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Abstract

An acyclic coloring of a graph G is a coloring of its vertices such that: (i) no two neigh-
bors in G are assigned the same color and (ii) no bicolored cycle can exist in G. The acyclic
chromatic number of G is the least number of colors necessary to acyclically color G. In this
paper, we show that any graph of maximum degree 5 has acyclic chromatic number at most
9, and we give a linear time algorithm that achieves this bound.

Keywords: acyclic chromatic number, acyclic coloring algorithm, maximum degree 5.

1 Introduction

In this paper, we address the acyclic coloring problem. An acyclic coloring of a graph G is a
coloring of its vertices such that: (i) no two neighbors in G are assigned the same color (this
condition ensures a proper coloring of G) and (ii) no bicolored cycle can exist in G. In other
words, an acyclic coloring of G is a proper coloring of G such that any two classes of colors induce
a graph G′ which is a forest (that is, an acyclic graph). The minimum number of colors necessary
to acyclically color G is called the acyclic chromatic number of G, and is noted a(G).

For a family F of graphs, the acyclic chromatic number of F , denoted by a(F), is defined
as the maximum a(G) over all graphs G ∈ F . Acyclic coloring has been largely studied in the
recent past ; in particular, a(F) has been determined for several families F of graphs such as planar
graphs [Bor79], planar graphs with “large” girth [BKW99], 1-planar graphs [BKRS01], outerplanar
graphs (see for instance [Sop97]), product of trees [JMV06] and d-dimensional grids [FGR03].
Concerning graphs having a fixed maximum degree, most of the results on this topic come from
Alon et al. [AMR90], where the following results were proved: (1) asymptotically, there exist

graphs of maximum degree ∆ with acyclic chromatic number in Ω( ∆
4

3

(log ∆)
1

3

) ; (2) asymptotically,

it is possible to acyclically color any graph of maximum degree ∆ with O(∆
4

3 ) colors ; (3) a trivial
greedy polynomial time algorithm exists that acyclically colors any graph of maximum degree ∆
in ∆2 + 1 colors. We note that the main drawback concerning results (1) and (2) is that they
come from probabilistic arguments, whose proofs are existential but not constructive.
Now, for fixed values of ∆, it has been shown that 4 colors are sufficient to color any graph of
maximum degree 3 [Grü73], and that there exists a graph G of maximum degree 3 for which
any acyclic coloring requires 4 colors (a trivial example is the complete graph K4). Moreover,
it was proved recently in [Sku04] that there exists a linear time algorithm that acyclically colors
any graph of maximum degree 3 in 4 colors. It has also been shown in [Bur79] that 5 colors are
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sufficient to color any graph of maximum degree 4, and there exists a graph G of maximum degree
4 for which any acyclic coloring requires 5 colors (a trivial example is the complete graph K5).
The main result presented in this paper can be seen as a follow-up of the cases ∆ = 3 and ∆ = 4.
Indeed, for ∆ = 5, we show that any graph of degree 5 can be acyclically colored in 9 colors ;
besides,we design a linear-time algorithm that achieves such a bound.

2 Preliminaries

In the following, we will only consider graphs G of maximum degree ∆ = 5. A partial coloring of
G will denote a coloring of a set Vc ⊆ V of vertices of G, such that the graph G[Vc] induced by Vc

is acyclically colored. We will then say that G is partially colored. If G is partially colored by a
set of colors of cardinality k, we will say that G uses k colors.

Consider a partially colored graph G, and consider an uncolored vertex u ∈ V − Vc. Let
N(u) be the set of the neighbors of u. In the following, we will be interested of the set Nc(u) ⊆
N(u) of colored vertices in N(u). We will denote by #cn(u) (number of colored neighbors of
u) the cardinality of Nc(u). We will also be interested in the set of colors SC(Nc(u)) used by
the vertices in Nc(u), and we will denote by #dcn(u) (different colors in the neighborhood of
u) the cardinality of SC(Nc(u)). We will also find convenient to use the following notation:
Lu = (n1, n2, . . . n#dcn(u)) (where n1 ≥ n2 ≥ . . . ≥ n#dcn(u)), where an ni represents, for a color
c in SC(Nc(u)), the number of times c is used among the colored neighbors of u. We will then
say than vertex u sees list Lu = (n1, n2, . . . n#dcn(u)), and Lu will be called the color list of u.
An illustration of those notions is given in Figure 1: here, all the neighbors of u are colored (thus
#cn(u) = 5 and Nc(u) = N(u)), SC(Nc(u)) = {c1, c2, c3}, #dcn(u) = 3 and Lu = (2, 2, 1).

u

c1

c2

c1

c2
c3

Figure 1: Vertex u sees Lu = (2, 2, 1)

We will also focus on the possibility that coloring u with a given color c′ induces a bicolored
cycle in graph G. Hence, for two distinct colors c and c′, a bicolored cycle of the form (c, c′)
will denote a bicolored cycle whose colors are c and c′. Moreover, for two distinct colors c and
c′ and for any uncolored vertex u, we introduce a boolean variable N(c, c′, u) defined as follows:
N(c, c′, u) = 0 if we can ensure that assigning color c′ to u does not create a bicolored cycle of the
form (c, c′), and N(c, c′, u) = 1 otherwise. More intuitively, if two distinct neighbors v1 and v2 of
u are assigned color c, and if both v1 and v2 have a colored neighbor with color c′, then coloring
u with color c′ might create a bicolored cycle of the form (c, c′) (because we have a bicolored path
of length 4 going through u), and thus we will set N(c, c′, u) to 1.
Finally, we will often find convenient to denote, for a colored vertex v of G, by c(v) the color that
is assigned to v.

3 Acyclic Coloring of Graphs of Maximum Degree 5

In this section, we show that any graph of maximum degree 5 has acyclic chromatic number at
most 9, and we give a linear time algorithm to achieve this bound (see Theorem 1). This result
will be obtained thanks to Lemmas 1 to 5. Before proving those lemmas, we begin by a first
observation.
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Observation 1 Let G be a partially colored graph of maximum degree 5. Let u be an uncolored
vertex in G, and let us consider a given color c in SC(Nc(u)). Let nc be the number of neighbors
of u having color c. In that case, if nc = 1, then for any color c′ 6= c, N(c, c′, u) = 0. Moreover,
if nc ≥ 2, then there exists at most 2nc distinct colors c′ 6= c for which N(c, c′, u) = 1.

Proof: Clearly, since G is partially colored, there is no bicolored cycle in G, and assigning a color
to u could create one or several bicolored cycles. However, if for a color c represented among the
neighbors of u, we have nc = 1, then no bicolored cycle could involve u and color c (because no
bicolored path carrying color c could go through u), and thus for any c′ 6= c, we have N(c, c′, u) = 0.

Now, if nc ≥ 2, consider the nc neighbors of u having color c, say v1, v2 . . . vnc
. Each of those

vertices has at most ∆ − 1 = 4 colored neighbors. Coloring vertex u with color c′ could then
contribute to a bicolored cycle if two distinct vertices vi and vj , 1 ≤ i, j ≤ nc both have a neighbor
having the same color c′. More precisely, suppose vi (resp. vj) has a neighbor wi (resp. wj) having
color c′ (note that possibly, wi = wj). If we assign color c′ to u, then we have a bicolored path
of length 4, (wi, vi, u, vj , wj), and hence u could contribute to a bicolored cycle of the form (c, c′).
Now we need to compute an upper bound on the number of colors c′ for which N(c, c′, u) = 1.
We first note that since every neighbor of u has at most 4 colored neighbors, then there can exist
at most 4nc colored vertices which are neighbors of one of the nc neighbors of u that carry color
c. Moreover, any bicolored cycle of the form (c, c′) going through u can exist only if at least 2
vertices at distance 2 from u are assigned the same color c′. Hence, we conclude that there are at
most 2nc colors c′ for which N(c, c′, u) = 1. 2

Observation 1 above implies the following: let G be a partially colored graph, and let u be an
uncolored vertex. If one wishes to color u in such a way that G remains partially colored, then u

needs to avoid the following colors:

• the colors of its neighbors (in order to maintain a proper coloring for G).

• the colors c′ mentioned in proof of Observation 1, knowing that there are at most 2nc such
colors for every color c that appears at least twice among the neighbors of u.

The above discussion will help us prove Lemma 1 below.

Lemma 1 Let G be a partially colored graph of maximum degree 5, and let us suppose G uses at
most 9 colors. Then, for any uncolored vertex u such that #cn(u) ≤ 3, there exists a way to color
u such that G is still partially colored, and still uses at most 9 colors.

Proof: Suppose #cn(u) ≤ 3. If no color is repeated among the neighbors of u (thus Lu = (1),
Lu = (1, 1) or Lu = (1, 1, 1)), then no bicolored cycle can be created by coloring u. Thus u only
needs to avoid the colors used by its neighbors, and since at most three colors are used, there
exists at least 6 choices for coloring u. Now, suppose that at least one color is repeated among
the neighbors of u. Then, since #cn(u) ≤ 3, we know that exactly one color is repeated among
its neighbors. We have three cases: Lu = (2), Lu = (2, 1) or Lu = (3). Let us detail those cases:
Case 1: Lu = (2, 1) or Lu = (2). Then, by Observation 1, u needs to avoid (i) 4 colors (no
bicolored cycle) and (ii) at most 2 more colors (in order to maintain the proper coloring). Since
we have 9 colors available, at least 3 choices remain for coloring u.
Case 2: Lu = (3). Similarly to Case 1, u needs to avoid (i) 6 colors (no bicolored cycles) and
(ii) 1 more color (proper coloring). Hence, there remains 2 choices for coloring u. 2

Lemma 1 above handles the case where at most three neighbors of u are colored. However,
Observation 1 helps to solve more cases. This is the purpose of Lemma 2 below.

Lemma 2 Let G be a partially colored graph of maximum degree 5, and let us suppose G uses at
most 9 colors. For any uncolored vertex u, if Lu = (1, 1, 1, 1), Lu = (1, 1, 1, 1, 1), Lu = (2, 1, 1),
Lu = (2, 1, 1, 1) or Lu = (3, 1), then there exists a way to color u such that G is still partially
colored, and still uses at most 9 colors.
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Proof: Let us detail the different cases:
Case 1: Lu = (1, 1, 1, 1, 1) or Lu = (1, 1, 1, 1). Since no color is repeated among the neighbors of
u, we only need maintain the proper coloring when coloring u ; hence, u needs to avoid at most 5
colors. Thus, there remains at least 4 choices for coloring u.
Case 2: Lu = (2, 1, 1, 1) or Lu = (2, 1, 1). Then u needs to avoid (i) 4 colors (no bicolored
cycle, see Observation 1) and (ii) at most 4 more colors (proper coloring). Since we have 9 colors
available, there remains at least one choice for coloring u.
Case 3: Lu = (3, 1). Then u needs to avoid (i) 6 colors (no bicolored cycle, see Observation 1)
and (ii) 2 more colors (proper coloring). Since we have 9 colors available, there remains one choice
for coloring u. 2

Lemmas 1 and 2 can handle a certain number of cases, but not all of them. For instance, if
Lu = (3, 1, 1), the counting argument derived from Observation 1 yields that u needs to avoid
(i) 6 colors (no bicolored cycles, by Observation 1) and (ii) 3 more colors (proper coloring). Since
we have only 9 colors available, we cannot ensure that it is possible to find a suitable color for u.
Thus, we need a more detailed argument. The idea that we will exploit is the following: if there is
a large number of colors that u should avoid because of possible bicolored cycles, this is because
there are colored neighbors of u that have themselves many neighbors colored with distinct colors.
That is, if a colored neighbor of u has colored neighbors which are assigned the same color, then
this will decrease the number of possible colors that u should avoid. This idea is summarized in
the following observation.

Observation 2 Let G be a partially colored graph of maximum degree 5. Let u be an uncolored
vertex in G, and let us consider a given color c in SC(Nc(u)) such that nc, the number of neighbors
of u having color c, is greater than or equal to 2. Let v1, . . . vnc

, 2 ≤ nc ≤ 5 be the neighbors of u

whose color is c. If, for every 1 ≤ i ≤ nc, there is at least one color which is repeated among the
neighbors of vi, then there exists at most b 3nc

2 c distinct colors c′ 6= c for which N(c, c′, u) = 1.

Proof: Let c be a color which appears at least twice among the neighbors of u, and let v1, . . . vnc
,

2 ≤ nc ≤ 5 be the neighbors of u colored c. Suppose that for every 1 ≤ i ≤ nc, there is at least
one color which is repeated among the neighbors of vi. This means that at most 3 distinct colors
are represented among the neighbors of vi, for every 1 ≤ i ≤ nc. Take any of those colors, say c′.
If c′ does not appear as neighbor of two distinct vis, then N(c, c′, u) = 0. Thus, the number of
colors c′ for which N(c, c′, u) = 1 is upper bounded by 3nc

2 . Since this number is an integer, we

conclude that it cannot exceed b 3nc

2 c. 2

Thanks to Observation 2, we can now solve more cases, as shown in Lemma 3.

Lemma 3 Let G be a partially colored graph of maximum degree 5, and let us suppose G uses at
most 9 colors. For any uncolored vertex u, if Lu = (2, 2), Lu = (3, 1, 1), Lu = (4), Lu = (4, 1) or
Lu = (5), then there exists a way to color u such that G is still partially colored, and still uses at
most 9 colors.

Proof: Let us detail the possible cases:
Case 1: Lu = (2, 2). Let c1 and c2 be the two colors represented among the 4 colored neighbors
of u, and let us distinguish two cases.

(1) If there exists a colored neighbor v of u such that the colored neighbors of v use pairwise
distinct colors, then it is possible to recolor v: indeed, v cannot be involved in a bicolored
cycle, and since it has at most 4 colored neighbors (because u is not colored yet), v can be
assigned five different colors, hence there are four other possibilities for coloring v. Among
those four colors, we pick a color c such that c 6= c1 and c 6= c2. In that case, Lu is modified
and becomes Lu = (2, 1, 1), a case that is handled by Lemma 2.
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(2) If any colored neighbor v of u is such that at least one color is repeated among the colored
neighbors of v, then by Observation 2, we conclude that u should avoid (i) 6 colors (no
bicolored cycles) and (ii) 2 more colors (proper coloring). Since we have 9 colors, there is
always a color available for u.

Case 2: Lu = (3, 1, 1). Similarly, let c1, c2 and c3 be the colors represented among the 5 colored
neighbors of u, where c1 appears three times. We now focus on vertices v1, w1 and x1, the neighbors
of u having color c1. Let us distinguish two cases.

(1) v1, w1 or x1 is such that its colored neighbors use pairwise distinct colors. Then, similarly
to Case 1 above, there are four other possibilities to color this vertex (no bicolored cycle can
be created, and at most 4 colors should be avoided to maintain a proper coloring). Among
those four colors, we pick a color c such that c 6= c2 and c 6= c3, and we recolor the considered
vertex with color c. In that case, Lu is modified and becomes Lu = (2, 1, 1, 1), a case that is
handled by Lemma 2.

(2) v1, w1 and x1 are such that at least one color is repeated among the colored neighbors of v.
Then, by Observation 2, we conclude that u should avoid (i) 4 colors (no bicolored cycles)
and (ii) 3 more colors (proper coloring). Since we have 9 colors, there are always two colors
available for u.

Case 3: Lu = (4) (resp. Lu = (4, 1)). Similarly, let c1 be the color represented 4 times among
the colored neighbors of u, and let us focus on vertices v1, w1, x1 and y1, the neighbors of u having
color c1. Let us distinguish two cases.

(1) If v1, w1, x1 or y1 is such that its colored neighbors use pairwise distinct colors, then, as
above, there are four other possibilities to color this vertex. Among those four colors, we
pick a color c such that is not represented among the neighbors of u, and we recolor the
considered vertex with color c. In that case, Lu is modified and becomes Lu = (3, 1) (resp.
Lu = (3, 1, 1)), a case that is handled by Lemma 2 (resp. Case 2 above).

(2) If v1, w1, x1 and y1 are such that at least one color is repeated among the colored neighbors
of v, then by Observation 2, we conclude that u should avoid (i) 6 colors (no bicolored cycles)
and (ii) at most 2 more colors (proper coloring). Since we have 9 colors, we conclude that
there is always at least one color available for u.

Case 4: Lu = (5). Similarly, let c1 be the color assigned to the 5 colored neighbors of u. We now
focus on vertices v1, w1, x1, y1 and z1, the five neighbors of u, and we distinguish two cases.

(1) v1, w1, x1, y1 or z1 is such that its colored neighbors use pairwise distinct colors. Then, as
above, there are four other possibilities to color this vertex. Among those four colors, we
pick a color c such that c 6= c1, and we and recolor the considered vertex with color c. In
that case, Lu is modified and becomes Lu = (4, 1), a case that is handled by Case 3 above.

(2) If v1, w1, x1, y1 and z1 are such that at least one color is repeated among their colored
neighbors, then by Observation 2, we conclude that u should avoid (i) 7 colors (no bicolored
cycles) and (ii) 1 more color (proper coloring). Since we have 9 colors, there is always one
color available for u.

2

Lemmas 1, 2 and 3 cover almost all the possible cases for u. Only two cases cannot be solved
by the methods describe above: Lu = (2, 2, 1) and Lu = (3, 2). In order to be able to handle those
two last cases, we first need the following technical lemma, which will prove useful later.

Lemma 4 Let G be a partially colored graph of maximum degree 5, and let us suppose G uses at
most 9 colors. Then, for any colored vertex x such that #cn(x) ≤ 4, there exists a way to recolor
x (with a different color) such that G is still partially colored, and still uses at most 9 colors.
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Proof: Let G be a partially colored graph of maximum degree 5, using at most 9 colors. Let x

be a colored vertex of G such that #cn(x) ≤ 4.
Case 1: #cn(x) ≤ 3. In that case, we know that we can always recolor x in such a way that
G remains partially colored, and uses at most 9 colors. For this, see proof of Lemma 1, where x

plays the role of u, and where it was concluded that in each case, at least two choices exist for
coloring u.
Case 2: #cn(x) = 4. We have 5 possibilities: Lx = (1, 1, 1, 1), Lx = (2, 1, 1), Lx = (3, 1), Lx = (4)
and Lx = (2, 2). Let us now detail those cases:

Case 2.1 Lx = (1, 1, 1, 1) or Lx = (2, 1, 1). As above, proof of Lemma 2 yields that there are
two choices to color x.

Case 2.2 Lx = (3, 1). Let x1, x2 and x3 be the three neighbors of x having the same color,
say c, and let the second color be c′. Let us look at any xi, 1 ≤ i ≤ 3: xi has at most 5 colored
neighbors, among which x. In the following, we will suppose that all 5 neighbors of xi are colored
(if this is not the case, the result will also hold because there are less constraints on the problem).

(1) If, among the neighbors of xi (not considering vertex x), there is no color which is repeated,
then xi sees Lxi

= (1, 1, 1, 1, 1) or Lxi
= (2, 1, 1, 1) (depending on the color of x). What

we want to show now is that in both cases, there are at least two choices to recolor xi. If
Lxi

= (1, 1, 1, 1, 1), then xi just needs to avoid the colors of its 5 neighbors (there is no risk of
a bicolored cycle involving xi), and thus there are 4 choices for coloring xi. If Lxi

= (2, 1, 1, 1),
knowing that (i) x (which is a neighbor of xi) has only four colored neighbors, and (ii) there
are two colored neighbors of x which carry the same color c, we conclude by Observation 2
that xi should avoid at most (i) 2 colors (no bicolored cycles) and (ii) 4 more colors (proper
coloring). Hence, in both cases, there are several choices to recolor xi. Let us take any two
of those choices, say k1 and k2. If k1 = c′, then we recolor xi with k2 ; else, we recolor xi

with k1. In both cases, Lx is modified and becomes Lx = (2, 1, 1), a case that has been
treated in Case 2.1 above.

(2) In the case that all the xis have at least one color which is repeated among their neighbors,
then by Observation 2 we know that x should avoid (i) at most 4 colors (no bicolored cycles)
and (ii) 2 more colors (proper coloring). Thus, there are at least 3 choices to color x.

Case 2.3 Lx = (4). Let x1, x2, x3 and x4 be the four colored neighbors of x, and let c be their
color. Let us focus on any xi, 1 ≤ i ≤ 4, and as in the previous case, let us suppose that all 5
neighbors of xi are colored.

(1) If no color is repeated among the neighbors of xi (not taking x into account), then Lxi
=

(1, 1, 1, 1, 1) or Lxi
= (2, 1, 1, 1) (depending on the color of x). As in the previous case, we

want to show that there is at least one possibility to recolor xi (there are actually more,
but one will be enough for our purpose). Indeed, if Lxi

= (1, 1, 1, 1, 1) then xi just needs
to avoid the colors of its 5 neighbors (there is no risk of a bicolored cycle involving xi), and
thus there are 4 choices for coloring xi. If Lxi

= (2, 1, 1, 1), knowing that (i) x (which is a
neighbor of xi) has only four colored neighbors, and (ii) there are three colored neighbors of
x which carry the same color c, we conclude by Observation 2 that xi should avoid at most
(i) 1 color (no bicolored cycles) and (ii) 4 more colors (proper coloring). Hence, in both
cases, there are several choices to recolor xi. Let us then recolor xi with any other available
color for xi. In that case, Lx changes and becomes Lx = (3, 1), a case that has been treated
in Case 2.2 above.

(2) In the case that all xis have at least one repeated color among their neighbors, then by
Observation 2 we know that x should avoid (i) at most 6 colors (possible bicolored cycles)
and (ii) 1 more color (proper coloring). Thus, there are at least 2 choices to color x, and
thus at least one other choice than its current color.

Case 2.4 Lx = (2, 2). Let x1, x2, x3 and x4 be the four colored neighbors of x. Let us focus
on a given xi, for any 1 ≤ i ≤ 4. As in the previous case, let us suppose that all 5 neighbors of xi

are colored.
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(1) If no color is repeated among the neighbors of xi (not taking x into account), then Lxi
=

(1, 1, 1, 1, 1) or Lxi
= (2, 1, 1, 1) (depending on the color of x). As in the previous case, we

want to show that there is at least one possibility to recolor xi. Indeed, if Lxi
= (1, 1, 1, 1, 1)

then xi just needs to avoid the colors of its 5 neighbors (there is no risk of a bicolored cycle
involving xi), and thus there are 4 choices for coloring xi. If Lxi

= (2, 1, 1, 1), knowing that
(i) x (which is a neighbor of xi) has only four colored neighbors, and (ii) only two colors
are used among the colored neighbors of x, we conclude by Observation 2 that xi should
avoid at most (i) 2 colors (no bicolored cycles) and (ii) 4 more colors (proper coloring).
Hence, in both cases, there are several choices to recolor xi. Let us then recolor xi with
any other available color for xi. In that case, Lx changes and becomes either Lx = (3, 1) or
Lx = (2, 1, 1), cases that have been treated in Case 2.1 and Case 2.2 above.

(2) In the case that all xis have at least one repeated color among their neighbors, then by
Observation 2 we know that x should avoid (i) at most 6 colors (no bicolored cycles) and
(ii) 2 more colors (proper coloring). Hence, in that case there is only one possibility to color
x and we cannot conclude using that argument. However, if we are in the situation where
only one color is available for x, then for every 1 ≤ i ≤ 4, the four neighbors of xi (not taking
x into account) take three different colors (ie, exactly one color is repeated, and repeated
only once). Let ci1 , ci2 and ci3 be those three colors, and let us again distinguish two cases:
first, if c(x) = ci1 (resp. c(x) = ci2 , c(x) = ci3), then x can be recolored because color ci1

(resp. ci2 , ci3) is taken into account into the 6 cycles we want to avoid ; but since x has
already been assigned this color, it should not be counted, which leaves room for another
color for x.
Now suppose c(x) 6= ci1 , ci2 , ci3 . Let us consider a vertex xi, 1 ≤ i ≤ 4. We know that
Lxi

= (2, 1, 1, 1), and let w1 and w2 be the two neighbors of xi having the same color, say
c. Again, we look at the neighbors of wj (1 ≤ j ≤ 2). If wj has at least one repeated color
among its neighbors (not taking xi into account), then xi can be recolored, because it should
avoid (i) 3 colors (no bicolored cycles) and (ii) 4 more colors (proper coloring). Thus there
is a second color available for xi. Let us change the color of xi. In that case, Lx changes
and becomes either Lx = (3, 1) or Lx = (2, 1, 1), and we know that both cases can be solved
(see Case 2.1 and Case 2.2 above).

Now if w1 and w2 have no repeated color among their neighbors, let us suppose (wlog) that
all the neighbors of w1 are colored, and that the colors of its neighbors are α1, α2, α3, α4.
We will also show that it is possible to recolor xi, and thus get to another case that has been
previously solved. For this, we consider two more cases:

• c(xi) = αj for a j ∈ [1; 4]. As previously, xi has already been assigned a color that could
create a bicolored cycle (though it does not create one, since we suppose G is partially
colored). Thus, when we count the number of colors xi should avoid, we should not take
this possible bicolored cycle into account. Finally, we have that xi should avoid (i) 3
colors (no bicolored cycles) and (ii) 4 more colors (proper coloring), and thus xi can be
recolored. In that case, Lx changes and becomes either Lx = (3, 1) or Lx = (2, 1, 1),
and we know that both cases can be solved (see Case 2.1 and Case 2.2 above).

• c(xi) 6= αj for any j ∈ [1; 4]. In that case, Lw1
= (1, 1, 1, 1, 1), and there are actually

4 choices to color w1. If c(x) is not among those choices, then there is a color c′ that
could be assigned to w1 in such a way that Lxi

= (1, 1, 1, 1, 1). In such a case, we
recolor w1 with c′, and then we know that xi can be recolored as well. Now if c(x) is
among the choices of color for w1, then we recolor w1 with c(x) and we now see that
xi should avoid (i) 2 colors (no bicolored cycles, because of the neighbors of x which
only carry 2 different colors) and (ii) 4 more colors. Thus, there are several choices for
coloring xi, and consequently it can be recolored.

Altogether, we see that xi can be recolored, and thus Lx either becomes Lx = (3, 1) or
Lx = (2, 1, 1), and we know that both cases can be solved (see Case 2.1 and Case 2.2
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above).

2

Lemma 5 Let G be a partially colored graph of maximum degree 5, and let us suppose G uses at
most 9 colors. Then, for any uncolored vertex u, there exists a way to color u such that G is still
partially colored, and still uses at most 9 colors.

Proof: Suppose G is partially colored and uses at most 9 colors. Take any uncolored vertex u.
If #cn(u) ≤ 3, then we know by Lemma 1 that we can assign a color to u such that G is still
partially colored, and still uses at most 9 colors. Now suppose #cn(u) = 4. We have five cases
for Lu : Lu = (1, 1, 1, 1), Lu = (2, 1, 1), Lu = (2, 2), Lu = (3, 1) and Lu = (4). However, cases
Lu = (1, 1, 1, 1), Lu = (2, 1, 1) and Lu = (3, 1) are covered by Lemma 2, while Lu = (2, 2) and
Lu = (4) are covered by Lemma 3. Now suppose #cn(u) = 5. We have seven cases for Lu :
Lu = (1, 1, 1, 1, 1), Lu = (2, 1, 1, 1), Lu = (2, 2, 1), Lu = (3, 2), Lu = (3, 1, 1), Lu = (4, 1) and
Lu = (5). However, cases Lu = (1, 1, 1, 1, 1) and Lu = (2, 1, 1, 1) are covered by Lemma 2, while
cases Lu = (3, 1, 1), Lu = (4, 1) and Lu = (5) are covered by Lemma 3. Hence we are left with
two cases: Lu = (2, 2, 1) and Lu = (3, 2).
Case 1: Lu = (2, 2, 1). Suppose the neighbors of u are v1, w1, v2, w2 and v3, such that c(v1) =
c(w1) = c1, c(v2) = c(w2) = c2 and c(v3) = c3. We recall that c1, c2 and c3 are pairwise distinct
colors. Thanks to Lemma 4, we know that since v1 is such that #cn(v1) ≤ 4, it is possible to
recolor it with a new color. Thus, let c′

1 6= c1 be the other color that is available for v1. We have
two cases:

(1) if c′

1 6= c3, then we recolor v1, and Lu becomes either Lu = (3, 1, 1) (in case c′ = c2) or
Lu = (2, 1, 1, 1) (in case c′ 6= c2). Each of those two cases are covered, respectively, by
Lemma 3 and Lemma 2.

(2) if c′

1 = c3, then even if we recolor v1, Lu will remain of the form Lu = (2, 2, 1). In that case,
we apply Lemma 4 on v2 and we look at the other available color c′

2 6= c2 for v2:

• if c′

2 = c1, then we recolor only v2, which leads to Lu = (3, 1, 1)

• else, if c′

2 6= c3, then we recolor only v2, which leads to Lu = (2, 1, 1, 1)

• else, that is c′

2 = c3, we recolor both v1 and v2, which leads to Lu = (3, 1, 1)

In each of the three above cases, Lemmas 3 and 2 show that we can color u in such a way that
at most 9 colors are used, and G remains partially colored.
Case 2: Suppose now that Lu = (3, 2), and let us proceed similarly to Case 1. Indeed, suppose
the neighbors of u are v1, w1, x1, v2 and w2, such that c(v1) = c(w1) = c(x1) = c1 and c(v2) =
c(w2) = c2. We recall that c1 6= c2. Thanks to Lemma 4, we know that since v2 is such that
#cn(v2) ≤ 4, it is possible to recolor v2 with a new color. Thus, let c′

2 6= c2 be the other color that
is available for v1. We have two cases: if c′

2 = c1, then recoloring v2 leads to the case Lu = (4, 1) ;
else, recoloring v2 leads to the case Lu = (3, 1, 1). It can be seen that in both cases, Lemma 2
shows that we can color u in such a way that at most 9 colors are used, and G remains partially
colored. 2

Thanks to the above results, we can state the following theorem.

Theorem 1 For any graph G of maximum degree 5, a(G) ≤ 9 and there exists a linear-time
algorithm that acyclically colors any such graph G in at most 9 colors.

Proof: Lemmas 1, 2, 3 and 5 show that for any partially colored graph G of maximum degree 5
that uses at most 9 colors, and for any uncolored vertex u, there exists a way to color u in such a
way that (i) G remains partially colored and (ii) at most 9 colors are used.
The coloring algorithm that is implied by the above study is the following: starting from an
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uncolored graph G, arbitrarily pick an uncolored vertex u, and find a suitable color (among the
9 colors that are available) to color u, using the results of Lemmas 1, 2, 3 and 5 ; continue this
process until all vertices are colored. Clearly, thanks to the above mentioned lemmas, we know
that this algorithm is correct in the sense that it acyclically colors all the vertices of G, using at
most 9 colors. Moreover, it runs in linear time since for each of the n uncolored vertices considered,
we need to look at distance at most 3 from it. Since we suppose that ∆ = 5, in each of the n

loops, only a constant number of vertices is consulted. Consequently, the above greedy algorithm
runs in O(n). 2

4 Conclusion

In this paper, we have shown that any graph of maximum degree 5 can be acyclically colored
with 9 colors, and we have provided a linear time algorithm that acyclically colors any such graph
with at most 9 colors. This result can be seen as a follow-up of the ones obtained for graphs
of maximum degree 3 (where we know a(G) ≤ 4 for any such graph G [Grü73]), and maximum
degree 4 (where we know a(G) ≤ 5 for any such graph G [Bur79]).

As far as lower bounds are concerned, we know that there exists graphs G of maximum degree
5 for which a(G) = 6 (take for instance K6). Closing the gap between those two bounds is a
challenging open problem. In particular, we strongly suspect that the upper bound of 9 is not
tight.
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