ii). To prove (i),
write S = {si : 1 ≤ i ≤ n} and Sodd = {si : si ∈ S ∧ i ≡ 1 (mod 2)}. For one,
X = Sodd is a 2-generating set of S, and hence rk2(S) ≤ |Sodd| = ⌈n/2⌉. For
another, ν(I2(S)) ≥ |Sodd| since Sodd ⊆ S and ν(I2(Sodd)) = |Sodd|. (The latter
point follows from the fact that si+2/2 = 2si > si for 1 ≤ i ≤ n− 2.) Combining
this with Corollary 1 yields rk2(S) ≥ |Sodd| = ⌈n/2⌉. ⊓⊔

Expansion and contraction. Let S ⊂ N
∗. For any c ∈ N

∗, we write S × c for the
set {si c : si ∈ S} and we refer to S × c as the c-expansion of S. Similarly, for
any c ∈ N

∗ common divisor of S, we write S/c for the set {si/c : si ∈ S} and we
refer to S/c as the c-contraction of S.

Lemma 6 (c-expansion). Let S ⊂ N
∗ and c ∈ N

∗. Then rk2(S × c) ≤ rk2(S).

Replacing S by S/c in Lemma 6 yields a formulation well-suited for contrac-
tion considerations.

Corollary 3. Let S ⊂ N
∗ and c ∈ N

∗ be a common divisor of S. Then rk2(S) ≤
rk2(S/c).

Lemma 7 (c-contraction). Let S ⊂ N
∗ and c ∈ N

∗ be a common divisor of
S. Then, rk2(S/c) = rk2(S) if c is odd and rk2(S) ≤ rk2(S/c) ≤ 2 rk2(S) if c is
even.



To complement Lemma 7, we observe that we may have rk2(S/2c) < 2 rk2(S)
for even c as shown in the following example.

Example 1. For any c ∈ N
∗, let S = {14c, 16c, 18c}. Clearly, X = {7c, 9c} is a

2-generating set of S, and hence rk2(S) = 2. But S/2c = {7, 8, 9} has no smaller
2-generating set than itself, and hence rk2(S/2c) = card(S/2c) = 3.

The upper-bound rk2(S/c) ≤ 2 rk2(S) in Lemma 7 is, however, not over-
estimated, as shown by the following lemma.

Lemma 8. For any n ∈ N
∗, there exists a set S ⊆ N

∗ of cardinality n such that

rk2(S/2)

rk2(S)
= 2 − 1

n + 1
.

Proof. Let b > 8 be some fixed even integer. For any n ∈ N
∗, let S = {2}∪{bi+2 :

1 ≤ i ≤ n} ∪ {2bi + 2 : 1 ≤ i ≤ n}. We can show, using Lemma 3, that
rk2(S) = n + 1 and rk2(S/2) = 2n + 1 (proof omitted due to space constraints.)

⊓⊔

4 Hardness

Minimum Generating Set (i.e., given a set a positive integers S, find a min-
imum cardinality set of integers X such that every element of S is the sum of
a subset of X) was proved to be NP-complete in [4]. We complement this re-
sult by showing that Minimum 2-Generating Set is APX-hard, i.e., hard to
approximate within ratio 1 + ε for any ε > 0.

Proposition 1. Minimum 2-Generating Set is APX-hard.

Proof. We propose an L-reduction [16] from Vertex Cover for cubic graphs:
Given a cubic graph G = (V,E), find a minimum cardinality vertex cover
of G, i.e., a subset V ′ ⊆ V such that, for each edge {u, v} ∈ E, at least
one of u and v belongs to V ′. Minimum Vertex Cover for cubic graphs is
APX-complete [1,17]. Assume, wlog, that V = {1, 2, . . . , n}. Define the corre-
sponding instance of Minimum 2-Generating Set by defining S ⊂ N

∗ to be
S = {b0}∪{bi : 1 ≤ i ≤ n}∪{2bi : 1 ≤ i ≤ n}∪{b0+bi : 1 ≤ i ≤ n}∪{b0+bi+bj :
{i, j} ∈ E} for some even constant b > 4. We claim that there exists a vertex
cover of G of cardinality at most k if and only if there exists a 2-generating set
for S of cardinality at most n + k + 1.

(⇒) Suppose that there exists a vertex cover V ′ ⊆ V of cardinality k of G.
Define X ⊂ N

∗ (actually X ⊂ S) to be X = {b0} ∪ {bi : 1 ≤ i ≤ n} ∪ {b0 + bi :
i ∈ V ′}. We claim that X is a 2-generating set for S. Since X ⊂ S and b0 ∈ X,
it is enough to prove that, for each {i, j} ∈ E, b0 + bi + bj is 2-generated by X.
Indeed, since V ′ is a vertex cover of G, we have i ∈ V ′ or j ∈ V ′ (possibly both),
and if we let ℓ = i if i ∈ V ′ and ℓ = j if i /∈ V ′, we have (b0 + bℓ) ∈ X. Therefore



b0 + bi + bj is 2-generated by X as (b0 + bℓ)+ bℓ′ , where ℓ′ = j if ℓ = i and ℓ′ = i
otherwise.

(⇐) Conversely, let X be a 2-generating set of S. We first note that, by
integrality, b0 ∈ X. Consider any integer 1 ≤ i ≤ n, and let Ii be the interval
[bi/2 : 2bi]. According to Lemma 2, |X ∩ [bi/2 : bi]| ≥ 1 and |X ∩ [bi : 2bi]| ≥ 1
since bi ∈ S and 2bi ∈ S. Then it follows that |X ∩ Ii| ≥ 1, and bi ∈ X if
the inequality holds as equality. As b > 4, we have 2bi < bi+1/2, 1 ≤ i < n.
Then it follows that the intervals Ii, 1 ≤ i ≤ n, are pairwise disjoint, and hence
|X| ≥ n + 1. Now, let k ∈ N

∗ be such that |X| = n + k + 1, and let V ′ ⊆ V
be such that |X ∩ Ii| > 1 for every i ∈ V ′. According to the above, we have
|V ′| ≤ k. We now claim that V ′ is a vertex cover of G. Indeed, assume, aiming
at a contradiction, that there exists {i, j} ∈ E such that |X ∩ Ii| = 1 and
|X ∩ Ij | = 1, and, to shorten notation, set s = b0 + bi + bj . Then it follows that
X ∩ Ii = {bi} and X ∩ Ij = {bj}. But s ∈ S, and hence |X ∩ [s/2 : s]| ≥ 1
(Lemma 2). Furthermore, if we assume i > j, we have bi/2 < s/2 and s < 2bi,
and hence [s/2 : s] ⊂ Ii, i.e., [s/2 : s] is a subinterval of Ii. But X ∩ Ii = {bi},
and hence we must have (b0 + bj) ∈ X. This is the desired contradiction since
(b0 + bj) ∈ Ij and X ∩ Ij = {bj}.

We omit the easy proof that the described reduction is indeed an L-reduction.
(Crucial is the fact that |V | ≤ 2 |V ′| for any vertex cover V ′ since G is a cubic
graph.) ⊓⊔

It remains open whether Minimum 2-Generating Set is NP-complete if
every integer in S is bounded by a polynomial in the length of the input. Indeed,
neither Proposition 1 nor the NP-hardness result of [4] rule out the existence of
a pseudo-polynomial algorithm for Minimum 2-Generating Set. Observe that
this question reduces to 2-covering a set of strings S for an unary alphabet with a
set X of substrings in S, where X is said to 2-cover S if every string in S can be
written as a concatenation of at most two substrings in X [12]. Approximation
issues of Minimum 2-Generating Set are completely unexplored yet. Notice,
however, that, as long as every integer in S is not bounded by a polynomial in
the length of the input, none of the approximation results of [11,12] applies.

5 Put the blame on rk2(S) only

Let S be any instance of Minimum 2-Generating Set. Write n = |S|, m =
max(S) and k = rk2(S). This section is devoted to finding a minimum cardinality
2-generating set of S (from an effective computational point of view [6,15]).

As a first attempt, let us consider the brute-force approach: generate all k-
subsets X of {1, 2, . . . ,m} and check for each of them whether it 2-generates S,
i.e., S ⊆ X∪2X. Correctness of this algorithm is of course immediate. There are
(

m
k

)

such subsets and each subset X can be identified as a 2-generating set of S in
O(k2 log k) time (assuming a unit-cost RAM model with log m word size). There-
fore, the brute-force algorithm is, as a whole, a O(mkk2 log k) time procedure.
But m (and even log m) can be arbitrarily large compared to n = O(k2) and this



naturally leads us to the problem of trying to confine the seemingly inevitable
combinatorial explosion of computational difficulty to a function of k only [6,15].
We prove here that such an algorithm does exist for finding a minimum cardi-
nality 2-generating set of S. Surprisingly enough, the time complexity of the
proposed algorithm turns out to be even independent of m = max(S) (again
assuming a unit-cost RAM model with log m word size). The main result of this
paper can be stated as follows.

Lemma 9 (representation). Let S = {si : 1 ≤ i ≤ n} ⊂ N
∗ and write k for

rk2(S). Then, there exist rationals αi,j ∈ {−1,−2−1, 0, 2−1, 1}, 1 ≤ i ≤ k and
1 ≤ j ≤ n, such that X = {∑n

j=1 αi,j sj : 1 ≤ i ≤ k} is a minimum cardinality
2-generating set of S.

Before proving Lemma 9, we need a new definition that translates the prob-
lem to elementary graph theory terms. Let S = {s1, s2, . . . , sn} be a set of
positive integers and X = {x1, x2, . . . , xk} be a 2-generating set for S. Define an
X-realization of S to be a bipartite graph B = (S, X,E) such that dB(s) ∈ {1, 2}
for all s ∈ S, and

– if dB(s) = 1, say {s, xi} ∈ E, then s = xi or s = 2xi, and
– if dB(s) = 2, say {s, xi} ∈ E and {s, xj} ∈ E, xi 6= xj , then s = xi + xj .

Note that, in the above definition of an X-realization, X (resp. S) is consid-
ered as a set of integers, and as a set of vertices in a graph. We chose not to
correct this ambiguity in the rest of the paper, in order to avoid heavy notations.
Besides, the context will always be clear about the fact that we are concerned
with integers or vertices.

Coming back to X-realizations, it is clear that every simple cycle of B has
length at least 6. (A simple cycle of length 4, say (x1, s1, x2, s2), would result
in the contradiction s1 = x1 + x2 = s2.) An X-realization of S is said to be
minimum if X is a minimum cardinality 2-generating set of S. Of course, an
X-realization of a set S may not be unique.

Lemma 10. Let S ∈ N
∗, B = (S, X,E) be a minimum X-realization of S, and

let B′ be any connected component of B. If dB′(s) = 2 for every vertex s ∈ S,
then there exists a simple cycle of B′ of length 4ℓ + 2 for some ℓ ≥ 1.

We are now in position to prove Lemma 9.

Proof (of Lemma 9). Write k = rk2(S). Let X = {xi : 1 ≤ i ≤ k} be a minimum
cardinality 2-generating set of S and B = (S, X,E) be any X-realization of S. Let
B1, B2, . . . , Bt be the connected components of B. We consider each connected
component of B separately. Consider any connected component Bi = (Si, Xi, Ei)
of B with Si ⊆ S and Xi ⊆ X. Wlog, write Si = {s1, s2, . . . , sni

}. It is enough
to show that for any x ∈ Xi, there exist rationals αj ∈ {−1,−2−1, 0, 2−1, 1},
1 ≤ j ≤ ni, such that x =

∑

1≤j≤ni
αj sj , i.e., x is a linear combination with

coefficients taken from {−1,−2−1, 0, 2−1, 1} of the vertices in Si. We need to
consider two cases: (1) dBi

(s) = 1 for some s ∈ Si; or (2) dBi
(s) = 2 for every

vertex s ∈ Si.



(1) dBi
(s) = 1 for some s ∈ Si. For convenience, write s1 = s. Let P be a

simple path from vertex s1 to vertex x. (Such a path exists since Bi is connected.)
Wlog, write P = (s1, x1, s2, x2, . . . , xp−1, sp, x). Then it follows s1 = δx1, s2 =

x1 + x2, . . . , sp = xp−1 + x for some δ ∈ {1, 2}, and hence x = (−1)p−1

δ
s1 +

∑p
i=2(−1)p−isi. Therefore there exist rationals αi ∈ {−1,−2−1, 2−1, 1}, 1 ≤ i ≤

p, such that x =
∑p

i=1 αisi, i.e, x is a linear combination with coefficients taken
from {−1,−2−1, 2−1, 1} of those vertices si that lie on the path from s1 to x.

(2) dBi
(s) = 2 for every vertex s ∈ Si. According to Lemma 10, there

exists a simple cycle C of length 4ℓ + 2 for some ℓ ≥ 1 in Bi. Write C =
(xp, sp+1, xp+1, . . . , xp+q−1, sp+q), for some q = 2ℓ+1. Since graph Bi is bipartite,
any cycle that starts at a vertex in Si must alternate between vertices in Si and
Xi, and hence must be of even length (on return to the start vertex again).

x s1 x1 sp xp

path P

x = (−1)pxp +
Pp

i=1
(−1)i−1si

s1 = x + x1 sp = xp−1 + xp

sp+1

xp+1

sp+q

cycle C

sp+1 = xp+1 + xp

sp+q = xp+q−1 + xp

xp =
Pq

i=1
2−1(−1)i−1sp+i

Fig. 1. For every vertex s ∈ Si, we have dBi
(s) = 2.

For the sake of presentation, suppose first that x does not lie on cycle C
(see Figure 1 for an illustration.). Observe now that, since every vertex of Si

has degree 2 in Bi, every path leading from vertex x to cycle C intersects C
at a vertex of Xi. Consider a shortest path leading from vertex x to cycle C,
say P = (x0 = x, s1, x1, . . . , xp−1, sp, xp). Note that such a path exists since
Bi is connected. Clearly, since vertex x does not lie on cycle C and P is a
shortest path, all vertices of P but vertex xp do not lie on cycle C. For one,
we have s1 = x + x1, s2 = x1 + x2, . . . , sp = xp−1 + xp, and hence x =
(−1)pxp +

∑p
i=1(−1)i−1si (1). For another, sp+1 = xp + xp+1, sp+2 = xp+1 +

xp+2, . . . , sp+q = xp+q−1 + xp, and hence xp =
∑q

i=1 2−1(−1)i−1sp+i (2)
since p is odd. Combining (1) and (2) yields x =

∑q
i=1 2−1(−1)p+i−1sp+i +

∑p
i=1(−1)i−1si. Therefore, there exist rationals αi ∈ {−1,−2−1, 0, 2−1, 1}, 1 ≤

i ≤ n, such that x =
∑n

i=1 αisi. More precisely, x is a linear combination
with coefficients taken from {−1,−2−1, 2−1, 1} of those vertices si that lie on a
shortest path leading from vertex x to a cycle C or lie on cycle C.

If x lies on cycle C, (1) vanishes (zero-length path), and substituting xp by
x in (2) yields x =

∑q
i=1 2−1(−1)i−1sp+i. Therefore, x is a linear combination



with coefficients taken from {−2−1, 2−1} of those vertices si that lie on cycle C.
⊓⊔

Thanks to Lemma 9, we can prove that there exists an algorithm for Mini-

mum 2-Generating Set that confines the combinatorial explosion of compu-
tational difficulty to a function of k = rk2(S) only.

Proposition 2. Assuming a unit-cost RAM model with log m word size (m =

max(S)), there exists a O(5
k2(k+3)

2 k2 log k) time algorithm for finding a mini-
mum cardinality 2-generating set of S, where k = rk2(S).

Proof. We propose a brute-force algorithm for finding a (representation of a)
minimum cardinality 2-generating set of S. The basic idea is to consider the
set C(S) of all linear combinations α1s1 + α2s2 + . . . + αnsn with coefficients
taken from {−1,−2−1, 0, 2−1, 1}. Clearly, there exist 5n such combinations. The
algorithm simply tries each k-subset X of C(S) and checks whether S ⊆ X∪2X.
Correctness of the algorithm follows from Lemma 9. We now turn to proving its
time complexity. Let N be the number of k-subsets of C(S). Clearly, N =

(

5n

k

)

=

O(5nk). But n ≤ k(k+3)
2 , and hence N = O(5

k2(k+3)
2 ). Since a k-subset X of C(S)

can be identified as a 2-generating set of S in O(k2 log k) time (assuming a unit-
cost RAM model with log m word size), the total running time is O(Nk2 log k) =

O(5
k2(k+3)

2 k2 log k). ⊓⊔

6 Conclusion

Minimum 2-Generating Set is a natural restriction of Minimum Generat-

ing Set with prospective applications (see [4]). Our representation (Lemma 9)
provides a first positive algorithmic result for computing minimum 2-generating
sets. We mention here some directions of interest for future works: (1) Is Min-

imum 2-Generating Set pseudo-polynomial time solvable ? Notice that this
question is related to 2-covering a set of strings S for a unary alphabet with
a set X of substrings in S, where X is said to 2-cover S if every string in S
can be written as a concatenation of at most two substrings in X [12]. (2) For
any k > 1, a set of integers S is said to be k-simplifiable if rkk(S) < |S| [14].
Is there a polynomial-time algorithm for deciding whether S is 2-simplifiable ?
(3) Considering the general Minimum k-Generating Set problem, is there an
analog of Lemma 9 for every fixed k ≥ 2 ?

Acknowledgments

The authors are thankful to Olivier Serre for helpful discussions. They are also
indebted to the reviewers for a careful and thoughtful reading of the original
version of this paper.



References

1. P. Alimonti and V. Kann, Some APX-completeness results for cubic graphs, The-
oretical Computer Science 237 (2000), no. 1-2, 123–134.

2. H.L. Bodlaender, R.G. Downey, M.R. Fellows, M.T. Hallett, and H.T. Wareham,
Parameterized complexity analysis in computational biology, Computer Applica-
tions in the Biosciences 11 (1995), 49–57.
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